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CHAPTER II

Finiteness Theorems for Abelian Varieties
over Number Fields

GERD FALTINGS

§1. Introduction

Let K be a finite extension of Q, 4 an abelian variety defined over K,
7 = Gal(K/K) the absolute Galois group of K, and [ a prime number. Then
T acts on the (so-called) Tate module

Ti(4) = lim [ (B).

The goal of this chapter is to give a proof of the following results:

(a) The representation of 7 on T,(4) ®z, Q, is semisimple.
(b) The map

Endg(4) ®z Z, - End,(T;(4))

is an isomorphism.

(c) Let S be a finite set of places of K, and let d > 0. Then there are only
finitely many isomorphism classes of abelian varieties over K with polar-
izations of degree d which have good reduction outside of S.

(2) and (b) are known as the Tate conjectures, (c) as the Shafarevich con-
jecture. Furthermore, one knows [9] that the Mordell conjecture follows
from (c). The Tate conjectures for abelian varieties over finite fields have
already been proven by Tate himself. Zarhin generalized this to function
fields over such fields, [15], [16], and our proof is an adaptation of his
method to the case of a number field. Arakelov supplied the dictionary
necessary for this translation [2], and the author has built upon his methods

mmu_..?Ulnhsrmﬁmmzooaoammno provide “everything” with a hermitian
metric. :
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The proof of (c) is achieved by first showing finiteness only for isogeny
classes. The basic idea for this was communicated to me by a referee for
Inventiones in connection with the publication of my paper [6], and I then
had only to translate it from Hodge theory into étale cohomology. I would
therefore like to heartily thank this referee, who is personally unknown to
me, for his suggestion.

The rest of the proof of (c) uses a variant of the methods employed in
proving (a) and (b).

The paper begins, first of all, with some technical details concerning
heights. The complications arise because, at least to my knowledge, no good
moduli space for semiabelian varieties over Z exists yet. (L. Moret-Bailly,
who investigated the situation over functions fields, had to struggle with
similar problems [7].) After that, we use the very beautiful results of Tate
[13] on p-divisible groups. The conclusion is then again somewhat technical.

I have learned much about the subject from L. Szpiro, and I want to thank
him here for introducing me to this circle of problems. P. Deligne called my
attention to a discrepancy in an earlier version of this work.

§2. Semiabelian Varieties

Definition. Let S be a scheme (or an algebraic stack). A semiabelian variety of
relative dimension g over S is a smooth algebraic group p: G — S whose
fibres are connected of dimension g, and are extensions of an abelian variety
by a torus.

ExampLE. Let : C — S be a stable curve of genus g [4]. Then
J = Pic’(C/S) = S

is a semiabelian variety of relative dimension g.
We need the following:

Lemma 1. Let S be normal, U = S open and dense, p;: Ay — S and py: A, > S
two semiabelian varieties, ¢: A,/U — A,/U a homomorphism of algebraic
groups defined over U. Then ¢ can be extended uniquely over all of S.

Proor. This is well known in case S is the spectrum of a complete discrete
valuation ring. In general, one reduces immediately to the case in which S is
noetherian and excellent, and writes

Xc A4, xs4,

for the closure of the graph of ¢.

After base change with suitable valuation rings, one sees that the projection
pry: X — A, is proper, and that its fibres have only one point. Since 4, is
normal, pr; must be an isomorphism, and X the graph of the uniquely
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aoﬁmnﬁwnoa extension of ¢. (Uniqueness follows, for example, by consideration
of torsion points, or in a thousand other ways.) O

Definition. Let p: 4 — S be a semiabelian variety of relative dimension g,
s: S — A the zero section.
Let

Dys = M*Abw\mvu

s is a line bundle on S.

Remarks. () If p is proper, then w5 = p,(QY/s)-

(b) w,s commutes with a change of base.

(c) If A = Pic*(C/S) for a stable curve g: C — S, then w,;s = A?q,(w¢)s),
where w¢,s denotes the relative dualizing module.

