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1. Forewords

These notes describe the formalism of Galois categories and fundamental groups, as introduced by A.
Grothendieck in [SGA1, Chap. V]. This formalism stems from Galois theory for topological covers and can
be regarded as the natural categorical generalization of it. But, far beyond providing a uniform setting for the
preexisting Galois theories as those of topological covers and field extensions, this formalism gave rise to the
construction and theory of the étale fundamental group of schemes - one of the major achievements of modern
algebraic geometry.

In section 2, we give the axiomatic definition of a Galois category and state the main theorem which asserts
that a Galois category is a category equivalent to the category of finite discrete Π-sets for some profinite group
Π. In section 3, we carry out in details the proof of the main theorem. In section 4, we show that there is a
natural equivalence of categories between the category of profinite groups and the category of Galois categories
pointed with fibre functors. This gives a powerful dictionary to translate properties of a functor between two
pointed Galois categories in terms of properties of the corresponding morphism of profinite groups (and con-
versely). In section 5 we define the category of étale covers of a connected scheme and prove that it is a Galois
category. In section 6, we apply the formalism of section 4 to describe the étale fundamental groups of specific
classes of schemes such as abelian varieties or normal schemes. The short section 7 is devoted to geometrically
connected schemes of finite type over fields. These schemes have the property that their fundamental group
decomposes into a geometric part and an arithmetic part. But the interplay between those two parts remains
mysterious and is at the source of some of the most standard conjectures about fundamental groups such as
anabelian conjectures or the section conjecture. The four last sections are devoted to the study of the geometric
part namely, the fundamental group of a connected scheme of finite type over an algebraically closed field. In
section 8, we state the main G.A.G.A. theorem, which describes what occurs over the complex numbers (and,
basically, over any algebraically closed field of characteristic 0). In section 9, we construct the specialization
morphism from the étale fundamental group of the geometric generic fibre to the étale fundamental of the
geometric special fibre of a scheme proper, smooth and geometrically connected over a trait and show that it is
an epimorphism. We improve this result in section 10, by showing that, in the smooth case, the specialization
epimorphism induces an isomorphism on the prime-to-p completions (where p denotes the residue characteris-
tic of the closed point). In the concluding section 11, we apply the theory of specialization to show that the
étale fundamental group of a connected proper scheme over an algebraically closed field is topologically finitely
generated. In the appendix, we gather some results (without proof) from descent theory that are needed in the
proofs of some of the elaborate theorems presented here.

The main source and guideline for these notes was [SGA1] but for several parts of the exposition, I am
also indebted to [Mur67]. In particular, though the case of schemes is only considered there, I could extract a
consequent part of sections 3 and 4 from this source (complemented with proposition 3.3, which is a categorical
version of a scheme-theoretic result of J.-P. Serre). I also resorted to [Mur67] for section 9. Another source
is the first synthetic section of [Mi80], which I used for classical results on étale morphisms in subsection 5.10
and normal schemes in subsection 6.4. Also, at some points, I mention famous conjectures (some of which were
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proved recently) on étale fundamental groups, such as Abhyankar’s conjecture, anabelian conjectures or the
section conjecture. For this, I am indebted to the survey expositions in [Sz09] and [Sz10].

Among other introductions to étale fundamental groups (avoiding the language of Galois categories), I should
mention the proceedings of the conference Courbes semi-stables et groupe fondamental en géométrie algébrique
held in Luminy in 1998 [BLR00] and, in particular, the elementary self-contained introductory article of A.
Mézard [Me00] as well as the nice book of T. Szamuely [Sz09], which emphazises the parallel story of topological
covers, field theory and schemes - especially curves.

The main contribution of these notes to the existing introductory litterature on étale fundamental groups
is that we priviligiate the categorical setting to the ’incarnated ones’ (as exposed in [Me00] and [Sz09]). In
particular, we provide detailed proofs of all the categorical statements in sections 3 and 4. To our knowledge,
such statements are only available in the original sources [SGA1] and [Mur67] and, there, their proofs are only
sketched. Privilegiating the categorical setting is not only a matter of taste but stems from the conviction that
elementary category theory, which is only involved in Galois categories, is much simpler than (even elementary)
scheme theory.

Concerning scheme theory, there is nothing new in the material presented here but we tried to make the
exposition both concise and exhaustive so that it becomes accessible to graduate students in algebraic geometry.
In section 5, 6, 7 and 10, we provide detailed proofs. Sections 8, 9 and 11 require more elaborate tools. In
section 8, we only provide the minimal material to understand the statement of the main G.A.G.A. theorem
but in sections 9 and 11 we state the main theorems involved and, relying on them, give detailed sketches of
proof.

For sections 2 to 4 only some familiarity with the language of categories and the notion of profinite groups
are required. For sections 5 to 7, the reader has to be familiar with the basics of commutative algebra as in
[AM69] and the theory of schemes as in [Hart77, Chap. II]. As mentioned, sections 8 to 11 rely on difficult
theorems but to understand their statements, only a little more knowledge of the theory of schemes is needed -
say as in [Hart77, Chap. III].

2. Galois Categories

2.1. Definition and elementary properties. Given a category C and two objects X, Y ∈ C, we will use the
following notation: HomC(X,Y ) : Set of morphisms from X to Y in C

IsomC(X,Y ) : Set of isomorphisms from X to Y in C
AutC(X) := IsomC(X,X)

A morphism u : X → Y in a category C is a strict epimorphism if the fibre product X ×u,Y,u X exists in C
and for any object Z in C, the map u◦ : HomC(Y, Z) → HomC(X,Z) is injective and induces a bijection onto
the set of all morphism ψ : X → Z in C such that ψ ◦ p1 = ψ ◦ p2, where pi : X ×u,Y,u X → X denotes the ith
projection, i = 1, 2.

Let FSets denote the category of finite sets.

Définition 2.1. A Galois category is a category C such that there exists a covariant functor F : C → FSets
satisfying the following axioms:

(1) C has a final object eC and finite fibre products exist in C.
(2) Finite coproducts exist in C and categorical quotients by finite groups of automorphisms exist in C.

(3) Any morphism u : Y → X in C factors as Y u′→ X ′
u′′→ X, where u′ is a strict epimorphism and u′′ is a

monomorphism which is an isomorphism onto a direct summand of X.
(4) F sends final objects to final objects and commutes with fibre products.
(5) F commutes with finite coproducts and categorical quotients by finite groups of automorphisms and sends

strict epimorphisms to strict epimorphisms.
(6) Let u : Y → X be a morphism in C, then F (u) is an isomorphism if and only if u is an isomorphism.

Remark 2.2. As the coproduct over the emptyset ∅ is always an initial object, it follows from axiom (2) that
C has an initial object ∅C .
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2.1.1. Equivalent formulations of axioms (1), (2), (4), (5):

(1) is equivalent to:
(1)’ Finite projective limits exist in C.

(2) is implied by:
(2)’ Finite inductive limits exist in C.

Let C1, C2 be two categories admitting finite projective limits (resp. finite inductive limits). A functor F :
C1 → C2 is said to be right exact (resp. left exact) if it commutes with finite projective limits (resp. with finite
inductive limits). Then, (4) is equivalent to:

(4)’ F is right exact
and (5) is implied by:

(5)’ F is left exact.
It will follow from theorem 2.8 that (1)-(6) are equivalent to (1), (2)’, (3), (4), (5)’ and (6).

2.1.2. Unicity in axiom (3):

Lemma 2.3. The decomposition Y
u′→ X ′

u′′→ X in axiom (3) is unique in the sense that for any two such

decompositions Y
u′i→ X ′i

u′′i→ X = X ′i tX ′′i , i = 1, 2 there exists a (necessarily) unique isomorphism ω : X ′1→̃X ′2
such that ω ◦ u′1 = u′2 and u′′2 ◦ ω = u′′1 .

Proof. From the injectivity of − ◦ u′ : HomC(X ′, X) ↪→ HomC(Y,X), any such decomposition Y
u′→ X ′

u′′→ X

is entirely determined by u, u′. Let Y
u′i→ X ′i

u′′i→ X = X ′i t X ′′i , i = 1, 2 be two such decompositions. Since
u = u′′1 ◦ u′1 one gets:

u′′2 ◦ (u′2 ◦ p1) = u ◦ p1 = u ◦ p2 = u′′2 ◦ (u′2 ◦ p2),
where pi : Y ×u′1,X′1,u′1 Y → Y denotes the ith projection, i = 1, 2. As u′′2 : X ′2 ↪→ X is a monomorphism,
this implies that u′2 ◦ p1 = u′2 ◦ p2 and, as u′1 : Y → X ′1 is a strict epimorphism, this in turn implies that
u′2 : Y → X ′2 lies in the image of u′1 ◦ − : HomC(X ′1, X

′
2) ↪→ HomC(Y,X ′2) hence can be written in C as

u′2 : Y
u′1→ X ′1

φ→ X ′2. From axiom (6), to prove that φ : X ′1→̃X ′2 is an isomorphism in C, it is enough to prove
that F (φ) : F (X ′1)� F (X ′2) is bijective. But F (φ) : F (X ′1)� F (X ′2) is surjective since F (u′2) is, hence bijective
since |F (X ′1)| = |F (X ′2)| = |F (u)(F (Y ))|. �

2.1.3. Artinian property. It follows from axiom (4) that a Galois category is always artinian. More precisely,
one has the following elementary categorical lemma.

Lemma 2.4. Let C be a category which admits finite fibre products and let u : X → Y be a morphism in C.Then
u : X → Y is a monomorphism if and only if the first projection p1 : X ×Y X → X is an isomorphism. In
particular,

(1) A functor that commutes with fibre products sends monomorphisms to monomorphisms.
(2) If u : X → Y is both a monomorphism and a strict epimorphism then u : X → Y is an isomorphism.

Proof. Let ∆X|Y : X → X ×u,Y,u X denote the diagonal morphism. By definition, p1 ◦ ∆X|Y = IdX so,
if p1 : X ×Y X → X is an isomorphism, its inverse is automatically ∆X|Y : X → X ×Y X. Assume first
that u : X → Y is a monomorphism. Then, from u ◦ p1 = u ◦ p2, one deduces that p1 = p2. But, then,
p1 ◦∆X|Y ◦ p1 = IdX ◦ p1 = p1 and:

p2 ◦∆X|Y ◦ p1 = IdX ◦ p1 = p1 = p2.

So, from the uniqueness in the universal property of the fibre product, one gets ∆X|Y ◦p1 = IdX×YX . Conversely,
assume that p1 : X ×Y X→̃X is an isomorphism. Then, for any morphisms f, g : W → X in C such that
u◦f = u◦g there exists a unique morphism (f, g) : W → X×YX such that p1◦(f, g) = f and p2◦(f, g) = g. From
the former equality, one obtains that (f, g) = ∆X|Y ◦f and, from the latter, that g = p2◦(f, g) = p2◦∆X|Y ◦f = f .

Assertion (1) follows straightforwardly from the fact that functors send isomorphisms to isomorphisms. It
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remains to prove assertion (2). Since u : X → Y is a strict epimorphism, the map u◦ : HomC(Y,X) ↪→
HomC(Y, Y ) induces a bijection onto the set of all morphisms v : X → X such that v ◦ p1 = v ◦ p2, where
pi : X ×Y X → X is the ith projection, i = 1, 2. But since u : X → Y is also a monomorphism, the first
projection p1 : X ×Y X→̃X is an isomorphism with inverse ∆X|Y : X → X ×Y X. So ∆X|Y ◦ p1 = IdX×YX ,
which yields:

p2 ◦∆X|Y ◦ p1 = p2

= IdX ◦ p1 = p1.

Thus p1 = p2, which implies that u◦ : HomC(Y,X)→̃HomC(Y, Y ) is bijective. In particular, there exists
v : Y → X such that u ◦ v = IdY . But, then, u ◦ v ◦ u = u = u ◦ IdX whence v ◦ u = IdX . �

Corollary 2.5. A Galois category C is artinian.

Proof. Let F : C → FSets be a fibre functor for C and consider a decreasing sequence

· · ·
tn+1
↪→ Tn

tn
↪→ · · · t2↪→ T1

t1
↪→ T0

of monomorphisms in C. We want to show that tn+1 : Tn+1 ↪→ Tn is an isomorphism for n � 0. From axiom
(6), it is enough to show that F (tn+1) : F (Tn+1) → F (Tn) is an isomorphism for n � 0 . But it follows from
lemma 2.4 (1) and axiom (4) that F (tn+1) : F (Tn+1) ↪→ F (Tn) is a monomorphism and, since F (T0) is finite,
the monomorphism F (tn+1) : F (Tn+1) ↪→ F (Tn) is actually an isomorphism for n� 0. �

2.1.4. A reinforcement of axiom (6). Combining axioms (3), (4) and (6), one also obtains that F : C → FSets
is ”conservative” for strict epimorphisms, monomorphisms, final and initial objects:

Lemma 2.6.

(1) If u : Y → X is a morphism in C then F (u) is an epimorphism (resp. a monomorphism) if and only if
u is a strict epimorphism (resp. a monomorphism).

(2) For any X0 ∈ C, one has:
- F (X0) = ∅ if and only if X0 = ∅C;
- F (X0) = ∗ if and only if X0 = eC, where ∗ denotes the final object in FSets.

Proof.
(1) The ”if” implication for epimorphism follows from axiom (4) and the ”if” implication for monomorphism

from lemma 2.4 (1) and axiom (4).
We now prove the ”only if” implications. From axiom (3), any morphism u : Y → X in C factors as

Y
u′→ X ′

u′′→ X, where u′ is a strict epimorphism and u′′ is a monomorphism which is an isomorphism
onto a direct summand of X. So, if F (u) is an epimorphism then F (u′′) is an epimorphism as well.
But from the ”if” implication, F (u′′) is also a monomorphism hence an isomorphism since we are in the
category FSets. So u′′ is an isomorphism by axiom (6). The proof for monomorphism is exactly the
same.

(2) We first consider the case of initial objects. By definition of an initial object, for any X ∈ C there is
exactly one morphism from ∅C to X in C; denote it by uX : ∅C → X.

Assume first that F (X0) = ∅. Since, for any finite set E, there is a morphism from E to ∅ in FSets
if and only if E = ∅ and since F (uX0) is a morphism from F (∅C) to F (X0) = ∅ in FSets, one has
F (∅C) = ∅. But this forces F (uX0) = Id∅. In particular, F (uX0) is an isomorphism hence, by axiom (6)
so is uX0 .

Assume now that X0 = ∅C . For any object X ∈ C, one has a canonical isomorphism (uX , IdX) :
∅CtX→̃X (with inverse the canonical morphism iX : X→̃∅CtX) thus F ((uX , IdX)) : F (∅CtX)→̃F (X)
is again an isomorphism. But, it follows from axiom (5) that F (∅C tX) ' F (∅C) t F (X), which forces
|F (∅C)| = 0 hence F (∅C) = ∅.

We consider now the case of final object. The fact that F (eC) = ∗ follows from axiom (4). Conversely,
by definition of a final object, for any X ∈ C there is exactly one morphism from X to eC in C; denote
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it by vX : X → eC . So, F (X) = ∗ forces F (vX) : ∗ → ∗ is the identity which, by axiom (6), implies that
vX : X→̃eC is an isomorphism. �

2.2. Main theorem. Given a Galois category C, a functor F : C → FSets satisfying axioms (4), (5), (6) is
called a fibre functor for C. Given a fibre functor F : C → FSets for C, the fundamental group of C with base
point F is the group - denoted by π1(C;F ) - of automorphisms of the functor F : C → FSets.

Also, given two fibre functors Fi : C → FSets for C, i = 1, 2 the set of paths from F1 to F2 in C is the
set - denoted by π1(C;F1, F2) := IsomFct(F1, F2) - of isomorphisms of functors from F1 : C → FSets to
F2 : C → FSets.

Example 2.7.
(1) For any connected, locally arcwise connected and locally simply connected topological space B, let CtopB

denote the category of finite topological covers of B. Then CB is Galois with fibre functors the usual
”fibre at b” functors, b ∈ B:

Fb : CtopB → FSets
f : X → B → f−1(b)

.

Let πtop1 (B; b) denote the topological fundamental group of B with base point b and group law defined
as follows. For any γ, γ′ ∈ πtop1 (B; b) with representatives cγ , cγ′ : [0, 1] → B we define γ′ · γ to be the
homotopy class of:

cγ′ ◦ cγ : [0, 1] → B
0 ≤ t ≤ 1

2 → cγ(2t)
1
2 ≤ t ≤ 1 → cγ′(2t− 1)

Then, with this convention, one has:

π1(CtopB ;Fb) = ̂πtop1 (B; b)

(where (̂−) denotes the profinite completion).

(2) For any profinite group Π, let C(Π) denote the category of finite (discrete) sets with continuous left
Π-action. Then C(Π) is Galois with fibre functor the forgetful functor For : C(Π) → FSets. And, in
that case:

π1(C(Π);For) = Π.

Example 2.7 (3) is actually the typical example of Galois categories. Indeed, the fundamental group π1(C;F )
is equipped with a natural structure of profinite group. For this, set:

Π :=
∏

X∈Ob(C)

AutFSets(F (X))

and endow Π with the product topology of the discrete topologies, which gives it a structure of profinite group.
Considering the monomorphism of groups:

π1(C;F ) ↪→ Π
θ 7→ (θ(X))X∈Ob(C)

the group π1(C;F ) can be identified with the intersection of all:

Cφ := {(σX)X∈Ob(C) ∈ Π | σX ◦ F (φ) = F (φ) ◦ σY },
where φ : Y → X describes the set of all morphisms in C. By definition of the product topology, the Cφ are
closed. So π1(C;F ) is closed as well and, equipped with the topology induced from the product topology on Π,
it becomes a profinite group.

By definition of this topology, a fibre functor F : C → FSets for C factors as:

C F //

F

��

FSets

C(π1(C;F ))
For

88qqqqqqqqqq
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Theorem 2.8. (Main theorem) Let C be a Galois category. Then:

(1) Any fibre functor F : C → FSets induces an equivalence of categories F : C → C(π1(C;F )).
(2) For any two fibre functors Fi : C → FSets, i = 1, 2, the set of paths π1(C;F1, F2) is non-empty.

The profinite group π1(C;F1) is noncanonically isomorphic to π1(C;F2) with an isomorphism that is
canonical up to inner automorphisms. In particular, the abelianization π1(C;F )ab of π1(C;F ) does not
depend on F up to canonical isomorphism.

3. Proof of the main theorem

Given a category C and X, Y ∈ C, we will say that X dominates Y in C - and write X ≥ Y - if there is at
least one morphism from X to Y in C.

From now on, let C be a Galois category and let F : C → FSets be a fibre functor for C.

3.1. The pointed category associated with C, F . We define the pointed category associated with C and F
to be the category Cpt whose objects are pairs (X, ζ) with X ∈ C and ζ ∈ F (X) and whose morphisms from
(X1, ζ1) to (X2, ζ2) are the morphisms u : X1 → X2 in C such that F (u)(ζ1) = ζ2.
There is a natural forgetful functor:

For : Cpt → C

and a 1-to-1 correspondence between sections of For : Ob(Cpt)→ Ob(C) and families:

ζ = (ζX)X∈Ob(C) ∈
∏

X∈Ob(C)

F (X).

The idea behind the notion of pointed categories is to replace the original category C by a category Cpt with
more objects but less morphisms between objects.

Let Co ⊂ C denote the full subcategory of connected objects (see subsection 3.2.1) and let G ⊂ Co denote the
full subcategory of Galois objects (see subsection 3.2.2). Then, it turns out that:

- For any two objects X,Y in G such that X ≥ Y and for any ζX ∈ F (X), ζY ∈ F (Y ) there is exactly
one morphism from (X, ζX) to (Y, ζY ) in Gpt;

- For any two objects X,Y ∈ G there exists an object Z ∈ G such that Z ≥ X and Z ≥ Y .

As a result, any section ζ of For : Ob(Cpt) → Ob(C) endows Ob(G) with a structure of projective system, that
we denote by Gζ .

The two remarkable facts concerning Gζ are:

(1) Any object in Cpto is dominated by an object in Gζ (see proposition 3.3);
(2) Given any object X ∈ G, if we replace C by the full subcategory CX ⊂ C whose objects are the objects

in C whose connected components are all dominated by X and F : C → FSets by its restriction
FX : CX → FSets to CX then (see propositon 3.5),
(a) the evaluation morphism: evζX : HomC(X,−)|CX → FX is an isomorphism;
(b) CX is a Galois category with fibre functor FX : CX → FSets for which theorem 2.8 holds.

(1) provides a well-defined morphism of functors:

evζ : lim
−→
Gζ

HomC(X,−)→ F

and it will follow from (2) (a) that this is an isomorphism. But, then, the proof of theorem 2.8 follows easily
by combining (1) and (2) (b). Furthermore, this will give a natural description of π1(C;F ) as:

(lim
←−
Gζ

AutC(X))op.

3.2. Connected and Galois objects.
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3.2.1. Connected objects. An object X ∈ C is connected if it cannot be written as a coproduct X = X1 t X2

with Xi 6= ∅C , i = 1, 2. We gather below elementary properties of connected objects.

Proposition 3.1. (Minimality and connected components) An object X0 ∈ C is connected if and only if for
any X ∈ C, X 6= ∅C any monomorphism from X to X0 in C is automatically an isomorphism.
In particular, any object X ∈ C, X 6= ∅C can be written as:

X =
r⊔
i=1

Xi,

with Xi ∈ C connected, Xi 6= ∅C, i = 1, . . . , r and this decomposition is unique (up to permutation). We say
that the Xi, i = 1, . . . , r are the connected components of X.

Proof. We prove first the ”only if” implication. Write X0 = X ′0 tX ′′0 and assume, for instance, that X ′0 6= ∅C .
From lemma 2.6 (1), the canonical morphism iX′0 : X ′0 → X0 is a monomorphism hence automatically an
isomorphism, which forces F (X ′′0 ) = ∅ hence X ′′0 = ∅C by lemma 2.6 (2).

We prove now the ”if” implication. Assume that X0 6= ∅C is connected and let X ∈ C, X 6= ∅C . By axiom

(3), any monomorphism i : X ↪→ X0 in C factors as X i′→ X ′0
i′′→ X0 = X ′0 t X ′′0 with i′ : X → X ′0 a strict

epimorphism and i′′ : X ′0 → X0 a monomorphism inducing an isomorphism onto X ′0. Since X0 is connected
either X ′0 = ∅C or X ′′0 = ∅C . But if X ′0 = ∅C then F (X) = ∅, which, by lemma 2.6 (2), forces X = ∅C and
contradicts our assumption. So X ′′0 = ∅C and i′′ : X ′0 ↪→ X0 is an isomorphism. But, then, i : X ↪→ X0 is both
a monomorphism and a strict epimorphism hence an isomorphism by lemma 2.4.

