
International Mathematics Research Notices 1991, No. 7

ABC IMPLIES MORDELLx

NOAM D. ELKIES

Introduction: the ABC and Mordeil conjectures. The ABC conjecture over Q (see
[Oe], [La], and [Vol, p. 71]) asserts that, for any relatively prime nonzero A, B,
C Z such that A + B + C 0,

N(A, B, C) >> H(A, B, C)1-e (1)

Here, the conductor2 N(A, B, C) and the [naive exponential] height H(A, B, C) are
defined by

N(A, B, C)= I-I p, H(A, B, C)= max(IAI, IBI, ICI) (2)
plABC

(the product being taken without multiplicity), and (1) is to hold for all positive e,
with the constant implied in >> depending on e but not on A, B, C.
We can remove the condition that A, B, C Q* be coprime integers by redefining

the height and conductor:

H(A, B, C)= I-I max(llAllo, IIBIIo, IlCllo), (3)

v ranging over all normalized valuations of Q and

N(A, B, C) I-I p, where
psi

I-- {V prime: max(llall, Ilnll, IICIl) > min(llAIl,, Ilnll, IICIl)}. (4)

Note that (3, 4) are finite products whose values are unchanged if A, B, C are
replaced by 2A, 2B, 2C for any 2 Q*, and that they agree with (2) when A, B, C
are coprime integers; so the ABC conjecture over Q is equivalent to the inequality
(1) for any nonzero rational numbers A, B, C such that A + B + C 0 with these
new definitions (3, 4) of H and N.

Received 30 October 1991.
Communicated by Barry Mazur.
Don Zagier notes the amusing equivalent formulation: "Mordell is as easy as ABC!"

2So called because, up to a bounded power-of-2 factor, it is the conductor of the elliptic curve
yZ x(x A)(x + B) associated to (A, B, C) by Frey [Fr].
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100 NOAM D. ELKIES

We can now state the ABC conjecture over an arbitrary number field K (see [Vo1,
p. 84]): for each e > 0 the inequality (1) holds for all nonzero A, B, C K such
that A + B + C 0 with the constant implied in >> now depending on K as well
as e, but not on A, B, C; here, H(A, B, C) is defined again by (3), and N(A, B, C)
is the product of the absolute norms of all the finite primes of K at which
max(llAl[, IlBll, IICll)strictly exceeds min(llAll, IIBI], IlCll).

Since H(A, B, C) and N(A, B, C) are scaling invariant, they both depend only
on the ratio (-A/B)= r, say, with r K- {0, 1}. 3 Indeed, H(A, B, C) is just
r], max(l, IIrll) times a factor bounded between 1 and 2’’ +" (where r and r2 are
the numbers of real and complex embeddings of K), i.e., the naive height of r times
exp 0(1); and N(A, B, C) is the product of the absolute norms of all the finite primes
of K at which r, l/r, or r 1 has a positive valuation. Thus, the ABC conjecture
over K asserts that this product is at least as large as the (1 ) power of the naive
height of r, for all but finitely many r s K {0, 1 }. We abuse notation slightly by
writing H(r) for the naive height 1--Iv max(l, Ilrll) and abbreviating N(r, 1, 1, -r)
by N(r); we also factor N(r) as the product of No(r), N1 (r), and N(r), these being
the products of the absolute norms of the prime ideals containing r, r- 1, 1/r
respectively.

[In the analogous case of a function field K k(X), r is a rational function on
some fixed curve X of genus g over the field k, and h(r) log H(r) is just the degree
of r. Also, n(r) log N(r) becomes the number of distinct points (over the closure
of the ground field, and counted without multiplicity) at which r attains one of the
values 0, 1, . In this case it has been shown that the corresponding conjecture
n(r) > (1 e)h(r) + C is true provided that the differential dr is not identically zero
on X, i.e., provided the covering r: X Pl is separable. Indeed, in that case the
more precise bound n(r) > h(r) + 2- 29 can be obtained by bounding the total
degree of the divisor of dr, which is known to be 2 2g; see [Mal].’ The condition
dr 0 is essential when k has positive characteristic p: for any r, h(rv) ph(r) and
n(rv) n(r), so that n(rp) o(h(rV)) as for any fixed r of positive degree; of
course, d(rv’) 0 once a > 1. These results constitute the strongest evidence to date
for the ABC eonjecture.]