(d) If S = Spec(C) and p is proper (i.e., A/C is a complex abelian variety),
then w, ;5 = I'(4, Qf,c) admits a canonical hermitian scalar product, namely:

If «,  are holomorphic differential forms on A4, then

{a, B> = WQ%Q>W.
A

<<o. Hﬁoa some facts about the moduli spaces for stable curves and abelian
varieties. For this the language of algebraic stacks seems to be the most

mv.@aovamﬂa. Should this notation appear too abstract to the reader, he might
think through the following considerations:

We are really concerned with finiteness statements. If ® is one of the
mﬁmowm.ﬁo be introduced below, and S denotes the corresponding coarse
moduli space, there is always an open covering

s=UUu
i=1

and w:.mﬁo surjective maps V; — U,, such that over V; the “universal object for
®” exists. One can then carry out all calculations in the V.

Now for the algebraic stacks to be used here.

(1) ww@ classifies stable curves of genus g [4]. g,a is proper over Spec(Z), and
the coarse moduli variety belonging to it is called M, -

2 m.Hm classifies the principally polarized abelian varieties of relative dimen-
sion g, and A4, the corresponding moduli variety.

2, is not proper over Spec(Z), but the following facts are known:
(a) If
p:A-Y,

denotes the universal abelian variety over A, then there exists an r > 0
for which (w \:ﬁmv@ defines a very ample line bundle on 4,/Q [3].
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Let 4, 4,/Q be the Zariski closure in the corresponding projective space
PY. A, \N the Zariski closure in P¥, and .# the line bundle ¢(1) on ma\N
(A extends (w4, )®" on 4,/Q.)

(b) Over C there is a proper dominating morphism

¢: N — 4,/C,

such that there exists a semiabelian variety over 9%t which extends the
universal variety over U, (see [8, §9]). Moreover, it is known that the
@®" of this semiabelian variety is isomorphic to ¢*(.#). (This is proven
by a direct calculation; see my exposition in [6, §2]).

Lemma 2. Over Spec(Z), there exists a proper algebraic stack 3, an open subset
U < 3, and a proper morphism y: W — W, which extends to a Y: 3/Q — 4,/Q,
such that the following objects exist:

(a) A stable curve q: C — 3.
(b) A sub-line-bundle (= local direct summand) £ = Aq.(wcz).
(c) A pair of group homomorphisms over U

a: Pic*(C/3) — ¥*(A),
B: y*(4) - Pic*(C/3),
with
oo = multiplication by d deN,d # 0.

(Here A is again the universal abelian variety over U,.)
(d) There exists an isomorphism £®" = y*(M) over 3 ®z Q and & is the
image of

ok %*@fimv - Aq,(0¢z)

over U/Q. The resulting isomorphism (over U/Q)
V¥ (waya,)®" = Y*(M)

is the Yy*-pullback of the isomorphism over A, resulting from the construc-
tion of M.

Proor. The abelian variety associated to the generic point of U, is the
quotient of a Jacobian. The curve thus obtained corresponds to a rational
map from ¥, to D, for some §.

If one considers the graph of this map, one obtains (with the help of some
trivial additional considerations) a first candidate 3, such that conditions (a)
and (by Lemma 1) (c) are already fulfilled. % is then already determined over
U ®; Q by (d), and furnishes a rational map from U ®; Q to a certain
projective bundle over 3. One replaces 3 by the normalization of the closure
of the graph of this map and then (b) and the second part of (d) are also
fulfilled. For the rest of (d), one notes that we have already constructed the
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required isomorphism over U ®; Q, and one need now only prove the exis-
tence of an extension to 3 ®z Q. To do this, one can extend the ground field
from Q to C, and it suffices to prove the existence of an extension for a 3/C
which is dominant and proper over 3-

With the help of the map ¢: Nt — mm /C introduced above, one constructs a
normal 3, such that y*(A4) extends to a semiabelian variety on 3. By Lemma
1 one can also extend o and B, and this furnishes the desired isomorphism
over 3. O

Corollary. There exists a natural number e with the following property:
Let K be a number field, R its ring of integers,
p: A — Spec(R)

a semiabelian variety such that the generic fibre A/K is proper over K and
possesses a principal polarization. Then the corresponding map p: Spec(K) —
A4/Q extends to a p: Spec(R) —» A,/Z
By construction, there exists an isomorphism
p*(M) ®r K = (w,42)®" ®x K.

Using this isomorphism one gets:

e pH(M) < (wyr)® S et pX(M) (S p*(M) R K).

Proor. We may assume that y: 3/Q — \Ae\@ can be extended to a proper
Y:3/Z - AQ\N Then there is a finite field extension K’ = K (with integers
R’ € K'), such that p can be lifted to

p: Spec(R') = 3.

