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ABSTRACT. We consider the self-adjoint operator H = Ho + V', where Hj is the free semi-
classical Dirac operator on R>. We suppose that the smooth matrix-valued potential V =
O({x)~%), § > 0, has an analytic continuation in a complex sector outside a compact. We
define the resonances as the eigenvalues of the non-selfadjoint operator obtained from the
Dirac operator H by complex distortions of R*. We establish an upper bound O(h™?) for the
number of resonances in any compact domain. For § > 3, a representation of the derivative
of the spectral shift function £(\, h) related to the semi-classical resonances of H and a local
trace formula are obtained. In particular, if V' is an electro-magnetic potential, we deduce a
Weyl-type asymptotics of the spectral shift function. As a by-product, we obtain an upper
bound O(h~?) for the number of resonances close to non-critical energy levels in domains of
width h and a Breit-Wigner approximation formula for the derivative of the spectral shift
function.
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1. INTRODUCTION

The resonance theory for the Schrodinger equation has been developed following several
approaches. Among them we can mention the analytic dilation (see [1]) or the analytic distor-
tion (see [22]) and, in the semi-classical regime, that related to the work of Helffer-Sjostrand
[21]. In [19] Helffer-Martinez showed that the different definitions give the same resonances
when one can simultaneously apply them to an operator. For the three dimensional Dirac
operator, Seba [42] defined the resonances as complex eigenvalues of the operator obtained by
a complex dilation. Applying the approach of Helffer-Sjostrand [21], Parisse [30] has studied
the Dirac resonances in the semi-classical regime, with some scaling functions. The last two
works deal with analytic perturbations near the real axis.

The concept of the spectral shift function has been introduced by Lifshits [26] in connection
with problems in quantum statistics and solid physics. Thereafter, a mathematical theory of
the spectral shift function has been constructed by Krein [25]. Moreover, in [3] Birman-Krein
found a connection between scattering theory and the theory of the spectral shift function.
A detailed presentation of the theory of the spectral shift function can be found in [45]. For
a survey concerning the spectral shift function (SSF) for Schrodinger and Dirac operators or
the asymptotic expansion of this function, we refer to Robert [36] and to the references given
there.

A representation of the derivative of the scattering phase in terms of resonances has been
established for Schrédinger operators. Such representations have been successively obtained
by Melrose [27] for obstacle problems in the high energy case, by Petkov-Zworski [32], [33]
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for "black box" scattering with compact perturbations in the classical and the semi-classical
cases and by Bruneau-Petkov [8| for long-range perturbations in the semi-classical "black box"
framework. The results in [8] have been generalized by Dimassi-Petkov [13]| for non-semi-
bounded Schréodinger type operators. As a by-product, they prove a Weyl type asymptotics
for the scattering phase. Moreover, Weyl asymptotics can also be obtained by representation
of the derivative of the spectral shift function involving the trace of the cut-off resolvent (see
Robert [37], Bruneau-Petkov [7] and Nakamura [29]).

Concerning the Breit-Wigner approximation for the derivative of the spectral shift function
in the Schrédinger case, similar results have been obtained in a particular semi-classical set-up
by C.Gérard-Martinez-Robert [16] for short range potentials on R™ and by Petkov-Zworski
[33] for a general compactly supported perturbation (see also [7], [6]).

For Dirac operators, Bruneau-Robert [10] established an asymptotic expansion of the scat-
tering phase s(\) and its derivatives in the high energy regime and in the semi-classical regime
for X in a non-trapping energy interval. For an interval I C] — mc?, mc?[ with non critical
extremities, Helffer and Robert in [20] gave an asymptotics of the number of the eigenvalues
in I for scalar potentials. Nevertheless, we are neither aware of works dealing with the link
between the derivative of the SSF and resonances for the semi-classical Dirac operators (in the
spirit of Petkov-Zworski [33] and Bruneau-Petkov [8]), nor of papers giving the Weyl asymp-

totics of the spectral shift function for Dirac operators in any interval I.

The purpose of this work is to extend the definition of resonance for analytic perturbations
outside a compact set. We define the resonances for the semi-classical Dirac operator as the
discrete eigenvalues of the non-selfadjoint operator obtained from the Dirac operator H by a
general class of complex distortions of R3. We prove that the resonances are independent of
the distortion (see Section 4). We establish an upper bound for the number of resonances in a
compact domain  (see Section 5). The second goal of this work is to obtain a meromorphic
continuation of the derivative of the spectral shift function £(\, h) related to the resonances for
the semi-classical Dirac operator (see Section 6). The latter is closely related to trace formulae
(see [8], [39], [40], [32], [33], [41]) and to resonance expansions (see [43], [11]). Thereafter, in the
case where the potential is an electro-magnetic potential, we deduce a Weyl-type asymptotics
of the spectral shift function (see Section 7). As a by-product, we obtain an upper bound
O(h~?) for the number of resonances close to non-critical energy levels in domains of width
h (see Subsection 8.1), as well as a Breit-Wigner approximation for the derivative of the SSF
(see Subsection 8.2).

2. STATEMENT OF THE RESUILTS

We consider the selfadjoint Dirac operator

3
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(1) HO = —ZChZO&jaTj + ﬂmc y
7j=1
with domain D(Hy) = H'(R3) ® C* ¢ H = L?(R?) ® C*, where h \, 0 is the semi-classical
parameter, m > 0 is the mass of the Dirac particle and c¢ is the speed of light. The quantities
a1, ag, ag and ( are 4 x 4 Dirac matrices satisfying the anti-commutation relations
(2) Qo + ooy = 2(51']'.[4, for 1,9 =1,2,3,
alﬁ + ﬂal = 07 for 1= 172737
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and (32 = I. Here I, is the n x n identity matrix. For example, we choose the standard (or
Dirac-Pauli) representation of these matrices

. 0 o _ Iy 0

where (0;)1<j<3 are the 2 x 2 Pauli matrices:

0 1 0 —i 10
(Vo) = (D) mm(0h)

Remark 1. Most calculations with Dirac matrices can be done without referring to a particular
representation (see Appendiz 1.A [44, Chap. 1]).

Let Hy=H:=Hy+ V, where V is the multiplication operator by a 4 x 4-matrix potential
V. We suppose that V € C°(R3) and satisfies the following assumption

(Av): V is Hermitian on R3 and has an analytic extension in the sector

(3) C.o:={z € C? [Im(2)| < €|Re(z)|, |Re(2)| > Ry}, for0<e<1.
Moreover, for xz € Ccq it satisfies
. 1
(4) V(@) = 0((x)~%), 6>0, (z)=(1+]zf*)z.
The free Dirac operator Hy has essential spectrum o.ss(Hg) =] — 00, —mc?] U [mc?, +-o00[ and

its spectrum is purely absolutely continuous. Under the assumption (Avy ) the operator Hj is
selfadjoint. Using Weyl’s theorem, we have ocss(H1) = 0ess(Hp)-
For0 € D.:={0 € C,|0] <re:= ﬁ}, we denote

Hyg=Hy:=UgHoU, ' +UpVU, ' = Hyp + UpVU, !,

where Uy is the one-parameter family of distortions defined below (see Section 3).
For 6, fixed in D} := D.N{# € C, Im(6) > 0}, we define

A
Ly, = {:EC\/W +m2c2eC, Ne [O, +OO[},

1 _ 1 )
1+6] |1+6 "

and

Sty =1z € |JTus arg(1+6) < arg(1+ ),
9eDF

The square root /z is defined such that for z € C\] — o0, 0], Re(y/z) > 0.

For 0 € D}, arg(1 + 6p) < arg(1 + 6), |1+—190| < ﬁ, we prove that the spectrum of Hy is

discrete in Sy and independent of 6 in Sp,. This justifies the following definition.

Definition 1. The resonances of H in Sp, UR are the eigenvalues of Hp,. The multiplicity
of a resonance zy is defined by

1
mult(zp) :=rank —— [ (z — Hp,) 'dz,
1T To

where Ty is a small positively oriented circle centered at zo. We will denote Res(H) the set of
resonances.
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The most important advantage of this definition is that the resonances can be calculated
by solving a non-selfadjoint eigenvalue problem.

Remark 2. The resonances of H in {z € C; Re(z) €] — mc?,mc*[} are the real eigenvalues
of H.

AIm(z)
*
S * *
*
" A 0
*
* *
* % * % "
% % ¥ mc? Re(z)
—mc?
*

Resonances

Fig.1. The set Sg,

Now, we would like to find symmetry properties so that we can limit our study of the res-
onances to a domain  which satisfies (Ag,), with

(Ag): Q is an open simply connected and relatively compact subset of {z € C;£Re(z) >
mec?} such that QN {£Im(z) > 0} # 0 and there exists 0y € DI such that QN Ty, = 0.

Proposition 1. Let H~ be the selfadjoint Hamaltonian
H™ =Hy—-UJV(2)U; ",
where U, = iffag is a 4 x 4 unitary matriz and V is the conjugate of V. Then the following

assertions are equivalent:

(i) The complex value z is a resonance of H.
(i) The symmetric of the conjugate —Zz is a complex eigenvalue of UgH’Ué_l.

Moreover, the multiplicity of z is equal to the multiplicity of —Z considered as an eigenvalue

of UsH Uy "
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Proposition 2. Let H be the selfadjoint Hamiltonian

3
H = —ic E 0y, + fme® +V,
=1
where o) = —an, o = a9, o = —ag, ' = [ are matrices which satisfy the anti-commutation
relations (2) and V' is the conjugate of V.. Then the following assertions are equivalent:
(i) The complex value z is a resonance of H.
(i) The conjugate Z is a complez eigenvalue of UgHUé_l.

Moreover, the multiplicity of z is equal to the multiplicity of Z considered as an eigenvalue of

UgﬁUgl.

Using the same type of approach as in [40], we construct an operator ﬁj,g for j = 0,1, so
that

~

Hijp—Hjp=K; = O(1), has finite rank O(h73),

and H(I;Tjﬁ —2)7Y = O(1), uniformly for z € Q (see Subsection 5.1).

Using this construction we establish an upper bound of the number of resonances:

Theorem 1. (Upper bound) Assume that V' satisfies the assumption (Av) with 6 > 0. Let
Q be a complex domain satisfying the assumption (Asj-;), then

#Res(H) N Q < C(Q)R3.

For a pair of self-adjoint operators (Hy, Hy + V') where V satisfies the assumption (Avy)
with § > 3, (see [10], [37], [36]), the spectral shift function £(\, k) is a distribution in D'(R)
such that its derivative satisfies:

(5) (€A R), f(N)prr),pr) = tr(f(H1) — f(Ho)), f(A) € C°(R).

By the Birman-Krein theory, the SSF is in L}, .(R) and coincides with the scattering phase:
for almost every \ in the absolutely continuous spectrum of Hy we have det S(\) = e~ 2imE(Ah)
where S()) is the scattering matrix for the operator pairs (H, Hy) (see [3] or [45, Chapter 8|).
On the other hand, in the standard definition, the scattering phase is equal to argdet S(A).