Mordell’s conjecture (see [Se]) asserts that any curve of genus at least 2 over a
number field K has only finitely many K-rational points. Several different proofs
have recently been given for this conjecture [Fal, Fa2, Vo2, Bo], but they are all
"ineffective", in that they do not give an upper bound on the size ("height") of these
points, nor do they give any other procedure for provably finding all K-rational
points on such a curve.

In this note we show that the truth of the ABC conjecture in any number field K
implies Mordell’s conjecture for any curve C over K. At present, this is of little use:
Mordell’s conjecture is now proved, and in several different ways, while we do not

More symmetrically, e Pl(K) {0, 1, here and later.
’ This idea was first borrowed from the value-distribution theory of analytic functions at least as early

as 1956 in the last problem of that year’s W. L. Putnam exam; see [GGK, pp. 47 and 431].

 at U
niversit? B

ordeaux . B
iblioth?que M

athem
atiques et Inform

atique on January 13, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


ABC IMPLIES MORDELL 101

yet know how to prove ABC, even with K Q and the exponent 1- e of (1)
replaced by the weaker x e for some x > 0. But the result is still interesting because
the implication is considerably easier than any of the known proofs of Mordell’s
conjecture, and more importantly because our proof shows that an effective version
of the ABC conjecture would imply Mordell’s conjecture with an effective height
bound, which is at present still out of reach.
We also show that our argument can easily be modified to obtain finiteness results

on integral points assuming the ABC conjecture (though this is somewhat less
interesting because effective methods are already available [Ba, BC-I) and indicate
how our construction behaves in the case of an elliptic curve or a rational curve
punctured at two points. Curiously, all these ideas apply to curves over number
fields but not to curves over function fields, because we make essential use of Belyi’s
theorem on unramified covers of the thrice-punctured projective line.

Motivation and proof. Our proof generalizes the known implication "effective
ABC eventual Fermat" which was the original motivation for the ABC conjecture
(see JOe, p. 4], [La, pp. 42-43]); we begin by reviewing the proof of that implication
and rephrasing it to suit our purposes. Thus, if n > 3 and x, y, z are nonzero integers
such that xn+ yn+ z 0, we may eliminate common factors to make x, y, z
relatively prime and may take

(A, B, C) (x", y", z") (5)

in (1); then

N(A, B, C) < Ixyzl < H(A, B, C)3/", (6)

contradicting (1) with any e < 1 (3/n) once H(A, B, C) is large enough.
Now of course this (x’y’z) is a rational point on the nth Fermat curve F’,

and H(A, B, C)isjust n times its naive height relative to its standard degree-n embed-
ding in the projective plane. In the formalism of I-Vol], the ABC conjecture is
regarded as a bound on the "ramification" ofthe rational number r (- A/B) above
0, 1, and ; and the basic observation here is that r is the value at (x’y’z) of
the rational functionf -(x/y)" on F. and that the bound (6) on N(A, B, C) reflects
the ramification of this function f above 0, 1, . Indeed, f has degree n2, but it
attains each of these three values at only n distinct points of F’(Q); so each of A, C, B
contributes only O(H(A, B, C)"/") to N(A, B, C), whence the inequality (6). As it
happens, 0, 1, are the only ramified values of f (as may be checked by direct
computation or from the Riemann-Hurwitz formula), but all we use here is that the
cardinality off-({0, 1, }) is less than the degree of f. So we can expect that the
argument will generalize to any curve C over an arbitrary number fild K, provided
we can find a rational function f K(C) such that

# {P e C(Q)" f(P) e {0, 1, } } < deg(f). (7)
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102 NOAM D. ELKIES

If the curve C has genus 0 or 1, then the existence of such f K(C) is ruled out by
the Riemann-Hurwitz formula (i.e., by Mason’s proof [Mal-I of the ABC conjecture
for function fields) because the left-hand side of (7) is

3 deg(f)-

_
by(P), (8)

P C(()
f(P) {0, 1,o)

by(P) being the branch number (multiplicity minus 1) off at P, and the sum in (8)
is bounded above by the total branch number 2 deg(f) ;t(C) < 2 deg(f) off. (This
is as it should be, because a curve of genus < 1 can have points ofunbounded height
over a number field!) But once C has genus g > 2 we can find f satisfying (7): Belyi’s
theorem ([Be], i-Se, pp. 70-73]) provides a rational function f K(C) ramified
only above 0, 1, ; for this f, the sum in (8) accounts for all of the ramification of
f and thus by Riemann-Hurwitz equals 2 deg(f) + 2g 2, whence the left-hand
side of (7) is deg(f) + 2 2g < deg(f) as required. For future reference note that
Belyi actually shows that for any finite subset S of px(Q) there exists a rational
function b (pl) ramified only above 0, 1, such that b-l({0, 1, })

_
S (from

which f is constructed by letting S contain the ramified points of an arbitrary
nonconstant rational function on C and composing that function with b); also
note that the proof of Belyi’s theorem gives an effective procedure for obtaining b
and f.