As for the last assertion, since C is artinian, for any X ∈ C, X 6= ∅, there exists X1 ∈ C connected, X1 6= ∅C
and a monomorphism i1 : X1 ↪→ X. If i1 is an isomorphism then X is connected. Else, from axiom (3),

i1 factors as X1
i′1→ X ′

i′′1→ X = X ′ t X ′′ with i′1 a strict epimorphism and i′′1 a monomorphism inducing an
isomorphism onto X ′. Since i1 and i′′1 are monomorphism, i′1 is a monomorphism as well hence an isomorphism,
by lemma 2.4 (2). We then iterate the argument on X ′′. By axiom (5), this process terminates after at most
|F (X)| steps. So we obtain a decomposition:

X =
r⊔
i=1

Xi

as a coproduct of finitely many non-initial connected objects, which proves the existence. For the unicity,
assume that we have another such decomposition:

X =
s⊔
i=1

Yi.

For 1 ≤ i ≤ r, let 1 ≤ σ(i) ≤ s such that F (Xi) ∩ F (Yσ(i)) 6= ∅. Then consider:

Xi
� � iXi // X

Xi ×X Yσ(i)

p

OO

q
//

�

Yσ(i)

� ?

iYσ(i)

OO

Since iXi is a monomorphism, q is a monomorphism as well. Also, by axiom (4) one has F (Xi ×X Yσ(i)) =
F (Xi) ∩ F (Yσ(i)), which is nonempty by definition of σ(i). So, from lemma 2.6 (1), one has Xi ×X Yσ(i) 6= ∅C
and, since Yσ(i) is connected and q is a monomorphism, q is an isomorphism. Similarly, p is an isomorphism. �

Proposition 3.2. (Morphisms from and to connected objects)

(1) (Rigidity) For any X0 ∈ C connected, X0 6= ∅C, for any X ∈ C, X 6= ∅C and for any ζ0 ∈ F (X0),
ζ ∈ F (X), there is at most one morphism from (X0, ζ0) to (X, ζ) in Cpt;

(2) (Domination by connected objects). For any (Xi, ζi) ∈ Cpt, i = 1, . . . , r there exists (X0, ζ0) ∈ Cpt with
X0 ∈ C connected such that (X0, ζ0) ≥ (Xi, ζi) in Cpt, i = 1, . . . , r.
In particular, for any X ∈ C, there exists (X0, ζ0) ∈ Cpt with X0 ∈ C connected such that the evaluation
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map:

evζ0 : HomC(X0, X) →̃ F (X)
u : X0 → X 7→ F (u)(ζ0)

is bijective.
(3) (i) If X0 ∈ C is connected then any morphism u : X → X0 in C is a strict epimorphism;

(ii) If u : X0 → X is a strict epimorphism in C and if X0 is connected then X is also connected;
(iii) If X0 ∈ C is connected then any endomorphism u : X0 → X0 in C is automatically an automorphism.

Proof.

(1) It follows from axiom (1) that the equalizer ker(u1, u2) i→ X of any two morphisms ui : X → Y ,
i = 1, 2 in C exists in C. So, let ui : (X0, ζ0) → (X, ζ) be two morphisms in Cpt, i = 1, 2 and consider

their equalizer ker(u1, u2) i→ X0 in C. From axiom (4), F (ker(u1, u2))
F (i)→ F (X0) is the equalizer of

F (ui) : F (X0)→ F (X), i = 1, 2 in FSets. But by assumption, ζ0 ∈ ker(F (u1), F (u2)) = F (ker(u1, u2))
so, in particular, F (ker(u1, u2)) 6= ∅ and it follows from lemma 2.6 (2) that ker(u1, u2) 6= ∅C . Since an
equalizer is always a monomorphism, it follows then from proposition 3.1 that i : ker(u1, u2)→̃X0 is an
isomorphism that is, u1 = u2.

(2) Take X0 := X1×· · ·×Xr, ζ0 := (ζ1, . . . , ζr) ∈ F (X1)×· · ·×F (Xr) = F (X1×· · ·×Xr) (by axiom (4)).
The ith projection pri : X0 → Xi then induces a morphism from (X0, ζ0) to (Xi, ζi) in Cpt, i = 1, . . . , r.
So, it is enough to prove that for any (X, ζ) ∈ Cpt there exists (X0, ζ0) ∈ Cpt with X0 connected such
that (X0, ζ0) ≥ (X, ζ) in Cpt. If X ∈ C is connected then Id : (X, ζ)→ (X, ζ) works. Else, write:

X =
r⊔
i=1

Xi

as the coproduct of its connected components and let iXi : Xi ↪→ X denote the canonical monomor-
phism, i = 1, . . . , r. Then, from axiom (2) one gets:

F (X) =
r⊔
i=1

F (Xi)

hence, there exists a unique 1 ≤ i ≤ r such that ζ ∈ F (Xi) and iXi : (Xi, ζ) ↪→ (X, ζ) works.

(3) (i) It follows from axiom (3) that u : X → X0 factors as X u′→ X ′0
u′′→ X ′0 tX ′′0 = X0, where u′ is a strict

epimorphism and u′′ is a monomorphism inducing an isomorphism onto X ′0. Furthermore, X 6= ∅C
forces X ′0 6= ∅C thus, since X0 is connected, X ′′0 = ∅C hence u′′ : X ′0→̃X0 is an isomorphism.
(ii) From axiom (6), it is enough to prove that F (u) : F (X0)→̃F (X0) is an isomorphism. But as F (X0)
is finite, it is actually enough to prove that F (u) : F (X0) � F (X0) is an epimorphism. By axiom

(3) write u : X0 → X0 as X0
u′→ X ′0

u′′→ X0 = X ′0 t X ′′0 with u′ : X0 → X ′0 a strict epimorphism
and u′′ : X ′0 → X0 a monomorphism inducing an isomorphism onto X ′0. Since X0 is connected either
X ′0 = ∅C or X ′′0 = ∅C . The former implies X0 = ∅C and then the claim is straightforward. The latter
implies X0 = X ′0 thus u′′ : X ′0 → X0 is an isomorphism and u : X0 → X0 is a strict epimorphism so the
conclusion follows from axiom (4).
(iii) If X0 = ∅C , the claim is straightforward. Else, write X = X ′ t X ′′ in C with X ′ 6= ∅C and
let iX′ : X ′ ↪→ X denote the canonical monomorphism. Fix ζ ′ ∈ F (X ′) and ζ0 ∈ F (X0) such that
F (u)(ζ0) = ζ ′. From (2), there exist (X ′0, ζ

′
0) ∈ Cpt with X ′0 connected and morphisms p : (X ′0, ζ

′
0) →

(X0, ζ0) and q : (X ′0, ζ
′
0) → (X ′, ζ ′) in Cpt. From (3) (i) the morphism p : X ′0 → X0 is automatically a

strict epimorphism, so u ◦ p : X ′0 → X is also a strict epimorphism. From (1), one has: u ◦ p = iX′ ◦ q.
So iX′ ◦ q is a strict epimorphism and, in particular, F (X) = F (X ′), which forces F (X ′′) = ∅ hence,
X ′′ = ∅C by lemma 2.6 (2). �
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3.2.2. Galois objects. It follows from proposition 3.2 (1) and (3) (iii) that for any connected object X0 ∈ C,
X0 6= ∅C and for any ζ0 ∈ F (X0), the evaluation map:

evζ0 : AutC(X0) ↪→ F (X0)
u : X0→̃X0 7→ F (u)(ζ0)

is injective. A connected object X0 in C is Galois in C if for any ζ0 ∈ F (X0) the evaluation map evζ0 :
AutC(X0) ↪→ F (X0) is bijective. This is equivalent to one of the following:

(1) AutC(X0) acts transitively on F (X0);
(2) AutC(X0) acts simply transitively on F (X0);
(3) |AutC(X0)| = |F (X0)|;
(4) X0/AutC(X0) is final in C.

The equivalence of (1), (2) and (3) follows from the fact hat AutC(X0) acts simply on F (X0). It follows from
lemma 2.6 (2) that (4) is equivalent to F (X0/AutC(X0)) = ∗. But, from axiom (5), this is also equivalent to
F (X0)/AutC(X0) = ∗, which is (1). Note that (4) shows that the notion of Galois object does not depend on
the fibre functor F : C → FSets.

Proposition 3.3. (Galois closure) For any X ∈ C connected, there exists X̂ ∈ C Galois dominating X in C
and minimal among the Galois objects dominating X in C.

Proof. From lemma 3.2 (2) there exists (X0, ζ0) ∈ Cpt with X0 ∈ C connected such that the evaluation map
evζ0 : HomC(X0, X)→̃F (X) is bijective. Write:

HomC(X0, X) = {u1, . . . , un}
Set ζi := F (ui)(ζ0), i = 1, . . . , n and let pri : Xn → X denote the ith projection, i = 1, . . . , n. By the universal
property of product, there exists a unique morphism π := (u1, . . . , un) : X0 → Xn such that pri ◦ π = ui,
i = 1, . . . , n.

By axiom (3), one can decompose π : X0 → Xn as X0
π′→ X̂

π′′→ Xn = X̂ t X̂ ′ with π′ a strict epimorphism
and π′′ a monomorphism inducing an isomorphism onto X̂. We claim that X̂ is Galois and is minimal for
morphisms from Galois objects to X.

It follows from lemma 3.2 (3) (ii) that X̂ is connected in C. Set ζ̂0 := F (π′)(ζ0) = (ζ1, . . . , ζn) ∈ F (X̂); we
are to prove that the evaluation map evζ̂0 : AutC(X̂) → F (X̂) is surjective that is, for any ζ ∈ F (X̂) there
exists ω ∈ AutC(X̂) such that F (ω)(ζ̂0) = ζ. From proposition 3.2 (2) there exists (X̃0, ζ̃0) ∈ Cpt with X̃0 ∈ C
connected such that (X̃0, ζ̃0) ≥ (X0, ζ0) and (X̃0, ζ̃0) ≥ (X̂, ζ), ζ ∈ F (X̂) in Cpt. So, up to replacing (X0, ζ0)
with (X̃0, ζ̃0), we may assume that there are morphisms ρζ : (X0, ζ0) → (X̂, ζ) in Cpt, ζ ∈ F (X̂). So, on the
one hand, one can write F (ω)(ζ̂0) = F (ω ◦ π′)(ζ0) and, on the other hand, ζ = F (ρζ)(ζ0). But then, by lemma
3.2 (1), there exists ω ∈ AutC(X̂) such that F (ω)(ζ̂0) = ζ if and only if there exists ω ∈ AutC(X̂) such that
ω ◦ π′ = ρζ . To prove the existence of such an ω observe that:

(∗) {pr1 ◦ π′′ ◦ ρζ , . . . , prn ◦ π′′ ◦ ρζ} = {u1, . . . , un}.
Indeed, the inclusion ⊂ is straightforward and to prove the converse inclusion ⊃, it is enough to prove that the
pri ◦ π′′ ◦ ρζ , 1 ≤ i ≤ n are all distincts. But since pri ◦ π′′ ◦ π′ = ui 6= uj = prj ◦ π′′ ◦ π′, 1 ≤ i 6= j ≤ n and
π′ : X0 → X̂ is a strict epimorphism, pri ◦ π′′ 6= prj ◦ π′′, 1 ≤ i 6= j ≤ n as well. And, as X0 is connected,
ρζ : X0 → X̂ is automatically a strict epimorphism hence pri ◦ π′′ ◦ ρζ 6= prj ◦ π′′ ◦ ρζ , 1 ≤ i 6= j ≤ n. From (∗),
there exists a permutation σ ∈ Sn such that prσ(i) ◦ π′′ ◦ ρζ = pri ◦ π′′ ◦ π′, i = 1, . . . , n and from the universal
property of product there exist a unique isomorphism σ : Xn→̃Xn such that pri ◦ σ = prσ(i), i = 1, . . . , n.
Hence pri ◦ π′′ ◦ π′ = pri ◦ σ ◦ π′′ ◦ ρζ , i = 1, . . . , n, which forces π′′ ◦ π′ = σ ◦ π′′ ◦ ρζ . But, then, from the
unicity of the decomposition in axiom (3), there exists an automorphism ω : X̂→̃X̂ satisfying σ ◦ π′′ = π′′ ◦ ω
and ω ◦ π′ = ρζ .

It remains to prove the minimality of X̂. Let Y ∈ C Galois and q : Y → X a morphism in C. Fix ηi ∈ F (Y )
such that F (q)(ηi) = ζi, i = 1, . . . , n. Since Y ∈ C is Galois, there exists ωi ∈ AutC(Y ) such that F (ωi)(η1) = ηi,
i = 1, . . . , n. This defines a unique morphism κ := (q ◦ ω1, . . . , q ◦ ωn) : Y → Xn such that pri ◦ κ = q ◦ ωi,
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i = 1, . . . , n. By axiom (3), κ : Y → Xn factors as Y κ′→ Z ′
π′′→ Xn = Z ′ t Z ′′ with π′ a strict epimorphism

in C and π′′ a monomorphism inducing an isomorphism onto Z ′. it follows from lemma 3.2 (3) (ii) that Z ′ is
connected and F (κ)(η1) = (ζ1, . . . , ζn) = ζ̂0 hence Z ′ is the connected component of ζ̂0 in Xn that is X̂. �

In particular, X̂ is unique up to isomorphism; it is called the Galois closure of X.

The following lemma will allow us to restrict to connected objects.

Let X0, X1, . . . , Xr ∈ C connected, set:

X :=
r⊔
i=1

Xi

and let iXi : Xi ↪→ X denote the canonical monomorphism, i = 1, . . . , r. One has a well-defined injective map:

tri=1iXi◦ :
r⊔
i=1

HomC(X0, Xi) ↪→ HomC(X0, X).

And, actually:

Lemma 3.4. The map:

tri=1iXi◦ :
r⊔
i=1

HomC(X0, Xi)→̃HomC(X0, X)

is bijective

Proof. From axiom (3), any u : X0 → X factors as X0
u′→ X ′

u′′→ X = X ′ tX ′′ with u′ a strict epimorphism and
u′′ a monomorphism inducing an isomorphism onto X ′. As X0 is connected, it follows from lemma 3.2 (3) (ii)
that X ′ is also connected, so X ′ is one of the connected component Xi, i = 1, . . . , r of X. This shows that the
above injective map is surjective hence bijective as claimed. �

For any X0 ∈ C Galois let CX0 ⊂ C denote the full subcategory whose objects are the X ∈ C such that X0

dominates any connected component of X in C. Write FX0 := F |CX0 : CX0 → FSets for the restriction of
F : C → FSets to CX0 . The next proposition is the ”finite level” version of theorem 2.8 and can be regarded as
the core of its proof.

Proposition 3.5. (Galois correspondence)

(1) Any ζ0 ∈ F (X0) induces a functor isomorphism:

evζ0 : HomC(X0,−)|CX0 →̃FX0 .

In particular, this induces an isomorphism of groups:

uζ0 : AutFct(FX0)→̃AutFct(HomC(X0,−)|CX0 ) = AutC(X0)op

(where the second equality is just Yoneda lemma) and which can be explicitly described:

uζ0(θ) = ev−1
ζ0

(θ(X0)(ζ0)).

(2) The functor FX0 : CX0 → FSets factors through an equivalence of categories:

CX0
FX0 //

FX0

��

FSets

C(AutC(X0)op)
For

77ooooooooooo

Proof.
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(1) For any morphism u : Y → X in CX0 , it follows from the fact that F : C → FSets is a functor that the
following diagram commutes:

F (Y )
F (u) // F (X)

HomC(X0, Y )

evζ0(Y )

OO

u◦
// HomC(X0, X),

evζ0(X)

OO

that is, evζ0 : HomC(X0,−)|CX0→̃FX0 is a functor morphism.
Also, since X0 is connected, evζ0(X) : HomC(X0, X) ↪→ F (X) is injective, X ∈ CX0 .

- If X is connected it follows from lemma 3.2 (3) (i) that any morphism u : X0 → X in C is automat-
ically a strict epimorphism. Write F (X) = {ζ1, . . . , ζn} and let ζ0i ∈ F (X0) such that F (u)(ζ0i) = ζi,
i = 1, . . . , n. Since X0 ∈ C is Galois, there exists ωi ∈ AutC(Y ) such that F (ωi)(ζ0) = ζ0i, i = 1, . . . , n,
which proves that evζ0(X) : HomC(X0, X)� F (X) is surjective hence bijective.
- If X is not connected, the conclusion follows from proposition 3.1, lemma 3.4 and axiom (5).

(2) For simplicity set G := AutC(X0). From (1), we can identify FX0 : CX0 → FSets with:

HomC(X0,−)|CX0 : CX0 → FSets,

over which Gop acts naturally via composition on the right, whence a factorization:

CX0
FX0 //

FX0

��

FSets

C(Gop)
For

::ttttttttt

We will write ”◦” for the composition law in G and ”∨” for the composition law in Gop. It remains to
prove that FX0 : CX0 → C(Gop) is an equivalence of categories.

- FX0 is essentially surjective: Let E ∈ C(Gop). By the same argument as in (1), one may assume that
E is connected in C(Gop) that is a transitive left Gop-set. Thus we get an epimorphism in Gop-Sets:

p0
e : Gop � E

ω 7→ ω · e

Set fe := p0
e ◦ ev−1

ζ0
: F (X0)� E. Then, for any s ∈ Se := StabGop(e), and ω ∈ G, one has:

fe ◦ F (s)(evζ0(ω)) = p0
e ◦ ev−1

ζ0
◦ evζ0(s ◦ ω)

= (s ◦ ω) · e
= (ω ∨ s) · e
= ω · (s · e)
= ω · e
= fe(evζ0(ω)).

So, by the universal property of quotient, fe : F (X0)� E factors through:

Gop
evζ0// //

p0
e ## ##HHHHHHHHHHH F (X0)

fe

����

// F (X0)/Se

fexxxxrrrrrrrrrrrr

E

But if pe : X0 → X0/Se denotes the categorical quotient of X0 by Se ⊂ G assumed to exist by axiom
(2), it follows from axiom (5) that F (X0) � F (X0)/Se is F (pe) : F (X0) � F (X0/Se). Since X0 is
connected, G acts simply on F (X0) hence:

|F (X0)/Se| = |F (X0)|/|Se| = [G : Se] = |E|.
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So fe : F (X0)/Se = F (X0/Se)� E is actually an isomorphism in Gop-Sets.

- FX0 is fully faithfull: Let X, Y ∈ CX0 . Again, by the same argument as in (1), one may assume that
X, Y are connected in C. The faithfulness of FX0 directly follows from proposition 3.2 (1). As for the
fullness, for any morphism u : F (X) → F (Y ) in C(Gop), fix e ∈ F (X). Since u : F (X) → F (Y ) in a
morphism in C(Gop) one has Se ⊂ Su(e) hence pu(e) : X0 → X0/Su(e) factors through:

X0

pu(e)

��

pe // X0/Se

pe,u(e)yysssssssss

X0/Su(e)

whence, from the proof of essential surjectivity, one gets the commutative diagram:

F (X0)
F (pe)

yyssssssssss
F (pu(e))

&&MMMMMMMMMM

F (X0/Se)
F (pe,u(e)) //

fe '
��

F (X0/Su(e))

fu(e)'
��

F (X)
u

// F (Y ).

�

Exercise 3.6. Let X0 ∈ C Galois and X ∈ CX0 which, from proposition 3.5 can be identified with the quotient
of X0 by a subgroup SX ⊂ AutC(X0). Show that X is Galois in C if and only if SX is normal in AutC(X0) and
that then, one has a short exact sequence of finite groups:

1→ SX → AutC(X0)→ AutC(X)→ 1.

3.3. Strict pro-representability of F : C → FSets. The category Pro(C) associated with C is the category
whose objects are projective systems X = (φi,j : Xi → Xj)i,j∈I, i≥j in C indexed by partially ordered filtrant
sets (I,≤) and whose morphisms from X = (φi,j : Xi → Xj)i,j∈I, i≥j to X ′ = (φ′i,j : X ′i → X ′j)i,j∈I′, i≥j are:

HomPro(C)(X,X
′) := lim

←−
i′∈I′

lim
−→
i∈I

HomC(Xi, X
′
i′).

Note that C can be regarded canonically as a full subcategory of Pro(C) and that F : C → FSets extends
canonically to a functor Pro(F ) : Pro(C)→ Pro(FSets).

The functor F : C → FSets is said to be pro-representable in C if there exists X = (φi,j : Xi → Xj)i,j∈I, i≥j ∈
Pro(C) and a functor isomorphism:

HomPro(C)(X,−)|C→̃F
and it is said to be strictly pro-representable in C if it is pro-representable in C by an object X = (φi,j : Xi →
Xj)i,j∈I, i≥j ∈ Pro(C) whose transition morphisms φi,j : Xi � Xj are epimorphisms, i, j ∈ I, i ≥ j.

3.3.1. Projective structures on Galois objects. Let G denote the set of all Galois objects (or more precisely, a
system of representatives of the isomorphism classes of Galois objects) in C. From proposition 3.2 (2) and
proposition 3.3, (G,≤) is directed. Fix ζ = (ζX)X∈G ∈

∏
X∈G F (X). Then, from proposition 3.2 (1), for any

X, Y ∈ G with X ≤ Y , there exists a unique φ
ζ

X,Y : Y → X in C such that φ
ζ

X,Y (ζY ) = ζX . The unicity of

φ
ζ

X,Y : Y → X implies that for any X, Y, Z ∈ G with X ≤ Y ≤ Z one has:

φ
ζ

X,Y ◦ φ
ζ

Y,Z = φ
ζ

X,Z .

This endows G with a structure of projective system Gζ := (φ
ζ

X,Y : Y � X)X, Y ∈G, X≤Y and one has:
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Proposition 3.7. The fibre functor F : C → FSets is strictly pro-representable in C by Gζ . More precisely, the
evaluation morphisms evζX : HomC(X,−)|CX → F |CX , X ∈ G induce a functor isomorphism:

evζ : lim
−→

HomC(X,−)|C→̃F.

Proof. From propostion 3.2 (3) (i), the transition morphisms are automatically strict epimorphisms. The re-
maining part of the assertion follows directly from the construction and proposition 3.5. �

The projective structure Gζ also induces a projective structure on the AutC(X), X ∈ G. More precisely, we
have:

Lemma 3.8. For any X, Y ∈ G with X ≤ Y , for any morphisms φ, ψ : Y → X in C and for any ωY ∈ AutC(Y )
there is a unique automorphisms ωX := rφ,ψ(ωY ) : X→̃X in C such that the following diagram commutes:

Y
ωY //

ψ

��

Y

φ

��
X ωX

// X.

Proof. Since X is connected, ψ : Y → X is automatically a strict epimorphism and, in particular, the map:

◦ψ : AutC(X) ↪→ HomC(Y,X)

is injective. But it follows from proposition 3.5 that |HomC(Y,X)| = |F (X)| and from the fact that X is Galois
that |F (X)| = |AutC(X)|. As a result the map:

◦ψ : AutC(X)→̃HomC(Y,X)

is actually bijective and, in particular, there existe a unique automorphism ωX : X→̃X in C such that
φ ◦ ωY = ωX ◦ ψ. �

So one gets a well-defined sujective map:

rφ,ψ : AutC(Y )� AutC(X),

which is automatically a group epimorphism when φ = ψ. In particular, one gets a projective system of finite
groups:

(r
ζ

X,Y := r
φ
ζ

X,Y ,φ
ζ

X,Y

: AutC(Y )� AutC(X))X,Y ∈G, X≤Y .

