N1MA4M11 Algèbre 3

Corrigé du DS n° 1.

1

- 1. Une relation d'équivalence est une relation réflexive, symmétrique et transitive.
 - $-\mathcal{R}$ est réflexive : en effet, pour tout $x \in G$, $x = exe^{-1}$, donc $x\mathcal{R}x$.
 - \mathcal{R} est symmétrique : supposons $x\mathcal{R}y$, alors il existe $z \in G$ tel que $y = zxz^{-1}$. Alors, $x = z^{-1}yz$ donc $y\mathcal{R}x$.
 - \mathcal{R} est transitive : supposons qu'il existe $u \in G$ tel que $y = uxu^{-1}$ et $v \in G$ tel que $z = vyv^{-1}$. Alors

$$z = vyv^{-1} = v(uxu^{-1})v^{-1} = (vu)x(vu)^{-1}$$

donc $x\mathcal{R}z$.

Donc \mathcal{R} est bien une relation d'équivalence. Par définition,

$$cl(x) = \{ y \in G : xRy \} = \{ zxz^{-1} : z \in G \}.$$

2. Comme $zez^{-1} = zz^{-1} = e$, $cl(e) = \{e\}$. Pour tout x,

$$\operatorname{cl}(x) = \{x\} \iff zxz^{-1} = x \text{ pour tout } z \in G$$

 $\iff zx = xz \text{ pour tout } z \in G$

donc

pour tout
$$x \in G$$
, $\operatorname{cl}(x) = \{x\} \iff$ pour tout $x \in G$, $z \in G$, $zx = xz \iff G$ est commutatif.

3. (a) Montrons d'abord la propriété pour $k \geq 0$, par récurrence sur k. Pour k=0, $(zxz^{-1})^0=e$ et $zx^0z^{-1}=zz^{-1}=e$ donc la propriété est vraie pour k=0. Supposons que $(zxz^{-1})^k=zx^kz^{-1}$ et calculons $(zxz^{-1})^{k+1}$:

$$(zxz^{-1})^{k+1} = (zxz^{-1})^k (zxz^{-1}) = (zx^kz^{-1})(zxz^{-1})$$
$$= zx^k (z^{-1}z)xz^{-1} = zx^k exz^{-1} = zx^{k+1}z^{-1}.$$

On a donc démontré que, pour tout $k \geq 0$, $(zxz^{-1})^k = zx^kz^{-1}$. En prenant les inverses des deux membres de cette égalité, on obtient $(zxz^{-1})^{-k} = (zx^kz^{-1})^{-1} = zx^{-k}z^{-1}$, donc la propriété est vraie pour tout $k \in \mathbb{Z}$.

(b) Supposons donc qu'il existe $z \in G$ tel que $y = zxz^{-1}$. Alors

$$y^k = e \iff (zxz^{-1})^k = e \iff zx^kz^{-1} = e \iff x^k = z^{-1}z = e.$$

On a démontré que $y^k = e$ si et seulement si $x^k = e$, donc y et x ont le même ordre.

- 4. (a) Supposons que $y = zxz^{-1}$. Alors, $f(y) = f(zxz^{-1}) = f(z)f(x)f(z)^{-1}$. Comme H est commutatif, $f(z)f(x)f(z)^{-1} = f(x)f(z)f(z)^{-1} = f(x)$. Donc, on a bien f(y) = f(x).
 - (b) D'après le théorème de factorisation des applications vu en cours, puisque l'implication $x\mathcal{R}y \Longrightarrow f(x) = f(y)$ est vérifiée, f induit une application $\tilde{f}: G/\mathcal{R} \to H$ telle que $\tilde{f}(\operatorname{cl}(x)) = f(x)$.

2

- 1. Par le calcul, on voit que $A^2 = B^2 = \text{Id donc } A \text{ et } B \text{ sont d'ordre } 2.$
- 2. Notons $G'=\langle A,R\rangle$. Comme R=BA, et que A et B appartiennent à $G,\,R\in G$. Par définition, G' est le plus petit sous-groupe contenant A et R; comme G contient A et R, $G'\subset G$.

Réciproquement, $B = RA^{-1}$ appartient à G'. Donc G' contient A et B, donc il contient le plus petit sous-groupe contenant A et B, c'est-à-dire G. Donc $G \subset G'$.

3. On remarque que

$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{pmatrix}$$

donc R est la matrice de la rotation d'angle $\pi/4$ dans la base canonique de \mathbb{R}^2 . Notons $R(\theta)$ la matrice de la rotation d'angle θ ; alors $R=R(\pi/4)$, et $R^k=R(k\pi/4)$. Comme $R(k\pi/4)=\mathrm{Id}$ si et seulement si $k\pi/4=0\mod 2\pi$ c'est-à-dire $k=0\mod 8$, R est d'ordre 8.

- 4. det(A) = -1 et det(R) = 1 donc on ne peut pas avoir $A = R^k$ sinon $det(A) = det(R)^k = 1$.
- 5. Puisque R est d'ordre 8, les matrices R^i pour $0 \le i \le 7$ sont deux à deux distinctes. De même, les matrices AR^j pour $0 \le j \le 7$ sont deux à deux distinctes car, si $AR^j = AR^k$, alors $R^j = R^k$. Enfin, si $AR^j = R^k$, alors $A = R^{k-j} \in \langle R \rangle$ ce qui est faux d'après la question précédente. Donc les 16 éléments R^i , AR^j , pour $0 \le i, j \le 7$, sont deux à deux distincts.
- 6. On a RAR = BAABA = BBA = A en utilisant $A^2 = B^2 = \text{Id}$ (question 1.), donc $RA = AR^{-1}$.
- 7. Posons $H:=\{R^i,AR^j:0\leq i,j\leq 7\}$. On a vu que |H|=16. Montrons que H est un sous-groupe de $\mathrm{GL}(2,\mathbb{R})$. Il suffit de montrer que $xy^{-1}\in H$ pour tout $x,y\in H$. Examinons les cas possibles :
 - $-x = R^{i}, y = R^{j}.$ Alors $xy^{-1} = R^{i-j} \in H.$
 - $-x = AR^i, y = R^j$. Alors $xy^{-1} = AR^{i-j} \in H$.
 - $-x=R^i, y=AR^j$. Alors $xy^{-1}=R^{i-j}A^{-1}=R^{i-j}A$. En itérant la relation $RA=AR^{-1}$, on obtient $R^kA=AR^{-k}$, donc $xy^{-1}=R^{i-j}A=AR^{j-i}\in H$.
 - $-x = AR^i$, $y = AR^j$. Alors $xy^{-1} = AR^{i-j}A = AAR^{j-i} = R^{j-i} \in H$.

Donc H un sous-groupe de G.

D'après la question 2., $G = \langle A, R \rangle$. Comme G est un groupe et qu'il contient A et R, il contient tout produit de A et R, donc tous les éléments de H. Donc $H \subset G$. Comme H est un groupe, contenant aussi A et R, et que G est le plus petit sous-groupe contenant A et R, on a l'égalité G = H.