Since Y*(4#) and £ ®" are isomorphic over 3 ®z Q, there is an e; > 0 such
that over 3

L LE S YR (M) S et - £

It suffices to prove the claim after a change of base to R’, and then we need
only compare w, - and p*(&).
By pullback one obtains a stable curve

q: C — Spec(R')
and
o: Pic*(C/R") - A/R’, B: A/R' - Pic*(C/R)

with a0 f = d - id (use Lemma 2 over R’), such that 5*(R) is a subbundle of
Aq (w¢ ), which is generated by the image of

o*: @Dyg/r" >mm*ﬁ80\x\v.

From this, it follows immediately that d¢ - p*(%) < Wyr S p*(&), and we
are done. O
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§3. Heights

Again let K be a number field, R the ring of integers in K. By analogy to [5],
we define a metrized line bundle on Spec(R) to be a projective R-module P of
rank 1, together with norms | ||, on P ®z K, for all infinite places of K. K,
denotes the completion of K at v, and we define ¢, =1 or 2 according
to whether K, = R or K, = C. The degree of the metrized line bundle is
defined as (“#” = order)

Deg(P, || 1)

Il

log(# (P/R - p)) — Y&, log | pl.,

where p is a nonzero element of P, the sum runs over all infinite places of K,
and the right-hand side is of course independent of p.

Remark. The idea of metrized line bundle was introduced by Arakelov ([2]).
The degree of P is naturally also connected with the volume of P.
We are especially interested in the metrized line bundle w, g, where

p: A — Spec(R)

is a semiabelian variety, with proper generic fibre A/K. The metrics at the
infinite places come from the scalar product mentioned above

N. g
o2 u@ % %A
2 AR,)

Definition. The moduli-theoretic height h(A) is

1
h(4) = [K:Q] deg(wyr)-
One sees immediately that h(4) is invariant under extension of the ground
field. The name “height” is justified by the following:
In general one defines the height of a point x € P"(K) by associating to x a
morphism p: Spec(R) — P%, providing the bundle ¢(1) on P¢ with a metric,
and then defining the height of x to be

1 *

K Q] deg(p*0(1)).

Changing the hermitian metric only changes the height function by a
bounded amount, and it is known that for every ¢, there are only finitely
many K-rational points of P" with height < c. Corresponding consider-
ations apply to closed subvarieties of P". In our situation, one embeds 4, in
P2 as above, by means of .#. We have already defined a metric | || on the
line bundle induced by .# on A4,(C). Should this metric admit an extension to
A4(C), one could use it to define the height, and then the corollary to Lemma
2 would show for a semiabelian variety 4 over R (as above), which has
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principal polarization over K and so defines an xe€ A,(K), that h(x) and
r - h(4) differ only by a bounded amount.

Unfortunately, the metric | || has singularities along N@A@ — A4(C); how-
ever, these are so mild that the fundamental finiteness property of heights
remains true.

Definition. Let X/C be a compact complex variety, Y < X a closed sub-
variety, ./ a line bundle of X, | | a hermitian metric on .#|X — Y. The
metric has logarithmic singularities along Y if the following holds:

There is a proper dominant map

$: XX,

such that X is smooth and ¢~1(Y) is a divisor with normal crossings, and
such that for a local generator 4 of ¢*(.#) and a local equation f of ¢~(Y),

Sup{|[kll, |27} < ¢, - |(log | f])I* (with constants ¢,, ¢, > 0) holds.

ExaMPLE.
X = 4,(C), Y =A,C)— A,C), . and] | as before.

Indeed this was already proven in [6, end of §2], but at the request of the
referees we present a short sketch of the proof here:

More generally, it is true that for a smooth X, a divisor Y on X with
normal crossings and a semiabelian variety

p:A— X,

such that p is proper and A is principally polarized over X — Y, the canonical
metric on w4y has logarithmic singularities along Y.