The SSF for the operator pair (Hg, Ho+ V) satisfies the following general gauge invariance
(for the proof we refer to Section 6):

Proposition 3. (Gauge invariance) Let V' be a potential and ®, be a scalar function
such that 'V and o - V&, satisfy (Av) with § > 3. Then, the SSF for the operator pair
(Ho, Hy+V —a-V®,) coincides with the SSF for the operator pair (Hy, Ho+ V).

Our principal result is a meromorphic continuation of the derivative of the spectral shift
function &(\, h).

Theorem 2. (Representation formula) Assume that V satisfies the assumption (Av) with
6 > 3. Let Q be a complex domain satisfying the assumption (Aé) and W & ) be an open
simply connected set which is symmetric with respect to the real axis. Assume that I = W NR
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1s an interval. Then for all A € I we have the representation:

1 —Imw
weRes(H1)NQ w€eRes(H1)NI
Im w#0

where r(z,h) = g(z,h) — g(Z,h), g(z,h) is a holomorphic function in Q which satisfies the
following estimate:

(7) l9(z, )| < C(W)h™?, ze W,
with C(W) > 0 independent of h €]0, hgo]. Here 6y(-) is the Dirac mass at w € R.

Remark 3. This theorem can be extended to the operator pairs (Hy + Vi, Ho + Va), where
Vi, Vo are two 4 x 4 Hermitian potential matrices satisfying (Av) with § >0 and V = Vo —V)
satisfies the assumption (Av) with § > 3 (see Theorem 5).

As a corollary of the last theorem, we have a Sjostrand type local trace formula (see Theo-
rem 6).

Now we discuss a Weyl type asymptotics of the spectral shift function {(A, h) in the case
where V' is an electro-magnetic potential

(8) V(z) = e(—a- A+v)( Za] eA;(x) + ev(z),

satisfying the assumption (Av) with 6 > 3. Here e < 0 is the charge of the Dirac particle.

We assume that, the electric potential v(z) = < v+((a)3)12 v ((;:)I > where vy, v_ are C™
—(z)12

scalar functions satisfying
(9) le(vs — v )(@)] < 2me,

and A = (Ay, A, Asz) is a magnetic vector potential where A;, Ay, Az are C scalar
functions.
For any (z,&) € RS, the semi-classical symbols of H,, v = 0,1 are the matrices

(10) D, (x,€) = a - (c€ — veA(z)) + Bmc® + vev(x), o= (a1,a9,a3),

which are Hermitian and each have two eigenvalues

(11)  Hi(z,¢) =+ <\c£ —veA(x)|? + (mc2 + Vg(?./+ - v_))2> %—I— 1/%(124r +v_),

of multiplicity two. The function Hf(x, €) is the Hamiltonian for a relativistic classical particle

and Hy (z,€) can be considered as the Hamiltonian for the corresponding anti-particle (see

[14], [44], [47]). Moreover, from (9) the two Hamiltonians Hi (z,€) are smooth functions.
For v = 0,1, the matrix

12) e, ) = (HDy(x,»s)—uev() (v+—v—)ﬁ>’

Hy (2,€) —v§(vy +0v-)

is the orthogonal projection onto the eigenspace £F(z,&) of D, (x,&) corresponding to the
eigenvalue HF(z,¢).
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Definition 2. A real \ is a noncritical energy level for Hy if for all (x,€) € RS, with
Hi(2,6) =)\, we have V, ¢Hi (x,€) # 0.

Theorem 3. (Weyl formula) Assume that the potential V is an electro-magnetic potential
given by (8) and satisfying the assumption (Av) with 6 > 3. For all noncritical energy levels
A\, A1 for Hy such that +mc? € ]\1, A| and h €]0, ho[, we have the asymptotic expansion

(13) EOR) —EALR) = wM AR+ O0(R72).

Here the O(h™?) is uniform for X (resp.\1) in a small interval I (resp. Ir). The first term
w(\ A1) € C®(Iz x I1) is given by

w(A A1) = w(A) —w(A),
with:

1
(14) w()\):W/RSWJF()\,vJF,v)—W+()\,0,O)—W()\,v+,v)+W()\,O,0) do

where Wi (X, a,b) = <()\ - @)i - <m62 + e(a—2b)>2>i

Theorem 3 can be extended to the operator pairs (Hy + Vi, Hg+ V2) where Vi, V5 satisfy
(Av) with § > 0 (or ||Vj(x)|| — 0) and V5 — V; satisfies (Avy) with § > 3 (see Remark 10).
Furthermore, using Proposition 3, magnetic potentials A! and A% which are gauge equivalent
(i.e. Al — A% =V, with ®, as in Proposition 3) generate the same SSF.

Remark 4. The two formulae (13) and (14) give in particular a Weyl type asymptotics of
the counting function of the number of eigenvalues of Hi between two values in the interval
] —mec?, mc?[ . In the case of a scalar potential v (v, = v_), this result was proved by Helffer-
Robert [20] without the analyticity assumption at infinity.

To prove Theorem 3 we construct, in Appendix A (see Theorem 9), a parametrix at small
times of the propagator of the Dirac equation in an external electro-magnetic field (see also
Yajima [47] for scalar electric potential cases).

As a direct consequence of the last theorem we deduce an upper bound O(h~?2) for the number
of resonances close to non-critical energy levels in domains of width h (see Proposition 12)
and a Breit-Wigner approximation for the derivative of the spectral shift function (X, h) (see
Theorem 8).

3. DISTORTION FOR THE FREE DIRAC OPERATOR

In this section, we start with the definition of the deformation for the free Dirac operator
by analytic distortion (in the spirit of Hunziker [22]) and we calculate the essential spectrum
for the distorded free Dirac operator. Here, h does not play any role, and can be taken equal
to 1. Let us now introduce the one-parameter family of unitary distortions

Usf(2) = T2, [(00(2), 0 R, fe (SR,

where ¢g(z) = 2 +0g(z) and g : R? — R3 is a smooth function. Let Jy, (,y=det(I4+0Vg(x))
be the Jacobian of ¢g(z).
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We suppose that g satisfies the assumption

(i) sup,eps V(@) = M~ < +o0.
(Ag) ¢ (ii) g(x) = 0, in the compact set B(0, Ry), (see (3)).

(iii) g(z) = =, outside a compact set K(D B(0, Ryp)).
Lemma 1. For 0 €] — M, M|, Uy can be extended as an unitary operator on H.
Proof. Since |#| < M, we have [|[§Vg(x)| < 1, and

[e.o]

(Vo(2)) ™ = (I+6Vg(x)~ =D (=1)"(0)"(Vg(x))"

n=0
The function ¢g(x) is injective and ¢p(R3) = R3, consequently ¢y(z) is a diffeomorphism from
R3 to R3. The inverse of Uy is given by

;1
Uy 'u= T2 u(dy (@) (L2(R%) —s (L2(RP).
The lemma follows from the relations
UpUy ' = Uy 'Up = Ipasyys and |Ugfllr = Uy ' fllae = |1£1l, VS € (LP(R?)™
O

Definition 3. We denote by B, the space of functions f = (fi)i<i<a such that f;(x) has an
analytic continuation in Cc o and lim|zIHOO |2|Ffi(2) = 0, for all k € N and € €]0,1] (see (3)).
Z605,0

Lemma 2. The subspace B is dense in H.

Proof. The subspace B contains vectors of Hermite functions and the linear combinations
of Hermite functions are dense in L?(R3). O

Proposition 4. Let be Dy = Dc N {0 € C;|0| < M}. We have the two assertions:
(i) Forall f € B, 6 € D pp— Upf is analytic.
(i1) For all 0 € D¢ ar,UpB is dense in H.

Proof. In order to prove (i), we show that 8 — (Uyf, g) is analytic for all ¢ € H. Let
R > 1 be such that K C B(0,R) = {z, |z| < R}.

e In {z,|x| < R}: since f € B, then § — f‘
for all g € H.
e In {z,|z| > R}: we have g¢g(x) = z, consequently ¢p(x) = (1 4 8)z. We remark that

[l (6)|[Re(¢g (2))|
[1+Re(0)]

1
1|<R J 3, f(¢o(x))g(x)dz, is clearly analytic

Im(¢e(z))| = Im(0z)| < [Im(0)||z| =
If|0\§r€:ﬁ,0<e<l,then
[Tm(¢s(z))| < €[Re(gg(x))]-

According to the definition of B we have

Ck Che
|f(dg(z))| < G0 @ = Tl

Viz| > R, Y8 € D, k€N
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then, 6+— f >R, f((bg) g(x)dz is analytic.
(ii) Let h(x) € (CC(R3))L We denote

=
Njw

/ o k(a—y—0g(y))? h(Y) Ty () Ay

which is clearly in B.
Using (7 fe k(@—y—09(y))* o)Ay = (%)% fe*kZde =1, we get

3|

h(z) = hy(ge(z)) = ( )gfek(‘z’g(“)‘z’g(y”Q(h(w) = 1)) g () Y-

The last term tends to 0 when & — 400. Consequently, we have

hic o do(@) "= (@), inH.
O
Remark 5. One can always choose g satisfying the assumption (Ag) with M > r. = \/ﬁj

In that case, we have D¢y = De.

Lemma 3. For 0 € D., we have
1 L0
Hyg = UpHoUy " = ——(=ic Y _aj=—) + Bmc® + Qy(x, a,),
1+ 0 = a.l‘j

where Qo(x,05;) = 3|0 1<1 a(@, 0)07, is such that:

(i) 0 — aqn(x,0) is an analytic function bounded by O(6).
(i1) © — aq(x,0) € (CF(R3))%.

In particular  — Hy g is an analytic family of type A with domain D(Hy) (see Kato [24],
for the definition of an analytic family of type A).

Proof. We denote 0; = 8 - and we calculate the term Uy0;U, L

Upd; Uy L f () = Uyd; <J¢§1 cn 1(96)))
_ U, (aj (g) £ (65 @) + I (ajfw;l(x))))

3
= 2J¢9 05T o) ] () + > Ok f () (@'%ﬁi) (Po(z)),
k=1
with 67! (2) = (651 (@), 673(2), d54()).
We remark that gb;l(m) = 11y outside the compact set K, then

3
Zakf(l') (aj@;}c) (po(z)) = 1—_1F‘9<9jf(x), outside K.
k=1
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Let xxg € C(R3), 0 < xx < 1, be equal to 1 on K and 0 outside a compact set which
contains K. We have

1

3
S0 @) (1= xi0) + D0 0k S () (95651 (Do)
k=1

_ 1
UpdiUy " f (@) = =575, 03Jog(a) f (%) + 1 -

Since 0;Jy,(») has compact support,

1
T 1+0
with gg(,0,,) satisfying same hypothesis as Qg (, 0z, ).

Now we just have to multiply (15) by —ica;, take the sum on all values of j and add Bmc?
to both hands. The estimate an(7,0) = O(0) is clear using that Qo(x,0;;) = 0 and the
analyticity of 8 — aq(+,0). O

Lemma 4. Let Py = 1+0( ic);qj 835 )+ Bmc?. Then

0(Py) = Gess(Py) =Ty = {z € C; 2 = £¢( +m2c2)z, ) € [0, +ool}.