So fix f K(C) satisfying (7) and let d deg(f) and

m # {P C(Q): f(P) {0, 1, }} < a. (9)

(We have seen that for Belyi’sfwe get m d + 2 2g, but we need only the inequal-
ity m < d.) For any K-rational point P C(K) not in the finite set f-x({0, 1, }),
we shall show that He H(f(P)) and Ne N(f(P)) satisfy

m
log Np < log Hp + O(w/log Hi, + 1) (10)

with the implied O-constant effective and depending on K, C, f but not on P; so
f(P) gives a counterexample to the ABC conjecture over K for e > 1 (m/d) once
Hp is large enough, i.e., for all but finitely many P. In fact, we shall show the following
proposition.

PROPOSITION. Let C be any curve over K and f K(C) be a rational function of
degree d. Then for any K-rational point P C(K) f-x(O) we have

logNo(f(P))<(1-bf)logHp+O(v/lOgHp+ 1) (11)

with the implied constant effective and depending on K, C, f but not on P.
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ABC IMPLIES MORDELL 103

Given this estimate, we can replacefbyf 1 and 1/f to obtain also (since H(r)
n(1/r) n(r 1) + O(1) for all r K*)

log N(f(P)) < (1 bf))log He+ O(x//log H, + 1);

(12)

adding these to (11), we shall then recover the inequality (10) since

#(f-x(0)) #(f-l(1)) #(f-l()) m
d + d + d =-d" (13)

Proof of the proposition. Note that when C is of genus zero, the proposition is
elementary. For then we may identify the point P with a nonzero z K w { }, and
f(P) is a rational function of z of degree d. Then

log H, log H(f(z)) d log H(z) + O(1). (14)

Write f in homogeneous coordinates as a quotient F(X, Y)/G(X, Y) of homoge-
neous polynomials of degree d and factor F over K:

F(X, Y)= w 1-I Fk(X, y)m, (15)
k

where w K* and the Fk are irreducible polynomials of degrees (say) dk; so d

2k mkdk and by(O) d k dk" We can write z x/y with x, y algebraic integers of
K of height O(H(x)). But then

log No(f(P)) log No(F(x, y)) + O(1)

log H(Fk(X, y)) + 0(1) < dk log H(z) + 0(1), (16)
k

which together with (14) yields (11), and with the error term reduced to O(1) to boot.
For arbitrary C and f we generally no longer have a factorization (15), so that

we use instead the theory of heights on algebraic curves (see, for instance, [Se,
Ch. 2, 3]); the facts we need are the decomposition of the height as a sum of local
terms and upper bounds on the height relative to a divisor of degree zero. For any
divisor or divisor class c on C let he(’) be a (logarithmic) height function relative to c,
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104 NOAM D. ELKIES

which is well defined up to O(1). Let D be the zero divisor off and write

D mkDk (17)
k

where Dk are distinct irreducible divisors of degrees (say) dk occurring with multi-
plicities mk in D. Thus again

d mkdk and by(O) d dk deg D’ (18)
k k

where D’ is the divisor m’-o (P), i.e., Do with all multiplicities removed. We then
have

log He ho(P) + O(1) mkho,,(P) + O(1).
k

(19)

Except for finitely many primes of K (the primes of bad reduction of C and the
primes of good reduction at which f reduces to the identically zero function), a
prime occurs in No(f(P)) if and only if it contributes to hok(P) for some k. Since the
contribution of any prime, finite or infinite, to the height relative to a given effective
divisor is bounded below, we thus obtain

log No(f(P)) < hok(P) + O(1)= ho,(P) + O(1)
k

(20)

with < accounting for finite primes at which P and D’ may meet nontransversally
and infinite places at which P may come close to the support of D’. So it remains
to prove that

ho,(p)
deg D’
deg D + O(x//lg H, + O(1)) (21)

or equivalently that

ha(P O(x/log H + 1) (22)

where A is the degree-zero divisor

A (deg D)D’ (deg D’)D d(D D’) bf(O)D. (23)

But that is known for any degree-zero divisor A by a theorem ofN6ron [Se, p. 45];
so the proof of the proposition and thus also of (10) is complete.