To see this one considers p, (Q}x) instead of wx (“logarithmic singular-
ities” can also be defined for vector bundles), and by the methods of Section
2 one reduces the problem to the case in which A is the Jacobian of a
semistable curve g: C — X. We will treat briefly the case of a semistable curve
over the unit disc D. The general case goes exactly the same way. If

g:C—-D={t||t|] < 1}

is a semistable curve, with good reduction except at 0, then C admits a
covering

1
G = C U,
i=1
such that either
(a) U= {1zl <1t<1}, qlU:U;->D
is smooth, and z furnishes coordinates on all fibres; or

Aﬁuv Qw.” AﬁN:NNuHV:NLAmu _NN_Amu N»NN”HE‘Y QANTNN» Q”N.
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If « is a local section of g, (w¢p), then on the U;’s is of the form

(a) o = (holomorph) - dz resp.
d
(b) o= 90_090&@3%.
1

An explicit calculation shows that for t — 0

= oA
2 Uing~1(z)

either remains bounded, or grows at most like |log|¢||. Further, one sees
immediately that

R|

| || = (pos.const.) | |,

where || ||; denotes a hermitian metric on g, (¢ x) defined on all of X.

Lemma 3. Let X < P} be Zariski-closed, Y = X closed, || | a hermitian
metric on O(1)|(X(C) — Y(C)), with logarithmic singularities along Y. For a
number field K, and xe X(K) — Y(K) one defines h(x) as before. Then for
every c, there are only finitely many x € X(K) — Y(K) with h(x) < c,

Proor. Let || ||; be a hermitian metric for @(1)| X (C), k, the corresponding
height function, and choose an s > 0 and

.\.T v&mmHJAN\Nu %AMVVQ

whose set of common zeros is exactly Y. Then || ||; defines a Bwﬂao on O(s)
(which is also called || ||;), and from the hypotheses it follows immediately
that there exist constants ¢;, ¢, > 0 with

[
I 1

log (@)| < ¢1 + ¢, - inf{log(|log|| £i(2) |1 1)}

for ze X(C).
If xe X(K) — Y(K), there corresponds a
p: Spec(R) — X,

and then the f; define sections p*(f;) of p*(0(s)), with whose help the .wﬁmg
h;(x) can be calculated. Since || f;(z)| ; is bounded above on X (C), one imme-
diately obtains constants c5, ¢, > 0 with

[h(x) = hy(x)| < ¢35 + ¢, log(hy(x)).
The claim follows directly. d

We can now reap the fruits of our labors. The following result is almost
already proven.

Theorem 1. Let ¢ be given. Then there are only finitely many isomorphism
classes of pairs of
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(i) a semiabelian variety of relative dimension g
p: A — Spec(R)
with proper generic fibre A/K.
(ii) a principal polarization of A/K
Sfor which
h(4) <c
. holds.

ProoF. According to the corollary to Lemma 2 the difference between h(x)
and r - h(A) is bounded (x e Ay4(X) corresponding to A). According to Lemma
3, the 4 for which h(4) < c provide only finitely many different x e A,(K). We
must now note that only finitely many K-isomorphism classes can induce the
same isomorphism class over the algebraic closure K. Thus, we fix such a
class over K and consider the A/K belonging to it. It is known that all of
these have bad reduction at the same places of K. It follows immediately
from Lemma 4 below that there exists a finite extension K’ 2 K, which for
some n > 3 contains the nth division points of all A/K. It is known that our
A’s are already isomorphic over K’, and the rest follows from basic general
theorems of Galois cohomology. O

There remains to be added the

Lemma 4. Let K be a number field, S a finite set of places of K. Then there

are only finitely many field extensions of a given degree which are unramified
outside of S.

Proor. Well known (Hermite—Minkowski). d

§4. Isogenies

We examine the behavior of h(4) under isogeny. As always K is a number
field, R = K its ring of integers.
Let

pi: A; — Spec(R)
and

p2: A, = Spec(R)
be semiabelian varieties with proper generic fibre,

s: Spec(R) — A4,

the zero section, and ¢: 4, — 4, an isogeny. (Of course, by Lemma 1, it is
enough that ¢ be defined over K.)
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We set G = Ker(¢) < A4;. Since ¢ is automatically flat, G is a quasi-finite
flat group scheme over Spec(R).
¢ induces an injection

*.
P*: @y4,/R = Dy R>

and one sees at once that

%AS}S\&*AEmNEvv = %m*ﬁbw,iwv = %M*ADWSV.

Since moreover ¢* changes the norms at the infinite places by (deg(4))*?,
there follows directly

Lemma 5.