A
(1+6)2
Proof. Let F be the Fourier transform and

o -1 _ € e 2

K(Q)—fpgf = m;ajgj‘i‘mCﬂ

_ ( me*Iy (159) (0161 + 0282 + 03&3) >
- (1+9)(0—1§1 + 0282 + 0—353) —m0212

where & = (£1,62,&3) € R? and a;§&; is the multiplication operator by the 4 x4 matrix «o;&;.
Here 01, 09,03 are the 2 x 2 Pauli matrices. The spectrum of Py coincides with the spectrum
of the multiplication operator K(6). We easily prove that

(K (0)) = 0ess(K(0)) =Ty = {2 € C; 2 = +m2c)z, X € [0, +oo[},

A
(140)?
and we deduce the lemma. O
The principal branch of the square root function is holomorphic on the set C\] — 00, 0]. Let

S {Z = 1+9)2 +m C 9 S -D67 A € [O,+OO[} Since,
Sp. C]0,+oolel =231,
the square root z —— 23 s holomorphic on Sp..

Lemma 5. For Hyg, Py, defined as above, we have oess(Hpg) = 0ess(Fp).

Proof. We want to use Kato’s theorem [24, Th.4.5.35]. For A > 1, A € R and Qg defined
in Lemma 3, we have

(Hop —iX) = (1 + Qo(Py — iN)~1)(Pp — iM).

Since (Py —i\) ™t € L(H, (H')*) and Qp(Pp — i)~ = O(%), we obtain that i\ € p(Hyg) =
C\ o(Hpp). To apply Kato’s Theorem, it is enough to show that

(16) (Hop —i\) "t — (Py —i\) "t is compact.
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Using the resolvent equation, we have

(Hop —iX)~" = (Pp —iX)™" = (Hop —iA) " Qo(Py — id) ™.
with Qg(z,0,;) = ngl aq(z, 9)8% compactly supported. Since the operaror (Hpg—i)\) ™1 Qg
is bounded and 1gypp(g,)(Fo — i\)~! is compact, assertion (16) holds. O

4. DEFINITION OF RESONANCES

In this section we distort the perturbed Dirac operator H = Hy + V', where the potential
V' satisfies the assumption (Ay) and we define the resonances for the semi-classical Dirac
operator.

The distorted Dirac operator is denoted by

Hy = UpHoUy ' + UpVU, ' = Hyg + V(de(z)).

Proposition 5. We suppose that the potential V satisfies the assumption (Av), then
(1) 0 € De — Hg = Ho g+ V(¢g(x)) is an analytic family of type A.
(ii) oess(Hp) = Tg.
Proof. The assertion (i) is clear since Hy g is an analytic family of type A and V satisfies

the assumption (Av).
Now, we prove (ii) as in the proof of Lemma 5. For A > 1, i\ € p(Hy) and

(17) (Hp —iX) ™" = (Hop —iX) " = (Hp — i\) "'V (¢g(x)) (Hop — iX) .

Since the operator V(¢ (z))(Hog—i\) ! is compact (see (Av)) and the resolvent (Hp—i))~*

is bounded, the difference (Hp—i\)~1 — (Hop —iA)~!is compact. According to Kato’s theorem

[24, Theorem.4.5.35] and to lemmas 4,5, we obtain (ii). O
We denote

¥ ={z€C; Im(z) >0, Re(z) > —mc*} U{z € C; Im(2) <0, Re(z) < mc®} \ o(H).
Theorem 4. With the notations used above, taking 6y € DI = DN {Im(0) > 0}, we have:

(i) Forall f,g € B, the function: z € ¥+ My 4(2) = ((z—H) "' f, g) has a meromorphic
extension on Sg,.
(11) The poles of My 4(2) are the eigenvalues of Hg,.
(11i) These poles are independent of the family Up,.
() o4(Hp,) N X =0, where o4(Hy,) is the discrete spectrum of the operator Hy, .

Proof. (i) Since Uy is unitary for § € R,

Myg(2) = ((z— H)"'f,9) = ((z — Ho)""Uy f, Uyg).
We denote

(18) M 40(2) = ((z — Hyg) 'Uyf, Ugg), for 6 € D..

According to (i) of Proposition 5 and to the definition of U, the functions @ — (z — Hy) ™!,
0 — Upf and 6 — (3, Ugg) are analytic on D, for all ¢y € H and any z € X.

Thus, for z € ¥, the function § — M 4 ¢(2) is analytic on D. Since My 4 4(2) is independent
of 8 on the real axis and by uniqueness of the extension, it is independent of 6.

Now, we fix 6y € DF. Since Sp, N 0ess(Hp,) = 0, the function z € ¥ — My 49,(2) has a
meromorphic extension in Sy, .
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(ii) First, let z € Sp, be a pole of My 4(z) which is equal to My g, (2) for 6y € DF. Then
z € 04(Hg,) N Sp, (see proof of (i)).

Now, let w € 04(Hg,) N Sg,. There exists u € H such that ||u|| = 1 and Hg,u = wu. Let
7 be a small disk centered at w such that yNo(Hy,) = {w} and I" be the positively oriented
boundary of ~.
Let us introduce the projector

1 .
H:% F(z—H(;O) Ydz; Tu = u.

Since Ug,B="H = Uy, B (see Proposition 4), there exist f,, g, € B such that
1 1
|u — Up, fn] < - and |u — Up,gn| < - NE N.

Therefore, as n goes to infinity, we have

1 _ 1 _
% Ig(z - HOO) IUOOfna Uéogn>dz = % F<(Z - H9o) lu’u>dz + 0(1)
= (IMu,u) + o(1)
= ul* +o(1)
= 1+4+o0(1),
and then,
1

5 ((z— H)flfn,gn>dz =1+o0(1).
i Jr

So that My, 4. (2) admits w as a pole in 7.

The assertion (iii) follows from (ii) because My () is independent of Up.

(iv) If there exists z € oq(Hg,) N'Y, then 2 is a pole of ((z — H)™1f,g), for f,g € B, but
{((z— H)~'f,g) is analytic on this domain. We conclude that such z does not exist. O

Remark 6. (i) It follows from (ii) of Theorem 4 that for all @ € DI, the discrete spec-
trum o4(H) is a subset of o4(Hy).

(ii) The previous theorem justifies the definition of the resonances (Definition 1) and using
Lemma 4, Hy has no resonances.

Remark 7. If § € D,, then its conjugate § € D.. Repeating the arguments of the proof of
Theorem 4, we have

(i) The function 6 — My , 5(2) has a analytic extension for 6 € De.

(ii) The function z € ¥ +—— My  5(z) has a meromorphic extension on Sg,

where
Y ={z € C;Tm(z) >0, Re(z) < me®’} U{z € C;Tm(z) <0, Re(z) > —mc*} \ o(H),
and Sg, is the symmetric of Sp, with respect to the real azis

1 - 1 !
1+6] ~|[1+6

Sg, =1{z € U Iz; arg(l1+0) < arg(1+ 6p),
OeDt
Consequently, we obtain @ee Theorem 4):

1) The poles of My 4(2) in Sp, are the eigenvalues of Hp, .
2) These poles are independent of the family Up, .
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3) (Td(HgO) N =90.
The assertions 3) and (ii) prove that the operator Hg has purely discrete spectrum in Sg, -
Proof of Proposition 1. We consider the anti-linear application on H,
C:r— Ugp = ifoz.
Then, we have
CHyC' = —Hyg5+ CVo gbg(a:)cfl
— (s uT ).
Using that V is analytic, we get V o ¢y(z) =V o ¢pg(x). Then,
C Hy ol = — (Ho,é — UCVO gbg(x)Uc_l)
- (Hoﬁ - UCUgV(x)UglUgl) .
1
We recall that Uy f(x) = Jqfe(x)f(gbg(x)). Since U.Uy = UpU,, we obtain
CHyC' = — (HO,Q— - UgUCV(x)Uc_onfl)
= —Uj(Ho-UV(2)U ) U; ' =—H, .
Consequently, C (Hy —z) C~! = _(Hg_ + Z), and the property follows. O

Proof of Proposition 2.
By definition of Hy, we have

(19) HQ—Z:Ug(F0+V—§)U051.

Using that &1 = a1, &g = —aw, ag = ag, 0 = 0§, we find
9 2,0
Ho=icd) aj— +pmc® =—icy ai=— + f'mc?
0 ]z—; Jaazj ﬁ ]z_; ]833j ﬁ

and
Hy+V =H.

Using the last relation and equation (19), we obtain Proposition 2. O

Finally, the study of resonances in a domain of the complex plane C is reduced to the study
of resonances in QN {z € C, Im(z) < 0}, with Q satisfying assumption (Ag) (see Fig.1).

5. UPPER BOUND FOR THE NUMBER OF RESONANCES

In this section, we establish an upper bound on the number of resonances in a compact
domain . To this purpose we construct an operator ﬁg : D(Hy) — H with some properties
(see Proposition 7). According to Section 4, it is sufficient to treat the case where ) satisfies
assumption (Ag).

We shall use the theory of h-pseudo-differential operators (see [12], [35]). Let m be an order
function on R?" (i.e. there are Cy, Ny > 0, such that m(z) < Co(z — y)Nom(y)). The space



14 ABDALLAH KHOCHMAN

SP(m) is the set of a(x, & h) € C°°(R?*™)®@C* such that for every a € N?", there exists C, > 0,
such that

Vg ealz, & h)|| < Cam(z, E)h7P.
For a symbol a(x,&; h), we define the Weyl quantization, a*(x, hV,;h) := Opf(a) by

Onayute) = e [ [ S 6 uty)ayds

where u(z) is in the Schwartz space.

5.1. Construction of f]g. We follow the approach of Sjéstrand [40]. Let © be a complex
domain satisfying the assumption (Ag;) and 1 € C§°(R3) be such that ¢(z) > 0, (z) =1 if
|z] <1 and ¥(z) =0 if |x| > 2. We recall the notations of Section 3: ¢g(x) = = + 0g(z) with
g(x) = 0 in the compact set B(0, Ry) C K and g(z) = x outside K C B(0, ag) where ag > 0
is sufficiently large.

Using Lemma 3, the semi-classical principal symbol of Hy is given by:

hg(ﬂf,g) =a- C@(xvé.) + mCQﬁ + V(¢9('T))7
with
3
Go(@,€) = (Go (@), Goa(w,€), Goa(w,€)) and Go(w,€) = ¢ Y & (9074) (u(a)):
k=1
For all (z,¢), the matrix M = a - (p(z, ) + mc?3, has two eigenvalues
)\(?,k = +/Co(x, 6)2 + m2ct.

