
RESONANCES AND SPECTRAL SHIFT FUNCTION FOR THESEMI-CLASSICAL DIRAC OPERATORABDALLAH KHOCHMANAbstrat. We onsider the self-adjoint operator H = H0 + V , where H0 is the free semi-lassial Dira operator on R
3. We suppose that the smooth matrix-valued potential V =

O(〈x〉−δ), δ > 0, has an analyti ontinuation in a omplex setor outside a ompat. Wede�ne the resonanes as the eigenvalues of the non-selfadjoint operator obtained from theDira operator H by omplex distortions of R
3. We establish an upper bound O(h−3) for thenumber of resonanes in any ompat domain. For δ > 3, a representation of the derivativeof the spetral shift funtion ξ(λ, h) related to the semi-lassial resonanes of H and a loaltrae formula are obtained. In partiular, if V is an eletro-magneti potential, we dedue aWeyl-type asymptotis of the spetral shift funtion. As a by-produt, we obtain an upperbound O(h−2) for the number of resonanes lose to non-ritial energy levels in domains ofwidth h and a Breit-Wigner approximation formula for the derivative of the spetral shiftfuntion.Keywords: Semi-lassial Dira operator - Resonanes - Trae formula - Spetral shift fun-tion - Weyl-type asymptotis - Breit-Wigner approximation.Mathematis lassi�ation: 35B34 - 35P05 - 34L40 - 81Q20 - 81Q10.1. IntrodutionThe resonane theory for the Shrödinger equation has been developed following severalapproahes. Among them we an mention the analyti dilation (see [1℄) or the analyti distor-tion (see [22℄) and, in the semi-lassial regime, that related to the work of Hel�er-Sjöstrand[21℄. In [19℄ Hel�er-Martinez showed that the di�erent de�nitions give the same resonaneswhen one an simultaneously apply them to an operator. For the three dimensional Diraoperator, Seba [42℄ de�ned the resonanes as omplex eigenvalues of the operator obtained bya omplex dilation. Applying the approah of Hel�er-Sjöstrand [21℄, Parisse [30℄ has studiedthe Dira resonanes in the semi-lassial regime, with some saling funtions. The last twoworks deal with analyti perturbations near the real axis.The onept of the spetral shift funtion has been introdued by Lifshits [26℄ in onnetionwith problems in quantum statistis and solid physis. Thereafter, a mathematial theory ofthe spetral shift funtion has been onstruted by Krein [25℄. Moreover, in [3℄ Birman-Kreinfound a onnetion between sattering theory and the theory of the spetral shift funtion.A detailed presentation of the theory of the spetral shift funtion an be found in [45℄. Fora survey onerning the spetral shift funtion (SSF) for Shrödinger and Dira operators orthe asymptoti expansion of this funtion, we refer to Robert [36℄ and to the referenes giventhere.A representation of the derivative of the sattering phase in terms of resonanes has beenestablished for Shrödinger operators. Suh representations have been suessively obtainedby Melrose [27℄ for obstale problems in the high energy ase, by Petkov-Zworski [32℄, [33℄1



2 ABDALLAH KHOCHMANfor "blak box" sattering with ompat perturbations in the lassial and the semi-lassialases and by Bruneau-Petkov [8℄ for long-range perturbations in the semi-lassial "blak box"framework. The results in [8℄ have been generalized by Dimassi-Petkov [13℄ for non-semi-bounded Shrödinger type operators. As a by-produt, they prove a Weyl type asymptotisfor the sattering phase. Moreover, Weyl asymptotis an also be obtained by representationof the derivative of the spetral shift funtion involving the trae of the ut-o� resolvent (seeRobert [37℄, Bruneau-Petkov [7℄ and Nakamura [29℄).Conerning the Breit-Wigner approximation for the derivative of the spetral shift funtionin the Shrödinger ase, similar results have been obtained in a partiular semi-lassial set-upby C.Gérard-Martinez-Robert [16℄ for short range potentials on R
n and by Petkov-Zworski[33℄ for a general ompatly supported perturbation (see also [7℄, [6℄).For Dira operators, Bruneau-Robert [10℄ established an asymptoti expansion of the sat-tering phase s(λ) and its derivatives in the high energy regime and in the semi-lassial regimefor λ in a non-trapping energy interval. For an interval I ⊂] − mc2,mc2[ with non ritialextremities, Hel�er and Robert in [20℄ gave an asymptotis of the number of the eigenvaluesin I for salar potentials. Nevertheless, we are neither aware of works dealing with the linkbetween the derivative of the SSF and resonanes for the semi-lassial Dira operators (in thespirit of Petkov-Zworski [33℄ and Bruneau-Petkov [8℄), nor of papers giving the Weyl asymp-totis of the spetral shift funtion for Dira operators in any interval I.The purpose of this work is to extend the de�nition of resonane for analyti perturbationsoutside a ompat set. We de�ne the resonanes for the semi-lassial Dira operator as thedisrete eigenvalues of the non-selfadjoint operator obtained from the Dira operator H by ageneral lass of omplex distortions of R

