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Context
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Synthetic aperture radar (SAR) imagery

� Ever-growing number of SAR sensors
� Need for automatic processing:

• 3D reconstruction
• Classification
• Earth monitoring

� Limitation: images are extremely noisy
(a) TanDEM-X ( c©2010 DLR)

(b) Glacier melting (c) Subsidence in Mexico (d) 3D reconstruction of an urban area
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Context
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Synthetic aperture radar (SAR) imagery
� Active sensor: emits a wave and measures its echoes
� SAR: A complex-valued image

amplitude→ roughness, . . .
� Interferometry: 2 SAR images

phase difference→ elevation, . . .
� Polarimetry: 3 SAR images

complex correlation→ geophysical properties
c©DLR

(a) Polarimetry

c©ONERA c©CNES

(b) Amplitude

c©ONERA c©CNES

(c) Phase

c©ONERA c©CNES

(d) Coherence
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Motivation
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Different manifestations of noise in imagery

(a) Mitochondrion in microscopy

c©Chandra

(b) Supernova in X-ray imagery (c) Fetus using ultrasound imagery

(d) Plane wreckage in SONAR imagery

c©ONERA c©CNES

(e) Urban area using SAR imagery

c©DLR

(f) Polarimetric SAR imagery
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Requirements for SAR image denoising methods
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

� Adapt to non-Gaussian noise distributions

(a) Gaussian noise (b) BM3D filter (a) Signal-dependent noise (b) BM3D filter

� Adapt to complex-valued multivariate data

c©DLR

� Process large images in reasonable time
� Control smoothing strength (noise reduction vs resolution loss tradeoff)
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Outline
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

1 Positioning and the limits of patch-based filtering

2 A new similarity criterion to compare noisy patches

3 Proposed methodology for non-Gaussian noise filtering

Iterative non-local filtering scheme

Automatic setting of the denoising parameters

4 Conclusion and perspectives
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State-of-the-art of denoising approaches
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Sparcifying transforms
(wavelets, dictionnaries)

Variational / Markovian
Approaches

Patch-based
methods

Sparsity and
non-locality

Non-local
Total Variation

[Geman and Geman, 1984]
[Perona and Malik, 1990]

[Rudin et al., 1992]
[Donoho and Johnstone, 1994]

[Portilla et al., 2003]

[Buades et al., 2005]
[Awate and Whitaker, 2006]

[Aharon et al., 2006]
[Dabov et al., 2007]
[Mairal et al., 2009]
[Chatterjee et al., 2011]

[Gilboa and Osher, 2007]
[Peyré et al., 2008]

BLS-GSM Anisotopic Diffusion

BM3D Non-local means

Patch-based approaches perform best (see review of [Katkovnik et al., 2010])
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Selection-based filtering
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

General idea
� Goal: estimate the image u from the noisy image v
� Choose a pixel x to denoise

• Inspect the pixels x′ around the pixel of interest x
• Select the suitable candidates x′

• Average their values and update the value of x

� Repeat for all pixel x

How to choose suitable pixels x′ to combine?
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Patch-based filtering
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Non-local approach [Buades et al., 2005]
� Local filters: select neighborhood pixels
� Non-local filters: select pixels being in a similar context

Similarity of noise−free values
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How to compare noisy patches?
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Non-local approach [Buades et al., 2005]
� Local filters: select neighborhood pixels
� Non-local filters: select pixels being in a similar context

Weighted
average

Weighted
average

Search window

Weights map
Noisy image Local approach

Weights map
Non-Local approach

How to compare noisy patches?
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Patch comparison
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Patch-similarity from the Euclidean distance
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

How to compare noisy patches?
� Assume noise is additive and Gaussian such that:

︸ ︷︷ ︸
v1

= ︸ ︷︷ ︸
u1

+ ︸ ︷︷ ︸
n1

and ︸ ︷︷ ︸
v2

= ︸ ︷︷ ︸
u2

+ ︸ ︷︷ ︸
n2

� [Buades et al., 2005] suggest using the Euclidean distance:

when u1 = u2 :

(
−

)2

= is low⇒ decide “similar”

when u1 6= u2 :

(
−

)2

= is high⇒ decide “dissimilar”

What about non-Gaussian noise?
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Limits of the Euclidean distance
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Beyond the Gaussian noise assumption
� Noise can be non-additive and/or non-Gaussian, e.g., for Poisson noise:

︸ ︷︷ ︸
v1

= ︸ ︷︷ ︸
u1

+ ︸ ︷︷ ︸
n1

and ︸ ︷︷ ︸
v2

= ︸ ︷︷ ︸
u2

+ ︸ ︷︷ ︸
n2

� The Euclidean distance is no longer discriminant:

when u1 = u2 :

(
−

)2

=

when u1 6= u2 :

(
−

)2

=

Consequence?