1

h(42) = h(4,) + 5log(deg(¢)) — - log(#5*(Qg/r))-

1
[K:Q]

Remark. If G is annihilated by a number neN, then n also annihilates Qg .
It follows that

exp(2[K : Q] - (h(4;) — h(A4})))

is a rational number in whose numerator and denominator only the prime
factors of deg(¢) appear. The exponents of these primes can be bounded by
their exponents in deg(g).

We now investigate the behavior of the h(4,), in the case 4, = A/G,,
where G, runs through the levels of an [-divisible group G = A[I*].

Theorem 2. Let p: A — Spec(R) be a semiabelian variety with proper generic
fibre, | a prime number, and G/K = A[1*]/K an I-divisible subgroup.

Furthermore, let G, be the kernel of 1" in G, and A, the semiabelian variety
A, = A/G,. Then

h(A,) = h(4).

ProoF. Let vy, ..., v, be the places of k lying over [, K; = K,, the corre-
sponding local fields, R; = K the valuation rings, m; = [K;: Q,], so that

m=[K:Q]=) m,.
i=1

We fix an i, and consider the formal group scheme A over Spf(R;), the
completion of A/R; along the fibre 4, over the closed point s of Spec(R;).

A, is an extension 0 — T, » 4, — B, — 0, with T, a torus, B, an abelian
variety.

According to general fundamental theorems, one can lift 7; to a torus T
over Spec(R;), and T is a closed formal subscheme of A. (Morphisms from T;
into smooth group schemes can be lifted.)
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Let
A, = A[Il*]

be the associated I-divisible group. H; is the formal completion of an I-divisible
group H; over R;, and H;/K; is an I-divisible subgroup of A[I®*]/K;. The same
holds for T[I*], and to these subgroups, there correspond Z,-sublattices

I(T) = T,(H,) < T,(A). a

Lemma 6. Let D; = Gal(K;/K,) be the absolute Galois group of K;, I, < D; the
ramification group.

Then I; acts trivially on T,(A)/T,(H;), and the induced action of D,/I;, ~ 7
factors through a finite quotient of Z.

Proor. Let
<5 2 T(A) x Ti(4) > Z,(1) = T,(G,,)

be the symplectic form induced by a polarization of 4/K. { , > is not degen-
erate, and it is known [SGA VII, Exp IX, §7] that

(I(T), T(H;)> = 0.
By a dimension argument, T;(H;) = T,(T)*, and we have an injection
T,(A)/T)(H;) s Homgz (T,(T), Z,(1)).
This injection is D; linear, and D; acts on Homgz (T;(T), Z,(1)) in the required
way. O

Now, once again, back to our G/K = A[I*]/K. After base extension
K = K;, we can form the intersection G;= G n H,. This is the maximal
I-divisible subgroup of G;/K; which can be extended over R;, and we have

%@*Qwix ®r R;) = %mibw@:\?v.

By [13, Prop. 2], one can calculate this immediately: Let d; be the dimension
of the maximal formal subgroup of G;. Then

#5*(Qigyr,) = 1"

If C; denotes the completion of the algebraic closure of K;, then it is known
furthermore [13, Theorem 3, Cor. 2], that as D;-modules

T(G) ®z, Ci= C% @ CH(+1) (h; = height (G;), “(+1)” = Tate twist).
Together with Lemma 6, this implies that D; acts on

A'T(G) ®z, C; = A'Ti(4) ®z, C: (h = height (G))

as on
C:(x&) = C/(d)) (xo = cyclotomic character).

We now carry this over to the global case.

i
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We have
#5H Q) = I"Tmd (" QY = 0)
and

2 i=1 m

h(4,) — h(4) = n-log(l) - Am = el &_.v.
We must therefore show that ) 7, m;d; = mh. For this purpose, we consider
the absolute Galois group # = Gal(Q/Q), and the #-module

V=IndYT(4)) (= = Gal(K/K)).
This contains the submodule
W = Ind}(Ty(G))
of rank mh, and 7 acts on the line
L= A™(W) = A™ (V)

via a character y: 7 — Z}.
From class field theory it follows that y is of the form

1 = (I-adic power of ) - (character of finite order).