Remarks on error terms. The proof of estimate (22) uses the Cauchy-Schwarz
inequality and requires the use of canonical ("normalized" in I-Se, Ch. 3]) heights.
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ABC IMPLIES MORDELL 105

For our purposes it suffices to have

ha(P) < e log He + 0(1) (24)

for all positive e, provided the O is effective, and this can be done without invoking
canonical heights [Se, p. 26]. When C has genus 0, any A of degree 0 is linearly
equivalent to zero; so we again recover the improved estimate ha(P) O(1). (That
all degree-zero divisors are principal is of course equivalent to the existence of the
factorization (15) for all F; so the two arguments in the genus-zero curve are
essentially the same.) The v/log H, part of the error term can be dropped in one
additional case: if C is of genus 1 and f K(C) is ramified only above 0, 1, o (so
b(O) + b(1) + b()= 2 deg(f)), then

log N, < log H, + O(1), i.e., N, << He. (25)

To prove this, note that for any Belyi function f on a curve C, the divisor obtained
by summing the points off-l({0, 1, }) without multiplicity is linearly equivalent
to D o9, where o9 is the canonical divisor on C--indeed, it is equal to D[ =(f)0]
minus the divisor of the differential form df/(f 1). In the case of an elliptic curve
the canonical divisor 09 vanishes; thus, the sum of the A’s occurring in (22) is a
principal divisor, the ha(P)’s therefore sum to O(1), and (25) follows.
We can also adapt these ideas to show that the ABC conjecture implies an

effective form of Siegel’s theorem ([Si], [Se, Ch. 7]) on the finiteness of integral (or
S-integral) points. Indeed, the proof of Belyi’s theorem allows us to include the
points at infinity among the ramified points of f; then if P is integral, the contribu-
tion of any Dk at infinity towards log No(f(P)) is bounded, so that we can improve
(20) to log No(f(P))< hD,,(P)+ O(1), where D" is the divisor O’ with points at
infinity removed, and likewise for the estimates on N1 and Noo. We thus obtain (10)
with rn replaced by rn moo, where moo is the number of distinct K-points at infinity,
and since we can take rn d + 2 2g, this contradicts the ABC conjecture if H, is
sufficiently large, provided moo > 2 2g. One can also relax the condition of inte-
grality to obtain some further results (assuming ABC) on Diophantine approxima-
tion; for instance, one can readily adapt our method to show that the ABC conjec-
ture over a number field K implies Vojta’s conjectured K-analogue of the Second
Main Theorem of Nevanlinna theory: for any polynomial P K(x) without re-
peated roots

No(P(r)) >> H(r)deg(/’)-z-e (26)

for all r K, with the implied constant depending on K, P, e, but not r.
Finally, we note that in [Mol, 7] it is shown that if one could prove, for the single

hyperelliptic curve C: y2 + y x5, a strong form of Mordell’s conjecture (called
"Mordell Effectif" there and elsewhere) with bounds for all number fields K on the
height of a K-rational point on C, then ABC conjecture (1) would follow, albeit with
an exponent worse than 1 e. In the preface to the Ast6risque volume containing
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106 NOAM D. ELKIES

this article, it is announced that the same result has been shown with C replaced by
an arbitrary curve of genus > 2. Now the proof in [Mo1] uses a putative counter-
example r K to the weakened ABC conjecture to construct a point (x, y) C(K’)
(for some extension K’ of K of bounded degree) with -4x5 r; a contradiction is
then obtained by estimating the height of (x, y) and the discriminant of K’. But
-4x5 is a degree-10 Belyi function on C, and so the argument of [Moll resembles
the argument of the present paper in reverse, using the Belyi function to get from
an ABC counterexample to a point on the curve rather than the other way around.
Indeed, L. Moret-Bailly confirms [Mo2] that the proof, due to him and L. Szpiro,
that C may be replaced by any curve of genus > 2 uses Belyi functions in the same
manner.

(Added in proof. See [Sz2].)

ABC "near-misses" parametrized by elliptic curves and Fermat-Pell equations.
Suppose we perform our construction with an elliptic curve C of positive K-rank.
Then from (25) we obtain an infinite family of r K such that N(r) << H(r), i.e., such
that N(r) is almost as small as it is allowed to be by the ABC conjecture. Indeed,
we can find subfamilies in which N(r) is an arbitrarily small multiple of H(r), for
instance, by forcing (S.P)o for some fixed section S in the support of Do +
D + D and (finite or infinite) place v of K.