PhD defense C.-A. DELEDALLE page 10/40



Limits of the Euclidean distance
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Beyond the Gaussian noise assumption
� Noise can be non-additive and/or non-Gaussian, e.g., for Poisson noise:

︸ ︷︷ ︸
v1

= ︸ ︷︷ ︸
u1

+ ︸ ︷︷ ︸
n1

and ︸ ︷︷ ︸
v2

= ︸ ︷︷ ︸
u2

+ ︸ ︷︷ ︸
n2

� The Euclidean distance is no longer discriminant:

when u1 = u2 :

(
−

)2

=

when u1 6= u2 :

(
−

)2

=

Consequence?

PhD defense C.-A. DELEDALLE page 10/40



Limits of the Euclidean distance
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Beyond the Gaussian noise assumption – Illustration
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︸ ︷︷ ︸
Gaussian noise

︸ ︷︷ ︸
Poisson noise

When comparing noisy patches, one should take into account the noise distribution.
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Some issues
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Signal adaptation
� Tuning of global parameters (e.g., smoothing strength)

[Doré and Cheriet, 2009, Van De Ville and Kocher, 2009, Duval et al., 2011]

� Local adaptation (e.g., size and shape of patches)

[Kervrann and Boulanger, 2006, Dabov et al., 2009]

Noise adaptation
� Use of pre-filtered data

[Polzehl and Spokoiny, 2006, Brox et al., 2008, Azzabou et al., 2007, Dabov et al., 2007, Tasdizen, 2008, Goossens et al., 2008,

Van De Ville and Kocher, 2011, Louchet and Moisan, 2011]

� Patch comparison

[Polzehl and Spokoiny, 2006, Vasile et al., 2006, Alter et al., 2006, Matsushita and Lin, 2007, Teuber and Lang, 2011]

� Estimator

[Polzehl and Spokoiny, 2006, He and Greenshields, 2009]

Improvements
� Acceleration

[Mahmoudi and Sapiro, 2005, Coupe et al., 2006, Wang et al., 2006, Bilcu and Vehvilainen, 2007, Darbon et al., 2008, Pang et al., 2009]

� Filtering in patch space

[Buades et al., 2005, Aharon et al., 2006, Dabov et al., 2007, Mairal et al., 2009, Salmon and Strozecki, 2010]
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Outline
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives
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Motivation
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

(a) Microscopy (b) Astronomy (c) SAR polarimetry

︸ ︷︷ ︸
?

︸ ︷︷ ︸
?

︸ ︷︷ ︸
?

How to take into account the noise model?
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Similarity through variance stabilization
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Variance stabilization approach
� Use an application s which stabilizes the variance for a specific noise model
� Evaluate the Euclidean distance between the transformed patches:(

s

( )
− s

( ))2

=

(
−

)2

,

Example
� Gamma noise (multiplicative) and the homomorphic approach:

s(V ) = log V

� Poisson noise and the Anscombe transform:

s(V ) = 2

√
V +

3

8
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Similarity with variance stabilization
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Limits
� Only heuristic
� No optimality results
� Does not take into account the statistics of the transformed data
� Does not apply to all noise distributions

• e.g., multi-modal distributions like interferometric phase distribution

(a) Image with impulse noise (b) SAR interferometric phase
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Similarity in a detection framework
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Similarity in the light of detection theory
� Similarity can be defined as an hypothesis test (i.e., a parameter test):

H0 : u1 = u2 ≡ u12 (null hypothesis)

H1 : u1 6= u2 (alternative hypothesis)

� Its performance can be measured as:

PFA = P(decide “dissimilar” | u12,H0) (false-alarm rate)

PD = P(decide “dissimilar” | u1,u2,H1) (detection rate)

� The likelihood ratio (LR) test minimizes PD for any PFA:

L(v1,v2) =
p(v1,v2 | u12,H0)

p(v1,v2 | u1,u2,H1)
← given by the noise distribution model

→ Problem: u12, u1 and u2 are unknown
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Similarity in a detection framework
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Generalized likelihood ratio (GLR)
� Replace u12, u1 and u2 with maximum likelihood estimates (MLE)
� Define the (negative log) generalized likelihood ratio test:

− logGLR(v1,v2) = − log
supt p(v1,v2 | u12 = t,H0)

supt1,t2
p(v1,v2 | u1 = t1,u2 = t2,H1)