3. We prove that the resonanes are independent ofthe distortion (see Setion 4). We establish an upper bound for the number of resonanes in aompat domain Ω (see Setion 5). The seond goal of this work is to obtain a meromorphiontinuation of the derivative of the spetral shift funtion ξ(λ, h) related to the resonanes forthe semi-lassial Dira operator (see Setion 6). The latter is losely related to trae formulae(see [8℄, [39℄, [40℄, [32℄, [33℄, [41℄) and to resonane expansions (see [43℄, [11℄). Thereafter, in thease where the potential is an eletro-magneti potential, we dedue a Weyl-type asymptotisof the spetral shift funtion (see Setion 7). As a by-produt, we obtain an upper bound
O(h−2) for the number of resonanes lose to non-ritial energy levels in domains of width
h (see Subsetion 8.1), as well as a Breit-Wigner approximation for the derivative of the SSF(see Subsetion 8.2). 2. statement of the resultsWe onsider the selfadjoint Dira operator

H0 = −ich
3∑

j=1

αj
∂

∂xj
+ βmc2,(1)with domain D(H0) = H1(R3) ⊗ C

4 ⊂ H = L2(R3) ⊗ C
4, where h ց 0 is the semi-lassialparameter, m > 0 is the mass of the Dira partile and c is the speed of light. The quantities

α1, α2, α3 and β are 4 × 4 Dira matries satisfying the anti-ommutation relations
{
αiαj + αjαi = 2δijI4, for i, j = 1, 2, 3,
αiβ + βαi = 0, for i = 1, 2, 3,

(2)



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 3and β2 = I4. Here In is the n × n identity matrix. For example, we hoose the standard (orDira-Pauli) representation of these matries
αi =

(
0 σi
σi 0

)
, β =

(
I2 0
0 −I2

)
,where (σj)1≤j≤3 are the 2 × 2 Pauli matries:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.Remark 1. Most alulations with Dira matries an be done without referring to a partiularrepresentation (see Appendix 1.A [44, Chap. 1℄).Let H1 =H :=H0 + V , where V is the multipliation operator by a 4×4-matrix potential

V . We suppose that V ∈ C∞(R3) and satis�es the following assumption
(AV) : V is Hermitian on R

3 and has an analyti extension in the setor
Cǫ,0 := {z ∈ C

3, |Im(z)| ≤ ǫ |Re(z)|, |Re(z)| > R0}, for 0 < ǫ < 1.(3)
Moreover, for x ∈ Cǫ,0 it satisfies

‖V (x)‖ = O(〈x〉−δ), δ > 0, 〈x〉 = (1 + |x|2) 1

2 .(4)The free Dira operator H0 has essential spetrum σess(H0) =] −∞,−mc2] ∪ [mc2,+∞[ andits spetrum is purely absolutely ontinuous. Under the assumption (AV) the operator H1 isselfadjoint. Using Weyl's theorem, we have σess(H1) = σess(H0).For θ ∈ Dǫ := {θ ∈ C, |θ| ≤ rǫ := ǫ√
1+ǫ2

}, we denote
H1,θ = Hθ := UθH0U

−1
θ + UθV U

−1
θ = H0,θ + UθV U

−1
θ ,where Uθ is the one-parameter family of distortions de�ned below (see Setion 3).For θ0 �xed in D+