Set:
Π := lim

←−
AutC(X).

Then Πop acts naturally on:
lim
−→

HomC(X,−)|C

by composition on the right, which induces a group monomorphism:

Πop ↪→ AutFct(lim−→HomC(X,−)|C)

and the functor isomorphism
evζ : lim

−→
HomC(X,−)|C→̃F

thus induces a group monomorphism:

uζ : π1(C;F ) ↪→ Πop

θ 7→ (ev−1
ζX

(θ(X)(ζX)))X∈G

and, actually:

Proposition 3.9. The group monomorphism uζ : π1(C;F )→ Πop is an isomorphism of profinite groups.
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Proof. We first show that uζ : π1(C;F ) → Πop is a group isomorphism by constructing an inverse. Let
ω := (ωX)X∈G ∈ Π. For any Z ∈ C connected, let Ẑ denote the Galois closure of Z in C and consider the
bijective map:

θω(Z) : F (Z)
ev−1
ζ
Ẑ

→̃ HomC(Ẑ, Z)
◦ωẐ
→̃ HomC(Ẑ, Z)

evζ
Ẑ

→̃ F (Z).

One checks that this defines a functor automorphism and that uζ(θω) = ω.
Next, we show that uζ : π1(C;F )→ Πop is continuous. For this, it is enough to check that the:

π1(C;F ) u
ζ

→ Πop → AutC(X)op, X ∈ G
are, which is straightforward by the definition of the topology on π1(C;F ). Finally, since π1(C;F ) is compact,
u−1
ζ is continuous as well. �

3.3.2. Conclusion. We can now carry out the proof of theorem 2.8
(1) From proposition 3.7 and proposition 3.9, this amount to showing that:

F ζ : HomPro(C)(G
ζ ,−)|C : C → FSets

factors through an equivalence of category F ζ : C → C(Πop). But this follows almost straightforwardly
from proposition 3.5. Indeed,
- F ζ is essentially surjective: For any E ∈ C(Πop) since E is equipped with the discrete topology, the
action of Πop on E factors through a finite quotient AutC(X) with X ∈ G and we can apply proposition
3.5 in CX .
- F ζ is fully faithful: For any Z, Z ′ ∈ C, there exists X ∈ G such that X ≥ Z, X ≥ Z ′ and, again, this
allows us to apply proposition 3.5 in CX .

(2) This immediately follows from proposition 3.7. Indeed, let Fi : C → FSets, i = 1, 2 be fibre functors.
Then any ζi ∈

∏
X∈G F

i(X) induces a functor isomorphism:

evFi
ζi

: HomPro(C)(G
ζi ,−)|C→̃Fi.

So it is enough to prove that Gζ
1

and Gζ
2

are isomorphic in Pro(C). But one has:

lim
←−
X

lim
−→
Y

HomC(Y,X) = lim
←−
X

lim
−→
Y

AutC(X) = lim
←−
X

AutC(X) ,

where the first equality follows from proposition 3.5 (1). So it is actually enough to prove that

lim
←−

AutC(X) 6= ∅,

where the structure of projective system on the AutC(X), X ∈ G is given by the surjective maps defined
in lemma 3.8:

rφ1
X,Y ,φ

2
X,Y

: AutC(Y )� AutC(X), X, Y ∈ G, X ≤ Y.
And this follows from the fact that a projective system of non-empty finite sets is non-empty. �

4. Fundamental functors and functoriality

4.1. Fundamental functors. Let C, C′ be two Galois categories. Then a covariant functor H : C → C′ is
a fundamental (or exact, according to the terminology of [SGA1]) functor from C to C′ if there exists a fibre
functor F ′ : C′ → FSets for C′ such that F ′ ◦ H : C → FSets is again a fibre functor for C or, equivalently
(since, from theorem 2.8 (2), two fibre functors are always isomorphic), if for any fibre functor F ′ : C′ → FSets
for C′ the functor F ′ ◦H : C → FSets is again a fibre functor for C.

Let u : Π′ → Π be a morphism of profinite groups. Then any E ∈ C(Π) can be endowed with a continuous
action of Π′ via u : Π′ → Π, which defines a canonical fundamental functor:

Hu : C(Π)→ C(Π′).
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Conversely, let H : C → C′ be a fundamental functor. Let F ′ : C′ → FSets be a fibre functor for C′ and set
F := F ′ ◦H : C → FSets, Π := π1(C;F ), Π′ := π1(C′;F ′). Then for any Θ′ ∈ Π′, one has Θ′ ◦H ∈ Π, which
defines a canonical morphism of profinite groups:

uH : Π′ → Π.

One checks that uHu = u and that the following diagram commutes:

C(Π)
HuH // C(Π′)

C

F

OO

H
// C′.

F ′

OO

Furthermore, given a fibre functor F ′ : C′ → FSets for C′ and two fundamental functors H1, H2 : C → C′
such that F ′ ◦H1 = F ′ ◦H2 =: F , any morphism of functors α : H1 → H2 induces an endomorphism of functor
uα : F → F such that:

uα ◦ uH1(θ′) = uH2(θ′) ◦ uα, θ′ ∈ Π′.
Thus, one the one hand, let Gal denote the 2-category whose objects are Galois categories pointed with

fibre functors and where 1-morphisms from (C;F ) to (C′;F ′) are fundamental functors H : C → C′ such that
F ′ ◦H = F and 2-morphisms are isomorphisms between fundamental functors. And, on the other hand, let Pro
denote the 2-category whose objects are profinite groups and where 1-morphisms are morphisms of profinite
groups and 2-morphisms from u1 : Π′ → Π to u2 : Π′ → Π are elements θ ∈ Π such that θ ◦ u1(−) ◦ θ−1 = u2.
Then, the functor (C, F ) → π1(C;F ) from Gal to Pro is an equivalence of 2-categories with pseudo-inverse
Π → (C(Π), For). In the next subsection, we compare the properties of the fundamental functor H : C → C′
and of the corresponding morphism of profinite groups u : Π′ → Π.

Example 4.1. Any continuous map φ : B′ → B of connected, locally arcwise connected and locally simply
connected topological spaces defines a canonical functor:

H : CtopB → CtopB′
f : X → B 7→ p2 : X ×f,B,φ B′ → B′.

and for any b′ ∈ B′, one has:

Fb′ ◦H(f) = p−1
2 (b′)

= {(x, b′) | x ∈ X such that f(x) = φ(b′)}
= f−1(φ(b′)).

Hence H : CB → CB′ is a fundamental functor. In that case, the corresponding morphism of profinite groups is
just the canonical morphism:

φ̂ : ̂πtop1 (B′; b′)→ ̂πtop1 (B;φ(b′))

induced from φ : πtop1 (B′; b′)→ πtop1 (B;φ(b′)).

4.2. Functoriality. From subsection 4.1, one may assume that C = C(Π), C′ = C(Π′) and H = Hu for some
morphism of profinite groups u : Π′ → Π.

Given (X, ζ) ∈ Cpt, we will write (X, ζ)0 := (X0, ζ), where X0 denotes the connected component of ζ in X.
We will say that an object X ∈ C has a section in C if eC ≥ X and that an object X ∈ C is totally split in C

if it is isomorphic to a finite coproduct of final objects.

Lemma 4.2. With the above notation:
(1) For any open subgroup U ⊂ Π,

- im(u) ⊂ U if and only if (eC′ , ∗) ≥ (H(Π/U), 1)) in C′pt;
- Let:

KΠ(im(u)) C Π
denote the smallest normal subgroup in Π containing im(u). Then KΠ(im(u)) ⊂ U if and only if
H(Π/U) is totally split in C′.
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In particular, u : Π′ → Π is trivial if and only if for any object X in C, H(X) is totally split in C′.

(2) For any open subgroup U ′ ⊂ Π′,
- ker(u) ⊂ U ′ if and only if there exists an open subgroup U ⊂ Π such that: (H(Π/U), 1)0 ≥

(Π′/U ′, 1) in C′pt.
- if, furthermore, u : Π′ � Π is an epimorphism, then Ker(u) ⊂ U ′ if and only if there exists an

open subgroup U ⊂ Π and an isomorphism (H(Π/U), 1)0→̃(Π′/U ′, 1) in C′pt.
In particular,

- u : Π′ ↪→ Π is a monomorphism if and only if for any connected object X ′ ∈ C′ there exists a
connected object X ∈ C and a connected component H(X)0 of H(X) in C such that H(X)0 ≥ X ′

in C′.
- if, furthermore, u : Π′ � Π is an epimorphism, then u : Π′ � Π is an isomorphism if and only if
H : C → C′ is essentially surjective.

Proof. Recall that, given a profinite group Π, a closed subgroup S ⊂ Π is the intersection of all the open
subgroups U ⊂ Π containing S thus, in particular, {1} is the intersection of all open subgroups of Π. This
yields the characterization of trivial morphisms and monomorphisms from the preceding assertions in (1) and (2).

(1) For the first assertion of (1), note that eC′ = ∗ and that (eC′ , ∗),≥ (H(Π/U), 1)) in C′pt if and only if the
unique map φ : ∗ → H(Π/U) sending ∗ to U is a morphism in C′ that is, if and only if for any θ′ ∈ Π′,

U = φ(∗) = φ(θ′ · ∗) = θ′ · φ(∗) = u(θ′)U.

For the second assertion of (1), note that KΠ(Im(u)) ⊂ U if and only if for any g ∈ Π/U , the
map φg : ∗ → H(Π/U) sending ∗ to gU is a morphism in C′. This yields a surjective morphism
tg∈Π/Uφg : tg∈Π/U∗ → H(Π/U) in C′, which is automatically injective by cardinality. Conversely,
for any isomorphism ti∈Iφi : ti∈I∗ → H(Π/U) in C′, set ii : ∗ → H(Π/U) for the morphism
∗ ↪→ ti∈I∗ → H(Π/U) in C′; by construction ii = φii(∗).

(2) Since U ′ is closed of finite index in Π′ and both Π and Π′ are compact, u(U ′) is closed of finite index in
im(u) hence open. So there exists an open subgroup U ⊂ Π such that U ∩ im(u) ⊂ u(U ′). By definition,
the connected component of 1 in H(Π/U) in C′ is:

im(u)U/U ' im(u)/(U ∩ im(u)) ' Π′/u−1(U).

But u−1(U) = u−1(U ∩ Im(u)) ⊂ U ′, whence a canonical epimorphism (Im(u)U/U, 1) → (Π′/U ′, 1)
in C′pt. If, furthermore, im(u) = Π, then one can take U = u(U ′) and φ is nothing but the inverse
of the canonical isomorphism Π′/U ′→̃Π/U . Conversely, assume that there exists an open subgroup
U ⊂ Π and a morphism φ : (Im(u)U/U, 1) → (Π′/U ′, 1) in C′pt. Then, for any g′ ∈ Π′, one has:
φ(u(g′)U) = g′ · φ(1) = g′U ′. In particular, if u(g′) ∈ U then g′U = φ(u(g′)U) = φ(U) = U ′ whence
ker(u) ⊂ u−1(U) ⊂ U ′. Eventually, note that since ker(u) is normal in Π′, the condition ker(u) ⊂ U ′

does not depend on the choice of ζ ∈ F (X) defining the isomorphism X ′→̃Π′/U ′. �

Proposition 4.3.

(1) The following three assertions are equivalent:
(i) u : Π′ � Π is an epimorphism;
(ii) H : C → C′ sends connected objects to connected objects;
(iii) H : C → C′ is fully faithful.

(2) u : Π′ ↪→ Π is a monomorphism if and only if for any object X ′ in C′ there exists an object X in C and
a connected component X ′0 of H(X) which dominates X ′ in C′.

(3) u : Π′→̃Π is an isomorphism if and only if H : C → C′ is an equivalence of categories.

(4) If C H→ C′ H
′

→ C′′ is a sequence of fundamental functors of Galois categories with corresponding sequence

of profinite groups Π u← Π′ u
′

← Π′′. Then,
- ker(u) ⊃ im(u′) if and only if H ′(H(X)) is totally split in C′′, X ∈ C;
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- ker(u) ⊂ im(u′) if and only if for any connected object X ′ ∈ C′ such that H ′(X ′) has a section in
C′′, there exists X ∈ C and a connected component X ′0 of H(X) which dominates X ′ in C′.

Proof. Assertion (2) and (4) follow from lemma 4.2 (2). Assertions (3) follows from lemma 4.2 and (1). So
we are only to prove assertion (1). We will show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). For (i) ⇒ (ii), assume that
u : Π′ � Π is an epimorphism. Then, for any connected object X in C(Π), the group Π acts transitively on X.
But H(X) is just X equipped with the Π′-action g′ · x = u(g′) · x, g′ ∈ Π′. Hence Π′ acts transitively on H(X)
as well or, equivalently, H(X) is connected. For (ii)⇒ (i), assume that if X ∈ C is connected then H(X) is also
connected in C′. This holds, in particular, for any finite quotient Π/N of Π with N a normal open subgroup of
Π that is, the canonical morphism uN : Π′ u→ Π

prN
� Π/N is a continuous epimorphism. Hence so is u = lim

←−
uN .

The implication ⇒ (iii) is straightforward. Finally, for (iii) ⇒ (i), observe that given an open subgroup U ⊂ Π,
U 6= Π there is no morphism from ∗ to Π/U in C. Hence, if H : C → C′ is fully (faithful), there is no morphism
as well from ∗ to H(Π/U) in C′. But, from lemma 4.2, this is equivalent to im(u) 6⊂ U . �

Exercise 4.4. Given a Galois category C with fibre functor F : C → FSets and X0 ∈ C connected, let CX0

denote the category of X0-objects that is the category whose objects are morphism φ : X → X0 in C and whose
morphisms from φ′ : X ′ → X0 to φ : X → X0 are the morphisms ψ : X ′ → X in C such that φ ◦ ψ = φ′. For
any ζ ∈ F (X0), set

F(X0,ζ) : CX0 → FSets
φ : X → X0 7→ F (φ)−1(ζ).

Then,
(1) show that CX0 is Galois with fibre functors F(X0,ζ) : CX0 → FSets, ζ ∈ F (X0) and that, furthermore,

the canonical functor
H : C → CX0

X 7→ p2 : X ×X0 → X0

has the property that F(X0,ζ) ◦ H = F , ζ ∈ F (X0) and induces a profinite group monomorphism:
π1(CX0 ;F(X0,ζ)) ↪→ π1(C;F ) with image Stabπ1(C;F )(ζ);

(2) show that H(X̂0) is totally split in CX0 and that if X0 is the Galois closure X̂ of some connected object
X ∈ C then H(X) is totally split in CX̂ .

5. Etale Covers

The aim of this section is to prove that the category of finite étale covers of a connected scheme is Galois (see
theorem 5.10). The proof of this result is carried out in subsection 5.3. In subsections 5.1 and 5.2, we introduce
the notion of étale covers and give some of their elementary properties.

Convention: All the schemes are locally noetherian. We make this hypothesis for simplicity and will not repeat
it later. For instance, it will sometimes be used explicitly in the proofs but not mentioned in the corresponding
statement. Be aware that some results stated in the following sections remain valid without the noetherianity
assumptions but some do not.

5.1. Etale algebras. Given a ring R, let Alg/R denote the category of R-algebras. Also, given a ring R, we
write R× for the group of invertible elements in R.

Lemma 5.1. Let A be a finite dimensional algebra over a field k. Then the following properties are equivalent:
(1) A is isomorphic (as k-algebra) to a finite product of finite separable field extensions of k;
(2) A⊗k k is isomorphic (as k-algebra) to a finite product of copies of k;
(3) A⊗k k is reduced;
(4) ΩA|k = 0.

Proof. We first prove that a finite dimensional algebra A over a field k is reduced if and only if it is isomorphic (as
k-algebra) to a finite product of finite field extensions of k. The ’if’ part is straightforward. As for the ’only if’
part, write A =

∏r
i=1Ai as the finite product of its connected components. Since it is enough to prove that Ai is
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(as k-algebra) a finite field extension of k i.e. that Ai \{0} = A×i , i = 1, . . . , r, we may assume that A is a finite
dimensional connected algebra over k. Let a ∈ A \ {0}. Since A is finite dimensional over k, it is artinian hence
Aan = Aan+1 for n� 0. In particular, there exists b ∈ A such that an = ban+1 = bana = b2an+2 = · · · = bna2n

hence anbn = (anbn)2, which forces anbn = 0 or 1 since A has no non-trivial idempotent. But anbn = 0 would
imply an = (anbn)an = 0, which is impossible since a 6= 0 and A is reduced. Hence a(an−1bn) = anbn = 1 so
a ∈ A×. This proves that A is a field and, as it is also finite dimensional over k, it is a finite field extension of
k. This already proves (2) ⇔ (3). We are going to prove (2) ⇒ (1) ⇒ (4) ⇒ (1).

(2)⇒ (1): Set A := A/
√

0. Then A is reduced hence, from the above, is isomorphic (as k-algebra) to
∏r
i=1Ki

with Ki a finite field extension of k, i = 1, . . . , r. Now, any morphism A→ k of k-algebras factors through one
of the Ki hence

N := |HomAlg/k(A, k)| =
r∑
i=1

|HomAlg/k(Ki, k)|.

Since:
|HomAlg/k(Ki, k)| ≤ [Ki : k]

with equality if and only if Ki is a finite separable field extension of k and

dimk(A) =
r∑
i=1

[Ki : k] ≤ dimk(A),

one has N ≤ dimk(A) and N = dimk(A) if and only if A = A and:

|HomAlg/k(Ki, k)| = [Ki : k], i = 1, . . . r

that is, if and only if A = A and Ki is a finite separable field extension of k, i = 1, . . . , r. But the universal
property of tensor product implies that:

HomAlg/k(A, k) = HomAlg/k(A⊗k k, k)

hence:
N = |HomAlg/k(A⊗k k, k)| = dimk(A⊗k k) = dimk(A).

(1) ⇒ (4): Write:

A =
r∏
i=1

Ki

as a finite product of finite separable field extensions of k. Then the maximal ideals of A are the kernel of the
projection maps mi := ker(A� Ki), i = 1, . . . , r and Ω1

A|k = 0 if and only if (Ω1
A|k)mi = ΩKi|k = 0, i = 1, . . . , r.

Hence, one can assume that A = K is a finite separable field extension of k. But, then, by the primitive element
theorem, K = k[X]/P for some irreducible separable polynomial P ∈ k[X] hence Ω1

K|k = KdT/P ′(t)dT (where
t denotes the image of X in k) with P ′(t) 6= 0 since P is separable.

(4) ⇒ (3): ΩA|k = 0 implies that ΩA⊗kk|k = ΩA|k ⊗k k = 0. So, one may assume that k = k is algebraically
closed. Since A is Artinian any prime ideal is maximal and |spec(A)| < +∞. Write m1, . . . ,mr for the finitely
many prime (=maximal) ideals of A. Then, by the Chinese remainder theorem, one has the short exact sequence
of A-modules:

0→
√

0→ A
φ→

r∏
i=1

A/mi → 1.

As [A/mi : k] < +∞ and k is algebraically closed, one actually has A/mi = k, i = 1, . . . , r. Let ei ∈ A, i = 1, . . . r
such that (i) φ(ei) = (δi,j)1≤j≤r, i = 1, . . . , r, (ii) eiej ∈ (

√
0)2, 1 ≤ i 6= j ≤ r and (iii) ei − e2

i ∈ (
√

0)2,
i = 1, . . . , r. Such a r-tuple can always be constructed. Indeed, start from ei ∈ A, i = 1, . . . , r satisfying (i);
then the e2

i , i = 1, . . . , r satisfy (i) and (ii). Also, as A is artinian and thus, for all i = 1, . . . , r the chain of
ideals:

〈ei〉 ⊃ 〈e2
i 〉 ⊃ · · ·

stabilizes, we can find n ≥ 1 and ai ∈ A such that for all i = 1, . . . , r one has:

aie
2n
i = eni .
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We set εi := (aieni )2(= aie
n
i ). Then φ(εi) = δij , εiεj ∈ (

√
0)2 for 1 ≤ i 6= j ≤ r and:

ε2i = (aieni )2 = ai(aie2n
i ) = aie

n
i = εi.

Hence the εi, i = 1, . . . , r satisfy (i), (ii), (iii). Let λi : A→ A/mi denote the ith component of φ and, for every
a ∈ A, define λ(a) :=

∑r
i=1 λi(a)ei. Then, by definition, a − λ(a) ∈

√
0, a ∈ A and one can check that the

following map:
d : A →

√
0/(
√

0)2

a → (a− λ(a))mod(
√

0)2

defines a k-derivation hence is 0 by assumption, which forces
√

0 = (
√

0)2. But, as A is a artinian,
√

0 is
nilpotent hence

√
0 = (

√
0)2 implies

√
0 = 0 that is A = A. �

A finite dimensional algebra A over a field k satisfying the equivalent properties of lemma 5.1 is said to be
étale over k. We will write FEAlg/k ⊂ Alg/k for the full subcategory of finite étale algebras over k.

5.2. Etale covers. Let Sch denote the category of schemes and, given a scheme S, let Sch/S denote the cat-
egory of S-schemes.

Given a scheme S, we will write OS for its structural sheaf and, given a point s ∈ S, we will write OS,s,
ms and k(s) for the local ring, maximal ideal and residue field at s respectively. Also, we will write s for any
geometric point associated with s, that is any morphism s : spec(Ω) → S with image s and such that Ω is an
algebraically closed field.

A morphism φ : X → S that is locally of finite type is unramified at x ∈ X if mφ(x)OX,x = mx and k(x)
is a finite separable extension of k(φ(x)) (or, equivalently, if OX,x ⊗OS,φ(x) k(φ(x)) is a finite separable field
extension of k(s)) and it is unramified if it is unramified at all x ∈ X. A morphism φ : X → S that is locally
of finite type is étale at x ∈ X if φ : X → S is both flat and unramified at x ∈ X and it is étale if it is étale at
all x ∈ X. A morphism φ : X → S is an étale cover of S if it is finite, surjective and étale.

We will often use the following characterization of finite flat morphisms and finite unramified morphisms
respectively. Recall that, given a finite morphism φ : X → S, the OS-module φ∗OX is coherent.