Just as (10) was a generalization of a known result with Fermat curves, this
construction is a generalization ofa known idea [Szl] ofusing (twists of) the Fermat
cubic and semiquartic curves to produce families of r Q with N(r) << H(r). Thus,
we may fix M Q* such that the elliptic curve x3 + y3 q_ Mz3 0 has positive rank
(say M 6) and associate to a rational point (x: y:z) the number r -(x/y)3 with
H(r) << N(r), and likewise for x’- y4___ Mz2 (say with M 5) and r (x/y)4.
Observe that in each case r is the value of a rational function (here of degree 3 or
4) on the elliptic curve ramified only above 0, 1, . Another known method for
constructing such r is to solve a Fermat-Pell equation x2 My2 1 (for some fixed
positive M 7/not a perfect square) and let r be the integer x2. Here (x:y) is a point
of that conic which is integral relative to the pair of points at infinity, and r is the
value at (x, y) of a rational function of degree 4, ramified only above 0, 1, , with
the branch points including both of the points at infinity. Thus this approach also
falls under the rubric of the ideas of the previous section. Finally and most simply,
one can take r to be an S-unit for a fixed finite set S of rational primes, when No(r)
and Noo(r) are both boundedmwhich is the starting point of several constructions
of families of r Q with N(r) o(H(r)) ([Ma2, ST]; see also lEa, pp. 40-41]). This
is tantamount to taking for f the identity function id: pl pl, whose (empty!) set
of ramification points is contained in id-({0, 1, }), and taking r to be S-integral
relative to {0, } = id- ({0, 1, }); so we can regard this method too as an applica-
tion of the inequality log N, < ((m m(R))/d) log He + O(1), albeit a trivial one since
here m moo d 1.
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ABC IMPLIES MORDELL 107

We can thus expect to obtain new families of r 6 by using different Belyi
functions f. Such is in fact the case; we give two related examples, one of an elliptic
family and one of a Fermat-Pell family.

First, let C be the elliptic curve y2 x3 + 5x + 10 of Q-rank 1,5 and let f be the
degree-5 function (x 5)y ramified only above and 16. (The origin of C is the
quintuple pole, and f attains the value + 16 with multiplicity 4 at the generators
+ Po (1, -T- 4) of the Mordell-Weil group.) Thus, r (f(P) + 16)/32 satisfies
N(r) << H(r) for rational points P C(Q) other than the preimages 0, + Po, + 4Po
of {0, 1, or). For example, evaluating f at the llth multiple of (1, 4) and clearing
common factors in (f + 16) (f- 16) + 32, we find

3931396791184375 + 12341487070149132 16272883861333507 0 (27)

or in factored form

(55)(434)(532)(131) + (22)(3)(7")(8094) (17475) 0 (28)

which, thanks to the extra repeated factors of 5 and 53, gives an ABC ratio of

log N 32.115...
.8603 (29)

log H 37.328...

Second, let C be the rational curve y2 3x2 + 6, which has infinitely many integral
points starting with (x, y) (__. 1, 3), and let f be the degree-4 function (x 4)y
ramified only above and +9. (The two points at infinity are double poles,
and f attains the value +9 with multiplicity 3 at (x, y)= (1, 3).) Thus, r
(f(P) + 9)/18 satisfies N(r) << H(r) for integral (x, y) with x 1, 5. For instance, the
17th positive integral solution (x, y) (1934726305, 3351044259) yields, after clear-
ing common factors,

360186303539019775 + 1 360186303539019776 0 (30)

or in factored form

(5z)(19)(29)(67)(4433) + 1 (25)(7)(13)(37)(73)(973) O, (31)

and again the extra repeated factors improve the ABC ratio, this time to

logN 35.899...
log H 40.425...

.8880 (32)

This curve ofconductor 400, labeled 400-H in Cremona’s tables [Cr], was also singled out in [MSD,
p. 17] in a rather different context: numerical computations suggest that its modular parametrization
has a multiple branch point at i/20.
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108 NOAM D. ELKIES

Computing elliptic curves and Fermat-Pell equations that admit such Belyi func-
tions of low degree and determining when they are defined over ) (which involves
the "rigidity" methods of [Ma3] in a context other than the inverse Galois problem)
are topics of quite a different flavor that we hope to treat more fully elsewhere.
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