Consequently, there exists an invertible matrix U such that

1 (ML o
U MU_dg._< 0 ND )

_ < I mU'@(ﬂ?@) ) |

Wln,wzo— - Co(,€) Iy

where

with o = (01, 02,03) and (0;)1<j<3 the 2x2 Pauli matrices.
One can easily prove that the norms of U, U~! and their derivatives are bounded in the
following way:

|20 U@l < @,
(20) l020f U (2, &)l < C{€)~F, Va, BEN.
Applying U~! on the left and U on the right of hy(z,£), we obtain
U~tho(w, U = dg + V(. €),
where Vy(z,€) = UV (¢g(x))U. Since the matrix V(¢g(z)), U, U™, and their derivatives

are uniformly bounded, Vjy(z, &) and its derivatives are uniformly bounded.

In order to construct Hy, we introduce an intermediate function f(z,¢):
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We denote || the diameter of €. Let us choose fy > 0 and Cy > 0, sufficiently large
such that

(21) Ve e RY sup [|[Va(a, )l + 19
e R3

IN

1 .
36 —iCou()

1 2 13 2
= 5\/(R,e()\g[)) —l—(lm()\;t)—colﬁ(%)) )
We prove (21) considering the two cases:
e For [¢| > (o, with [y > 0, sufficiently large we have
~ 1
sup [[Vp(2, &)l +19f < 3 [Re(A)]-
z€R3
e For [¢] < [y, since )\ét is bounded, we choose Cy > 0, sufficiently large such that
~ 1
sup [[Vp(a, )] +12] < 3 [Im(3) ~ Col.
z€R3

For |z| > ap > 0, sufficiently large we have (g ;(z,§) = 1CT§J0 and )\;t = *c ﬁ + m2c2.
Since the domain (2 satisfies the assumption (A;‘z)7 we have

min{dist(€2, A} ), dist(Q, A, )} #0,
hence we can choose ag > 0 sufficiently large such that

~ 1 _ 1 _ _
(22) ¥z > a0, [Vo(w QI <5 dist (2, \f) == 3 min{dist(€2, \}), dist(2,\,)}.

Now, we define f(x,&) in the following way:

_ AW
(23) [z, &) = Co?ﬁ(a—o)?f)(%)-
Lemma 6. The matriz hg(x,§) — if(x,&) — z is invertible for all z € Q and satisfies
(24) |830¢ (ho(z,€) —if (x.€) = 2)7 [ < C()™'%, Va, BEN.

Proof. Applying U~! on the left and U on the right of hg(x,&) — if(x,&) — 2, we obtain
U™ (ho(@,€) —if (2,6) = 2) U = dg —if (2,€) — 2 + Vy(z,£).

1) Let us prove that the symbol o := dy — if (z,€) — z + Vy(x, €) is invertible.
e For |z| < ay,

o = (o= iCub(5) (a + (o iCN/’(%))_l Vot ) - z)) .

According to (21), we have

I (00w 5)) " (Fatwey )1 < 5

thus o is invertible and satisfies

(25) o™t < 2| <d6 - icozp(%))l | <cio
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e For |z| > ag, we have \f = +c,/ ﬁ + m?2c2. Since f(x,&) > 0, we have

Ay = (z+if(z,))] > dist(QN)) > C€) >0,

and
Re (\; — (z+if(,€)) | = Re (N, —2)| > dist(Q,\]) > C(£) > 0.
Since
o = (do—if(2,&) = 2) L+ (do—if(2.6) =) Vol 8)) |
and

~ 1
|| (dg - Zf($7§) - Z)il ‘/9($7§)|| < 57 (See (22))7
the matrix o is invertible and
(26) lo | < 2|| (do —if (x,6) —2) " || < C(&) .

2) According to 1), the matrix U~ (hg(x, &) —if(x, &) — 2)U is invertible. From (25), (26) and
(20), we deduce that the matrix hg(x,§) — if(x,&) — 2z is invertible and

I (hot,&) — if (2, &) =2 | = U™ (do — i@, T — 2+ Vo, 0)) U]
< JONT I (do = i@ T = 2+ Tola,©) |
(27) < CcEh
This gives (24) for a = 8 = 0. Using (20) and (27) we obtain (24) for («, 3) € N2 by induction.

U
We denote Hy = Hy+ T, with T = Opy(—if(x,€)), where f(x,€) is defined in (23). It is clear

that the semi-classical principal symbol of (ﬁg —z) is
o, = ho(x,§) —if(x,8) — 2.
Proposition 6. If h > 0 is small enough, the operator (z — ﬁg) 1s invertible for every z € )
and, for every N € N its inverse satisfies:
(2 — Hy)™ = O(1) : D(HY) — D(HV*),

uniformly for z € Q. Here D(HY) denotes the domain of HN with the convention D(H°) =
H.

Proof. Let us prove that the operator (z — ﬁg) is a Fredholm operator of index 0. We
have

(2= Hy)(z — Hop)™' = (2~ Hog+ Hop— Hp)(z — Hop)™'
= I —(T+V(¢s(x)))(z — Hop) ™"
Since the right-hand side is a perturbation of the identity by a compact operator and
(z—Hop) ' : (L*(R?*)* = D(H) is invertible,
the operator (z — fIg) is Fredholm of index 0. Consequently, it is enough to show that

(28) lull vty < Cll(z = Houlbpgwy, for we DEHN).
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According to Lemma 6, the symbol gy = U; is well defined and satisfies
0

1059 qoll < C&) 77
Moreover, having
|820¢ (o, < C(&)7,
the composition theorem of h-pseudo-differential operators implies
Op#(90)Opj, (0 z,) = Opj; (7)
where (r — 1) is in the space of symbols S°(h). In particular the operator
Op%(r): D(HN™Y) — DHNTY), VN €N,

is invertible for h small enough, then (28) follows. Therefore the operator (Hy — z) is also
invertible and we have

(z— Hp) ' = On(1) : D(HN) — D(HN*Y).
]

Proposition 7. There exists I:TQ : D(H) — H, with the following properties.

The difference K := ﬁg — Hy is of finite rank O(h™3), has compact support in the sense that
K = x1Kx1 for some x1 € C(R?) and

K =0(1): D(HY) — D(HM) VYN, M € N.
Moreover, for every N € N, we have
(Hy— =)' = O(1) : D(HY) — D(HN),
uniformly for z € Q.
Proof. (We again use all the previous notations) We define
Hy == Hy + xaTx1 = Hp + xaTxa — T,
with x1(z) = 9¥(55-) and
T:=x(~h*A+a*)T = x(—h*A + 2°)Op; (—if (x,€))
where x € C3°(R) is such that:
x (€2 +2%) = 1 on the support of f(z,¢) (see (23)).
By the functional calculus (see [12]), we can prove that
(29) Hy—Hy=T — x1Tx1 = O(h*) : D(H") — D(HM), ¥ M, N € N.
The last lemma, formula (29) and
(Hy—=2)"" = (Hy—2)"" (I + (Hy — Hy)(Hy — Z)_1>_1
yield for all N € N R
(Hg— 2)"t =0(1) : D(HN) — D(HN*Y).

According to the facts that y(—h2A +2?) is of finite rank O(h~3), that the Weyl quantization
Opy(—if(x,§)) is bounded, and to the definition of x1, the operator

K = f]g — Hyp = x1 (X(—hQA + $2)OP%(_U€($7§))) X1
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is of finite rank O(h~3) and compactly supported. O

5.2. Upper bound for the number of resonances. In this section we establish the upper
bound on the number of resonances given in Theorem 1.

Lemma 7. Let p > 0, Q be an open complez relatively compact subset of C and Hy be defined as
above. There exists g satifying (Ag) such that for h small enough and z € QN{Im z > p > 0},
we have (z — Hg)~! = O(1).

Proof. We again use the notations of Section 3: ¢g(x) = x + 0g(x) with g(z) = 0 in the
compact set B(0, Ry), and the notations of Subsection 5.1 concerning hg(xz, &), U, UL, dy
and Vp(x, &) which satisfy

U~ ho(z,€)U = dp + Vo(a,€).

The matrix hg(z,£) is the semi-classical principal symbol of Hy.

According to Section 4, the resonances are independent of the family Uy. Then we can
assume that g(x) = 0 in the ball B(0,R,) D B(0, Ry), with R, > 0, sufficiently large such
that

Vo €RY, Ja| > Ry >0, [Vplw,€)l| < 2.

Repeating arguments of Subsection 5.1, we can prove that (dg + Vyp(z,&) — 2) is invertible,
thus (hg(z, &) — 2) is invertible and
10207 (ho(,€) — )M || < C(&) 7.

Since we have:
|930¢ (ho(,€) — =) | < CE) 7,
the composition theorem of h-pseudo-differential operators implies
Opi((ho(w,€) — 2)")Op; (ho(,€) — 2) = 1+ O(h),
where O(h) corresponds to the norm in £(L?). O

Proof of Theorem 1. R
Let K(z) = K(z — Hp)~! with Hy, K defined in Proposition 7. We remark that

(I+ K(2))(z— Hp) = (z — Hy) + K = z — Hy.

Thus, the resonances z € Res(H) N repeated with their multiplicities coincide with the zeros
of the function

D(z) = det(I + K(2)).
Indeed, in a neighborhood of a zero zy of D(z) with multiplicity [(zp), we write D(z) = (z —

20)120) Gy (2), where Go(z) is a holomorphic function in a neighborhood of zy with Gg(z) # 0.
As [40, Equation (4.31)] we have

(30) tr ((Hg ) K (Hy - z)*l) — d.log det (1 + f((z)) .

On the other hand, by the definition of I(2),

1 ~
l(z0) = % /F 0.log det (1 + K(z)) dz,
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where I" is a small positively oriented circle centered at zp. From (30), we obtain

l(z0) = % Ftr ((Hg — 2)"'K(Hy — z)_l) dz
= % Ftr ((Hg — 2" — (Hy — z)_l) dz

1
= rank ﬁ F(Z — H@)ildz,

In the latter equality, we have used that the trace of the projector coincides with its rank.

Since K is bounded and is of finite rank O(h™3),

|D(z)] < el E@ller < e“oh™ for all z € Q0.
Using Lemma 7, we get (z — Hg)~! = O(1) for Imz > p > 0 and z € Q. Since
(31) (I+K(2)™" = (2= Ho)(= — Hy) ™",

then
I(I+K(z)" Y <Cy, Imz>p>0.

Writing the operator (I + K(z))~! in the form

~

I+ K@) =T-KEUI+K()™
we obtain
|det ((1+ f((z))—l) | < e Imz > p,
which implies
|D(z)| > Ce @M 2 eqin {Imz > p}.

Now, applying Jensen’s inequality in a slightly larger domain, we obtain Theorem 1.

6. REPRESENTATION OF THE DERIVATIVE OF THE SPECTRAL SHIFT FUNCTION

In this section we prove our principal result given in Theorem 2 and a generalization (see

Theorem 5). Moreover, we give a Sjostrand type local trace formula.