Lemma 5.2. Let φ : X → S be a finite morphism. Then,
(1) φ : X → S is flat if and only if φ∗OX is a locally free OS-module;
(2) The following properties are equivalent:

(a) φ : X → S is unramified;
(b) Ω1

X|S = 0;
(c) ∆X|S : X → X ×S X is an open immersion (hence induces an isomorphism onto an open and

closed subscheme of X ×S X).
(d) (φ∗OX)s ⊗OS,s κ(s) = OXs(Xs) is a finite étale algebra over κ(s), s ∈ S;

Proof.
(1) As the question is local on X we may assume that φ : X → S is induced by a finite, flat A-algebra

φ# : A→ B with A noetherian. Then B is a flat A-module if and only if Bp is a flat Ap-module, p ∈ S.
But as Ap is a local noetherian ring and Bp is a finitely generated Ap-module, Bp is a flat Ap-module
if and only if Bp is a free Ap-module. To conclude, for each p ∈ S, write:

Bp =
r⊕
i=1

Ap
bi
s
,

where s ∈ A \ p. This defines an exact sequence of As-modules:

0→ K → Ars
(
b1
s ,...

br
s )

→ Bs → Q→ 0.

As As is noetherian, K is a finitely generated As-module hence its support supp(K) is the closed subset
V (Ann(K)) ⊂ spec(As). Similarly, as Bs is a finitely generated As-module, Q is a finitely generated
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As-module as well hence with closed support supp(Q) = V (Ann(Q)) ⊂ spec(As). But, by definition of
the support, Up := supp(K) ∩ supp(Q) is an open neighbourhood of p in S such that:

φ∗OX |Up ' OUp .

This shows that if φ : X → S is flat then φ∗OX is a locally free OS-module. The converse implication
is straightforward.

(2) We prove (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a) ⇒ (b): Since Ω1
X|S = 0 if and only if ΩX|S,x = 0, x ∈ X, one may again assume that φ : X → S

is induced by a finite A-algebra φ# : A → B with A noetherian. Also, as Ω1
B|A is a finitely generated

B-module, by Nakayama lemma, it is enough to show that:

Ω1
B|A ⊗B k(q) = 0, q ∈ X.

But it follows from the fact that f : X → S is unramified that for any q ∈ X above p ∈ S one has:

Bq ⊗Ap k(p) = k(q).

Whence:
Ω1
B|A ⊗B k(q) = Ω1

B|A ⊗A k(p)
= ΩB⊗Ak(p)|k(p)

= Ωk(q)|k(p)

= 0,
where the last equality follows from the fact that k(p) ↪→ k(q) is a finite separable field extension.

(b) ⇒ (c): As φ : X → S is separated, the diagonal morphism ∆X|S : X → X ×S X is a closed
immersion and, in particular:

∆X|S(X) = supp(∆X|S∗OX).

Let:
I := Ker(∆#

X|S : OX×SX → (∆X|S)∗OX) ⊂ OX×SX
denote the corresponding sheaf of ideals. By assumption Ω1

X|S = 0 = ∆∗X|S(I/I2). In particular,

I∆X|S(x)/I2
∆X|S(x) = (∆∗X|S(I/I2))x = 0, x ∈ X

or, equivalently, I∆X|S(x) = I2
∆X|S(x), x ∈ X. But, as S is noetherian and φ : X → S is finite, X is

noetherian hence I is coherent. So, by Nakayama,

I∆X|S(x) = I2
∆X|S(x), x ∈ X

forces
I∆X|S(x) = 0, x ∈ X.

Thus ∆X|S(X) is contained in the open subset U := X ×S X \ supp(I). On the other hand, for all
u ∈ U , the morphism induced on stalks:

∆#
X|S,u : OX×SX,u→̃(∆X|S∗OX)u

is an isomorphism. So U is contained in supp(∆X|S∗OX) = ∆X|S(X) hence ∆X|S(X) = U and
∆X|S : X ↪→ X ×S X is an open immersion.

(c) ⇒ (d): For any geometric points s : spec(Ω) → S and x : spec(Ω) → Xs, consider the cartesian
diagram:

X

∆X|S

��
�

Xs

∆Xs|Ω

��
�

oo spec(Ω)xoo

(Id×x)

��
X ×S X Xs ×Ω Xs

oo spec(Ω)×Ω Xs.
(x×Id)

oo
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Since open immersions are stable under base changes, x : spec(Ω) → Xs is again an open immersion
hence induces an isomorphism onto a closed and open subscheme of Xs that is, since spec(Ω) is connected
and Xs is finite, a connected component of Xs. As a result,

Xs =
⊔

x:spec(Ω)→Xs

spec(Ω)

is a coproduct of |Xs| copies of spec(Ω).

(d) ⇒ (a): As the question is local on X, we may assume, one more time, that φ : X → S is induced
by a finite A-algebra φ# : A→ B with A noetherian. By assumption,

B ⊗A k(p) =
∏

1≤i≤n

ki

is, as a k(p)-algebra, the product of finitely many finite separable field extensions of k(p). In particular,
any ideal in spec(B ⊗A k(p)) is maximal and equal to one of the:

mj := ker(
∏

1≤i≤n

ki � kj), j = 1, . . . , n.

But, then, for any q ∈ X above p ∈ S whose image in spec(B ⊗A k(p)) is mj for some 1 ≤ j ≤ n, one
has:

Bq ⊗Ap k(p) = (B ⊗A k(p))mj = kj ,

which, by assumption, is a finite separable field extension of k(p). �

Remark 5.3. The equivalences (a) ⇔ (b) ⇔ (c) also hold for morphisms which are locally of finite type.

Example 5.4. Assume that S = spec(A) is affine and let P ∈ A[T ] be a monic polynomial such that P ′ 6= 0.
Set B := A[T ]/PA[T ] and C := Bb where b ∈ B is such that P ′(t) becomes invertible in Bb (here t denotes
the image of T in B). Then spec(C) → S is an étale morphism. Such morphisms are called standard étale
morphisms.

Actually, any étale morphism is locally of this type.

Theorem 5.5. (Local structure of étale morphisms) Let A be a noetherian local ring and set S = spec(A). Let
φ : X → S an unramified (resp. étale) morphism. Then, for any x ∈ X, there exists an open neighbourhood U
of x such that one has a factorization:

U
� � //

φ

��

spec(C),

{{vvvvvvvvv

S

where spec(C)→ S is a standard étale morphism and U ↪→ spec(C) is an immersion (resp. an open immersion).

Proof. See [Mi80, Thm. 3.14 and Rem. 3.15]. �

For any étale cover φ : X → S, the rank function:

r−(φ): S → Z≥0

s 7→ rs(φ) := rankOS,s((φ∗OX)s) = rankk(s)(OXs(Xs)) = dim
k(s)

(OXs(Xs)⊗k(s) k(s)) = |Xs|

is locally constant hence constant, since S is connected; we say that r(φ) is the rank of φ : X → S.

Eventually, let us recall the following two standard lemmas.

Lemma 5.6. (Stability) If P is a property of morphisms of schemes which is (i) stable under composition
and (ii) stable under arbitrary base-change then (iv) P is stable by fibre products. If furthermore (iii) closed

immersions have P then, (v) for any X
f→ Y

g→ Z, if g is separated and g ◦ f has P then f has P .
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The properties P = surjective, flat, unramified, étale satisfy (i) and (ii) hence (iv). The properties P = sepa-
rated, proper, finite satisfy (i), (ii), (iii) hence (iv) and (v).

Lemma 5.7. (Topological properties of finite morphisms)
(1) A finite morphism is closed;
(2) A finite flat morphism is open.

Remark 5.8.
(1) Since being finite is stable under base-change, lemma 5.7 (1) shows that a finite morphism is universally

closed. Since finite morphisms are affine hence separated, this shows that finite morphisms are proper.
(2) Lemma 5.7 (2) also hold for flat morphisms which are locally of finite type.

Corollary 5.9. Let S be a connected scheme. Then any finite étale morphism φ : X → S is automatically an
étale cover. Furthermore, φ : X→̃S is an isomorphism if and only if r(φ) = 1.

Proof. From lemma 5.7, the set φ(X) is both open and closed in S, which is connected. Hence φ(X) = S. As
for the second part of the assertion, the ”if” implication is straightforward so we are only to prove the ”only
if” part. The condition r(φ) = 1 already implies that φ : X → S is bijective. But as φ : X → S is continuous
and, by lemma 5.7 (2), open, it is automatically an homeomorphism. So φ : X → S is an isomorphism if and
only if φ#

s : OS,s→̃(φ∗OX)s is an isomorphism, s ∈ S. This amounts to showing that any finite, faithfully flat
A-algebra A ↪→ B such that B = Ab as A-module is surjective that is b ∈ A. By assumtion, there exists a ∈ A
such that ab = 1 and, as B is finite over A, there exists a monic polynomial Pb = T d +

∑d−1
i=0 riT

i ∈ A[T ] such
that Pb(b) = 0 hence, multiplying this equality by ad−1, one gets b = −

∑d−1
i=0 ria

d−1−i ∈ A. �

5.3. The category of étale covers of a connected scheme.

5.3.1. Statement of the main theorem. Let S be a connected scheme and denote by CS ⊂ Sch/S the full
subcategory whose objects are étale covers of S.

Given a geometric point s : spec(Ω)→ S, the underlying set associated to the scheme Xs := X×φ,S,s spec(Ω)
will be denoted by Xset

s . One thus obtains a functor:

Fs : CS → FSets
φ : X → S → Xset

s .

Theorem 5.10. The category of étale covers of S is Galois. And for any geometric point s : spec(Ω)→ S, the
functor Fs : CS → FSets is a fibre functor for CS.

Remark 5.11. For any geometric point s : spec(Ω)→ S, the functor Fs : CS → FSets is a fibre functor for CS
but all fibre functors are not necessarily of this form. For instance, given an algebraically closed field Ω and a
morphism f : P1

Ω → S then the functor:

Ff : CS → FSets
φ : X → S → π0(X ×φ,S,f P1

Ω)

is also a fibre functor for CS .

By analogy with topology, for any geometric point s : spec(Ω)→ S, the profinite group:

π1(S; s) := π1(CS ;Fs)

is called the étale fundamental group of S with base point s. Similarly, for any two geometric points si :
spec(Ωi)→ S, i = 1, 2, the set:

π1(S; s1, s2) := π1(CS ;Fs1 , Fs2)

is called the set of étale paths from s1 to s2. (Note that Ω1 and Ω2 may have different characteristics).
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From theorem 2.8, the set of étale paths π1(S; s1, s2) from s1 to s2 is non-empty and the profinite group
π1(S; s1) is noncanonicaly isomorphic to π1(S; s2) with an isomorphism that is canonical up to inner automor-
phisms.

Eventually, given a morphism f : S′ → S of connected schemes and a geometric point s′ : spec(Ω)→ S′, the
universal property of fibre product implies that the base change functor f∗ : CS → CS′ satisfies Fs′ ◦f∗ = Ff(s′).
Hence f∗ : CS → CS′ is a fundamental functor and one gets, correspondingly, a morphism of profinite groups:

π1(f) : π1(S′; s′)→ π1(S; s),

whose properties can be read out of those of f : S′ → S using the results of subsection 4.2.

5.3.2. Proof. We check axioms (1) to (6) of the definition of a Galois category.

Axiom (1): The category of étale covers of S has a final object: IdS : S → S and, from lemma 5.6, the fibre
product (in the category of S-schemes) of any two étale covers of S over a third one is again an étale cover of S.

Axiom (2): The category of étale covers of S has an initial object: ∅ and the coproduct (in the category of
S-schemes) of two étale covers of S is again an étale cover of S. A more delicate point is:

Lemma 5.12. Categorical quotients by finite groups of automorphisms exist in CS.

Proof of the lemma. Let φ : X → S be an étale cover and let G ⊂ AutSch/S(φ) be a finite subgroup.

Step 1: Assume first that S = spec(A) is an affine scheme. Since étale cover are, in particular, finite hence affine
morphisms, φ : X → S is induced by a finite A-algebra φ# : A→ B. But, then, it follows from the equivalence
of category between the category of affine S-schemes and (Alg/A)op that the factorization

X

φ

��

pG // spec(BG
op

) =: G \X

φG
uujjjjjjjjjjjjjjjjj

S

is the categorical quotient of φ : X → S by G in the category of affine S-schemes. So, as CS is a full subcategory
of the category of affine S-schemes, to prove that φG : G \X → S is the categorical quotient of φ : X → S by
G in CS it only remains to prove that φG : G \X → S is in CS .

Step 1-1 (trivialization): An affine, surjective morphism φ : X → S is an étale cover of S if and only if there
exists a finite faithfully flat morphism f : S′ → S such that the first projection φ′ : X ′ := S′ ×f,S,φ X → S′ is a
totally split étale cover of S′.

In other words, an affine surjective morphism φ : X → S is an étale cover if and only if it is locally trivial
for the Grothendieck topology whose covering families are finite, faithfully flat morphisms.

Proof. We first prove the ”only if” implication. As f : S′ → S is finite and faithfully flat, it follows from
lemma 5.2 (1) that for any s ∈ S there exists an open affine neighbourhood U = spec(A) of s such that
f |Uf−1(U) : f−1(U)→ U is induced by a finite A-algebra f# : A ↪→ A′ with A′ = Ar. Also, as φ : X → S is affine
and surjective, φ|Uφ−1(U) : φ−1(U)→ U corresponds to a A-algebra φ# : A ↪→ B. By assumption B ⊗A A′ = A′s

as A′-algebras hence B ⊗A A′ = Ars as A-modules. But, on the other hand, B ⊗A A′ = B ⊗A Ar = Br as
B-modules hence as A-modules. In particular, B is a direct factor of Ars as A-module hence is flat over A.
This shows that φ : X → S is flat. Also, as B is a submodule of the finitely generated A-module Ars and A is
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noetherian, B is also a finitely generated A-module. This shows that φ : X → S is finite. With the notation:

X ′
f ′ //

φ′

��
�

X

φ

��
S′

f
// S,

it follows from lemma 5.2 (2) (c) that f ′∗ΩX|S = ΩX′|S′ = 0 that is, (f ′∗ΩX|S)x′ = ΩX|S,f ′(x′) = 0, x′ ∈ X ′.
But f ′ : X ′ → X is the base change of the surjective morphism f : S′ → S hence it is surjective as well, which
implies ΩX|S = 0. This shows that φ : X → S is finite étale.

We now prove the ”if” implication by induction on r(φ) ≥ 1. If r(φ) = 1 it follows from corollary 5.9 that
φ : X→̃S is an isomorphism and the statement is straightforward with f = IdS . If r(φ) > 1, from lemma 5.2
(2) (d), the diagonal morphism ∆X|S : X ↪→ X ×S X is both a closed and open immersion hence X ×S X can
be written as a coproduct X t X ′, where ∆X|S(X) is identified with X and X ′ := X ×S X \ ∆X|S(X). In
particular, iX′ : X ′ ↪→ X ×S X is both a closed and open immersion as well hence a finite étale morphism.
Also, as φ : X → S is finite étale, its base change p1 : X ×φ,S,φ X → X is finite étale as well so the composite

φ′ : X ′
iX′→ X ×S X

p1→ X is finite étale. But as ∆X|S : X ↪→ X ×S X is a section of p1 : X ×S X → X, one has:
r(φ′) = r(p1)−1 = r(φ)−1. So, by induction hypothesis, there exists a finite faithfully flat morphism f : S′ → X
such that S′ ×f,X,φ′ X ′ → S′ is a totally split étale cover of S′. But, then, the composite φ ◦ f : S′ → S is
also finite and faithfully flat. Hence the conclusion follows from the formal computation based on elementary
properties of fibre product of schemes:

S′ ×φ◦f,S,φ X = S′ ×f,X,p1 (X ×S X) = S′ ×f,X,p1 (X tX ′) = (S′ ×f,X,p1 X) t (S′ ×f,X,p1 X
′). �

Step 1-2: We want to apply step 1-1 to the quotient morphism φG : G \X → S. For this, apply first step 1-1 to
the étale cover φ : X → S to obtain a faithfully flat A-algebra A→ A′ such that B⊗AA′ = A′n as A′-algebras.
Tensoring the exact sequence of A-algebras:

0→ BG
op

→ B

P
g∈Gop (IdB−g·)
−→

⊕
g∈Gop

B

by the flat A-algebra A′, one gets the exact sequence of B′-algebras:

0→ BG
op

⊗A A′ → B ⊗A A′
P
g∈Gop (IdB−g·)⊗AIdA′−→

⊕
g∈G

B ⊗A A′,

whence:
(∗) BG

op

⊗A A′ = (B ⊗A A′)G
op

= (A′n)G
op

.

But Gop is a subgroup of AutAlg/A′(A′n), which is nothing but the symmetric group Sn acting on the canonical
coordinates E := {1, · · · , n} in A′n. Hence:

(A′E)G
op

=
⊕
G\E

A′.

In terms of schemes, if f : S′ → S denotes the faithfully flat morphism corresponding to A ↪→ A′ then S′×f,S,φX
is just the coproduct of n copies of S′ over which G acts by permutation and (∗) becomes:

S′ ×f,S,φG (G \X) = G \ (
⊔
E

S′) =
⊔
G\E

S′.

Step 2: Reduce to step 1 by covering S with affine open subschemes (local existence) and using the unicity of
categorical quotient up to canonical isomorphism (glueing). �

Remark 5.13. One can actually show that, in the affine case, G \X = spec(BG
op

) is actually the categorical
quotient of φ : X → S by G is the category of all S-schemes (Cf. [MumF82, Prop. 0.1]).

Exercise 5.14. Show that categorical quotients of étale covers by finite groups of automorphisms commute
with arbitrary base-changes.
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Axiom (3): Before dealing with axiom (3), let us recall that, in the category of S-schemes, open immersions are
monomorphisms and that:

Theorem 5.15. (Grothendieck - see [Mi80, Thm. 2.17]) In the category of S-schemes, faithfully flat morphisms
of finite type are strict epimorphisms.

Lemma 5.16. Given a commutative diagram of schemes:

Y
u //

ψ

��

X

φ��~~~~~~~

S,

if φ : X → S, ψ : Y → S are finite étale morphisms then u : Y → X is a finite étale morphism as well.

Proof of the lemma. Write u = p2◦Γu, where Γu : Y → Y ×SX is the graph of u, identified with the base-change:

Y

Γu
��

//

�

X

∆X|S

��
Y ×S X

u×SIdX
// X ×S X

and p2 : Y ×S X → X is the base-change defined by:

Y ×S X
p2

��

//

�

Y

ψ

��
X

φ
// S.

From lemma 5.2 (2) (d), the diagonal morphism ∆X|S : X → X ×S X is finite étale hence it follows from
the first part of lemma 5.6 that Γu : Y → Y ×S X is finite, étale as well. Similarly, as ψ : Y → S is finite
étale, p2 : Y ×SX → X is finite étale as well. Hence, the conclusion follows from the second part of lemma 5.6. �

For any two étale covers φ : X → S, ψ : Y → S and for any morphism u : X → Y over S, it follows from lemma
5.16 that u : Y → X is a finite, étale morphism hence is both open (flatness) and closed (finite). In particular,
one can write X as a coproduct X = X ′ t X ′′, where X ′ := u(Y ), X ′′ := X \ X ′ are both open and closed

in X and u factors as u : Y
u|X
′
=u′→ X ′

i′
X′=u

′′

→ X = X ′ tX ′′ with u′ a faithfully flat morphism hence a strict
epimorphism in Rét

S and u′′ an open immersion hence a monomorphism in CS .�

Axiom (4): For any étale cover φ : X → S one has Fs(φ) = ∗ if and only if r(φ) = 1, which, in turn, is equivalent
to φ : X→̃S. Also, it follows straightforwardly from the universal property of fibre product and the definition
of Fs that Fs commutes with fibre products.

Axiom (5): The fact that Fs commutes with finite coproducts and transforms strict epimorphisms into strict
epimorphisms is straightforward. So it only remains to prove that Fs commutes with categorical quotients by
finite groups of automorphisms. Let φ : X → S be an étale cover and G ⊂ AutSch/S(φ) a finite subgroup.
Since the assertion is local on S, it follows from step 1-1 in axiom (2) that we may assume that φ : X → S is
totally split and that G acts on X by permuting the copies of S. But, then, the assertion is immediate since
G \X =

⊔
G\Fs(φ) S.

Axiom (6): For any two étale covers φ : X → S, ψ : Y → S let u : X → Y be a morphism over S such that
Fs(u) : Fs(ψ)→̃Fs(φ) is bijective. It follows from lemma 5.16 that u : Y → X is finite étale but, by assumption,
it is also surjective hence u : Y → X is an étale cover. Moreover, still by assumption, it has rank 1 hence it is
an isomorphism by corollary 5.9. �
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6. Examples

Given a scheme X over an affine scheme spec(A), we will write X → A instead of X → spec(A) for the
structural morphism and given a A-algebra A → B, we will write XB for X ×A spec(B). Similarly, given
a morphism f : X → Y of schemes over spec(A), we will write fB : XB → YB for its base-change by
spec(B) → spec(A). Also, given a morphism f : Y → X and a morphism X → X ′ we will often say that
f ′ : Y ′ → X ′ is a model of f : Y → X over X ′ if there is a cartesian square:

Y

f

��
�

// Y ′

f ′

��
X // X ′.

6.1. Spectrum of a field. Let k be a field, k ↪→ k a fixed algebraic closure of k and ks ⊂ k the separable
closure of k in k; write Γk := AutAlg/k(ks) for the absolute Galois group of k. Set S := spec(k). Then the
datum of k ↪→ k defines a geometric point s : spec(k)→ S and:

Proposition 6.1. There is a canonical isomorphism of profinite groups:

cs : π1(S; s)→̃Γk.

Proof. The Galois objects in CS are the spec(K) → S induced by finite Galois field extensions k ↪→ K; write
GS ⊂ CS for the full subcategory of Galois objects. The datum of k ↪→ k allows us to identify k with a subfield
of k and define a canonical section of the forgetful functor: For : GptS → GS by associating to each Galois
object spec(K)→ S its isomorphic copy spec(KΩ)→ S, where KΩ is the unique subfield of k containing k and
isomorphic to K as k-algebra. Then, on the one hand, the restriction morphisms |KΩ : Γk → AutAlg/k(KΩ)
induce an isomorphism of profinite groups:

Γk→̃ lim
←−
KΩ

AutAlg/k(KΩ).

And, on the other hand, by the equivalence of categories:

CS → (FEAlg/k)op

φ : X → S 7→ φ#(X) : k ↪→ OX(X)

one can identify:
AutAlg/k(KΩ) = AutCS (spec(KΩ))op.