ǫ := Dǫ ∩ {θ ∈ C, Im(θ) ≥ 0}, we de�ne
Γθ0 := {±c

√
λ

(1 + θ0)2
+m2c2 ∈ C, λ ∈ [0,+∞[},and

Sθ0 := {z ∈
⋃

θ∈D+
ǫ

Γθ; arg(1 + θ) < arg(1 + θ0),
1

|1 + θ| <
1

|1 + θ0|
}.The square root √z is de�ned suh that for z ∈ C\] −∞, 0], Re(√z) > 0.For θ ∈ D+

ǫ , arg(1 + θ0) ≤ arg(1 + θ), 1
|1+θ0| ≤

1
|1+θ| , we prove that the spetrum of Hθ isdisrete in Sθ and independent of θ in Sθ0 . This justi�es the following de�nition.De�nition 1. The resonanes of H in Sθ0 ∪ R are the eigenvalues of Hθ0. The multipliityof a resonane z0 is de�ned bymult(z0) := rank 1

2iπ

∫

Γ0

(z −Hθ0)
−1dz,where Γ0 is a small positively oriented irle entered at z0. We will denote Res(H) the set ofresonanes.



4 ABDALLAH KHOCHMANThe most important advantage of this de�nition is that the resonanes an be alulatedby solving a non-selfadjoint eigenvalue problem.Remark 2. The resonanes of H in {z ∈ C; Re(z) ∈] −mc2,mc2[} are the real eigenvaluesof H.
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Resonanes
Now, we would like to �nd symmetry properties so that we an limit our study of the res-onanes to a domain Ω whih satis�es (A+

Ω), with
(A±

Ω): Ω is an open simply connected and relatively compact subset of {z ∈ C;±Re(z) >
mc2} such that Ω ∩ {±Im(z) > 0} 6= ∅ and there exists θ0 ∈ D+

ǫ such that Ω ∩ Γθ0 = ∅.Proposition 1. Let H− be the selfadjoint Hamiltonian
H− = H0 − UcV (x)U−1

c ,where Uc = iβα2 is a 4 × 4 unitary matrix and V is the onjugate of V . Then the followingassertions are equivalent:(i) The omplex value z is a resonane of H.(ii) The symmetri of the onjugate −z̄ is a omplex eigenvalue of Uθ̄H−U−1
θ̄

.Moreover, the multipliity of z is equal to the multipliity of −z̄ onsidered as an eigenvalueof Uθ̄H−U−1
θ̄

.



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 5Proposition 2. Let H be the selfadjoint Hamiltonian
H = −ic

3∑

j=1

α′
j∂xj

+ β′mc2 + V ,where α′
1 = −α1, α

′
2 = α2, α

′
3 = −α3, β

′ = β are matries whih satisfy the anti-ommutationrelations (2) and V is the onjugate of V . Then the following assertions are equivalent:(i) The omplex value z is a resonane of H.(ii) The onjugate z̄ is a omplex eigenvalue of Uθ̄HU−1
θ̄

.Moreover, the multipliity of z is equal to the multipliity of z̄ onsidered as an eigenvalue of
Uθ̄HU

−1
θ̄

.Using the same type of approah as in [40℄, we onstrut an operator Ĥj,θ for j = 0, 1, sothat
Ĥj,θ −Hj,θ = Kj = O(1), has �nite rank O(h−3),and ‖(Ĥj,θ − z)−1‖ = O(1), uniformly for z ∈ Ω (see Subsetion 5.1).Using this onstrution we establish an upper bound of the number of resonanes:Theorem 1. (Upper bound) Assume that V satis�es the assumption (AV) with δ > 0. Let

Ω be a omplex domain satisfying the assumption (A±
Ω), then

#Res(H) ∩ Ω ≤ C(Ω)h−3.For a pair of self-adjoint operators (H0,H0 + V ) where V satis�es the assumption (AV)with δ > 3, (see [10℄, [37℄, [36℄), the spetral shift funtion ξ(λ, h) is a distribution in D′(R)suh that its derivative satis�es:
〈ξ′(λ, h), f(λ)〉D′(R),D(R) = tr(f(H1) − f(H0)), f(λ) ∈ C∞