The spectral shift function (X, h) (€ D'(R)) associated to Ho, Hy is defined (see [10], [37],

[45]) by
(€N h), f(N) = tx(f(Hy) — f(Ho)), [ €CF(R).

Proof of Proposition 3. The Dirac operator Hy + V is unitarly equivalent to the operator

Ho+V —a Vd, = ene® (Hy+ V)en s,

Then, for f(A) € C§°(R), the SSF &£(A, h) for the operator pair (Hy, Ho+V —a-V®,) satisfies

ENh), fN))p®) DRy = tr(f(HQ +V-a- V‘I)g) — f(Ho))
(32) = tlf(f(ffﬁq’g(ftfo + V)eﬁq’g) — f(Ho))
= tr(ene® f(Hy + V)eme® — f(Hy)).
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—1

Let us now calculate tr (XR [ehlc%f(Ho—l—V)ehcq)g —f(HO)D where xg(z) = X(§), x €
CS(R3), x(z) = 1if |2| <1 and x(z) = 0 if |z| > 2. Using that xgf(Ho+ V) and xrf(Ho)
are trace class operators and the cyclicity of the trace, we get:
tr (X [ f(Ho + V)ere® = f(Ho)| ) = tr (eFe®xnf(Ho+V)er®) — tr (xaf(Ho))
(33) = tr(xrf(Ho+V)) — tr (xrf(Ho))
= tr(xr[f(Ho+ V) — f(Ho)]).

Using Theorem 6.3 of [17], we can take the limit R — oo in (33). From (32), we obtain

(€A h), FN))pr (), p(r) = tr (f(Ho + V) — f(Ho)),

and the proposition follows. ]

In the following, we will use the notations:
H1 = H, K1 ::K:ﬁlﬂ — HLg::ﬁg — Hg and [a]é = a1 — agp.

For an integer m > 3, we define the functions:

(34) oi(z) = (Z2+1)™tr|(H — i) ™H. +1i) " (z — H)™! (1) +Imz > 0.

The o satisfy the relation
(35) o_(2) =04(2), Im(z)<0.
Proposition 8. For a potential V' satisfying the assumption (Av) with 0 > 3, the function
0 — [(H.ﬂ —4) " (H. g+ 1) (2 — H.ﬂ)_l](l) is holomorphic from D7 to the space of trace
class operators. Moreover, for any 0 € D, we have
(36)  0u(z) = (22 + 1)™tx|(Hop— i)™ (H.p+ i)™ (= H.,g)—l];, Iz >0,
Proof. For 8 € R, the operator
(H —i)™™(H. +i)"™(z — H)™ !,
is unitarly equivalent to the operator
(Hog—i) ™(Hg+1i) ™(z—H,p) "
Using the cyclicity of the trace, we deduce

1
(37) ow(z) = (22 + 1)mtr[(H.7g — i) (Hg+) Mz — H) |, £mz>0, 0 R,

According to the proof of Theorem 4, the resolvent (2 — H. )~ is analytic for § € D and
z € QN {Imz > 0}. Then, the function § — (H.g — i) ™(H.p + i) ™(2 — H.p)"! is also
analytic on D,

Now, we treat the difference

1
(Z — H.79)_1(H.79 — ’L')_m(H.ﬁ + i)_m]o = A1 B1Cy — AyByCy

= A1B(C = Cy) + Ai1(B1 — By)Co
(39) 4 (A — 49)BoCo.
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Clearly, the terms A. := (z — H.g) ™! for Im 2 >0, B.:= (H.g—i) ™ and C. := (H.g +i)™™
are bounded.
For any integer m > 3, the term

(39) B1(Ch — Cy) = (31(01 — C){z)° <hvx>m) (<hvx>—m<x>—5) ,

is analytic for # € D with values in the space of trace class operators. This can be proved
using functional calculus in the framework of h-pseudo-differential operators (see [12]): The
first factor By (Cy — Cp)(x)° (hV )™ is analytic for € D}, the second factor ((AV,) "™ (z)~?)
is in the space of trace class operators and its trace norm is bounded by O(h=3). Then, the
left-hand side of equation (39) is in the space of trace class operators and its trace norms
is bounded by O(h™3). The same argument can be used for the terms A;(B; — By) and
(A1 — Ap) By, then their trace norm are bounded by O(h~3).

1
Since the function tr [(H.ﬁ — i) " (H. g+ 1) (2 — H.,g)’l] is analytic with respect to
0
6 € DI and independent of # on the real axis, formula (36) follows. O

Repeating the construction of I/{TL(;, we can construct an operator fAI(),g : D(Hy) — H with

the properties of ﬁoﬂ such that the difference Ky := ffoﬂ — Hj ¢ satisfies the properties of Ky
(see Proposition 7).

Proposition 9. There exists a function ay(z,h) holomorphic in Q, such that for all
z € QN {Im(z) > 0}, we have:

(40) o+(2) =tr|(H. g — z)flK.(ﬁ.ﬁ —z)7! (1) + a4 (z,h),

as (2, )| < CE@R™, e,
with C(2) a constant independent of h.
Proof. For z € QN {Imz > 0}, we have
(41) (Hg—2) ' =(Hyg—2"" 4+ (Hpy—2)'K(Hg—2)"
From the equations (41) and (36), we deduce:
01 () = (= = i)z + i)™ o[ (Hg = 2 (Hog = i)™ (HLo +i)7) |
1

+((z—i)(z+ i))mtr[ ((H.,o —2)UK.(H. g — 2)" (H.p — i)™ (H.g + i)"”) }

= A(z) + B(%).

Starting with the resolvent equation, we obtain:

((z = )z + )" (Hg — i) ™(Hog+1i) ™(H g —2)""

m

= (Hpy—2)"" =) (z+0)f (Ho+i)"
k=1

0

m
— (241 Zz—zk YWH. g +4) ™(H g —i)"
k=1
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Using the last equation, the cyclicity of the trace and Proposition 7 we obtain

B(z) = tr [K (H.g—2)t ((H.,(, ) =S ) o+ i)
k=1
1

k 1 N —k
+ H + H y— )]
Z i kg . ,0 Z) ( ,0 2) 0

= te[(H—2) KL - z)_l)]; +b(2).

Since the operator (ﬁ.ﬁ — 2)~! is bounded and holomorphic in € by construction, b(z) is
holomorphic and bounded by O(h™3).
It remains to show that

. 1
AG) = (= i)+ )" (g — ) (g — i) (g 4 i)
= ((Z — Z)(Z + Z))m tI‘(A\lBlcl — goB()Co),
is holomorphic and bounded by O(h~3).

We recall that the terms A. := (H. g — 2)"! for z € Q, B. :== (Hp—i)™™ and C. :=
(H.p +1)~™ are bounded. Using the assumption (Avy) with § > 3, we treat the difference
185107 — AgBgCy) as . e only difference 18 for the term 1 — Ag)Bo. We write
A1B1Cy — ApByC 38). The only diff is for th Ay — Ag)By. We wri

(A1 = A0)By = (Hip—2)""(Hoo— Hip)(Hop—2)" (Hop —1) ",
with Hog— Hyg = Hog— Hig+ Ko— K.

Then, modulo a trace class operator uniformly bounded, with trace norm bounded by O(h~3),
we have

(A1 —A))By = (Hip—2)"'o ((Hop — Hi)(Hip—i)"™)
o ((Hw —i)™(Hyp — 2) " (Hop — i)_m) :

The second factor (Hog — Hyg)(Hyg — i)~ ™ is trace class and its trace is O(h™3), the first

and the third factors are bounded. Then, the term (//1\1 — EO)BO is analytic for z € Q) with
values in the space of trace class operators and its trace is bounded by O(h~3) and so is the
difference (A1B101 - A()B()Oo). ]

Lemma 8. For f € C3°(R), we have
(42) (€ f) = lim — /f [o4(A+ig) —o_ (X —ig)]dA.

e—0 27
This limit is taken in the sense of distributions.

Proof. We follow the proof of [13, Lemma 1]. Let f € C°(R), f(z) € C5°(R?) be an
almost analytic extension of f and
g(z) = f(z)(z* + 1)

Then
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where L(dz) is the Lebesgue measure on C. Clearly
f(H) = (H —i) "(H +i)""g(H)

- ——/8f (22 + 1)™(H. — i) ™(H. + i)™ (= — H)"'L(d=)

which implies:
o (F(H) ~ f(H) =~ [0+ 1)

1
(43) X tr [(H. — ) TMH. )™ (2 — H.)—l]OL(dz).

We have o.(z) = O(h3|Imz|72) and the derivative d,f = O(|Imz|Y) for all N € N
(f € C§°(R)), so we write the right-hand side of (43) as

(€ f) = tr (f(Hy) — F(Ho)
——im ([ afeeserian@ [ o).

According to Proposition 9, the functions o4 (z + i€) and o_(z — ie) are holomorphic in
{z € Q; Imz > 0} and {z € Q; Imz < 0} respectively. Applying the Green formula, we obtain
the lemma. 0

Before the proof of Theorem 2, let us give the following proposition:

Proposition 10. (see [39], [40]) Let F(z,h) be a holomorphic function in an open simply
connected domain Q containing a number N (h) of zeros. We suppose that,

F(z,h) = 0(1)ePON®) o cq,

and for all p > 0 small enough, there exists C > 0 such that for all z € Q, := QN {Imz > p}

we have
|F'(z,h)| > e CNM),

Then for each open simply connected subset Q € Q there exists g(., h) holomorphic in Q such

that
N(h)

F(z,h) = [ (z = 2)e?™M, 0.9(2,h) = O(N(h)), =€
j=1
Proof of Theorem 2. We follow the argument of Sjostrand ([40]). Let
K(2) =K (2~ Hg)™"
From formula (30) and Proposition 9, we have, modulo a holomorphic function that is O(h~3)
in €,
~ 1
oy(z) =— [@Zlog det (1 + K(z)) ]0’ for all z € QN {Im(z) > 0}.
From Subsection 5.2 the resonances are the zeros of the function
D(z,h) = det (1 + f(l(z)) = O(1)e .

Since the function det(1 + Ky(z)) has no zeros in € (see (31) and Remark 6) , the term
0.log det (1 + I?O(z)) is analytic and using Proposition 10, it is bounded by O(h™3).
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We recall that Res(H) is the set of resonances of H and let
D(Zuh) :G(Z7h) H (Z_w)a
weRes(H)NN

where, G(z, h) and its inverse are holomorphic functions in Q. Obviously,

1
(44) d.log D(z, h) = d,log G(z, h) + Z —.
weRes(H)NQ

Using Proposition 10, we have
|0:1og G(z,h)| < C(OL™3, 2 €,

where Q CC  is an open simply connected set and C(Q) is independent of h.

Now, we treat the non-holomorphic term in (o4 (A +ic) —o_ (XA —ie)) when ¢ — 0, which

is
1 1
E - — - — |, forA € l.
Atie—w AN—ie—w
weRes(H)NQ

If Im(w) # 0, we have

-1 . 1 1 ~ —Im(w)
%me0 \Atic—w A—ic—T oA —w|?’

while for w € R we get

—_Him( 1 ):5@_@0):%&).