But then, from proposition 3.9, one also has the canonical evaluation isomorphism of profinite groups:

π1(S; s)→̃ lim
←−
KΩ

AutCS (spec(KΩ))op,

which concludes the proof. �

6.2. The first homotopy sequence and applications.

6.2.1. Stein factorization. A scheme X over a field k is separable over k if, for any field extension K of k the
sheme X ×k K is reduced. This is equivalent to requiring that X be reduced and that, for any generic point
η of X, the extension k ↪→ k(η) be separable (recall that an arbitrary field extension k ↪→ K is separable if
any finitely generated subextension admits a separating transcendence basis and that any field extension of a
perfect field is separable.) In particular, if k is perfect, this is equivalent to requiring that X be reduced. More
generally, a scheme X over a scheme S is separable over S if it is flat over S and for any s ∈ S the scheme Xs

is separable over k(s). Separable morphisms satisfy the following elementary properties:
- Any base change of a separable morphism is separable.
- If X → S is separable and X ′ → X is étale then X ′ → S is separable.
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Theorem 6.2. (Stein factorization of a proper morphism) Let f : X → S be a morphism such that f∗OX is a
quasicoherent OS-algebra. Then f∗OX defines an S-scheme:

p : S′ = spec(f∗OX)→ S

and f : X → S factors canonically as:

S S′
poo

X.

f

OO

f ′

>>||||||||

Furthermore,
(1) If f : X → S is proper then

(a) p : S′ → S is finite and f ′ : X → S′ is proper and with geometrically connected fibres;
(b) - The set of connected components of Xs is one-to-one with S′sets , s ∈ S;

- The set of connected components of Xs is one-to-one with S′sets , s ∈ S.
In particular, if f∗OX = OS then f : X → S has geometrically connected fibres.

(2) If f : X → S is proper and separable then p : S′ → S is an étale cover. In particular, f∗OX = OS if
and only if f : X → S has geometrically connected fibres.

Corollary 6.3. Let f : X → S be a proper morphism such that f∗OX = OS. Then, if S is connected, X is
connected as well.

Proof. It follows from (1) (b) of theorem 6.2 that, if f∗OX = OS then f : X → S is geometrically connected
and, in particular, has connected fibres. But, as f : X → S is proper, it is closed and f∗OX is coherent hence:

f(X) = supp(f∗OX).

So f∗OX = OS also implies that f : X → S is surjective. As a result, if f∗OX = OS the morphism f : X → S
is closed, surjective, with connected fibres so, if S is connected, this forces X to be connected as well. �

6.2.2. The first homotopy sequence. Let S be a connected scheme, f : X → S a proper morphism such that
f∗OX = OS and s ∈ S. Fix a geometric point xΩ : spec(Ω) → Xs with image again denoted by xΩ in X and
sΩ in S.

Theorem 6.4. (First homotopy sequence) Consider the canonical sequence of profinite groups induced by
(Xs, xΩ)→ (X,xΩ)→ (S, sΩ):

π1(Xs;xΩ) i→ π1(X;xΩ)
p→ π1(S; sΩ).

Then p : π1(X;xΩ)� π1(S; sΩ) is an epimorphism and im(i) ⊂ ker(p). If, furthermore, f : X → S is separable
then im(i) = ker(p).

A first consequence of theorem 6.4 is that the étale fundamental group of a connected, proper scheme over
k is invariant by algebraically closed field extension. More precisely, let k be an algebraically closed field, X a
scheme connected and proper over k and k ↪→ Ω an algebraically closed field extension of k. Fix a geometric
point xΩ : spec(Ω)→ XΩ with image again denoted by xΩ in X.

Corollary 6.5. The canonical morphism of profinite groups:

π1(XΩ;xΩ)→̃π1(X;xΩ)

induced by (XΩ;xΩ)→ (X;xΩ) is an isomorphism.

Proof. We first prove:

Lemma 6.6. (Product) Let k be an algebraically closed field, X a connected, proper scheme over k and Y a
connected scheme over k. For any x : spec(k) → X and y : spec(k) → Y , the canonical morphism of profinite
groups:

π1(X ×k Y ; (x, y))→ π1(X;x)× π1(Y ; y)
induced by the projections pX : X ×k Y → X and pY : X ×k Y → Y is an isomorphism.
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Proof of the lemma. From theorem A.2, one may assume that X is reduced hence, as k is algebraically closed,
that X is separable over k. As X is proper, separable, geometrically connected and surjective over k, so is its
base change pY : X×k Y → Y . So, it follows from theorem 6.2 (2) that pY ∗OX×kY = OY . Thus, one can apply
theorem 6.4 to pY : X ×k Y → Y to get an exact sequence:

π1((X ×k Y )y;x)→ π1(X ×k Y ; (x, y))→ π1(Y ; y)→ 1.

Furthermore, X = (X ×k Y )y → X ×k Y
pX→ X is the identity so pX : X ×k Y → X yields a section of

π1(X;x)→ π1(X ×k Y ; (x, y)). �

Note that if y : spec(Ω)→ Y is any geometric point then the above only shows that π1(X×kY ; (x, y))→̃π1(XΩ;x)×
π1(Y ; y).

Proof of corollary 6.5. We apply the criterion of proposition 4.3.

Surjectivity: Let φ : Y → X be a connected étale cover. We are to prove that YΩ is again connected. But,
as k is algebraically closed, if Y is connected then it is automatically geometrically connected over k and, in
particular, YΩ is connected.

Injectivity: One has to prove that for any connected étale cover φ : Y → XΩ, there exists an étale cover
φ̃ : Ỹ → X which is a model of φ over X. We begin with a general lemma.

Lemma 6.7. Let X be a connected scheme of finite type over a field k and let k ↪→ Ω be a field extension of
k. Then, for any étale cover φ : Y → XΩ, there exists a finitely generated k-algebra R contained in Ω and an
affine morphism of finite type φ̃ : Ỹ → XR which is a model of φ : Y → XΩ over XR. Furthermore, if η denotes
the generic point of spec(R), then φ̃k(η) : Ỹk(η) → Xk(η) is an étale cover.

Proof of the lemma. Since X is quasi-compact, there exists a finite covering of X by Zariski-open subschemes
Xi := spec(Ai) ↪→ X, i = 1, . . . , n, where the Ai are finitely generated k-algebra. As φ : Y → XΩ is affine, we
can write Ui := φ−1(XiΩ) = spec(Bi), where Bi is of the form:

Bi = Ai ⊗k Ω[T ]/〈Pi,1, . . . , Pi,ri〉.

For each 1 ≤ j ≤ ri, the αth coefficient of Pi,j is of the form:∑
k

ri,j,α,k ⊗k λi,j,α,k

with ri,j,α,k ∈ Ai, λi,j,α,k ∈ Ω. So, let Ri denote the sub k-algebra of Ω generated by the λi,j,α,k then Bi can
also be written as:

Bi = Ai ⊗k Ri[T ]/〈Pi,1, . . . , Pi,ri〉 ⊗Ri Ω.

Let R denote the sub-k-algebra of Ω generated by the Ri, i = 1, . . . , n. Then k ↪→ R is a finitely generated
k-algebra and up to enlarging R, one may assume that the glueing data on the Ui ∩ Uj descend to R then
one can construct φ̃ by glueing the spec(Ai ⊗k R[T ]/〈Pi,1, . . . , Pi,ri〉) along these descended gluing data. By
construction φ̃ is affine.

To conclude, since k(η) ↪→ Ω is faithfully flat and φ : Y → XΩ is finite and faithfully flat, the same is
automatically true for φ̃k(η) : Ỹk(η) → Xk(η), which is then étale since φ : Y → XΩ is. �

So, applying lemma 6.7 to φ : Y → XΩ and up to replacing R by Rr for some r ∈ R \ {0}, one may assume
that φ : Y → XΩ is the base-change of some étale cover φ0 : Y 0 → XR. Note that, since Y 0

Ω = Y is connected,
both Y 0

η and Y 0 are connected as well. Fix s : spec(k)→ S. Since the fundamental group does not depend on
the fibre functor, one can assume that k(x) = k. Then, from lemma 6.6, one gets the canonical isomorphism of
profinite groups:

π1(X ×k S; (x, s))→̃π1(X;x)× π1(S; s).

Let U ⊂ π1(X ×k S; (x, s)) be the open subgroup corresponding to the étale cover φ0 : Y 0 → X ×k S and let
UX ⊂ π1(X;x) and US ⊂ π1(S; s) be open subgroups such that UX × US ⊂ U . Then UX and US correspond
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to connected étale covers ψX : X̃ → X and ψS : S̃ → S such that φ0 : Y 0 → X ×k S is a quotient of
ψX ×k ψS : X̃ ×k S̃ → X ×k S. Consider the following cartesian diagram:

X̃ ×k S̃

ttiiiiiiiiiiiiiiiiiiiii

yy

�������������������

Y 0

�

��

Ỹ 0

��

oo

X ×k S X ×k S̃oo

Since k(η) ⊂ Ω and Ω is algebraically closed, one may assume that any point s̃ ∈ S̃ above s ∈ S has residue
field contained in Ω and, in particular, one can consider the associated Ω-point s̃Ω : spec(Ω) → S̃. Then, one
has the cartesian diagram:

Ỹ 0
S

�
��

YΩ

��

oo

X ×k S̃ XΩ.
IdX×k s̃Ωoo

Again, since YΩ is connected, Ỹ 0 is connected as well, from which it follows that Ỹ 0 → X ×k S̃ corresponds to
an open subgroup V ⊂ π1(X ×k S̃) = π1(X)× US containing π1(X̃ ×k S̃) = UX × US . Hence V = U × US for
some open subgroup UX ⊂ U ⊂ π1(X) hence Ỹ 0 → X ×k S̃ is of the form Ỹ ×k S̃ → X ×k S̃ for some étale
cover φ̃ : Ỹ → X. �

Remark 6.8. An argument due to F. Pop [Sz09, p. 190-191] shows that corollary 6.5 remains true for con-
nected schemes of finite type over k as soon as π1(X;xΩ) (or π1(XΩ;xΩ)) is finitely generated. However, in
general, corollary 6.5 is no longer true for non-proper schemes. Indeed, let k be an algebraically closed field
of characteristic p > 0. From the long cohomology exact sequence associated with Artin-Schreier short exact
sequence:

0→ (Z/p)A1
k
→ Ga,A1

k

℘→ Ga,A1
k
→ 0

(and taking into account that, as A1
k is affine, H1(A1

k,Ga) = 0) one gets:

k[T ]/℘k[T ] = H0(A1
k,OA1

k
)/℘H0(A1

k,OA1
k
)→̃H1

et(A1
k,Z/p) = Hom(π1(A1

k, 0),Z/p).

An additive section of the canonical epimorphism k[T ]� k[T ]/℘k[T ] is given by the representatives:∑
n>0,(n,p)=1

anT
n, an ∈ k,

which shows that π1(A1
k, 0) is not of finite type and depends on the base field k.

More generally, one can show [Bo00], [G00] that if S is a smooth connected curve over an algebraically closed
field of characteristic p > 0 then the pro-p completion π1(S)(p) of π1(S) is a free pro-p group of rank r, where:

- if S is proper over k then r is the p-rank of the jacobian variety JS|k;
- if S is affine over k then r is the cardinality of k.

This determines completely the pro-p completion π1(S)(p) of π1(S). In sections 8, 9 and 10, we will see that the
prime-to-p completion π1(S)(p)′ of π1(S) is also completely determined. However, except when π1(S) is abelian,
this does not determine π1(S) entirely (see remark 11.5).

6.2.3. Proof of theorem 6.4. We apply, again, the criterion of proposition 4.3. We begin with an elementary
lemma, stating that the inclusion im(i) ⊂ ker(p) is true under less restrictive hypotheses.

Lemma 6.9. Let X, S be connected schemes, f : X → S a geometrically connected morphism and s ∈ S.
Fix a geometric point xΩ : spec(Ω) → Xs with image again denoted by xΩ in X and sΩ in S and consider the
canonical sequence of profinite groups induced by (Xs, xΩ)→ (X,xΩ)→ (S, sΩ):

π1(Xs;xΩ) i→ π1(X;xΩ)
p→ π1(S; sΩ).
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Then, one always has im(i) ⊂ ker(p).

Proof. Let φ : S′ → S be an étale cover and consider the following notation:

S′s
//

��
�

S′

φ

��
Xs

//

!!CCCCCCCC X
f

// S

k(s)
s

==||||||||
�

.

We are to prove that S
′ → Xs is totally split. But, this is just formal computation based on elementary

properties of fibre product of schemes:

S′s = Xs ×S,φ S′ = (X ×f,S,s spec(k(s)))×S,φ S′
= X ×f,S (spec(k(s))×s,S,φ S′)
= X ×f,S tS′sspec(k(s))
= tS′sXs.

�

We return to the proof of theorem 6.4. For simplicity, write X := Xs.

Exactness on the right: We are to prove that for any connected étale cover φ : S′ → S and with the notation
for base change:

X ′
φ′ //

f ′

��
�

X

f

��
S′

φ
// S,

the scheme X ′ is again connected. But, one has:

f ′∗(OX′) = f ′∗(φ
′∗OX) = φ∗f∗OX

(∗)
= φ∗OS = OS′ ,

where (*) follows from the assumption that f∗OX = OS . Hence, as f ′ : X ′ → S′ is proper, it follows from
theorem 6.2 (1) (b) that X ′ is connected.

Exactness in the middle: From lemma 6.9, this amounts to show that ker(p) ⊂ im(i). Let φ : X ′ → X be a
connected étale cover and consider the notation:

X ′
φ //

�

X
f //

�

S

X
′

φ

//

OO

X //

OO

k(s)

s

OO

Assume that φ : X
′ → X admits a section σ : X → X

′
. We are to prove that φ : X ′ → X comes, by base-change,

from a connected étale cover S′ → S.
Since φ : X ′ → X is finite étale and f : X → S is proper and separable, g := f ◦ φ : X ′ → S is also proper

and separable. Consider its Stein factorization X ′
g′→ S′

p→ S. From theorem 6.2 (2), the morphism p : S′ → S
is étale. Furthermore, as X ′ is connected and g′ : X ′ → S′ is surjective, S′ is connected. Consider the following
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commutative diagram:

(1) X ′

α

��
g′

��

φ

}}||||||||

X

f

��
�

X ′′pX
oo

f ′

��
S S′p

oo

.

Claim: α : X→̃X ′′ is an isomorphism.

Proof of the claim. As p : S′ → S is an étale cover, its base-change pX : X ′′ → X is an étale cover as well. Since
S′ is connected, it follows from the exactness on the right that X ′′ is connected as well hence, from lemma 5.16
and corollary 5.9 the morphism α : X ′ → X ′′ is an étale cover. So, it only remains to prove that r(α) = 1.
For this, consider the base-change of (1) via s : spec(k(s))→ S.

(2) X ′s

αs

��
gs

��

φs

}}{{{{{{{{

Xs

fs

��
�

σ
//

X ′′spXs
oo

f ′s
��

k(s) S′sps
oo

.

Since αs : X ′s → X ′′s is an étale cover, it induces a surjective map π0(X ′s) � π0(X ′′s ), where π0(−) denotes
the set of connected components. But, as both g′ : X ′ → S′ and f ′ : X ′′ → S′ are geometrically connected,
|π0(X ′s)| = |π0(X ′′s )|(= r(p)) hence, actually, the map π0(X ′s) � π0(X ′′s ) is bijective. So it is enough to find
X ′s0 ∈ π0(X ′s) such that αs : X ′s → X ′′s induces an isomorphism from X ′s0 to αs(X ′s0). For this, consider
X ′s0 := σ(Xs) and set X ′′s0 := αs(X ′s0). Then σ induces an isomorphism from Xs to X ′s and, as pXs : X ′′s → Xs

is totally split, it induces an isomorphism from X ′′s0 to Xs. Hence the conclusion follows from

σ|X
′
s0 ◦ pXs|X′′s0 ◦ αs|

X′′s0
X′s0

= IdX′′s0

Remark 6.10. The assumption f∗OX = OS can be omitted and the conclusion of theorem ?? then becomes
that the following canonical exact sequence of profinite groups is exact:

π1(X1, x1) i1→ π1(X,x(1))
p1→ π1(S, s1)→ π0(X1)→ π0(X)→ π0(S)→ 1

Theorem 6.4 will also play a crucial part in the construction of the specialization morphism in section 9.

6.3. Abelian varieties. A main reference for abelian varieties is [Mum70]. See also [Mi86] for a concise intro-
duction.

Let k be an algebraically closed field and A an abelian variety over k. For each n ≥ 1 let A[n] denote the
group of k-points underlying the kernel of the multiplication-by-n morphism:

[nA] : A→ A.

For each prime `, the multiplication-by-` morphism induces a projective system structure on the A[`n], n ≥ 0
and one sets:

T`(A) := lim
←−

A[`n].

If ` is prime to the characteristic of k then T`(A) ' Z2g
` whereas if ` = p is the characteristic of k then

Tp(A) ' Zrp, where g and r(≤ g) denote the dimension and p-rank of A respectively [Mum70, Chap. IV, §18].
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Theorem 6.11. There is a canonical isomorphism:

π1(A; 0A)→̃
∏

`:prime

T`(A).

Proof. The proof below was suggested to me by the referee. For another proof based on rigidity, see [Mum70,
Chap. IV, §18].

Given a profinite group Π and a prime `, let Π(`) denote its pro-` completion that is its maximal pro-`
quotient, which can also be described as:

Π(`) = lim
←−

Π/N,

where the projective limit is over all normal open subgroups of index a power of ` in Π.

Claim 1: π1(A; 0A) is abelian. In particular,

π1(A, 0) =
∏

`:prime

π1(A, 0)(`).

Proof of claim 1. From lemma 6.6, the multiplication map µ : A×kA→ A on A induces a morphism of profinite
groups:

π1(µ) : π1(A; 0A)× π1(A; 0A)→ π1(A; 0A).
The canonical section σ1 = A → A ×k A of the first projection p1 : A ×k A → A induces the morphism of
profinite groups:

π1(σ1) : π1(A; 0A) → π1(A; 0A)× π1(A; 0A)
γ 7→ (γ, 1)

and, by functoriality, π1(µ) ◦ π1(σ1) = Id. The same holds for the second projection and since σ1 and σ2

commute, one gets:

π1(µ)(γ1, γ2) = π1(µ)(π1(σ1)(γ1)π1(σ2)(γ2))
= π1(µ)(π1(σ1)(γ1))π1(µ)(π1(σ2)(γ2)) = γ1γ2

= π1(µ)(π1(σ2)(γ2)π1(σ1)(γ1))
= π1(µ)(π1(σ2)(γ2))π1(µ)(π1(σ1)(γ1)) = γ2γ1.

Claim 2 (Serre-Lang): Let φ : X → A be a connected étale cover. Then X carries a unique structure of abelian
variety such that φ : X → A becomes a separable isogeny.

Proof of claim 2. The idea is to construct first the group structure on one fibre and, then, extend it automatically
by the formalism of Galois categories. Let x : spec(k)→ X such that φ(x) = 0A. Then the pointed connected
étale cover φ : (X;x)→ (A; 0A) corresponds to a transitive π1(A; 0A)-set M together with a distinguished point
m ∈M . Since π1(A; 0A) is abelian, the map:

µM : M ×M → M
(γ1m, γ2m) 7→ γ1γ2m

is well defined, maps (m,m) to m and is π1(A; 0A)×π1(A; 0A)-equivariant if we endow M with the structure of
π1(A; 0A)×π1(A; 0A)-set induced by π1(µ) (which corresponds to the étale cover X×φ,A,µ (A×kA)→ A×kA).
Hence it corresponds to a morphism µ0

X : X ×k X → X ×φ,A,µ (A ×k A) above A ×k A or, equivalently, to a
morphism µX : X ×k X → X fitting in:

X ×k X

µX

))

φ×kφ
��

µ0
X// X ×φ,A,µ (A×k A) //

vvmmmmmmmmmmmm
�

X

φ

��
A×k A µ

// A.

and mapping (x, x) to x. By the same arguments, one constructs iX : X → X above [−1A] : A → A mapping
x to x, checks that this endows X with the structure of an algebraic group with unity x (hence, of an abelian
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variety since X is connected and φ : X → A is proper) and such that φ : X → A becomes a morphism of
algebraic groups (hence a separable isogeny since φ : X → S is an étale cover).

Now let φ : X → A be a degree n isogeny. Then ker(φ) ⊂ ker([nX ]) hence one has a canonical commutative
diagram:

X/ker(φ)
ψ

zzuuuuuuuuu
A

X X.
[nX ]

oo

OO

φ

::vvvvvvvvvv

From the surjectivity of φ, one also has φ ◦ ψ = [nA]. When ` is a prime different from the characteristic p of
k, combining this remark and claim 2, one gets that ([`n] : A → A)n≥0 is cofinal among the finite étale covers
of A with degree a power of ` that is

π1(A; 0A)(`) = lim
←−

A[`n] = T`(A).

When ` = p, one has to be more careful since, when p divides n, the isogeny [nA] : A → A is no longer étale.
However, it factors as:

A

[nA]

��

ψn // Bn

φn~~}}}}}}}}

A,

where φn : Bn → A is an étale isogeny and ψn : A→ Bn is a purely inseparable isogeny. In particular, one has:

Aut(Bn/A) = Aut(k(Bn)/k(A))

= Aut(k(A)
[nA]#

↪→ k(A))
= A[n](k)

and, if φ : X → A is a degree n étale isogeny, one gets a factorization φn = φ◦ψ. Thus, in that case, (φpn : Bpn →
A)n≥0 is cofinal among the finite étale covers of A with degree a power of p hence, as Aut(Bpn/A) = A[pn](k),
one has, again:

π1(A; 0A)(p) = lim
←−

A[pn](k) = Tp(A). �

Now, assume that k = C and that A = Cg/Λ, where Λ ⊂ Cg is a lattice. Then, on the one hand, the universal
covering of A is just the quotient map Cg → A and has group πtop1 (A(C); 0A) ' Λ whereas, on the other hand,
for any prime `:

T`(A) = lim
←−

A[`n]

= lim
←−

1
`n

Λ/Λ

= lim
←−

Λ/`nΛ

= Λ(`),

whence

π1(A; 0A) =
∏

`:prime

T`(A) =
∏

`:prime

πtop1 (A(C); 0A)(`) = ̂πtop1 (A(C); 0A).

This is a special case of the much more general Grauert-Remmert theorem 8.1 but, basically, the only one
where one has a purely algebraically proof of it.

6.4. Normal schemes. Let S be a normal connected (hence integral) scheme.

Lemma 6.12. Let k(S) ↪→ L be a finite separable field extension. Then the normalization of S in k(S) ↪→ L
is finite.
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Proof. Without loss of generality, we may assume that S = spec(A) is affine that is, we are to prove that given
an integrally closed, noetherian ring A with fraction field K and a finite separable field extension K ↪→ L, the
integral closure B of A in K ↪→ L is a finitely generated A-module. Since K ↪→ L is separable, the trace form:

〈−,−〉: L× L → K
(x, y) 7→ TrL|K(xy)

is non-degenerate. Set n := [L : K] and let b1, . . . , bn ∈ B be a basis of L over K. Let b∗1, . . . , b
∗
n ∈ L denote

its dual with respect to 〈−,−〉 : L × L → K. Then, since TrL|K(B) ⊂ A, one has B ⊂ ⊕ni=1Ab
∗
i hence B is a

finitely generated A-module as well since A is noetherian. �

When S is normal, we can improve theorem 5.5 as follows.