= − log
p(v1 | u1 = t̂12) p(v2 | u2 = t̂12)

p(v1 | u1 = t̂1) p(v2 | u2 = t̂2)

Maximal self similarity
� Assume v1 6= v2, then:

− log

p

(
v1 =

∣∣∣∣∣ u1 =

)
p

(
v2 =

∣∣∣∣∣ u2 =

)

p

(
v1 =

∣∣∣∣∣ u1 =

)
p

(
v2 =

∣∣∣∣∣ u2 =

) > 0
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− log

p

(
v1 =

∣∣∣∣∣ u1 =

)
p

(
v2 =

∣∣∣∣∣ u2 =

)

p

(
v1 =

∣∣∣∣∣ u1 =

)
p

(
v2 =

∣∣∣∣∣ u2 =

) = 0
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Similarity in a detection framework
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

� Other similarity criteria have been proposed:

Bayesian joint likelihood
∫
p(v1 | u1 =t) p(v2 | u2 =t)

p(u12 =t)

dt
[Deledalle et al., 2009b]

[Yianilos, 1995, Matsushita and Lin, 2007]

Maximum joint likelihood sup
t
p(v1 | u1 =t) p(v2 | u2 =t)

[Alter et al., 2006]

Bayesian likelihood ratio
∫
p(v1 | u1 =t) p(v2 | u2 =t) p(u12 =t) dt∫

p(v1 | u1 =t) p(u1 =t) dt
∫
p(v2 | u2 =t) p(u2 =t) dt

[Minka, 1998, Minka, 2000]

Mutual information kernel
∫
p(v1 | u1 =t) p(v2 | u2 =t) p(u12 =t) dt√∫

p(v1 | u1 =t)2 p(u1 =t) dt
∫
p(v2 | u2 =t)2 p(u2 =t) dt

[Seeger, 2002]

GLR
supt p(v1 | u1 =t) p(v2 | u2 =t)

supt p(v1 | u1 =t) supt p(v2 | u2 =t)
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Similarity in a detection framework
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Is GLR more discriminant?

Euclidean distance
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Evaluation of similarity criteria – Detection performance
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives
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Evaluation of similarity criteria – Glacier monitoring
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

(a) Noisy image (b) Euclidean distance (c) Generalized lik. ratio

Figure: Glacier of Argentière. With GLR, the estimated speeds matches with the ground truth: average over
the surface of 12.27 cm/day and a maximum of 41.12 cm/day in the areas with crevasses.
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Comparison of noisy patches beyond Gaussian noise
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Conclusion
� Similarity between noisy patches expressed as an hypothesis test
� Among 7 similarity criteria, GLR provides the best performance
� Apply even when variance stabilization is not possible
� Easy to derive as long as the MLE is known in closed form
� Offers good theoretical properties (cf. manuscript):

Max. self sim. Eq. self sim. Id. of indiscernible Invariance Asym. CFAR Asym. UMPI

Euclidean kernel
√ √ √

× × ×

Stabilization transform ×

Bayesian joint lik. × × × × × ×

Maximum joint lik. × × × × × ×

Bayesian lik. ratio × × ×
√

× ×

Mutual info. kernel
√ √ √ √

× ×

GLR
√ √ √ √ √ √

[Deledalle et al., 2011] Deledalle, C., Tupin, F., Denis, L. (2011).
Patch similarity under non Gaussian noise.
IEEE ICIP, September 2011
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Outline
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

1 Positioning and the limits of patch-based filtering

2 A new similarity criterion to compare noisy patches

3 Proposed methodology for non-Gaussian noise filtering

Iterative non-local filtering scheme

Automatic setting of the denoising parameters

4 Conclusion and perspectives
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Weight refinement in non-local filtering
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Patch comparison: how to replace the squared differences?
� Weights have to select pixels with close true values
� Compare patches⇔ test the hypotheses that noise-free patches have:

H0 : same true values ,
H1 : independent true values .
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Patch comparison: how to replace the squared differences?
� Weights have to select pixels with close true values
� Compare patches⇔ test the hypotheses that noise-free patches have:

H0 : same true values ,
H1 : independent true values .

1. Similarity between noisy patches
� Based on our comparison of several similarity criteria, we propose to evaluate the

generalized likelihood ratio (GLR)

→ For speckle noise:

− logGLR(v1, v2) = 2 log

(
v1

v2
+
v1

v2

)
− 2 log 2

→ For Poisson noise:

− logGLR(v1, v2) = v1 log v1 + v2 log v2 − (v1 + v2) log

(
v1 + v2

2

)
.
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Patch comparison: how to replace the squared differences?
� Weights have to select pixels with close true values
� Compare patches⇔ test the hypotheses that noise-free patches have:

H0 : same true values ,
H1 : independent true values .