2ime—0\A+ie—w A—te—w
The second limit is taken in the sense of distributions.
Lemma 8 and Proposition 9 show that the function r(z,h) = g(z,h) — G(z, h), with g(z, h) =
ay(z,h) + d,Jog G(z,h) 4+ 0.log det (1 + I?O(z)> a holomorphic function in  and satisfying

the following estimate:
(45) l9(z, )| < C(QR™°, z e W,
with C'(2) > 0 independent of h. O

Theorem 2 can be extended to a more general situation:

Theorem 5. Assume that Hi = Hy+ Vi, Hy = Hy + Va. The potentials Vi, Va (resp.
V = Vi — Va) satisfy the assumption (Av) with 6 > 0 (resp. 6 > 3). Let Q be a complex
domain satisfying the assumption (A?—EZ), W € Q be an open simply connected and relatively
compact set which is symmetric with respect to R. Assume that I = W N R is an interval.
Then for all X € I we have a representation of the derivative of the spectral shift function
associated to the operator pairs (Hy, Hy) of the form:

—Imw

(46) f’(A,h):%Imr(A,h)—i—[ PR SR eV

|A — wl? 9
weRes(H.)NQ weRes(H.)NI

Im w0



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 25

where r(z,h) = g(z,h) — g(z,h), g(z,h) is a holomorphic function in  which satisfies the
following estimate:

(47) l9(z, )| < C(W)h™2, ze W,
with C(W) > 0 independent of h. Here 6,(-) is the Dirac mass at w € R.

Proof. We denote Hyp = U@HQUG_I (Ug defined in Section 3). As in Subsection 5.1, one
constructs Hy g : D(H) — H with the following properties:

Ky := Hyg—H> g is of finite rank O(h™3), has compact support in the sense that Ko = x2K2x2
if x2 € C§° is equal to 1 on B(0, R) for some sufficiently large R, and

(ﬁgﬂ — 21 =0(1) : H+—— D(H), uniformly for z € Q.
We repeat the proof of Theorem 2 replacing Ky by K9 and I?o(z) by [?2(2:) = Ky(z— ﬁg,g)’l.
Consequently 0,log det (1 + IA(O(Z)> is replaced by 0,log det (1 + .[?2(2)) which is a non-

holomorphic function. We treat this term as the term 0,log det (1 + K, (z)) in the proof of
Theorem 2. O

Remark 8. Equation (6) shows that the spectral shift function (A, h) satisfies

1 (A —Imw 1
E(Ah) — &N, h) = —/ 7d,u—i——/ Im r(p, h)dp
(A1) = €00, ) X o paptet g  morten
weRes(H1)NN

Im w0

(48) +  #Hu e o, Al p€og(H)}

In particular, for X\ € I\oq(H1) the distribution £(\, h) is continuous, and the function
n(A k) = n(Xo, h) = E(A h) = E(Ao, h) — #{p € [Ao, A; p € oa(H1)}

1s real analytic in I. ]

Repeating the argument used in the proof of [8, Theorem 4], the following theorem is a
direct consequence of Theorem 2.

Theorem 6. (Local trace formula) Let Q be an open, complex, simply connected and
relatively compact set satisfying assumption (Aé) such that I = QN R s an interval.
We suppose that f is a holomorphic function in Q and 1 € C§°(R) satisfies

[0, d(IN) > 2,
$(A) = { 1, d(I,\) <e,

where € > 0 and sufficiently small. Then

wlHHENE = S F2)+ Bagu(h), with

z€Res(H1)NQ

| Eq,pp()| < M (4, Q) sup{|f(2)]; 0 < (89, 2) < 2¢, Im (2) < O}h~°.
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7. WEYL ASYMPTOTICS

In this section we obtain a Weyl-type asymptotics for the spectral shift function &(\, h)
associated to the operators Hyp and H; = Hg + V. Here we assume that V is an electro-
magnetic potential (8),

3
Hy =— Z ;(ichdj + eA;) +mc*B + ev.
j=1

In the following, we fix Iy C R\{#mec?} and choose Wy an open simply connected, relatively
compact subset of €2 satisfying assumption (A;g) such that Iy = Wy NR.

For the h-pseudo-differential and functional calculus for the Dirac operator, we refer to
(112],[10],[35],]20]). We recall that H, = Op}(D,) and ¢(H,) are h-pseudo-differential opera-
tors for a smooth function . The semi-classical symbol D, is defined in (10).

Let us introduce the intervals I, Is C Iy neighborhoods of A;, A respectively such that,
each X\ € I} U I, is a noncritical energy level for H (see Definition 2). Let ¢; € C§°(R,R™") be
such that
(49) p1=1onl;, po=1onlyand 1+ w9+ @3 =1o0n I.

Consider a function (t) € C§°(] — d1,01]), 6(0) = 1, 6(—t) = 6(t), so that the Fourier
transform 6 of 6 satisfies #(A) > 0 on R, and assume that there exist 0 < 9 < 1, dy9 > 0, such
that 8(\) > dp > 0 for |A| < ¢p. Next, we introduce

(F10)(N) = (2mh) ! / (0 dt = (2mh) (= h ).

To prove Theorem 3, we need the proposition:

Proposition 11. For the trace involving H,, v = 0,1, we have for X € I;,
1
o) ([0 Hp)])) =m0, j-1e,

with wj(A\) € C§°(I;) and O(h™2) uniform with respect to X € I;.

Proof. Proposition 11 is close to the calculation of the trace in [5, Section 4] and to the
appendix of [8] for the Schrédinger operator. But, here we use a trick of Robert [10]. We fix
j = 2 (it is similar for j = 1). The proof of (50) is obtained following these two steps:

e First, we recall that A € Iy and Supp 6(t) C [—01,01]. Let us write

T = tr [(fh—le)(A - H.)gpg(H.)Ll):tr [/ %e“()‘_H‘)hlm(H.)dt]
1

- / e ()t oy (H )]t

1
0

In the order to calculate the trace
tr(f(H1) — f(Ho)), forall f € C3°(R\{£mc’})
we use [10, Proposition 3.2]. If we note W(h) = Q — 2i[Q, A(h)] with Q = H} — HZ,
A(h) = &(z - hdy + hOy, - z) and [Q, A(h)] = QA(h) — A(h)Q, we have
(51) tr(f(Hy) = f(Ho)) = tr(W(h)(Hf —m*¢")~" f(H)).
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Applying formula (51) for f(A) = e ™" py(A), we have

_

- 27h

Remark 9. Of course (H? —m?2c*) ™1 is not well defined, however for f € C§°(R\{£mc?}), we

can define (H? —m?2ct)~1f(H1) as the self-adjoint operator o(Hy) where ¢ € C$°(R) satisfies:
() = (A2 —m2ch) 7 F(N) for A # £mc?,

A= 0 for A\ = +mc?.

e Now, we treat 7 following the analysis of [5, Section 4.2]. By the h-pseudo-differential
calculus, we obtain the existence of a h-pseudo-differential operator S which is trace class with
symbol

(52) s(x,y, &, h) € SO((z)~°(6)™N), YNeN, d> 3,
having compact support in € and in (z —y) (i.e. supp_,(s) ={z -y, 3&; (z,9,§,h) €

supp(s)} is compact) and support in {(z,€); |z| > R, (x,&) € Dy'(I2)}, with Dy the semi-
classical symbol of Hy, so that

T = ﬁtr < / eit)‘h_lﬂ(t)e“th_ISdt> +O(h™).

Using Theorem 9 in Appendix A and the hypothesis on S by composition of Fourier integral

/ N g (1)t (W(h)(Hf - m2c4)*1e*itH1h”¢2(Hl)) dt.

operators, we obtain a Fourier integral operator i = Z/lt+ +th_, such that for || < 1 and 01
sufficiently small, we have

(53) [t — =Sy = O(h),
where the kernel of the operator [ e (1)Ut is equal to K+ (x,y; h) + K~ (x,y; h) with

R (ryih) = g [ [ SO0 0 B 4yt

The amplitudes Ei, satisfy
E*(t,2,y.6:h) € 8%((2)°(6)™"), YN eEN

and are compactly supported in  and in (x — y).
Using the Taylor formula for the functions ®¥ (¢, z,¢) in a neighborhood of ¢ = 0, we have:

dE(t 2, &) = - € — tHF (2,8) + O(t?).

We will deduce that 7 =7 + 7 —, with

1 ) _ ~

T = G / / / RO N (1) B (1, & h)dbdedS + O(h).

7r
Moreover, the symbol Ei(t,x,x,ﬁ;h) has support in {(z,§); |z| > R, |[¢| < C, (z,§) €
Dy (I2)}, so that for all a and |t| < &y, we have
(54) 0°EE (t, 2, 2,6 h)| < Cola)™%, §> 3.
The last estimate enables us to calculate 7 by using an infinite partition of unity

Z U(r—a)=1, VzecR3
aEeN?
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where U € C§°(K), ¥ > 0, K being a neighborhood of the unit cube. Consequently, for every
fixed h €]0, ho], we have

T = e h lim /// i(EA+ O (12.6)~a )R 'o(t)
T m—o00

x> W(w— @)EE(t, 2,2, & h)dtdrdE + O(h™) = lim IE 4+ O(h™),
m—0o0 m

|a|<m

and we reduce the problem to the analysis of the integrals I;*. Concerning the phase function,
we observe that

(55) A4 OF(t,2,8) —x - € = t(\ — Hi(2,€) + O(1)),

where O(t) and its derivatives are uniformly bounded on the support of H(t)Ei(t,m,az,f; h)
since the derivatives of (®*(¢,z,£) — z - £) are bounded on this set.

Now we look for critical points of the phase function (tA 4+ ®%(t,2,£) — x - €). Putting the
derivative with respect to t equal to 0, we see that Hi (x,£) = A+O(t). Since 817§H1i(;1:, §) #0,
when H:(z,€) = A, and putting the derivative of the phase function t(A — Hi (z,&) 4+ O(t))
with respect to Hli(x,f) equal to 0, we have

t=0(t).