The above [-adic power of x, is determined as follows:
Let C be the completion of the algebraic closure of @,

D =~ Gal(Q,/Q,) = #

the decomposition group of I. Then as D-modules we have
i=1

(this follows from our previous calculations), and hence by [13, Theorem 2],

1 %o Yier myd;

is a character of finite order of D and also of 7. Finally, from the part of the
Weil conjectures already proven by Weil, together with some local considera-
tions, it follows that, for almost all p, x(F,) (p =a prime number, F,=
Frobenius) is an algeoraic number, all of whose conjugates have absolute

value p™*2. Since yo(F,) = p, we have, as desired
r h
M Em&m = Sl.
& 2

§5. Endomorphisms

Let K be a number field, 4/K an abelian variety of dimension g, [ a prime
number, T; = T;(A) the Tate module, on which © = Gal(K/K) acts.
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Theorem 3. The action of & on T, ®z Q, is semisimple.

Theorem 4. The map
Endy(4) ®z Z, — End,(T))
is an isomorphism.

Proor. The two theorems are proven together. It is well known that it
suffices, instead of Theorem 4, to prove the somewhat weaker statement that
the map

Endg(4) ®z @, - End(T; ®2, Q)
is bijective. .
For the proof one may extend the ground field, or replace 4 by an
isogenous abelian variety. We can also assume that 4/K is principally polar-

ized, and that 4 extends to a semiabelian variety over Spec(R). Then T,
admits a nondegenerate skew-symmetric bilinear form. Let

We T, ®z, Q

be a n-invariant maximal isotropic subspace. This corresponds to an I-divisible
subgroup G < A[I*], and the semiabelian varieties A, = 4/G, again admit
principal polarizations.

By Theorem 2, h(A,) = h(A), and by Theorem 1, infinitely many 4,’s are
isomorphic.

As in [16], it follows that W is the image of an idempotent in Endg(4) ®;
Q;. The rest of the proof goes exactly as in [16], and it will only be sketched
here:

Choose a, b, ¢, de Q, with a®> + b> + ¢2 + d? = 1.

Set
a —b —c —d
b a d —c
U=
¢c —d a b
d ¢ —=b a
(corresponding to the quaternion a + bi + ¢j + dk),sov- ‘v = —1.If Wis an

arbitrary n-invariant subspace of T, ® Q,, then one applies the above con-
siderations to the maximal isotropic subspace.

Wi = {(x, vx)|xe W*} @ {(y, —0))lye(W)*} = T(4)® ®z, Q..

Corollary 1. Let A, and A, be abelian varieties over K. Then
Homg(4,, 4,) ®z Z, > Hom,(T}(4,), Ty(4,))

is an isomorphism. O

Proor. Theorem 4 applied to 4; x A4,.
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The L-series of A4 is defined, as is well known, as

1
— = h mu s
L9 = sga = rma) ~ L-A9

where the product runs over almost all places of K. The local L-factors are
independent of L

Corollary 2. Let A, A, be as in Corollary 1. The following are equivalent:

(1) A, and A, are isogenous.

(i) T(A;) ®z, Q, = T)(4,) ®z, Q, as n-modules.
(iii) L,(s, A;) = L,(s, A,) for almost all places v of K.
(iv) L,(s, A;) = L,(s, A,) for all v.

Proor. The equivalence of (i) and (ii) follow from Theorem .Nr Emﬂ & EV..M.E.Q
(iii) from Theorem 3 (+ Cebotarev), and that (ii) implies (iv) implies (iii) is
trivial. |

Corollary 3. Let A/K be an abelian variety, d > 0. Then there awm.oie finitely
many isomorphism classes of abelian varieties B/K, with polarization of degree
d, such that, for all I, T,(4) = T,(B).

Proor. The assumptions imply that for every [ there exists an isogeny between
A and B which is of degree prime to . Furthermore, for the purpose of the
proof, we may extend the ground field, and then assume that 4 and all .Wm
extend to semiabelian varieties over Spec(R), and that for all B’s, there exists
an isogeny of degree /\m with a principally polarized abelian variety. One
then comes easily to the following assumptions:

(a) all B’s have semistable reduction;

(b) all B/K are principally polarized; .

(c) there exists an N such that for every prime number [ mca all B, Eo.na exist
isogenies ¢: A — B, for which the greatest power of [ in deg(¢) divides N.

The remark after Lemma 5 then shows that exp(2[K : Q] (k(B) I.E\cvv is
a rational number, whose numerator and denominator divide a certain power
of N.