2. Similarity between pre-filtered patches
� We propose to refine weights by using the similarity between pre-filtered patches.

Idea motivated by [Polzehl et al., 2006, Brox et al., 2007, Goossens et al., 2008, Louchet et al., 2008]

� A statistical test for the hypothesis H0: the symmetrical Kullback-Leibler divergence

→ For speckle noise:

DKL(û1‖û2) =
û1

û2
+
û2

û1
− 2

→ For Poisson noise:

DKL(û1‖û2) = (û1 − û2) log
û1

û2
.
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Weights refinement in non-local filtering
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives
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Weights refinement in non-local filtering
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Noisy + Pre-filtered

Symmetrical
Kullback-Leibler

divergence

Generalized
likelihood ratio

Noisy image

Pre-filtered image

Statistical tests

Weights with noisy data

Better performances

Let us illustrate the generality of the method

[Deledalle et al., 2009] Deledalle, C., Denis, L., and Tupin, F. (2009).
Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.
IEEE Transactions on Image Processing, 18(12):2661–2672.
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Illustration of the adaptivity of the proposed method
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives
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(a) Gaussien +0.87 dB (b) Poisson +1.13 dB (c) Speckle +4.00 dB (d) Impuls. +3.82 dB
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Application to multi-variate complex SAR images
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Multi-variate complex SAR [Goodman, 1963]
� Parameter of interest: Σ(x) an K ×K complex covariance matrix
� Observations: C(x) an K ×K empirical covariance matrix s.t.:

p(C|Σ, L) =
LLK |C|L−K

ΓK(L)|Σ|L
exp

(
−L tr(Σ−1C)

)
(Wishart distribution)

� To denoise: to search for an estimate Σ̂(x) of Σ(x)

Comparison of patches
� Similarity between noisy patches:

− logGLR(C1,C2) = 2L log

(
|C1 + C2|√
|C1||C2|

)
− 2LK log 2

� Similarity between noise-free patches:

DKL(Σ̂1‖Σ̂2) = Ltr
(
Σ̂1
−1Σ̂2 + Σ̂2

−1Σ̂1

)
− 2LK.
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Experiments and results – Interferometric SAR data
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives
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[Deledalle et al., 2011a] Deledalle, C., Denis, L., and Tupin, F. (2011a).
NL-InSAR : Non-Local Interferogram Estimation.
IEEE Transactions on Geoscience and Remote Sensing, 49(4):1441–1452.
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[Deledalle et al., 2011a] Deledalle, C., Denis, L., and Tupin, F. (2011a).
NL-InSAR : Non-Local Interferogram Estimation.
IEEE Transactions on Geoscience and Remote Sensing, 49(4):1441–1452.
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[Deledalle et al., 2011a] Deledalle, C., Denis, L., and Tupin, F. (2011a).
NL-InSAR : Non-Local Interferogram Estimation.
IEEE Transactions on Geoscience and Remote Sensing, 49(4):1441–1452.

PhD defense C.-A. DELEDALLE page 29/40



Experiments and results – Interferometric SAR data
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

N
oi

sy
ch

an
ne

ls

c©ONERA c©CNES

B
ox

ca
rfi

lte
r[
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Experiments and results – Polarimetric SAR data
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

c©DLR

(a) High-resolution S-band SAR image (b) Our estimation

[Deledalle et al., 2010b] Deledalle, C., Tupin, F., and Denis, L. (2010b).
Polarimetric SAR estimation based on non-local means.
In the proceedings of IGARSS, Honolulu, Hawaii, USA, July 2010.
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Conclusion about iterative filtering
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

A general methodology that can
� Adapt to signal-dependent noise

√

� Adapt to complex-valued multivariate data
√

� Process huge images in reasonable time
√

File size Image size 2 cores (3 GHz) 16 cores (2.27 GHz)
SAR 2.1 Mb 512× 512 34 sec -
InSAR 8.1 Mb 512× 512 37 sec 27 sec
PolSAR 1.2 Gb 4096× 4096 1h50 13.5 min

� Control smoothing strength (noise reduction vs resolution loss tradeoff)
√

Search window size 11× 11 to 21× 21 image resolution
Patch size 3× 3 to 9× 9 object sizes
Number of iterations 1 to 4 level of noise
Fidelity to the estimation λ ∈ [0, 1] quality of the estimation
Filtering rate around 95% amount of filtering

Can we automatically tune the last two filtering parameters?
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1 Positioning and the limits of patch-based filtering
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3 Proposed methodology for non-Gaussian noise filtering

Iterative non-local filtering scheme

Automatic setting of the denoising parameters
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What about the denoising parameters?
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Symmetrical
Kullback-Leibler

divergence

Generalized
likelihood ratio

Noisy image

Pre-filtered image

Statistical tests

Noisy + Pre-filtered

Weights with noisy data

What is the influence of the denoising parameters?
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How to choose the parameters?
(trade-off noisy/pre-filtered)

Visually?