Then the phase is critical for |¢| small precisely when ¢t =0, \ = Hli Near any such critical
point we choose local coordinates ¢, Hf[(aj,g), w1, -+ ,ws and consider the Hessian of (55)
with respect to t, Hli(x,f) at the critical point:

(5

This is a non-degenerate matrix of determinant —1 and of signature 0. By the stationary
phase method we obtain

= = 1/’i / S W — a) B0, 2, €, X ) LE (duw) + O(h?),
A=HF

U Jal<m

where Lf(dw) is the Liouville measure on A = Hi" and the remainder O(h~2) is uniform with
respect to A € Iy and m € N. Here v»*(\) € C§°(I2). Taking the limit lim,, o I;5, we obtain
an asymptotics of 7. 0

Lemma 9. With the above definitions of 0(t), £(\, k), ¢;(N), I;, j=1,2, we have

A A
(56) / F0 % o€ (. h)dpt — / o3 (WE () = O(h™2), A€ I,

Proof. We deal only with the analysis of (56) for j = 2 since that for j = 1 is similar.
According to Theorem 2, there exists a holomorphic function r(z,h) in Q such that for all
A€ ly=WyNR, we have

5’(A,h):%lmr()\,h)+ ) LN N WS

| — wl?
weRes(H;)NQ weRes(H1)nIy
Imw#0
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where 7(z, h) satisfies the following estimate:
(57) r(z, )] < CW)R™2, 2 €W,

with C'(W) > 0 independent of h. Let us denote

A
Gy (A) = l/ Im r(p, h)p2 (1) dp,

T J 00

A —Imw
(58) My, (A) = Z / m%(#)du + Z 2 (w).
weRes(H)NQ weRes(Hy)Neo, ]
Imw=0

Using the Cauchy inequality and (57), it follows easily that
_ -3 _ -3
G;Q()\) = O(h™?) and GZQ()\) =O0(h™?),
and we immediately obtain
(59) Filox G, — G, =O0(h?).

Now, we want to apply a Tauberian theorem (see [35, Theorem V-13 |) for the increasing
function M, (). For this purpose, we need the estimates

L
dX
and the equality My, (1) = Gy, (1) =0, p <infl.

The first estimate in (60) follows easily from equation (58) with the upper bound of the number
of the resonances in §2 (see Theorem 1), and the second follows from (50) and the equation

(60) Mg,(A) = O(h™?), —<(F; 10 % My,)(A) = O(h™?), VAER,

d

d
5(]—',:10 s My )(N) = F 10 028’ (N) — —(F; 10 % Gy ) ().

dA

Then, according to the Tauberian theorem we have
(Fp 105 M) (V) = Mg, (V) + O(h™%),

this enables us to obtain

A A
/ ()€ (W)dp = My, (N) + /_ G, (1)dp

—00

A

d _ _

= / @(}'hl@*Mm+fh19*G¢2)(u)du+O(h 2
—00

A
_ / F10 % o€ (1, W)y + O(h™2),
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Proof of Theorem 3. For \; € I1, A\ € I3, using the functions defined in (49), we have

A Al
EOVB) — €O, h) = / 1 ()€ (1, h)dps — / 2(1)€" (1, h)dp

—00 —00

Al A
- / sol(u)é’(u,h)dwr/ @2 ()€ (1, h)dp

—00 —00

A
(61) + A o3 ()€ (. h)dp.

1

Since ¢; = 0 on I3_; for j = 1,2, the first term (resp. the second term) is indepen-
dent of A € I (resp. A\; € I1) and is equal to trlp;(H)]} = C(p1)h™2 + O(h™2) (resp.
tr[ip2(H)]§ = C(p2)h 3 + O(h™?)), where C(yp;) is a constant depending on ¢; for j = 1,2.
Since ¢3 = 0 on I;, j = 1,2, the last term is independent of A € I, Ay € I; and is equal to
C(p3)h™2 + O(h™2), where C(y3) is a constant depending on ¢3. The proof of these results
is based on the functional calculus in the framework of h-pseudo-differential operators.

Using the equations (50), (56) and (61) we complete the proof of asymptotic expansion (13)
by writing
(Fa 0% (9NN = (F 0N = )pi(),€)
= o ([ 00 - Hp )],
(62) = wi(MNh T +O0(h™?), j=1,2
It remains to compute the Weyl term (14).

According to the definition of the spectral shift function £(A, k) in (5), we have:
(63) (€A h),0(N) = tr(e(Hr) = ¢(Ho)), ¢(A) € Cg°(R).

We use weak asymptotics which is a direct consequence of the functional calculus in the
framework of h-pseudo-differential operators, as established in [12], [35], [10]. We find

H, =O0pf(D,), v=0,1, (D, defined in (10)),
and

tr(p(Hy) — @(Ho)) = h*> y(o)h?
720

= h_370(90) + O(h_2)?

with 0(¢) = (2m) 7 [gafps tr (2(D1(z,€)) — 9(Do(,€))) dads.
(tr(A) is the trace of the matrix A).

The matrix D, (z,£) is Hermitian and has two eigenvalues H.F(z,€) (see (11)), whence

tr (o(D1) — (Do) = 2 (¢(H") + @(Hy ) — p(Hy) — (Hy ) -
According to the asymptotic expansions (13) and (63) we obtain
w(A A1) = w(A) —w(A),
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1
w()\):—g/ / dg—/ dg—/ d£+/ d¢ | da.
42 Jra\J i (2,6) < HE (2.6) <A HY (2,6) > Hy (2.6)>

Putting ¢, = ¢ — veA(z) for v = 0,1 and ¢ = rw (w € S?), we get

with

1
_ 2
LHE <2\ & <<3 T (me 1A ) U))2> TG

2 2 -
1
& <C3 + (mc® + 1/76(142_ U_))2> ) <+ <)\ - 1/76(11+ ;_ v_)> )
thus
L (04 +v-) (00 = v-) ) ?
T e(vy +v_ e(vy —v_
[, - de = (01 = S - e L)
Hf(g<x JHy (1.2 +
3
dr (o ewp vy g elop—v) o)\
T (- gt e e )
and
Am 1o 212\ 5
— de + de = T (A = (m*)?)2 | for £X >0,
HE (@,)<A Hy (@,)2A 3
with (z)4+ = max(z,0) and (z)- = maz(—=z,0) for z € R. O

Remark 10. Theorem & can be extended to the operator pairs (Hy = Ho+ V1, Hy = Ho+ V),
where the potentials Vi,V are electro-magnetic potentials

3
) =e(—a- A v\ z) = — - eA(z e U+($)IQ 0
Vi) = o A = =3 oy e+ ( 0 v'(ﬂc)Iz)

satisfying assumption (Av) with § > 0 (or ||Vj(z)|| — 0) and the potential V = Vo — V;
satisfies assumption (Av) with 6 > 3:
For all X\, A1 noncritical energy levels for Hy, Hy such that +mc? € |\1, \| and h €]0, ho, we
have the asymptotic expansion
(64) EAR) = €A, h) = w(A M)A+ O(h2).
Here the O(h™?) is uniform for X (resp.\1) in a small interval I (resp. Ip). The first term
w(\, A1) € C®(Iz x I1) is given by

w(A A1) = w(A) —w(\)
with,

(65) w()) = # /R3 WA vy ) = Wi (A oy, v)] da

3

2 A 2
where Wi (A a,b) = ( = e(a+b) \© _ me + e(a—b) > '
( 2 >:|: ( 2 ) N

In this setting, we do not have a formula like (51). But it could be possible to use the ap-

proach due to Bruneau-Petkouv in [8]. For this we need more information on the approximation

—itHjh ™1

of the propagator e by the Fourier integral operator Uy.
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8. RESONANCES IN SMALL DOMAINS

In this section, we assume that the Hamiltonian is H = Hg + V, where V is an electro-
magnetic potential:
3

H=- Z ;(ichdj + eA;) +mc*B + ev.
j=1
8.1. Upper bound for the number of resonances in domains of width h. We adapt,

for the Dirac operator, Theorem 1 of [9] which is based on a representation formula for the
spectral shift function (see Theorem 2).

Theorem 7. Suppose that each A € [Ey, E1] is a non-critical energy level for H. Then for
h €10, ho|, the following assertions are equivalent:

(i) There exist positive constants B, C, b, hy, such that for any A € [Ey — b, E1 + b),
h €]0,ho] and h/B < p < B, we have
#{2€C: z€Res(H),|z -\ < p} < Cph~3.

(i1) There exist positive constants By, Cy,e1, h1, such that for any A € [Ey — 1, E1 + €1,
h €]0,h1] and h/B1 < p < By, we have

|£()‘ + P h) - £(>‘ - P h)‘ < Cphig.

As a consequence of Theorem 7, we have an upper bound O(h~2) for the number of reso-

nances for the semi-classical Dirac operator close to a non-critical energy level in a domain of
width h:

Proposition 12. Assume that V is the electro-magnetic potential (8) satisfying the assump-
tion (Av) with 6 > 3. We suppose also that each X\ € [Ey, E1] is a non-critical energy level for
H. There are positive constants C, B, b, hy such that for any A\ € [Ey — b, Ey + b], h €]0, hg]
and h/B < p < B, we have

#{2€C: zcRes(H),|z — A < p} < Cph™>.
Proof. It follows from Theorem 7 and equation (13). O
8.2. Breit-Wigner approximation. In this part, we consider small domains of width h, and

we prove a Breit-Wigner approximation for (A, h) (see [32], [33], [16], [6], [8]). Let n(A, h) be
the real analytic function defined by

n(Ah) =&\ h) — 3w € [Eo, Al : p € oa(H)}.

Using Proposition 12 and the arguments used in [8, Section 6], we obtain a Breit-Wigner
approximation for the derivative of the spectral shift function £(A,h).

Theorem 8. (Breit-Wigner) Assume that V' is an electro-magnetic potential (8), for any
A € [Ey, E1] a non-critical energy level for H, 0 < p < h/B, 0 < By < B, and h sufficiently
small, we have

nA+p,h) —nA—ph) = D we_(w,[A—p, A+ p]) +O(p)h >,
w€ERes(H)
Imw#0, |w—A|<h/B
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where B > 0 is a positive constant and wc_ is the harmonic measure

wC_(w,E)z—l/ W)y Ecr=oC. .
E

7w Jg |t —w|?
Using Theorem 7 and repeating with little modifications the arguments used in |7, Section

6], we obtain the following corollary which entails also a trace formula in small domains.

Corollary 1. Under the assumptions of Theorem 8 and supposing that [Ey, E1| contains only
non-critical energy levels for H, for each E € [Ey, E1] there exist constants Cy > C1 > 0, hy >
0 so that for |\ — E| < C1h, h €]0, ho], we have

1 Im(w _
(66) g\ h) = - > ﬁ + ) () +omT).
weRes(H) weoy(H)
|[E—w|<Cah |E—w|<C1h

Here 0,(+) is the Dirac mass at w € R.

Appendix A. Construction of I
In this appendix, we construct a parametrix at small time of the propagator for the Dirac
equation in an external electro-magnetic field
ihdy = Hy,

with Hy = Ho + V. Here Hj is the selfadjoint operator defined in (1) and V is an electro-
magnetic potential (8).

Theorem 9. (Approximation of the propagator) There exist 51 > 0 small enough and
a Fourier integral operator Uy = U,” + U, with

1 (Dt -1
UES(0) = e [ [ 47O B g ) ),

defined for |t| < 01 such that:
e The amplitudes E*(t,z,y,&;h) € SO(1).
o |[tfy — e LT = O(h™), uniformly for |t| < 6;.
e The phase function ®*(t,z,€) — x - € and its derivatives 8?85@2 (®F(t, 2, &) —x - &)

are uniformly bounded for (t,z,€&) € [=d1,61] x R3 x B(0,C1), (o, 3,7) # (0,0,0) and
Cy1 >0 (see(71)).