Lemma 6.13. Let A be a noetherian integrally closed local ring with fraction field K and set S = spec(A). Let
φ : X → S an unramified (resp. étale) morphism. Then, for any x ∈ X, there exists an open affine neighborhood
U of x such that one has a factorization:

U
� � //

φ

��

spec(C),

{{vvvvvvvvv

S

where spec(C) → S is a standard étale morphism where B = A[T ]/PA[T ] can be chosen in such a way that
the monic polynomial P ∈ A[T ] becomes irreducible in K[T ] and U ↪→ spec(C) is an immersion (resp. an open
immersion).

Proof Let m denote the maximal ideal of A and, correspondingly, let s denote the closed point of S. From
theorem 5.5, one may assume that φ : X → S is induced by an A-algebra of the form A → Bb with B =
A[T ]/PA[T ] and b ∈ B such that P ′(t) is invertible in Bb. Since A is integrally closed, any monic factor of P in
K[T ] is in A[T ]. Let x ∈ Xs and fix an irreducible monic factor Q of P mapping to 0 in k(x). Write P = QR
in A[T ]. As P ∈ k(s)[T ] is separable, Q and R are coprime in k(s)[T ] or, equivalently:

〈Q,R〉 = k(s)[T ].

But, then, as Q is monic M := A[T ]/〈Q,R〉 is a finitely generated A-module so, from Nakayama, A[T ] = 〈Q,R〉.
This, by the Chinese remainder theorem:

A[T ]/PA[T ] = A[T ]/QA[T ]×A[T ]/RA[T ].

Set B1 := A[T ]/QA[T ] and let b1 denote the image of b in B1. Then the open subscheme U1 := spec(B1b1) ↪→ X
contains x and:

U1 := spec(B1b1) ↪→ X → S

is a standard morphism of the required form. �

Lemma 6.14. Let φ : X → S be an étale cover. Then X is also normal and, in particular, it can be written as
the coproduct of its (finitely many) irreducible components. Furthermore, given a connected component X0 of
X, the induced étale cover X0 → S is the normalization of S in k(S) ↪→ k(X0).

Proof. We first prove the assertion when S = spec(A) with A a noetherian integrally closed local ring and
φ : X → S is a standard morphism as in lemma 6.13. Let K(= k(S)) denote the fraction field of A. By
assumption, L := C ⊗A K = K[T ]/PK[T ] is a finite separable field extension of K. Let Ac denote the integral
closure of A in K ↪→ L. Since B is integral over A, one has A ⊂ B ⊂ Ac ⊂ L hence Bb ⊂ (Ac)b = ((Ac)b)c ⊂ L.
So, to show that C is integrally closed in K ↪→ L, it is enough to show that Ac ⊂ Bb. So let α ∈ Ac and write:

α =
n−1∑
i=0

ait
i,
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with ai ∈ K, i = 1, . . . n and n = deg(P ). As K ↪→ L is separable of degree n, there are exactlly n distinct
morphisms of K-algebras:

φi : L ↪→ K

Let Vn(t) := V (φ1(t), . . . , φn(t)) denote the Vandermonde matrix associated with φ1(t), . . . , φn(t). Then one
has:

|Vn(t)|(ai)0≤i≤n−1 = tCom(Vn(t))(φi(α))1≤i≤n

(where tCom(−) denotes the transpose of the comatrix and | − | the determinant). Hence, as the φi(t) and the
φi(α) are all integral over A, the |Vn(t)|ai are also all integral over A. By assumption, the ai are in K and
|Vn(t)| is in K since it is symmetric in the φi(t). So, as A is integrally closed, the |Vn(t)|ai are in A, from which
the conclusion follows since |Vn(t)| is a unit in C (recall that P ′(t) is invertible in C).

We now turn to the general case. From lemma 6.13, the above already shows that X is normal and, in
particular, it can be written as the coproduct of its (finitely many) irreducible components. So, without loss of
generality we may assume that X is a normal connected hence integral scheme. But then, for any open sub-
scheme U ⊂ S, the ring OX(φ−1(U)) is integral ring and its local rings are all integrally closed so OX(φ−1(U))
is integrally closed as well and, since it is also integral over OS(U), it is the integral closure of OS(U) in
k(S) ↪→ k(X). �

The following provides a converse to lemma 6.14:

Lemma 6.15. Let k(S) ↪→ L be a finite separable field extension which is unramified over S. Then the
normalization φ : X → S of S in k(S) ↪→ L is an étale cover.

Proof. Since S is locally noetherian, φ : X → S is finite by lemma 6.12; it is also surjective [AM69, Thm.
5.10] and, by construction it is unramified. So we are only to prove that φ : X → S is flat, namely that
OS,φ(x) ↪→ OX,x is a flat algebra, x ∈ X. One has a commutative diagram:

OX,x Coooo

OS,φ(x)

� ?

OO <<yyyyyyyyy

where OS,φ(x) → C is a standard algebra as in lemma 6.13, C � OX,x is surjective and, as φ : X → S is
surjective, OS,φ(x) ↪→ OX,x. In particular,

OS,φ(x) ⊗OS,φ(x) k(S) ↪→ OX,x ⊗OS,φ(x) k(S)

is injective as well hence:
C ⊗OS,φ(x) k(S)→ OX,x ⊗OS,φ(x) k(S)

is non-zero. But, as C ⊗OS,φ(x) k(S) is a field, the above morphism is actually injective and, as OS,φ(x) → k(S)
is faithfully flat, this implies that C � OX,x is injective hence bijective. �

Lemma 6.14 shows that there is a well-defined functor:

R: CS → (FEAlg/k(S))op

X → S 7→ k(S) ↪→ R(X) :=
∏
X0∈π0(X) k(X0).

Let FEAlg/k(S)/S ⊂ FEAlg/k(S) denote the full subcategory of finite étale algebras k(S) ↪→ R which are
unramified over S. Lemmas 6.14 and 6.15 show:

Theorem 6.16. The functor R : CS → FEAlg/k(S) is fully faithfull and induces an équivalence of categories
R : CS → FEAlg/k(S)/S with pseudo-inverse the normalization functor.

Let η ∈ S denote the generic point of S hence k(η) = k(S). Let k(η) ↪→ Ω be an algebraically closed field
extension defining geometric points sη : spec(Ω) → spec(k(η)) and η : spec(Ω) → S. From theorem 6.16, the
base-change functor

η∗ : CS → Cspec(k(η))
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is fully faithfull hence, from proposition 4.3 (1), induces an epimorphism of profinite groups:

π1(η) : π1(spec(k(η); sη)� π1(S; s)

whose kernel is the absolute Galois group of the maximal algebraic extension k(η) ↪→Mk(S),S of k(η) in Ω which
is unramified over S.

Example 6.17. Let S be a curve, smooth and geometrically connected over a field k and let S ↪→ Scpt be the
smooth compactification of S. Write Scpt \ S = {P1, . . . , Pr}. Then the extension k(S) ↪→ Mk(S),S is just the
maximal algebraic extension of k(S) in Ω unramified outside the places P1, . . . , Pr.

7. Geometrically connected schemes of finite type

Let S be a scheme geometrically connected and of finite type over a field k. Fix a geometric point s :
spec(k(s))→ Sks with image again denoted by s in S and spec(k).

Proposition 7.1. The morphisms (Sks , s) → (S, s) → (spec(k), s) induce a canonical short exact sequence of
profinite groups:

1→ π1(Sks ; s)
i→ π1(S; s)

p→ π1(spec(k); s)→ 1.

Example 7.2. Assume furthermore that S is normal. Then the assumption that S is geometrically connected
over k is equivalent to the assumption that k ∩ k(S) = k and, with the notation of subsection 6.4, the short
exact sequence above is just the one obtained from usual Galois theory:

1→ Gal(Mk(S),S |ks(S))→ Gal(Mk(S),S |k(S))→ Γk → 1.

Proof. We use, again, the criteria of proposition 4.3.

Exactness on the right: As S is geometrically connected over k, the scheme SK is also connected for any finite
separable field extension k ↪→ K.

Exactness on the left: For any étale cover f : X → Sks we are to prove that there exists an étale cover f : X̃ → S
such that fk(s) dominates f . From lemma 6.7, there exists a finite separable field extension k ↪→ K and an étale
cover f̃ : X̃ → SK which is a model of f : X → Sks over SK . But then, the composite f : X̃ → SK → S is
again an étale cover whose base-change via Sks → S is the coproduct of [K : k] copies of f hence, in particular,
dominates f .

Exactness in the middle: From lemma 6.9, this amounts to show that ker(p) ⊂ im(i). For any connected étale
cover φ : X → S such that φks : Xks → Sks admits a section, say σ : Sks ↪→ Xks , we are to prove that there
exists a finite separable field extension k ↪→ K such that the base change of spec(K)→ spec(k) via S → spec(k)
dominates φ : X → S. So, let k ↪→ K be a finite separable field extension over which σ : Sks ↪→ Xks admits
a model σK : SK ↪→ XK . This defines a morphism from SK to X over S by composing σK : SK ↪→ XK with
XK → X. �

Proposition 7.1 shows that the fundamental group π1(S) of a scheme S geometrically connected and of finite
type over a field k can be canonically decomposed into a geometric part π1(Sks) and an arithmetic part Γk.
This raises several problems:

(1) Determine the geometric part π1(Sks);
(2) Describe the sections of π1(S)� Γk;
(3) Describe the outer representation ρ : Γk → Out(π1(Sks)).

In the end of these notes, we are going to explain how problem (1) can be solved (fully in characteristic 0
and partly in positive characteristic). Basically, this is done in three steps (one step in characteristic 0):

(a) G.A.G.A. theorems (see section 8), which show that the étale fundamental group of a connected scheme
locally of finite type over C is the profinite completion of the topological fundamental of its underline
topological space. The latter can often be explicitly computed by methods from algebraic topology. From
the invariance of fundamental groups under algebraically closed field extensions (see subsection 6.2), this
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yields the determination of most of the étale fundamental groups of connected schemes locally of finite type
over algebraically closed field in characteristic 0.

(b) Specialization theory (see section 9), which says that if f : X → S is a proper separable morphism with geo-
metrically connected fibres and s0, s1 ∈ S are such that s0 is a specialization of s1, there is an epimorphism
of profinite groups:

sp : π1(Xs1)� π1(Xs0).
(c) The Zariski-Nagata purity theorem (see section 10.1), which yields information about the kernel of the above

specialization epimorphism when f : X → S is furthermore assumed to be smooth and, in particular, shows
that it induces an isomorphism on the prime-to-p completions, where p denotes the residue characteristic of
s0. Note that, however, to understand the prime-to-p completion of the étale fundamental group in positive
characteristic p > 0 by this method, one has to face the deep problem of lifting schemes from characteristic
p to characteristic 0; we will give an illustration of this in the proof of theorem 11.1. Concerning the pro-p
completion and the determination of the full étale fundamental groups of curves in positive characteristic
p > 0, see remarks 6.8 and 11.5.

Problems (2) and (3) are still widely open.

The section conjecture provides a conjectural answer to problem (2) when k is a finitely generated field of
characteristic 0 and S is a smooth, separated, geometrically connected hyperbolic curve over k. More precisely,
let S ↪→ Scpt denote the smooth compactification of S. Any s ∈ S(k) induces a (π1(Sks)-conjugacy class of)
section(s) s : Γk → π1(S). More generally, given a point s̃ ∈ Scpt(k), if I(s̃) and D(s̃) denote the inertia and
decomposition group of s̃ in Γk(Scpt) respectively, then the short exact sequence:

1→ I(s̃)→ D(s̃)→ Γk → 1

always splits but this splitting is not unique up to inner conjugation by elements of Γk(Scpt) hence, any point
s̃ ∈ Scpt(k) \ S(k) gives rise to several (π1(Sks)-conjugacy class of) sections. A section s : Γk → π1(S) is said
to be geometric if it raises from a point s̃ ∈ Scpt(k) and is said to be unbranched if s(Γk) is contained in no
decomposition group of a point s̃ ∈ Scpt(k) \ S(k) in π1(S). Let Σ(S) denote the set of conjugacy classes of
sections of π1(S)� Γk. A basic form of the section conjecture can thus be formulated as follows:

Conjecture 7.3. (Section conjecture) For any smooth, separated and geometrically connected curve S over a
finitely generated field k of characteristic 0 the canonical map S(k)→ Σ(S) is injective and induces a bijection
onto the set of π1(Sks)-conjugacy classes of unbranched sections. Furthermore, any section is a geometric
section.

The injectivity part of the section conjecture was already known to A. Grothendieck (basically as a conse-
quence of Lang-Néron theorem with some technical adjustements in the non-proper case); it is the surjectivity
part which is difficult. It easily follows from the formalism of Galois categories, Mordell conjecture and Uchida’s
theorem [U77] that the section conjecture (for all hyperbolic curves over k) is equivalent to:

Conjecture 7.4. (Section conjecture - reformulation) For any smooth, separated and geometrically connected
curve S over a finitely generated field k of characteristic 0 one has S(k) 6= ∅ if and only if Σ(S) 6= ∅.

One can formulate a pro-p variant of the section conjecture. LetK(p) denote the kernel of the pro-p completion
π1(Sks) � π1(Sks)(p); by definition K(p) is characteristic in π1(Sks) hence normal in π1(S). So, defining
π1(S)[p] := π1(S)/K(p), one gets a short exact sequence of profinite groups:

1→ π1(Sks)(p) → π1(S)[p] → Γk → 1

Let Σ(p)(S) denote the set of conjugacy classes of sections of π1(S)[p] � Γk and consider the composite map:

S(k)→ Σ(S)→ Σ(p)(S).

Then, S. Mochizuki showed that this remains injective [Mo99] but Y. Hoshi showed that it is no longer surjective
[Ho10b].

One can also formulate a birational variant of the section conjecture, where the short exact sequence of
profinite group:
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1→ π1(Sks)→ π1(S)→ Γk → 1
is replaced by the usual short exact sequence from Galois theory of field extensions:

1→ Γks(S) → Γk(S) → Γk → 1

In that case, there are some examples where the answer is known to be positive [St07] and the birational section
conjecture itself was proved by J. Koenigsmann when k is replaced by a p-adic field [K05].

As for problem (3), it leads to a whole bunch of questions and conjectures usually gathered under the common
denomination of anabelian geometry. Among those problems one can mention, for instance:

- Is ρ : Γk → Out(π1(Sks)) injective? The answer is known to be positive for smooth, separated,
geometrically connected hyperbolic curves over sub-p-adic fields (i.e. subfields of finitely generated
extensions of Qp). The affine case when k is a number field was proved by M. Mastumoto [M96], the
general case was completed by Y. Hoshi and S. Mochizuki when k is a sub-p-adic field [HoMo10].

- Given a prime `, up to what extend does the kernel of the outer pro-` representation ρ(`) : Γk →
Out(π1(Sks)(`)) determine the isomorphism class of S? Under some technical conditions Y. Hoshi
[Ho10a] and S. Mochizuki [Mo03] obtained partial results for affine hyperbolic curves of genus ≤ 1.

- Up to what extend does the outer (resp. the outer pro-`) representation ρ : Γk → Out(π1(Sks) (resp.
ρ(`) : Γk → Out(π1(Sks)(`))) determine S? When S is assumed to be an hyperbolic curve, this rather
vague question is often referred to as Grothendieck’s anabelian conjecture. One motivation for it is
Tate conjecture for abelian varieties. Indeed, given two proper hyperbolic curves S1, S2 over a finitely
generated field k of characteristic 0 then, or any prime ` if the outer pro-` abelianized representations:

ρ
(`),ab
i : Γk → Out(π1(Sik)(`),ab) = Aut(T`(JSi|k))

coincide for i = 1, 2 then, JS1|k and JS2|k are isogenous. In particular, from the isogeny theorem, there
are only finitely many isomorphism classes of proper hyperbolic curves X with the same outer pro-`
abelianized representation. It is thus reasonable to expect that taking into account the whole outer pro-`
representation or, even more, the whole outer representation, will determine entirely the isomorphism
classes of hyperbolic curves. Note that the assumption that S is hyperbolic implies that π1(Sk) has
trivial center hence that:

π1(S) = Aut(π1(Sk))×Out(π1(Sk)),ρ Γk

so π1(S) � Γk can be recovered from ρ : Γk → Out(π1(Sk)). More precisely, one can formulate
Grothendieck’s anabelian conjecture for hyperbolic curves as follows. Let Proopenk denote the cate-
gory of profinite groups G equipped with an epimorphism p : G � Γk and where morphisms from
p1 : G1 � Γk to p2 : G2 � Γk are morphisms from G1 to G2 in Pro with representatives φ : G1 → G2

such that:
(i) ρ2 ◦ φ = ρ1 modulo inner conjugation by elements of Γk;
(ii) im(φ) is open in G2.

Conjecture 7.5. (Grothendieck’s anabelian conjecture for hyperbolic curves) Let k be a finitely gen-
erated field of characteristic 0. Then the functor π1(−) from the category of smooth, separated, geomet-
rically hyperbolic curves over k with dominant morphisms to Proopenk is fully faithfull.

After works of K. Uchida [U77], A. Tamagawa proved conjecture 7.5 for affine hyperbolic curves [T97].
Using technics from p-adic Hodge theory, S. Mochizuki then proved the general form of conjecture 7.5
(and, more generally, its pro-`-variant for k a sub-`-adic field) [Mo99]. For an introduction to this
subject, see [NMoT01]. For more elaborate surveys, see [Sz00], [H00] and the Bourbaki lecture by G.
Faltings [F98].

One can formulate birational, higher dimensional variants, variants over finite fields or function fields
of conjecture 7.5. These questions are currently intensively studied. For more recent results, see the
works of Y. Hoshi, S. Mochizuki, H. Nakamura, F. Pop, M. Säıdi, J. Stix, A. Tamagawa etc.



GALOIS CATEGORIES 39

8. G.A.G.A. theorems

In this section, we review implications of the so-called G.A.G.A. theorems (named after J.-P. Serre’s funda-
mental paper [S56] Géométrie algébrique et géométrie analytique) to the description of étale fundamental groups
of schemes locally of finite type over C. The main result is theorem 8.1, which states that this is nothing but
the profinite completion of the topological fundamental group of the underlying topological space. However, the
definition of what is meant by ”underlying topological space” is not so clear a priori and the definition - as well
of the proof - goes through the complex analytic space Xan which can canonically be associated to any scheme
X locally of finite type over C. In subsection 8.1, we give the definition of complex analytic spaces, sketch the
construction of the analytification functor X 7→ Xan and provide a partial dictionnary of properties which it
preserves. In subsection 8.2, we state the main G.A.G.A. theorem alluded to above. The proof of this theorem
is beyond the scope of these notes. For a clear exposition based on [S56] and [Hi64], we refer to [SGA1, Chap
XII, §5].

8.1. Complex analytic spaces. As schemes over C are obtained by glueing affine schemes over C in the
category LR/C of locally-ringed spaces in C-algebras, complex analytic spaces are obtained by glueing ”affine”
complex analytic spaces in LR/C.

Affine complex analytic spaces are defined as follows. Let U ⊂ Cn denote the polydisc of all z = (z1, . . . , zn) ∈
Cn such that |zi| < 1, i = 1, . . . , n and, given analytic functions f1, . . . , fr : U → C, let U(f1, . . . , fr) denote the
locally ringed space in C-algebra whose underlying topological space the closed subset:

r⋂
i=1

f−1
i (0) ⊂ U

endowed with the topology inherited from the transcendent topology on U and whose structural sheaf is:

OU/ < f1, . . . , fr >,

where OU is the sheaf of germs of analytic functions on U .

The category AnC of complex analytic spaces is then the full subcategory of LR/C whose objects (X,OX)
are locally isomorphic to affine complex analytic spaces.

Now, let X be a scheme locally of finite type over C

Claim: The functor HomLR/C(−, X) : AnopC → Sets is representable that is there exists a complex analytic space
Xan and a morphism φX : Xan → X in LR/C inducing a functor isomorphism

φX◦ : HomAnC(−, Xan)→̃HomLRC−Alg (−, X)|AnopC
.

Furthermore, for any x ∈ Xan, the canonical morphism induced on completions of local rings ÔX,φX(x)→̃ÔXan,x
is an isomorphism.

Proof (sketch of)
(1) Assume that Xan exists for a given scheme X, locally of finite type over C. Then:

(a) Uan exists for any open subscheme U ↪→ X (Uan = φ−1
X (U) with the structure of complex analytic

space induced from the one of X);
(b) Zan exists for any closed subscheme Z ↪→ X (if IZ denotes the coherent sheaf of ideals of OX

defining Z then φanX IZ =: IanZ is again a coherent sheaf of ideals of OXan hence defines a closed
analytic subspace Zan ↪→ Xan).

(2) Assume that Xan
i exists for a given scheme Xi, locally of finite type over C, i = 1, 2. Then (X1×CX2)an

exists and is Xan
1 ×Xan

2 .
(3) (A1

C)an exists (= A1(C)) hence it follows from (2) that(AnC)an exists for n ≥ 1. Then, it follows from
(1) (b) that Xan exists for any affine scheme, locally of finite type over C.

(4) Now, given any schemeX locally of finite type over C, consider a covering ofX by open affine subschemes
Xi ↪→ X, i ∈ I and set Xi,j := Xi ∩Xj , i, j ∈ I. From (3) and (1) (a), one knows that Xan

i and Xan
i,j
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exist, i, j ∈ I. Then the analytic space Xan obtained by glueing the Xan
i along the Xan

i,j satisfies the
required universal property. �

The morphism φX : Xan → X is unique up to a unique X-isomorphism and is called the complex analytic
space associated with X or the analytification of X. In particular, given a C-morphism f : X → Y of schemes
locally of finite type over C, it follows from the universal property of φY : Y an → Y that there exists a unique
morphism fan : Xan → Y an in AnC such that φY ◦ fan = f ◦ φX . One readily checks that this gives rise to a
functor:

(−)an : SchLFT /C→ AnC,

where SchLFT /C denotes the category of schemes locally of finite type over C.

There is a nice dictionary between the properties of X (resp. X → Y ) and those of Xan (resp. Xan → Y an).
Morally, all those which are encoded in the completion of the local rings are preserved. For instance:

(1) Let P be the property of being connected, irreducible, regular, normal, reduced, of dimension d. Then
X has P if and only if Xan has P ;

(2) Let P be the property of being surjective, dominant, a closed immersion, finite, an isomorphism, a
monomorphism, an open immersion, flat, unramified, étale, smooth. Then X → Y has P if and only if
Xan → Y an has P .

Concerning the categories Mod(X) and Mod(Xan) of OX -modules and OXan respectively, one can easily show
that the functor:

φ∗X : Mod(X)→ Mod(Xan)
is exact, faithful, conservative and sends coherent OX -modules to coherent OXan-modules.