Mean squared error (MSE)?

How to estimate the MSE?
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Automatic setting of the denoising parameters
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Noisy imageParameters

Filter

MSE
Estimation

Optimizer

MSE estimators: unbiased risk estimators
Estimator Gaussian Poisson

General SURE PURE
[Stein, 1973] [Chen, 1975]

Wavelet SUREshrink
[Donoho et al., 1995]

SURE-LET PURE-LET
[Blu et al., 2007] [Luisier et al., 2010]

NL means SURE based NL means Poisson NL means
[Van De Ville et al., 2009] [Deledalle et al., 2010c]

Local-SURE NL means
[Duval et al., 2010]

SURE: Stein’s Unbiased Risk Estimator
PURE: Poisson Unbiased Risk Estimator

[Deledalle et al., 2010a] Deledalle, C., Tupin, F., and Denis, L. (2010a).
Poisson NL means: Unsupervised non local means for Poisson noise.
In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 801–804. IEEE.
Best student paper award
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Experiments and results – Poisson noise
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

c©Chandra

(a) Noisy image (b) NL means

Conclusion about the unsupervised setting
� Find the best denoising level using similarities of noisy and pre-filtered patches
� Automatically choose to:

• Trust the noisy image or favor the pre-estimate
• Control smoothing strength w.r.t. the content

� Optimal parameters found in about 10 iterations
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Conclusion and perspectives
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Main contributions
� A general methodology of patch-based denoising for:

• non-Gaussian noise (e.g. Poisson noise)
• complex-valued multivariate data (e.g. Wishart distributions)

� A new similarity criterion for noisy data:
• asymptotically optimal
• simple expression / easy to implement

� A powerful iterative filtering based on both:
• Similarity between noisy patches
• Similarity between noise-free patches

� An unsupervised setting of parameters for Poisson noise:
• Derivation of PURE for NL means
• Closed-form expression for Newton’s method

� A state-of-the-art approach for (multi-variate) SAR imagery:
• Collaboration with DLR (Andreas Reigber and Marc Jäger)
• Validated on new high-resolution F-SAR data
• Open source software: NL-SAR (CeCILL license)
• On the way to be integrated into DLR’s processing pipeline
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Other contributions and collaborations
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Other contributions in SAR imagery
� Multi-temporal SAR analysis with Sofiène Hachicha (URISA, SUPCOM)
� Polarimetric SAR classification with Fang Cao (Telecom ParisTech)
� Study of Titan images with Antoine Lucas and the Cassini radar team (Caltech)

(c) SAR image of Titan (d) Our estimation
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Other contributions and collaborations
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

About signal adaptation
� Local adaptation of patch shapes and sizes

with Vincent Duval (Telecom ParisTech) and Joseph Salmon (Duke University)
� Learning of local patch dictionary with Arnak Dalalyan (Univ. Paris Est) and Joseph Salmon

(e) Noisy image (a) Patch sizes (b) Patch orientations
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About signal adaptation
� Local adaptation of patch shapes and sizes

with Vincent Duval (Telecom ParisTech) and Joseph Salmon (Duke University)
� Learning of local patch dictionary with Arnak Dalalyan (Univ. Paris Est) and Joseph Salmon

(a) Quadtree decomposition (b) 16 first axes in part 1 (c) 16 first axes in part 2
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Perspectives
Positioning and the limits of patch-based filtering A new similarity criterion to compare noisy patches Proposed methodology for non-Gaussian noise filtering Conclusion and perspectives

Future work – about the filtering of SAR data
� Learning of patch dictionary for non-Gaussian noise?

c©ONERA c©CNES

(a) Noisy image (b) Dictionary (c) Filtered image

� Extend BM3D-like approach to complex multi-variate images
� Regularize the result (e.g., for the phase in non-coherent areas)

Future work – about patch comparison
� For high SNR images, going beyond similarity detection
� Consider other choice for KL, e.g., the Bhattacharyya distance?
� Design contrast invariant criteria using GLR
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