0 (R).(5)By the Birman-Krein theory, the SSF is in L1
loc(R) and oinides with the sattering phase:for almost every λ in the absolutely ontinuous spetrum of H0 we have det S(λ) = e−2iπξ(λ,h)where S(λ) is the sattering matrix for the operator pairs (H,H0) (see [3℄ or [45, Chapter 8℄).On the other hand, in the standard de�nition, the sattering phase is equal to arg detS(λ).The SSF for the operator pair (H0, H0 +V ) satis�es the following general gauge invariane(for the proof we refer to Setion 6):Proposition 3. (Gauge invariane) Let V be a potential and Φg be a salar funtionsuh that V and α · ∇Φg satisfy (AV) with δ > 3. Then, the SSF for the operator pair(H0, H0 + V − α · ∇Φg) oinides with the SSF for the operator pair (H0, H0 + V ).Our prinipal result is a meromorphi ontinuation of the derivative of the spetral shiftfuntion ξ(λ, h).Theorem 2. (Representation formula) Assume that V satis�es the assumption (AV) with

δ > 3. Let Ω be a omplex domain satisfying the assumption (A±
Ω) and W ⋐ Ω be an opensimply onneted set whih is symmetri with respet to the real axis. Assume that I = W ∩R



6 ABDALLAH KHOCHMANis an interval. Then for all λ ∈ I we have the representation:
ξ′(λ, h) =

1

π
Im r(λ, h) +

∑

w∈Res(H1)∩ΩImw 6=0

−Imw

π|λ− w|2 +
∑

w∈Res(H1)∩I
δw(λ),(6)where r(z, h) = g(z, h) − g(z̄, h), g(z, h) is a holomorphi funtion in Ω whih satis�es thefollowing estimate:

|g(z, h)| ≤ C(W )h−3, z ∈W,(7)with C(W ) > 0 independent of h ∈]0, h0]. Here δw(·) is the Dira mass at w ∈ R.Remark 3. This theorem an be extended to the operator pairs (H0 + V1, H0 + V2), where
V1, V2 are two 4×4 Hermitian potential matries satisfying (AV) with δ > 0 and V = V2−V1satis�es the assumption (AV) with δ > 3 (see Theorem 5).As a orollary of the last theorem, we have a Sjöstrand type loal trae formula (see Theo-rem 6).Now we disuss a Weyl type asymptotis of the spetral shift funtion ξ(λ, h) in the asewhere V is an eletro-magneti potential

V (x) = e(−α · A+ v)(x) = −
3∑

j=1

αj · eAj(x) + ev(x),(8)satisfying the assumption (AV) with δ > 3. Here e < 0 is the harge of the Dira partile.We assume that, the eletri potential v(x) =

(
v+(x)I2 0

0 v−(x)I2

) where v+, v− are C∞salar funtions satisfying
|e(v+ − v−)(x)| < 2mc2,(9)and A = (A1, A2, A3) is a magneti vetor potential where A1, A2, A3 are C∞ salarfuntions.For any (x, ξ) ∈ R

6, the semi-lassial symbols of Hν , ν = 0, 1 are the matries
Dν(x, ξ) = α · (cξ − νeA(x)) + βmc2 + νev(x), α = (α1, α2, α3),(10)whih are Hermitian and eah have two eigenvalues

H±
ν (x, ξ) = ±

(
|cξ − νeA(x)|2 +

(
mc2 + ν

e

2
(v+ − v−)

)2
) 1

2

+ ν
e

2
(v+ + v−),(11)of multipliity two. The funtionH+

1 (x, ξ) is the Hamiltonian for a relativisti lassial partileand H−
1 (x, ξ) an be onsidered as the Hamiltonian for the orresponding anti-partile (see[14℄, [44℄, [47℄). Moreover, from (9) the two Hamiltonians H±

1 (x, ξ) are smooth funtions.For ν = 0, 1, the matrix
Π±
ν (x, ξ) =

1

2

(
1 +

Dν(x, ξ) − νev(x) + ν e2(v+ − v−)β

H±
ν (x, ξ) − ν e2 (v+ + v−)

)
,(12)is the orthogonal projetion onto the eigenspae E±

ν (x, ξ) of Dν(x, ξ) orresponding to theeigenvalue H±
ν (x, ξ).