8.2. Main G.A.G.A. theorem. The most important result of [S56] is that, whenX is assumed to be projective
over C, the functor φ∗X : Mod(X)→ Mod(Xan) induces an equivalence of categories from coherent OX -modules
to coherent OXan-modules. By technical arguments such as Chow’s lemma, this can be extended to schemes
proper over C. From the equivalence of categories between finite morphisms Y → X (resp. Y an → Xan) and
coherent OX -algebras (resp. coherent OXan-algebras), one easily deduces that for a proper schemes X over C
the categories of finite étale covers of X and Xan are equivalent. Working more, one gets:

Theorem 8.1. ([SGA1, XII, Thm. 5.1]) For any scheme X locally of finite type over C, the functor (−)an :
SchLFT /C→ AnC induces an equivalence from the category of étale covers of X to the category of étale covers
of Xan.

The category of étale covers of Xan is equivalent to the category of finite topological covers of the underlying
transcendent topological space Xtop of Xan. Indeed, observe that if f : Y → Xtop is a finite topological cover
then the local trivializations endow Y with a unique structure of analytic space (induced from Xan) and such
that, with this structure, f : Y → Xtop becomes an analytic cover. Conversely, if f : Y → Xan is an étale
cover then, from theorem 5.5, for any y ∈ Y one can find open affine neighborhoods V = spec(B) of y and
U = spec(A) of f(y) such that f(V ) ⊂ U , B = A[X]/ < f > and ( ∂f∂X )y ∈ O×Y,y hence the local inversion
theorem gives local trivializations. So, for any x ∈ X one has a canonical isomorphism of profinite groups :

̂πtop1 (Xtop, x) ' π1(X,x).

Example 8.2. Let X be a smooth connected curve over C of type (g, r) (that is the smooth compactification
X̃ of X has genus g and |X̃ \X| = r). Then, for any x ∈ X one has a canonical profinite group isomorphism
Γ̂g,r ' π1(X,x), where Γg,r denotes the group defined by the generators a1, . . . , ag, b1, . . . , bg, γ1, . . . , γr with
the single relation [a1, b1] · · · [ag, bg]γ1 · · · γr = 1. From section 6.4, π1(X,x) can also be described as the Galois
group Gal(MC(X),X |C(X)) of the maximal algebraic extension MC(X),X of C(X) in C(X) étale over X.

In particular, if g = 0 then π1(X,x) is the pro-free group on r−1 generators, so, any finite group G generated
by ≤ r − 1 elements is a quotient of π1(P1

C \ {t1, . . . , tr}, x) or, equivalently, appears as the Galois group of a
Galois extension C(T ) ↪→ K unramified everywhere except over t1, . . . , tr. This solves the inverse Galois problem
over C(T ).
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Exercise 8.3. Show that the étale fundamental group of an algebraic group over an algebraically closed field
of characteristic 0 is commutative.

9. Specialization

9.1. Statements. Let S be a connected scheme and f : X → S a proper morphism such that f∗OX = OS
(so, in particular, f : X → S is surjective, geometrically connected and X is connected). Fix s0, s1 ∈ S with
s0 ∈ {s1} and geometric points xi : spec(Ωi) → Xsi , i = 0, 1. Denote again by xi the images of xi in Xsi and
Xi and by si the image of xi in S, i = 0, 1.

The theory of specialization of fundamental groups consists, essentially, in comparing π1(Xs1 ;x1) and π1(Xs0 ;x0).
The main result is the following.

Theorem 9.1. (Semi-continuity of fundamental groups) There exists a morphism of profinite groups

sp : π1(Xs1 ;x1)→ π1(Xs0 ;x0),

canonically defined up to inner automorphisms of π1(X0, x0). If, furthermore, f : X → S is separable, then
sp : π1(Xs1 ;x1)� π1(Xs0 ;x0) is an epimorphism.

The morphism sp : π1(Xs1 , x1)→ π1(Xs0 , x0) is called the specialization morphism from s1 to s0.

The proof of theorem 9.1 relies on the first homotopy sequence, already studied in subsection 6.2 but that
we restate below with our notation.

Theorem 9.2. (First homotopy sequence) Consider the canonical sequence of profinite groups induced by
(Xs1 , x1)→ (X,x1)→ (S, s1):

(3) π1(Xs1 ;x1) i1→ π1(X;x1)
p1→ π1(S; s1).

Then p1 : π1(X;x1) � π1(S; s1) is an epimorphism and im(i1) ⊂ ker(p1). If, furthermore, f : X → S is
separable then im(i1) = ker(p1).

and the second homotopy sequence:

Theorem 9.3. (Second homotopy sequence) Assume that S = Spec(A) with A a local complete noetherian ring
and that s0 is the closed point of S. Then, the canonical sequence of profinite groups induced by (Xs0 , x0) →
(X,x0)→ (S, s0):

(4) 1→ π1(Xs0 ;x0) i0→ π1(X;x0)
p0→ π1(S; s0)→ 1

is exact and the canonical morphism Γk(s0)→̃π1(S; s0) is an isomorphism. In particular, the canonical morphism
π1(Xs0 ;x0)→̃π1(X;x0) is an isomorphism and if x0 ∈ X(k(s0)) then the above short exact sequence splits.

9.2. Construction of the specialization morphism.
Assume first that S = Spec(A) with A a local complete noetherian ring and that s0 is the closed point of S,

s1 ∈ S is any point of S. Then, one has the following canonical diagram of profinite groups, which commutes
up to inner automorphisms:

(4) 1 // π1(Xs0 ;x0)
i0 // π1(X;x0)

p0 // π1(S; s0) // 1

(3) π1(Xs1 ;x1)

∃! sp

OO

i1 // π1(X;xx1)

αX

OO

p1 // π1(S; s1) //

αS

OO

1,

where the vertical arrows αX : π1(X;x1)→̃π1(X;x0) and αS : π1(S; s1)→̃π1(S; s0) are the canonical (up to
inner automorphisms) isomorphisms of theorem 2.8.

Now, since p0 ◦αX ◦ i1” = ”αS ◦p1 ◦ i1
(∗)
= 0 (here ” = ” means equal up to inner automorphisms and equality

(∗) comes from theorem ??), it follows from theorem 9.3 that:

im(αX ◦ i1) ⊂ ker(p0) = im(i0)
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and, hence, there exists a morphism of profinite groups:

sp : π1(Xs1 ;x1)→ π1(Xs0 ;x0),

unique up to inner automorphisms and such that αX ◦ p1” = ”i0 ◦ sp.

If, furthermore, im(i1) = ker(p1), a straightforward diagram chasing shows that:

sp : π1(Xs1 ;x1)� π1(Xs0 ;x0)

is an epimorphism.

We come back to the case where S is any locally noetherian scheme and s0, s1 ∈ S with s0 ∈ {s1}. One
then has a commutative diagram (where we abbreviate spec(K) by K when K is a field):

k(s1) // k(s1)
s1 //

%%KKKKKKKKKK S k(s0)

yyssssssssss

s0oo k(s0)oo

spec(OS,s1) // spec(OS,s0)

OO

k(ŝ1) //

OO

k(ŝ1)
ŝ1

//

OO

spec(ÔS,s0)

OO

k(ŝ0)
ŝ0

oo k(ŝ0),oo

where the existence of ŝ1 is ensured by the fact that OS,s0 → ÔS,s0 is faithfully (flat). Choose a geometric
point x̂1 of Xs1 := Xs1 ×k(s1)

k(ŝ1) over x1. Since X bOS,s0 → spec(ÔS,s0) is proper (and separable as soon as
f : X → S is) , it follows from (1) that one has a canonical specialization morphism:

(∗) sp : π1(Xs1 ; x̂1)→ π1(Xs0 ;x0)

and, from corollary 6.6, the canonical morphism:

(∗∗) π1(Xs1 ; x̂1)→̃π1(Xs1 ;x1)

is an isomorphism. Thus the specialization isomorphism is obtained by composing the inverse of (∗∗) with (∗).

9.3. Proof of theorem 9.3. The proof resorts to difficult results from [EGA3]; we will only sketch it but give
references for the missing details. See also [I05] for a more detailed treatment.

Claim 1: If A is a local artinian ring, the conclusions of theorem 9.3 hold.

Proof of claim 1. Recall that, in an Artin ring, any prime ideal is maximal hence the nilradical and the Jacobson
radical coincide. In particular, if A is local, the nilpotent elements of A are precisely those of its maximal ideal.
From theorem A.2, one may thus assume that A = k(s0) and, then, the conclusion π1(S, s0) ' Γk(s0) is
straightforward. Let k(s0)i denote the inseparable closure of k(s0) in k(s0) and write Xi

s0 := X×S k(s0)i. Then
the cartesian diagram:

(5) Xs0
//

�

X //

�

S

Xs0
// Xi

s0

OO

// Spec(k(s0)i)

OO

induces a commutative diagram of morphisms of profinite groups:
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(6) π1(Xs0 ;x0) // π1(X;x(0)) // π1(S; s0)

π1(Xs0 ;x0) //

OO

π1(Xi
0;xi(0)) //

OO

π1(Spec(k(s0)i); si0)

OO

Now, since each of the vertical arrows in (5) is faithfully flat, quasi-compact and radiciel, it follows from corollary
A.4 that the vertical arrows in (6) are isomorphisms of profinite groups. Hence it is enough to prove that the
bottom line of (6) is exact that is one may assume that k(s0) is perfect.

But, then, k(s0) can be written as the inductive limit of its finite Galois subextensions k(s0) ↪→ ki ↪→ k(s0),
i ∈ I hence, writing again x0 for the image of x0 in Xki , it follows from lemma 6.7 that the morphism:

Xs0 → lim
−→

Xki

induces an isomorphism of profinite groups:

π1(Xs0 ;x0)→̃lim
←−

π1(Xki ;x0).

But, for each i ∈ I, the étale cover Xki → X is Galois with group AutAlg/k(s0)(ki) so, from proposition 4.4 one
has a short exact sequence of profinite groups:

1→ π1(Xki ;x0)→ π1(X;x0)→ AutAlg/k(s0)(ki)→ 1.

Using that the projective limit functor is exact in the category of profinite groups, we thus get the expected
short exact sequence of profinite groups:

1→ lim
←−

π1(Xki ;x0)→ π1(X;x0)→ Γk(s0) → 1.

Claim 2: The closed immersion iXs0 : Xs0 ↪→ X induces an equivalence of categories CX → CXs0 hence, in
particular, an isomorphism of profinite groups:

π1(Xs0 ;x0)→̃π1(X;x0).

Proof of claim 2. One has to prove:
(1) For any étale covers p : Y → X, p′ : Y ′ → X the canonical map

HomCX (p, p′)→ HomCXs0 (p×X Xs0 , p
′ ×X Xs0)

is bijective;
(2) For any étale cover p0 : Y0 → Xs0 there exists an étale cover p : Y → X which is a model of p0 : Y0 → Xs0

over X.
The proof of these two assertions is based on Grothendieck’s Comparison and Existence theorems in algebraico-

formal geometry. We first state simplified versions of these theorems.

Let S be a noetherian scheme and let p : X → S be a proper morphism. Let I ⊂ OS be a coherent sheaf
of ideals. Then the descending chains · · · ⊂ In+1 ⊂ In ⊂ · · · ⊂ I corresponds to a chain of closed subschemes
S0 ↪→ S1 ↪→ · · · ↪→ Sn ↪→ · · · ↪→ S. We will use the notation in the diagram below:

S

�

Sn? _oo

�

· · ·? _oo S1
? _oo

�

S0
? _oo

X

p

OO

Xn
? _oo

pn

OO

· · ·? _oo X1
? _oo

p1

OO

X0.? _oo

p0

OO

and write in : Xn ↪→ X, n ≥ 0. For any coherent OX -module F , set Fn := i∗nF = F ⊗OX OXn , n ≥ 0.
Then Fn is a coherent OXn -module and the canonical morphim of OX -modules F → Fn induces morphims of
OS-modules Rqp∗F → Rqp∗Fn, q ≥ 0 hence morphims of OSn -modules:

(Rqp∗F)⊗OS OSn → Rqp∗Fn, q ≥ 0
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and, taking projective limit, canonical morphisms:

lim
←−

((Rqp∗F)⊗OS OSn)→ lim
←−

Rqp∗Fn, q ≥ 0.

When S = spec(A) is affine and I ⊂ A is the ideal corresponding to I ⊂ OS , the above isomorphism becomes:

Hq(X,F)⊗A Â→̃ lim
←−

Hq(Xn,Fn), q ≥ 0,

where Â denotes the completion of A with respect to the I-adic topology.

Theorem 9.4. (Comparison theorem [EGA3, (4.1.5)]) The canonical morphisms:

lim
←−

((Rqp∗F)⊗OS OSn)→̃ lim
←−

Rqp∗Fn, q ≥ 0

are isomorphisms.

Theorem 9.5. (Existence theorem [EGA3, (5.1.4)]) Assume, furthermore that S = spec(A) is affine and
that A is complete with respect to the I-adic topology. Let Fn, n ≥ 0 be coherent OXn-modules such that
Fn+1⊗OXn+1

OXn→̃Fn, n ≥ 0. Then there exists a coherent OX-module F such that F ⊗OX OXn→̃Fn, n ≥ 0.

Also, for any étale cover p : Y → X, observe that A(p) := p∗OY is a locally free OX -algebra of finite rank
and that, denoting by FLFAlg/OX the category of locally free OX -algebra of finite rank the functor:

A : CX → FLFAlg/OX
p : Y → X → A(p)

is fully faithful.

Proof of (1): One has canonical functorial isomorphisms:

HomCX (p, p′) →̃ H0(X,HomFLFAlg/OX (A(p′),A(p)))
→̃ lim

←−
H0(Xn,HomFLFAlg/OX (A(p′),A(p))⊗OX OXn),

where the first isomorphism comes from the fact that A is fully faithful and the second isomorphism is just
the comparison theorem applied to q = 0, F = HomFLFAlg/OX (A(p′),A(p)) and I the maximal ideal of A,
observing that, since A is complete with respect to the I-adic topology, A = Â.

Furthermore, as A(p), A(p′) are locally free OX -module, one has canonical isomorphisms:

HomMod(X)(A(p′),A(p))⊗OX OXn→̃HomMod(Xn)(A(p′n),A(pn))

But these preserve the structure of OX -algebra morphisms hence one also gets, by restriction:

HomFLFAlg/OX (A(p′),A(p))⊗OX OXn→̃HomFLFAlg/OXn (A(p′n),A(pn)).

Whence,
HomCX (p, p′) →̃ lim

←−
H0(Xn,HomFLFAlg/OX (A(p′),A(p))⊗OX OXn)

→̃ lim
←−

H0(Xn,HomFLFAlg/OXn (A(p′n),A(pn)))

→̃ lim
←−

HomCXn (pn, p′n)

→̃ lim
←−

HomCXs0 (p0, p
′
0),

where the last isomorphism comes from the fact HomCXn (pn, p′n)→̃HomCXs0 (p0, p
′
0), n ≥ 0 by theorem A.2.

Proof of (2): By theorem A.2, there exists étale covers pn : Yn → Xn, n ≥ 0 such that pn→̃pn+1 ×Xn+1 Xn,
or, equivalently, A(pn+1)⊗OXn+1

OXn→̃A(pn), n ≥ 0. So, by the Existence theorem, there exists a locally free
OX -algebra of finite rank A such that A ⊗OXn OX→̃A(pn), n ≥ 0 hence, setting p : Y = spec (A) → X one
has p×X Xs0→̃p0.

It remains to show that p : Y = spec (A)→ X is an étale cover. For this, see [Mur67, p. 159-161].
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One can now conclude the proof. From claim 1 applied to A = k(s0), X = Xs0 , one gets the short exact
sequence of profinite groups:

1→ π1(Xs0 ;x0)→ π1(Xs0 ;x0)→ Γk(s0) → 1.

Now, from claim 2 one has the canonical profinite group isomorphisms π1(X;x0)→̃π1(Xs0 ;x0) and (for X = S)
π1(S; s0)→̃Γk(s0), which yields the required short exact sequence.

Eventually, for the last assertion of theorem 9.3, just observe that, as above, one can assume that A = k(s0)
thus, if x ∈ X(k(s0)), it produces a section x : S → X of f : X → S such that x ◦ s0 = x thus a section
Γk(s0) → π1(X;x0) of (4). �

10. Purity and applications

In this section, we use Zariski-Nagata purity theorem to prove that the étale fundamental group is a birational
invariant in the category of proper regular schemes over a field and to determine the kernel of the specialization
epimorphism constructed in section 9.

Theorem 10.1. (Zariski-Nagata purity theorem [SGA2, Chap. X, thm. 3.4]) Let X, Y be integral schemes
with X normal and Y regular. Let f : X → Y be a quasi-finite dominant morphism and let Zf ⊂ X denote
the closed subset of all x ∈ X such that f : X → Y is not étale at x. Then, either Zf = X or Zf is pure of
codimension 1 (that is, for any generic point η ∈ Zf , one has dim(OX,η) = 1).

10.1. Birational invariance of the étale fundamental group.

Corollary 10.2. Let X be a connected, regular scheme and let iU : U ↪→ X be an open subscheme such that
X \ U has codimension ≥ 2 in X. Then iU : U ↪→ X induces an equivalence of categories:

i∗U : CX → CU
hence an isomorphism of profinite groups:

π1(iU ) : π1(U)→̃π1(X)

Proof. As X is connected, locally noetherian and regular (hence with integral local rings), X is irreducible.
Since X is normal and X \ U ⊂ X is a closed subset of codimension ≥ 2, the functor i∗U : CX → CU is fully
faithfull [L00, Thm. 4.1.14] hence, one only has to prove that it is also essentially surjective that is, for any étale
cover pU : V → U there exists a (necessarilly unique by the above) étale cover p : Y → X such that pU : V → U
is the base-change of p : Y → X via iU := U ↪→ X. One may assume that V is connected hence, it follows from
lemma 6.14 that V is the normalization of U in k(X) = k(U) ↪→ k(V ). Let p : Y → X be the normalization
of X in k(X) ↪→ k(V ). Then, on the one hand, it follows from the universal property of normalization that
pU : V → U is the base-change of p : Y → X via iU := U ↪→ X as expected. On the other hand, since X is
normal and k(X) ↪→ k(V ) is a finite separable field extension, p : Y → X is finite, dominant and, from lemma
6.15, étale on:

p−1(U) = V = Y \ p−1(X \ U).

But X \ U has codimension ≥ 2 in X hence, since p : Y → X is finite, p−1(X \ U) has codimension ≥ 2 in Y
as well. Thus, it follows from theorem 10.1 that p : Y → X is étale. �

Let X be a connected, regular scheme, Y a connected scheme and f : X  Y be a rational map. Write
Uf ⊂ X for the maximal open subset on which f : X  Y is defined and assume that X \ Uf has codimension
≥ 2 in X. Then, corresponding to the sequence of base-change functors:

CY
f |∗Uf→ CUf

i∗Uf← CX
one has, for any geometric point x ∈ Uf , the sequence of morphisms of profinite groups:

π1(X;x)
π1(iUf )

←̃ π1(Uf ;x)
π1(f |Uf )
→ π1(Y ; f(x)).
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So, if C denotes the category of all connected, regular schemes pointed by geometric points in codimension 1
together with dominant rational maps defined on an open subscheme whose complement has codimension ≥ 2
one gets a well-defined functor π1(−) from C to the category of profinite groups. In particular, let k be a field,
X, Y two schemes proper over k, connected and regular and f : X! Y a birational map of schemes over k.
Then f is always defined over an open subscheme iUf : Uf ↪→ X such that X \ Uf has codimension ≥ 2 in X

and the same holds for f−1. So, from corollary 10.2, one gets a sequence of isomorphisms of profinite groups:

π1(X)
π1(iUf )−1

→̃ π1(Uf )
π1(f |

U
f−1

Uf
)

→̃ π1(Uf−1)
π1(i

U
−1
f

)

→̃ π1(Y ).

Example 10.3. Let k be any field and consider the blowing-up f : Bx → P2
k of P2

k at any point x ∈ P2
k. Then

for any geometric point b ∈ Bx:
π1(Bx; b)→̃π1(P2

k; f(b)).

However, Bx and P2
k are not k-isomorphic (any two curves in P2

k intersects whereas the exceptional divisor E
in Bx does not intersect the inverse images of the curves in P2

k passing away from x). This shows that one has
to be careful when formulating higher dimensional variants of conjecture 7.5.

10.2. Kernel of the specialization morphism. We retain the notation of §9. Let S be a locally noetherian
scheme and X → S a smooth, proper, geometrically connected morphism. The aim of this section is to determine
the kernel of the specialization epimorphism:

sp : π1(Xs1 ;x1)� π1(Xs0 ;x0)

constructed in section 9 namely, to prove:

Theorem 10.4. For any finite group G of order prime to the residue characteristic p of S at s0 and for
any profinite group epimorphism φ : π1(Xs1 ;x1) � G there exists an epimorphism of profinite groups φ0 :
π1(Xs0 ;x0)� G such that φ0 ◦ sp = φ. In particular, sp induces an isomorphism of profinite groups:

sp(p)′ : π1(Xs1 ;x1)(p)′→̃π1(Xs0 ;x0)(p)′ ,

where (−)(p)′ denotes the prime-to-p profinite completion.

Proof. After reducing to the case where S = spec(O) with O a complete discrete valuation ring with alge-
braically closed residue field, the proof of theorem 10.4 amounts to showing the following. Given an étale cover
Y → Xs1 Galois with group G of prime-to-p order n, there exists a finite field subextension K ↪→ L ↪→ Ks

such that the extension k(X).L ↪→ k(Y ).L be unramified over X×S SL, where SL := spec(OL). Zariski-Nagata
purity theorem actually shows that it is enough to construct K ↪→ L in such a way that k(X).L ↪→ k(Y ).L be
unramified only over the points above the generic point of the closed fiber of X. Such a L can be constructed
by Abhyankar’s lemma.

Claim 1: One may assume that S = spec(O), with O a complete discrete valuation ring with algebraically closed
residue field.

Proof of claim 1. Let s0 = t0, t1, . . . , tr = s1 ∈ S such that ti ∈ {ti+1} and O{ti+1},ti has dimension 1,
i = 0, . . . , r − 1. Then, one has the sequence of specialization epimorphisms:

π1(Xs1)� π1(Xtr−1
)� · · ·� π1(Xt1

)� π1(Xs0).

Thus, without loss of generality, we may assume that dim(O{s1},s0) = 1. Next, let R denote the strict henselian-

ization of the integral closure of O{s1},s0 and let R ↪→ R̂ denotes its completion. Then R̂ is a complete discrete

valuation ring with separably closed residue field and the canonical morphism spec(R̂) → S maps the generic
point of spec(R̂) to s1 and the closed point of spec(R̂) to s0.

We will use the following notation for O. Given a finite Galois extension L/K we will write OL for the
integral closure of O in L and eL/K(O) for the order of the inertia group of O in L/K. Now fix an algebraic
closure K ↪→ K of the fraction field K of O and let K ↪→ Ks be the separable closure of K in K. For simpliciy,
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we remove the reference to the base point in the notation below.
From theorem 9.3, and the construction of the specialization morphism, one has the following situation:

π1(Xs1) //

sp
**UUUUUUUUUUUUUUUUU π1(X) π1(Xs0)'oo

π1(Xs1).
� ?