With a different approach, a similar result has been obtained by Yajima [47] for a scalar
electric potential (vy = v_).

Proof. We consider the equivalent problem for U

ihOUy — Hily =0,
(67) { U, =1I.

We solve this problem using the B.K.W. method. We assume that the kernel of the operator
U, is K;, where

1
(2mwh)3

Ki(x,y;h) = / @OV O Bt gy € h)dE,
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with E(t7 x,Y, 6’ h) = EO(tu x,Y, 6) + hEl(t7 x,Y, é.) + e

Thus, if we look for E(t,z,y,&; h) having the asymptotic expansion above, it is enough to
solve (in some fixed neighborhood of ¢ = 0) the sequence of equations

0 = (8t<I>(t,x,§)—{—ca-Vx(I)—ea'A—{—mczﬂ—l—ev) Ey,
i(0 + ca-Vy)Ej =(0®(t,z, &) +ca- V@ —ea- A+ mc?B+ ev) Ejiq,
E0(07$7§) = I47
E;0,2,§) =0, forj>1.

On the support of Fy, we deduce the eikonal equation

det (9, ®(t,x,€) + ca - V@ — ea- A4+ mc?B + ev) =0,
‘P(O,J},f) =T 5

(68)

(69)

The system (69) is equivalent to

{ ODE(t,2,8) + Hi (2, V,®) =0, (see (11)),

(70) OF(0,2,8) =2 - £

The latter system can be solved using the Hamilton-Jacobi method (see [2]) and all derivatives
(71) 0 000) (25 (t,2,¢) — x - €)

are uniformly bounded for (¢,z,&) € [~61,01] x R? x B(0,C1) and (o, 3,7) # (0,0,0).
Using the Taylor formula in a neighborhood of ¢t = 0, the two solutions of (70) satisfy:

OE(t,x, &) = - € — tHF (2,8) + O(t?).
Then Uy = L{t+ + U, , and the kernel of the operator U; is K; = K;r + K, , with

/ @ e =y ORT By oy e p)de.

1

We look for the amplitude ET (¢, z,y,; h) having an asymptotic expansion in powers of h:
Ef(t,x,y,&) + hEF (t,x,y,6) + - .

Consequently, the coefficients EJi (t,z,y,&) are the solutions of the transport equations

0= (8t¢>i +co- V@ —ea- A+ me?p + ev) E(;—L,
+

(72) i(0 +ca- V) B = (0,% + ca - V0% —ea- A+ mc?B + ev) Ejj_l,
Ef(0,2,6) + E; (0,2,6) =0 forj>1,
Ey(0,2,6) =1L (2,6),

Resolution of (72).
Let us denote by L = 0y + car - Vo, with o -V, = Z?Zl @;0z;. The matrix

ME = 9,8F +ca- V8 —ea- A+ mc?B + ev,

is Hermitian and has two real eigenvalues which are linearly independent with multiplicity 2.
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First, we multiply system (72) by the column-vector N; = (1,0,0,0)f, the superscript t
indicates the complex conjugate of the transposed. We denote
(73) Ef =E Ny forj=1,2,---, Ey(0,2,&) =TI (z,£) M.

Since det(M*) = 0, there exist l]f and rk left and right eigenvectors of the matrix M¥,
corresponding to the eigenvalue zero, such that

(74) MErE =0, FME=0, F=0H k=12
(here r]f is a column-vector and lki is a row-vector). We choose
ut 0+ wy —u”
e I B S e B A N e
wi —vt u- 0
(75) Frif = (F2p5ut)oy,  vik=1,2.
Here u*,v* and wi[ are defined by

+ + + + + .+ + + .+
i:p4 + p5, Ui:pga w+:ip1 +1py, wizipl—ZPQ,

where pf = mc? + L=l pE = got et ok o Cax]-@i —edj, for j =1,2,3.
It is easy to see that the vector-valued functions rki(t x,€) and l (t,z,£) can be chosen

smooth in ¢ and x and nowhere vanishing. All the derivatives of r, ,li k = 1,2, are uniformly

bounded for (¢,z,€) € [—d1,01] x R? x B(0,C1). Then it follows from the first equation in
(72) that

Egy = 05 (8,2, &)ri (t,,€) + 0g5(t, 2, )ry (12, £),
where 0&1,0§2, are scalar-valued functions. If we multiply the second equation in (72) for
7 = 0 on the left by lf: for k = 1,2, we deduce the following differential equations for aa—Lk:

{ liL(Uo 17"1 )+ liL(Uarzi) =0,
lécL(Uo 171 T+ l2 (U§2T2i) =0.

We conclude
4

+ +q 3 g+ o+ + 3 g+ o+ +
r1O(og) Fed i lajry0s,(0g) +ed iy I ayry 0p, (0 5)
+r Ay +ry
+17 L(ry )‘70,1 + 17 L(ry )‘70,2 =0,
+ +q 3+ o+ + 3 4+
Ty 0i(0g2) + D51 lyayry 0p,(0gs) + 3 Iy ayry 1 0: (‘70 1)

+l2iL(Tf)0§1 + ZZiL(rQi)U&2 =0.

\

We now use Lemma 10 (see below) in system (76). Since p5i £ 0, ut = p4i IFpg[ = 0 then,
after multiplying (76) by (F2pZu®)~!, (76) can be written as

M) DU =rtap = Gty () L Eii)(“oi)

09,2
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with D* =9, +a* -V, =0, + Z?’:l a?c(t, )0y, and

+ + +\—1/7% + + + + +
a” =c(F2prur) (lTarry, Foory, [Fasry).

Thus the function J(:)tk can be found provided its value is known for ¢ = 0, and it is as smooth

as agtk(O,x,f) (for more details, see a method for solving a similar equation in [38]). The
equality

Ey1(0,2,8) = 051(0,2,)r (0,2,€) + 055(0,2,&)ry (0, 2,€) = Iy (, N1,

gives the value of O'(:)t at t = 0.
Since the derivatives of aoik, rki, for k= 1,2, are uniformly bounded, then all the derivatives

(8?8582@%1) are uniformly bounded for (a, 3,7) € N x N3 x N3.

It follows from the second equation in (72) for j = 0, that
iLEy, = M*Ef,,

ie., E 1= Uflrli + 01 27"2 + h , where 01 . 18 @ scalar-valued function for k = 1,2, and h%
is expreqqed in terms of LEOJ. To find Jitk it is sufficient to multiply the second equation in
(72) for j =1 on the left by I for k = 1,2. Then

lli (‘71 171 )+ li (‘71 272 5+ liL(hi) =0,

liL(Jl 1M1 o)+ liL(% 272 >) + ls L(hic) =0.

From this equation, Jitk can be found provided the function oy 4(0,x) is known. By the

same procedure, for all j =1,2,---, we obtain
Uirli—i-a +hi :Ej.[l,
+ + j: e ’
liL( ) liL( i 27“2 ) liL(hi) =0,
lL( )—I—lL( 327“2)+Z2L(h) =0.
Fort=0, j=1,2,---, we have
00T +0oors = PN, ofyrf + o +olrd 4 o5,y = —(hf + k),
and the quantity hji is determined provided E(jfl,Efl,--- ,Ejjil 1, are known. Solving the
+
differential equation for Jj-t = ( ij’tl >, we find these functions for all sufficiently small ¢.
3,2

Repeating this group of calculations, multiplying by No = (0,1,0,0)", N3 = (0,0,1,0)" and
Ny = (0,0,0,1)" instead of Ny in (73), we find E;y= E;' Ny, E;3= E; N3 and Ej = E"Nj.
Consequently, we have:

Proposition 13. There exists a family of matrices

Ei (E]:tl? E;Ew Ejigv Ef4)’ forj >0,

solution of (72). Moreover, for all j > 0, Eji € C* and all derivatives (af‘afagE]i) are
uniformly bounded for all (t,z,&) € [~01,61] x R3 x B(0,C4) and (o, 3,7) € N x N3 x N3,
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Consequently, the Borel procedure provides a symbol E*(t,z,y,&;h) € S°(1) with com-
pact support in £ and (z—y) with Eoi(t, z,y, f)—l—hEljE (t,z,y,&)+- -+ its asymptotic expansion.

Desired estimate.
Next, we remark that for all N € N:

N
(ihdy — Hy) [ /@ EeOvORTEN it | = (@5 () -y Op!
7=0

X

N . ;
S o(hL(ES) + MEE; )b
(78) = Pn(t,z,&h)RY,
and all derivatives Dg‘éPN(t,x,f; h) are bounded as h — 0 for all . Then for all N € N,

(79) thoy — Hilly = O(hN),
U =1+ O(hN),
thus
d( +itH h—1 _ N
(e Us) = O(h?Y),
(80) { U =1+ O(hN),

where O(hV) is uniform in ¢ and corresponds to the norm in £(L?). Then we get:

(81) |ty — e = O(h).

Lemma 10. Under the notations used above, we have
(82) lliajrli = l2iajr2i, lliajTQi = l2iaj7"1i =0, j=1,2,3.
Proof. As Rubinow and Keller in [38] let us work in a general situation.

We consider the n Hermitian matrices M), and n real scalars p,, p = 1,--- ,n. Let G be the
Hermitian matrix defined by

n
G = ZpuMu'
pn=1
Let A be a multiple eigenvalue of G and By, - -- , By, a set of associated orthormal eigenvectors
which are differentiable functions of p,. Then
(83) BB, = 0,
(84) GBr = MABg.
If X(p1,---,pu) is differentiable, we differentiate (84) with respect to p, and obtain
0By, oA 0By,
(85) M, By, +G—=—=—DBr+\——.
a 8])“ 8])“ 8])“

The multiplication of (85) on the left by B;-r, the use of (84), and the fact that G is Hermitian
yield

(86) BIM, By, = =4
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In order to treat our case, we take
5
+ +
G=M=> ptM,,
p=1

where M; = «; for j =1,2,3, My =  and Ms = I; are Hermitian matrices (o;, 3 are the
Dirac matrices) and pi are five real scalars.

We also take \* = pF + \/(pli)2 + (pF)2 + (pF)2 + (pf)? and F* the point with coordinates

pfj: pj.[ = c@qu)i —eAj for j =1,2,3, pjf =mc? + 76(“;”‘), pSi = 0,0F + 76(”;1)‘).

When ®F satisfies (69) and (70), 7,75 are two orthogonal eigenvectors of M™ corre-
sponding to the eigenvalue \* = A*(F*) = 0. Since |e(vy —v_)| < 2mc? (see (9)), AT is
differentiable near the point F*. Now, we apply (86) with B]T» = lj-c and By, = 7‘2:. After the
normalization of 7"]j€[,lji we obtain

N (pf,--- ,pfr,t)‘
dpis

and we have proved the lemma. ]

I M = (200" ),

F*
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