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 7De�nition 2. A real λ is a nonritial energy level for H1 if for all (x, ξ) ∈ R
6, with

H±
1 (x, ξ)=λ, we have ∇x,ξH

±
1 (x, ξ) 6= 0.Theorem 3. (Weyl formula) Assume that the potential V is an eletro-magneti potentialgiven by (8) and satisfying the assumption (AV) with δ > 3. For all nonritial energy levels

λ, λ1 for H1 suh that ±mc2 6∈ ]λ1, λ[ and h ∈]0, h0[, we have the asymptoti expansion
ξ(λ, h) − ξ(λ1, h) = w(λ, λ1)h

−3 +O(h−2).(13)Here the O(h−2) is uniform for λ (resp.λ1) in a small interval I2 (resp. I1). The �rst term
w(λ, λ1) ∈ C∞(I2 × I1) is given by

w(λ, λ1) = w(λ) − w(λ1),with:
w(λ) =

1

3π2

∫

R3

W+(λ, v+, v−) −W+(λ, 0, 0) −W−(λ, v+, v−) +W−(λ, 0, 0) dx(14)where W±(λ, a, b) =

((
λ− e(a+b)

2

)2

±
−
(
mc2 + e(a−b)

2

)2
) 3

2

+

.Theorem 3 an be extended to the operator pairs (H0 + V1, H0 + V2) where V1, V2 satisfy
(AV) with δ > 0 (or ‖Vj(x)‖ −→ 0) and V2 − V1 satis�es (AV) with δ > 3 (see Remark 10).Furthermore, using Proposition 3, magneti potentials A1 and A2 whih are gauge equivalent(i.e. A1 −A2 = ∇Φg with Φg as in Proposition 3) generate the same SSF.Remark 4. The two formulae (13) and (14) give in partiular a Weyl type asymptotis ofthe ounting funtion of the number of eigenvalues of H1 between two values in the interval
]−mc2,mc2[ . In the ase of a salar potential v (v+ = v−), this result was proved by Hel�er-Robert [20℄ without the analytiity assumption at in�nity.To prove Theorem 3 we onstrut, in Appendix A (see Theorem 9), a parametrix at smalltimes of the propagator of the Dira equation in an external eletro-magneti �eld (see alsoYajima [47℄ for salar eletri potential ases).As a diret onsequene of the last theorem we dedue an upper bound O(h−2) for the numberof resonanes lose to non-ritial energy levels in domains of width h (see Proposition 12)and a Breit-Wigner approximation for the derivative of the spetral shift funtion ξ(λ, h) (seeTheorem 8). 3. Distortion for the free Dira operatorIn this setion, we start with the de�nition of the deformation for the free Dira operatorby analyti distortion (in the spirit of Hunziker [22℄) and we alulate the essential spetrumfor the distorded free Dira operator. Here, h does not play any role, and an be taken equalto 1. Let us now introdue the one-parameter family of unitary distortions

Uθf(x) = J
1

2

φθ(x)f(φθ(x)), θ ∈ R, f ∈ (S(R3))4,where φθ(x) = x+ θg(x) and g : R
3 7−→ R

3 is a smooth funtion. Let Jφθ(x)=det(I+θ∇g(x))be the Jaobian of φθ(x).



8 ABDALLAH KHOCHMANWe suppose that g satis�es the assumption
(Ag)





(i) supx∈R3 ‖∇g(x)‖ = M−1 < +∞.(ii) g(x) = 0, in the compact set B(0, R0), (see (3)).(iii) g(x) = x, outside a compact set K(⊃ B(0, R0)).Lemma 1. For θ ∈] −M,M [, Uθ an be extended as an unitary operator on H.Proof. Sine |θ| < M , we have ‖θ∇g(x)‖ < 1, and
(∇φθ(x))−1 = (I + θ∇g(x))−1 =

∞∑

n=0

(−1)n(θ)n(∇g(x))n.The funtion φθ(x) is injetive and φθ(R3) = R
3, onsequently φθ(x) is a di�eomorphism from

R
3 to R

3. The inverse of Uθ is given by
U−1
θ u = J

−1

2

φθ(x)u(φ
−1
θ (x)) : (L2(R3))4 7−→ (L2(R3))4.The lemma follows from the relations

UθU
−1
θ = U−1

θ Uθ = I(L2(R3))4 and ‖Uθf‖H = ‖U−1
θ f‖H = ‖f‖, ∀f ∈ (L2(R3))4.