Thus h(B) is bounded, and one can apply Theorem 1. O

§6. Finiteness Theorems

Theorem 5. Let S be a finite set of places of K. Then there are o:Q \H.E.RQ
many isogeny classes of abelian varieties over K of a given dimension which
have good reduction outside S.
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ProoF. Let 4 be such an abelian variety. According to the Weil conjectures,
for v¢S there are only finitely many possibilities for the local L-factors
L,(A, s). We will construct finitely many places Uy, ..., U,, such that two A4’s
are isogenous if they have the same local L-factor at these places. For this
purpose, one chooses a prime number I. By Lemma 4, there exists a finite
Galois extension K’ 2 K that contains all field extensions of K of degree
< I8¢* which are unramified outside [ and S (g = dim(A4)).

Let G = Gal(K'/K); and choose v, ..., v, such that every conjugacy class

in G contains the image of a Frobenius F, for ve{vy, ..., v,} (Cebotarev).

Then v, ..., v, fulfills our condition: Let 4 1 and A4, be two abelian varieties

over K which have the same local L-factors at Viyevny Upe .
Let .

M < Endz,(Ti(4,)) x Endz,(Ty(4,))

be the Z-subalgebra which is generated by the image of 7.

Then M is a free Z,-module of rank < 892, and M has representations on
T,(4,) and T;(4,).

We must show that for every me M

Tr(m| Ty(4,)) = Tr(m| T,(4,)).

It naturally suffices to prove this for m in a Z,-module basis of M, and by
assumption the equality already holds if m is the image of an element of the
conjugacy class of F,, forve {v,, ..., v,}. We show that these images generate

M over Z,. By Nakayama it is enough that they generate M/IM. This holds
for the following reason:

We have a representation
p: T — (M/IM)* = units of M/IM,

whose image generates M/IM.

Since # (M/IM)* < 139, p factors through G, and p(n) is the union of the
images of the conjugacy classes of B V&0 505 B ) O

Theorem 6 (Shafarevich Conjecture). Let S be a finite set of places of K, d > 0.
Then there are only finitely many isomorphism classes of abelian varieties over

K of a given dimension, with polarization of degree d, which have good reduction
outside S.

Proor. By Theorem 5, we may assume that all the abelian varieties under
consideration are isogenous to a fixed 4/K. As in the proof of Corollary 3 to
Theorem 4, we may further assume that all the B’s extend to semiabelian
varieties over Spec(R), and that d = 1. We already know that

exp(2[K : Q](h(B) — h(A4)))

is a rational number. We will construct a number N such that the numerator
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and denominator of this rational number have no prime WSSH I > N, and so
that the powers of [ dividing them are bounded moH.. the prime numbers [ < N.
The latter is very easy: If, for two abelian varieties, B; /K and B, \N,.ﬁﬁw 1)
and T;(B,) are isomorphic as n-modules, then by Theorem 4 there oﬁ.mﬁm an
isogeny between B, and B,, of degree prime to /, and I does not occur in

exp(2[K : Q](h(B;) — h(Bo)))-

It thus suffices to show that there are only mszo_w.amuw isomorphism
classes of m invariant lattices in T,(4) ®z, Q- m,o.a this let M, be the Z-
subalgebra of Endz (T;(4)) generated by 7. Everything »,o:oim then from the

Q, is semisimple (Theorem 3). .
mmoﬂwﬂoﬁﬁ oowHNuNo mo the owowow of N. For this, let n be the product of prime
numbers [, for which either the extension K =2 Q is BBE.& at [, or A does
not have good reduction at all of the places of orma.moﬁnn.m:o N

Choose any prime number p which does not divide n. Again let

# = Gal (Q/Q) = = = Gal(K/K),
and, for 0 < h < 2gm (g = dim(4), m = [K : Q@]), let
P,(T) = det[T — F,|A"(Ind%(Ty(4)))].

Here | is a prime number, prime to pn, and F, denotes the Frobenius at the

lace p. . . .
° The P,(T) are independent of I, have coefficients in Z, and their zeros have

absolute value p**2 (Weil conjecture, or better, theorem). N
We now choose N > 2 so large that no prime number !> N divides

Py(£p’) for
0<h<2gm,
0<j<gm,
j#3h
In addition, choose N > np.
We will show for every isogeny
¢: By — B,

of abelian varieties isogenous to A, whose degree is a power of N. moﬂ. m.naBo
number [ > N, that h(B,) and h(B,) are equal. This mnmE.me is similar to
that in the proof of Theorem 2: We may assume that / annihilates the kernel

G of ¢. Let )
V; = T,(B,)/l - T(B;) = B, [11(K),

V= Indz(V)),

W= G(K) <=\

W= Indi(W) = V..
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If ¢ has degree I*, then 7 acts on
L= A™(W) = A™%)

via a character y: & — (Z/1Z)*.