OO

which shows that:
ker(sp) = ker(π1(Xs1)→ π1(X)).

Consider the following factorization of s1 : spec(K)→ S:

spec(K) //

s1

))

��

spec(K)
s0 // S

spec(Ks)
ss1

44jjjjjjjjjjjjjjjjjjj

Since spec(K) → spec(Ks) is faithfully flat, quasi-compact and radiciel, it follows from corollary A.4 that
the morphism of profinite groups:

π1(Xs1)→̃π1(Xss1
)

is an isomorphism. Hence:
ker(sp) = ker(π1(Xss1

)→ π1(X)).

Let K ↪→ L be a finite field extension. Then OL is again a complete discrete valuation ring. Set SL :=
spec(OL) and write sL,1 , sL,0 for its generic and closed points respectively. Note that k(s0) = k(sL,0) = k since
k is algebraically closed.

Claim 2: The morphism of profinite groups:

π1(X ×S SL)→̃π1(X)

induced by X ×S SL → X is an isomorphism.

Proof of claim 2. From theorem 9.3, one has the following commutative diagram with exact row:

1 // π1((X ×S SL)sL,0) //

��

π1(X ×S SL)

��

// π1(SL)

��

// 1

1 // π1(Xs0) // π1(X) // π1(S) // 1.

But since k(s0) = k(sL,0) = k is algebraically closed one has π1(S) = Γk(s0) = 1, π1(SL) = Γk(sL,0) = 1 and
Xs0 = (X ×S SL)sL,0 , whence the conclusion.

So, one can replace freely K by any finite separable field extension.

From lemma 4.2 (2), the assertion of theorem 10.4 amounts to showing that for any étale cover Y → Xss1
Galois with group G of prime-to-p order n, there exists a finite separable field subextension K ↪→ L ↪→ Ks and
an étale cover Y L → X ×S SL Galois with group G which is a model of Y → Xss1

over X ×S SL.

Since Ks is the inductive limit of the finite extensions of K contained in Ks, by the argument of the proof
of proposition 6.7, there exists a finite separable extension K ↪→ L and an étale cover Y 0L → XL Galois with
group G which is a model of Y → Xss1

over XL. Thus, from claim 2, we are to prove:
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Claim 3: For any étale cover Y → Xs1 Galois with group G of prime-to-p order n, there exists a finite field
subextension K ↪→ L ↪→ Ks and an étale cover Y L → X ×S SL Galois with group G which is a model of
YL → XL over X ×S SL.

Proof of claim 3. Observe first that, for any finite separable subextension K ↪→ L ↪→ Ks, as SL is regular
and X ×S SL → SL is smooth then X ×S SL is regular as well (hence, in particular, normal). Also, since
X×S SL → SL is closed (since proper), surjective and with connected fibres an since SL is connected, X×S SL
is connected as well hence being noetherian and normal, it is irreducible. So, one can consider the normalization
Y L → X ×S SL of X ×S SL in

k(X ×S SL) = k(XL) ↪→ k(YL).
From the universal property of normalization, Y L → X ×S SL is a model of YL → XL over X ×S SL). From
theorem 6.16, it only remains to show that K ↪→ L can be chosen in such a way that k(XL) ↪→ k(YL) be
unramified over X ×S SL. Since X ×S SL is regular, from Zariski-Nagata purity theorem 10.1, we are only to
to show that K ↪→ L can be chosen in such a way that k(XL) ↪→ k(YL) be unramified over the codimension 1
points of X ×S SL. But as all the codimension 1 points of X are either contained in the generic fibre Xs1 or
the generic point ζ of the closed fibre Xs0 , we are only to to show that K ↪→ L can be chosen in such a way
that k(XL) ↪→ k(YL) be unramified over the points of X ×S SL lying over ζ in S ×S SL → X.

For this, let π be a uniformizing parameter of O; it is also a uniformizing parameter of OX,ζ . Set L :=
K[T ]/〈Tn − π〉. Then, k(XL) = k(X) ·L = k(X)[T ]/〈Tn − π〉 is a degree n extension of k(X), tamely ramified
over OX,ζ with inertia group of order n by Kummer theory. Now, apply lemma 10.5 below to the extensions
k(Y )/k(X) and k(XL)/k(X) to obtain that the compositum k(Y )k̇(XL) is unramified over OX×SSL,ζL for any
point ζL in X ×S SL above ζ. �

Lemma 10.5. (Abhyankar’s lemma) Let L/K and M/K be two finite Galois extensions tamely ramified over
O and assume that eM |K(O) divides eL|K(O). Then, for any maximal ideal mL of OL, the compositum L.M is
unramified over OLmL .

11. Proper schemes over algebraically closed fields

In this last section, we would like to prove the following:

Theorem 11.1. The étale fundamental group of a proper connected scheme over an algebraically closed field is
topologically finitely generated.

A striking consequence of this theorem is that a proper connected scheme over an algebraically closed field
has only finitely many isomorphism classes of étale covers of bounded degree.

Proof. We proceed by induction on the dimension d to reduce to the case of curves. However, to make the
induction step work, we need the two intermediary claims 1 and 2 below.

Claim 1: Fix an integer d ≥ 0 and assume that theorem 11.1 holds for all projective normal connected and
d-dimensional schemes over an algebraically closed field k. Then theorem 11.1 holds for all proper connected
and d-dimensional schemes over k.

Proof of claim 1. Let X be a proper connected and d-dimensional scheme over an agebraically closed field k.
The first ingredient is:

Theorem 11.2. (Chow’s lemma [EGA2, Cor. 5.6.2]) Let S be a noetherian scheme. Then, for any X → S
proper there exists X ′ → S projective and a surjective birational morphism X ′ → X over S.

Applying Chow’s lemma to the structural morphism X → spec(k), one obtains a scheme X ′ projective over k
and a surjective birational morphism X ′ → X over k, which is automatically proper since both X ′ and X are
proper over k. Then, from theorem A.5 and corollary A.7, the profinite group π1(X) is topologically finitely
generated as soon as π1(X ′0) is for each connected component X ′0 ∈ π0(X ′).
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Assume that X ′ is connected. The underlying reduced closed subscheme X ′red ↪→ X ′ is projective over k
since X ′ is. Also, as X ′red is of finite type over k, its normalization X̃ ′red → X ′red is a finite and, in particular,
X̃ ′red is projective over k as well. And, from theorem A.5 and corollary A.7, π1(X ′) is topologically finitely
generated as soon as π1(X̃ ′red0 ) is for each connected component X̃ ′red0 of X̃ ′red.

Claim 2: Let X be projective, normal connected and d-dimensonal scheme over an algebraically closed field k.
Then there exists a proper, connected and d− 1-dimensional scheme Y over k and an epimorphism of profinite
groups:

π1(Y )� π1(X).
Proof of claim 2. Let i : X ↪→ Pnk be a closed immersion and let H ↪→ Pnk be an hyperplane such that X 6⊂ H then
the corresponding hyperplane section X.H (regarded as a scheme with the induced reduced scheme structure)
has dimension ≤ d−1. The fact that Y := X.H has the required properties results from the following application
of Bertini theorem and the Stein factorization theorem:

Theorem 11.3. ( [J83, Thm. 7.1]) Let X be a proper scheme over k, let f : X → Pnk be a morphism over k
and L ↪→ Pnk a linear projective subscheme. Assume that:

(i) X is irreducible;
(ii) dim(f(X)) + dim(L) > n.

Then f−1(L) is connected and non-empty.

Since X is connected, noetherian with integral local ring, X is irreducible and one can apply theorem 11.3
to the closed immersion i : X ↪→ Pnk to obtain that X ·H is (projective) and connected over k. It remains to
prove that the morphism of profinite groups π1(X ·H)→ π1(X) induced by the closed immersion X ·H ↪→ X
is an epimorphism. But this follows again from theorem 11.3. Indeed, for any connected étale cover Y → X,
the scheme Y is again connected, noetherian with integral local ring (Y is normal since X is) hence irreducible

and, from theorem 11.3 applied to Y → X
i
↪→ Pnk , one gets that Y ×X (X ·H) is connected.

Combining claims 1 and 2, one reduce by induction on the dimension d to the case of 0 and 1-dimensional
projective normal connected schemes over k. (First apply claim 1 to show that theorem 11.1 for d-dimensional
proper connected schemes over k is equivalent to theorem 11.1 for d-dimensional projective normal connected
schemes over k, then apply claim 2 to show that theorem 11.1 for d-dimensional projective normal connected
schemes over k is implied by theorem 11.1 for d− 1-dimensional proper connected schemes over k and so on).

If d = 0 then X = spec(k) and π1(X) = Γk = {1}. So, let X be a projective, smooth, connected curve of
genus say g.

Write Q for the prime field of k. Since X is of finite type over k, there exists a subextension Q ↪→ k0 ↪→ k
of finite transcendence degree over Q and a model X0 of X over k0.

Assume first that Q has characteristic 0. Since k0 is of finite transcendence degree over Q, one can find a
field embedding k0 ↪→ C hence, from lemma 6.5, one has the following isomorphism of profinite groups:

π1(X) = π1(X0 ×k0 k) = π1(X0 ×k0 k0) = π1(X0 ×k0 C).

So, one can assume that k = C. It then follows from example 8.2 that one has an isomorphism of profinite
groups:

π1(X)→̃Γ̂g,0.
Assume now that Q has characteristic p > 0. The key ingredients here are the specialization theorem

and the following consequence of Grothendieck’s existence theorem for lifting smooth projective curves from
characteristic > 0 to characteristic 0:

Theorem 11.4. [SGA1, III, Cor. 7.3] Let S := spec(A) with A a complete local noetherian ring with residue
field k and closed point s0 ∈ S. For any smooth and projective scheme X1 over k, if:

H2(X1, (Ω1
X1|k)∨) = H2(X1,OX1) = 0

then X1 has a smooth and projective model X → S over S.
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By Grothendieck’s vanishing theorem for cohomology [Hart77, Chap. III, thm. 2.7], the hypotheses of
theorem 11.4 are always satisfied when X is a smooth projective curve. So, write A for the ring W (k) of Witt
vectors over k; it is a complete discrete valuation ring with residue field k and fraction field K of characteristic
0. Set S := spec(A) and let s0, s1 denote the generic and closed point of S respectively. From theorem 11.4,
there exists a smooth projective curve X → S such that:

X

�
��

// X

��
k s1

// S.

Since X → S is proper and smooth (hence separable), it follows from theorem 9.1 that the specialization
morphism is an epimorphism:

sp : π1(Xs1)� π1(Xs0 = X).

Hence the conclusion follows from π1(Xs1) = Γ̂g,0. �

Remark 11.5. Let S be a smooth, separated and geometrically connected curve over an algebraically closed
field k of characteristic p > 0, let g denote the genus of its smooth compactification S ↪→ Scpt and r the degree
of S r Scpt . From remark 6.8, the pro-p-completion π1(S)(p) of π1(S) is known and, from theorem 10.4 and

the proof of theorem 11.1, the prime-to-p completion π1(S)(p)′ of π1(S) is known as well (and equal to Γ̂g,r
(p)′

).
But this does not determine π1(S) entirely (except when (g, r) = (0, i), i = 0, 1, 2 or (g, r) = (1, 0)). However,
in direction of a more precise determination of π1(S) one had the following conjecture:

Conjecture 11.6. (Abhyankar’s conjecture) With the above notation, any finite group G such that G(p)′ is

quotient of π1(S)(p)′ = Γ̂g,r
(p)′

(or, equivalently, is generated by ≤ 2g + r − 1 elements) is a quotient of π1(S).

Abhyankar’s conjecture for S = A1
k was proved by M. Raynaud [R94] and the general case was proved by

D. Harbater, by reducing it to the case of the affine line [Harb94]. Note that, in the affine case, π1(S) is not
topologically finitely generated so the knowledge of its finite quotients does not determine its isomorphism class.

Appendix A. Digest of descent theory for étale fundamental groups

A.1. The formalism of descent. We recall briefly the formalism of descent. Let S be a scheme and CS a
subcategory of the category of S-schemes closed under fibre product. A fibred category over CS is a pseudofunctor
X : CS → Cat that is the data of:
- for any U ∈ CS , a category XU (sometimes called the fibre of X over U → S);
- for any morphism φ : V → U in CS , a base change functor φ? : XU → XV ;
- for any morphisms W

χ→ V
φ→ U in CS , a functor isomorphism αχ,φ : χ?φ?→̃(φ ◦ χ)? satisfying the usual

cocycle relations that is, for any morphisms X
ψ→W

χ→ V
φ→ U in CS , the following diagrams are commutative:

ψ?χ?φ?

αψ,χ(φ?)

��

ψ?(αχ,φ)// ψ?(φ ◦ χ)?

αψ,φ◦χ

��
(χ ◦ ψ)?φ?

αχ◦ψ,φ
// (φ ◦ χ ◦ ψ)?.

Given a morphism φ : U ′ → U in CS , write U ′′ := U ′ ×U U ′, U ′′′ := U ′ ×U U ′ ×U U ′, pi : U ′′ → U ′, i = 1, 2,
pi,j : U ′′′ → U ′′, 1 ≤ i < j ≤ 3, ui : U ′′′ → U ′, i = 1, 2, 3 for the canonical projections.

A morphism φ : U ′ → U in CS is said to be a morphism of descent for X if for any x, y ∈ XU and any
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morphism f ′ : φ?x→ φ?y in XU ′ such that the following diagram commute:

p?1φ
?(x)

p?1f
′

//

αp1,φ(x)

zzuuuuuuuuu
p?1y

αp1,φ(y)

""EEEEEEEE

φ
′?(x)

αp2,φ(x) $$IIIIIIIII

p?1f
′

p?2f
′

// φ
′?(y)

αp2,φ(y)||yyyyyyyy

p?2φ
?(x)

p?2f
′

// p?1y

there exists a unique morphism f : x→ y in XU such that φ?f = f ′.
A morphism φ : U ′ → U in CS is said to be a morphism of effective descent for X if φ : U ′ → U is a morphism

of descent for X and if for any x′ ∈ XU ′ and any isomorphism u : p?1(x′)→̃p?2(x′) in XU ′′ such that the following
diagram commute

p?1,3p
?
1(x′)

p?1,3u //

αp1,3,p1 (x′)

xxqqqqqqqqqq
p?1,3p

?
2(x′)

αp1,3,p2 (x′) &&MMMMMMMMMM

u?1(x′)
p?1,3u //

p?1,2u

��

u?3(x′)

p?1,2p
?
1(x′)

αp1,2,p1 (x′)

OO

p?1,2u

��

p?2,3p
?
2(x′)

αp2,3,p2 (x′)

OO

p?1,2p
?
2(x′)

αp1,2,p2 (x′) &&MMMMMMMMMM
p?2,3p

?
1(x′)

p?2,3u

OO

αp2,3,p1 (x′)

xxqqqqqqqqqq

u?2(x′) u?2(x′)

p?2,3u

FF

there is a (necessarily unique since φ : U ′ → U is a morphism of descent for X) x ∈ XU and an isomorphism
f ′ : φ?(x)→̃x′ in XU ′ such that the following diagram commute

p?1φ
?(x)

p?1f
′

//

αp1,φ(x)

zzuuuuuuuuu
p?1(x′)

u

��

φ
′?(x)

p?1f
′

44

p?2f
′

**
p?2φ

?(x)
p?2f
′

//
αp2,φ(x)

ddIIIIIIIII

p?2(x′)

The pair {x′, u : p?1(x′)→̃p?2(x′)} is called a descent datum for X relatively to φ : U ′ → U . Denoting by D(φ)
the category of descent data for X relatively to φ : U ′ → U , saying that φ : U ′ → U is a morphism of descent
for X is equivalent to saying that the canonical functor XU → D(φ) is fully faithfull and saying that φ : U ′ → U
is a morphism of effective descent for X is equivalent to saying that the canonical functor XU → D(φ) is an
equivalence of category.

Example A.1. The basic example is that any faithfully flat and quasi-compact morphism φ : U ′ → U is a
morphism of effective descent for the fibreed category of quasi-coherent modules. See for instance [V05] for a
comprehensive introduction to descent technics.
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A.2. Selected results. The fibred categories we will now focus our attention on are the categories of finite
étale covers. We only mention results that are used in these notes. For the proofs, we refer to [SGA1, Chap.
VIII and IX] .

Theorem A.2. Let X be a scheme and i : Xred ↪→ X be the underlying reduced closed subscheme. Then
the functor i? : CX → CXred is an equivalence of categories. In particular, if X is connected, it induces an
isomorphism of profinite groups:

π1(i) : π1(Xred)→̃π1(X).

Theorem A.3. Let S be a scheme and let f : S′ → S be a morphism which is either:
- finite and surjective or
- faithfully flat and quasi-compact.
Then f : S′ → S is a morphism of effective descent for the fibred category of étale, separated schemes of finite
type.

Corollary A.4. Let S be a scheme and let f : S′ → S be a morphism which is either:
- finite, radiciel and surjective or
- faithfully flat, quasi-compact and radiciel.
Then f : S′ → S induces an equivalence of categories CS → CS′ .

Theorem A.5. Let S be a scheme and let f : S′ → S be a proper and surjective morphism. Then f : S′ → S
is a morphism of effective descent for the fibre category of étale covers.

A.3. Comparison of fundamental groups for morphism of effective descent.
Assume that f : S′ → S is a morphism of effective descent for the fibre category of étale covers. Our aim is to
interpret this in terms of fundamental groups.

Consider the usual notation S′′, S′′′ and:

pi : S′′ → S′, i = 1, 2,
pi,j : S′′′ → S′′, 1 ≤ i < j ≤ 3,
ui : S′′′ → S′, = 1, 2, 3.

Assume that S, S′, S′′, S′′′ are disjoint union of connected schemes, then, with E′ := π0(S′), E′′ := π0(S′′),
E′′′ := π0(S′′′), also set:

qi = π0(pi) : E′′ → E′, i = 1, 2,
qi,j = π0(pi,j) : E′′′ → E′′, 1 ≤ i < j ≤ 3,
vi = π0(ui) : E′′′ → E′, i = 1, 2, 3.

Write C := CS , C′ := CS′ , C′′ := CS′′ , C′′′ := CS′′′ . We assume that S is connected.

Fix s′0 ∈ E′ and for each s′ ∈ E′, fix an element s′ ∈ E′′ such that

q1(s′) = s′0 and q2(s′) = s′.

Also, for any s′ ∈ E′ (resp. s′′ ∈ E′′, s′′′ ∈ E′′′) fix a geometric point s′ ∈ s′ (resp. s′′ ∈ s′′, s′′ ∈ s′′) and
write πs′ := π1(s′; s′) (resp. πs′′ := π1(s′′; s′′), πs′′′ := π1(s′′′; s′′′)) for the corresponding fundamental group.

Since for any s′′ ∈ E′′ pi(s′′) and qi(s′′) lie in the same connected component of S′, one gets étale paths
αs
′′

i : F ′′s′′ ◦ p?i = F ′pi(s′′)→̃F
′
qi(s′′)

, hence profinite group morphisms:

qs
′′

i : πs′′ → π1(qi(s′′), pi(s′′)) ' πqi(s′′), i = 1, 2.

Similarly, one gets étale paths αs
′′′

i,j : F ′′′s′′′ ◦ p?i,j = F ′′pi,j(s′′′)→̃F
′′
qi,j(s′′′)

and profinite group morphisms:

qs
′′′

i,j : πs′′′ → π1(qi,j(s′′′), pi(s′′′)) ' πqi,j(s′′′), 1 ≤ i < j ≤ 3.
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Eventually, from the étale paths

F ′′′s′′′ ◦ p?1,2 ◦ p?1→̃Fv1(s′′′)←̃F ′′′s′′′ ◦ p?1,3 ◦ p?1;
F ′′′s′′′ ◦ p?1,2 ◦ p?2→̃Fv2(s′′′)←̃F ′′′s′′′ ◦ p?2,3 ◦ p?1;
F ′′′s′′′ ◦ p?1,3 ◦ p?2→̃Fv3(s′′′)←̃F ′′′s′′′ ◦ p?2,3 ◦ p?2;

one gets as
′′′

i ∈ πvi(s′′′), i = 1, 2, 3 such that

q
q1,2(s′′′)
1 ◦ qs′′′1,2 = int(as

′′′

1 ) ◦ qq1,3(s′′′)
1 ◦ qs′′′1,3 ;

q
q1,2(s′′′)
2 ◦ qs′′′1,2 = int(as

′′′

2 ) ◦ qq2,3(s′′′)
1 ◦ qs′′′2,3 ;

q
q1,3(s′′′)
2 ◦ qs′′′1,2 = int(as

′′′

3 ) ◦ qq2,3(s′′′)
2 ◦ qs′′′2,3 ;

Since f : S′ → S is a morphism of effective descent, the above data allows us to recover C from C′, C′′, C′′′ up
to an equivalence of category hence to reconstruct π1(S, p(s′0)) from the πs′ , πs′′ , πs′′′ .

More precisely, the category C′ with descent data for f : S′ → S is equivalent to the category C({πs′}s′∈E′)
together with a collection of functor automorphisms gs′′ : Id→̃Id, s′′ ∈ E′′ satisfying the following relations:

(1) gs′′qs
′′

1 (γ′′) = qs
′′

1 (γ′′)gs′′ , s′′ ∈ E′′;
(2) gs′ = gs′0

, s′ ∈ E′;
(3) as

′′′

3 gq1,3(s′′′)a
s′′′

1 = gq2,3(s′′′)a
s′′′

2 gq1,2(s′′′), s′′′ ∈ E′′′,

So, set
Φ :=

⊔
s′∈S′

πs′
⊔

s′′∈E′′
Ẑgs′′/ < (1), (2), (3) >,

where
∐

stands for the free product in the category of profinite groups and let N be the class of all normal
subgroups N C Φ such that [Φ : N ] and [πs′ : i−1

s′ (N)] are finite (here is : πs ↪→
∐
s′∈S′ πs′

∐
s′′∈E′′ Ẑgs′′ � Φ

denotes the canonical morphism). Then writing

π := lim
←−
N∈N

Φ/N

one gets that the category C′ with descent data for f : S′ → S is also equivalent to the category C(π). Whence:

Theorem A.6. With the above assumptions and notation, one has a canonical profinite group isomorphism

π1(S, p(s′0))→̃π.

Corollary A.7. With the above assumptions and notation, if E′ and E′′ are finite and if the πs′ , s′ ∈ E′ are
topologically of finite type then so is π1(S, p(s′0)).
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stables et groupe fondamental en géométrie algébrique, Progress in Mathematics, vol. 187, Birkhauser, 2000.

[SGA1] A. Grothendieck, Revêtements étales et groupe fondamental - S.G.A.1, L.N.M. 224, Springer-Verlag, 1971.
[SGA2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux - S.G.A.2,
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cohérents, Publ. Math. I.H.E.S. 11, 1961.
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