Ife: @ — { + 1} denotes the character through which # acts on A™ Ind%(2),
then y - " is unramified outside /, because the inertia groups of places of K
which do not divide I act unipotently on ¥ (semistable reduction). By class
field theory y - " is a power of the cyclotomic character y,. The exponent of
this power can be determined with the help of [10, Theorem 4.1 1] (instead of
Tate’s theory [13]) as follows:

Let

9= %m*ﬁbw\wy
0<d<gm.

Then g - ¢" = x¢* (according to Raynaud). Thus x6(F,) = +p?is a zero of
P,.,(T) modulo /, and by our choice of N, d = hm/2 must hold.
Since again

h d
h(B,) — h(B,) = uomSAM - |v“
m
our claim is proved, and it follows that the h(B)'s of the B’s under consid-
eration are bounded. Thus Theorem 6 follows from Theorem 1. O

Corollary 1. There are only finitely many isomorphism classes of smooth curves
of genus g > 2 which have good reduction outside of S.

Proor. Torelli. O

Theorem 7 (Mordell Conjecture). Let X/K be a smooth curve of genus g > 2.
Then X (K) is finite.

ProoF. This argument is in [9]: After extending the ground field if necessary,
there is an unramified covering of degree m > 2:

%“N‘HIVNJ

Lemma 4 furnishes a finite extension field K, @ K such that for every
xe X (K), ¢~*(x) consists of m different K ;-rational points. Choose one of
these points, say yep~(x).

Let D = ¢7"(x) — {y} and A4/K, the generalized Jacobian of the pair
(X1, D). With the help of y one constructs a map from X; — D to A.

Multiplication by 2 on A then induces a covering Y(X) —» X 1» ramified
exactly over D, for which the curve Y(x) can have bad reduction only at those
places v of K, and for which one of the following three conditions hold:
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(a) vdivides 2.
(b) X, has bad reduction at v.
(c) ¢ ramifies in the fibre mod v.

There are only finitely many such places, and thus only finitely many possi-
bilities for Y(x).

The same holds for the map Y(x) — X; — X, which ramifies exactly over x.
The claim follows. O

'Remarks. (1) In this way one also obtains a proof of the Siegel theorem about

integral points, which makes no use of diophantine approximation.

(2) With the help of the methods of [16], one can conclude from Theorem
6, that for almost all prime numbers [, the subalgebra M, of Endz,(T;(4))
generated by 7 is the full commutator of Endg(4) ®z Z;.
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ERRATUM

N. Katz has remarked that Theorem 2 in the above work is not completely
correct. (O. Gabber constructed a counterexample.) The statement of the

aMmoRB should be replaced by the following which suffices for what comes
after it:

The sequence h(A4,) becomes stationary.

The mistake was in overlooking two subtle points. However, the original

proof works if one replaces from the beginning, 4 = A, by 4,,, for large
enough m. A

The problems are as follows:

(a) If S\.m T,(4) is a Dyinvariant sublattice, then of course there is a
corresponding I-divisible subgroup of A4/K;, and by forming the Zariski
closures, one obtains a system of finite flat group schemes over Spf(R;) or

also over Spec(R;). However, these form an I-divisible group only when the
mappings

Qii\Qm.: =¥ Q...a\Q_.&l

are isomorphisms for n > 1. In general, one cannot expect this. Nevertheless,
a oommaoﬁmmou of the discriminant shows that this is the case for large n.
Passing from 4 = A, to A,, means that one need only consider these mappings
for n > m. This argument is already found in Tate [1].

(b) In general, the intersection G; = G N H; of I-divisible groups over
m.@ooﬁﬁ.v does not define an [-divisible group even over K;. This problem also
disappears if we go to a suitable 4,,. One may then continue as in (a).
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