�De�nition 3. We denote by B, the spae of funtions f = (fi)1≤i≤4 suh that fi(x) has ananalyti ontinuation in Cǫ,0 and lim |z|→∞
z∈Cǫ,0

|z|kfi(z) = 0, for all k ∈ N and ǫ ∈]0, 1[ (see (3)).Lemma 2. The subspae B is dense in H.Proof. The subspae B ontains vetors of Hermite funtions and the linear ombinationsof Hermite funtions are dense in L2(R3). �Proposition 4. Let be Dǫ,M = Dǫ ∩ {θ ∈ C; |θ| < M}. We have the two assertions:(i) For all f ∈ B, θ ∈ Dǫ,M 7−→ Uθf is analyti.(ii) For all θ ∈ Dǫ,M , UθB is dense in H.Proof. In order to prove (i), we show that θ 7−→ 〈Uθf, g〉 is analyti for all g ∈ H. Let
R≫ 1 be suh that K ⊂ B(0, R) = {x, |x| < R}.

• In {x, |x| < R}: sine f ∈ B, then θ 7−→
∫
|x|<R J

1

2

φθ
f(φθ(x))g(x)dx, is learly analytifor all g ∈ H.

• In {x, |x| > R}: we have g(x) = x, onsequently φθ(x) = (1 + θ)x. We remark that
|Im(φθ(x))| = |Im(θx)| ≤ |Im(θ)||x| =

|Im(θ)||Re(φθ(x))|
|1 + Re(θ)| .If |θ| ≤ rǫ = ǫ√

1+ǫ2
, 0 < ǫ < 1, then

|Im(φθ(x))| ≤ ǫ|Re(φθ(x))|.Aording to the de�nition of B we have
|f(φθ(x))| ≤

Ck
|φθ(x)|k

≤ Ck,ǫ
|x|k , ∀|x| ≥ R, ∀ θ ∈ Dǫ,M , k ∈ N



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 9then, θ 7−→
∫
|x|≥R J

1

2

φθ
f(φθ)g(x)dx is analyti.(ii) Let h(x) ∈ (C∞

0 (R3))4. We denote
hk(x) = (

k

π
)

3

2

∫
e−k(x−y−θg(y))

2

h(y)Jφθ(y)dy,whih is learly in B.Using ( kπ )
3

2

∫
e−k(x−y−θg(y))

2

Jφθ(y)dy = ( kπ )
3

2

∫
e−k z

2

dz = 1, we get
h(x) − hk(φθ(x)) = (

k

π
)

3

2

∫
e−k(φθ(x)−φθ(y))2(h(x) − h(y))Jφθ(y)dy.The last term tends to 0 when k → +∞. Consequently, we have

hk ◦ φθ(x) k→+∞−→ h(x), in H.
�Remark 5. One an always hoose g satisfying the assumption (Ag) with M > rǫ = ǫ√

1+ǫ2
.In that ase, we have Dǫ,M = Dǫ.Lemma 3. For θ ∈ Dǫ, we have

H0,θ := UθH0U
−1
θ =

1

1 + θ
(−ic

3∑

j=1

αj
∂

∂xj
) + βmc2 +Qθ(x, ∂xj

),where Qθ(x, ∂xj
) =

∑
|α|≤1 aα(x, θ)∂

α
xj

is suh that:(i) θ 7−→ aα(x, θ) is an analyti funtion bounded by O(θ).(ii) x 7−→ aα(x, θ) ∈ (C∞
0 (R3))4.In partiular θ 7−→ H0,θ is an analyti family of type A with domain D(H0) (see Kato [24℄,for the de�nition of an analyti family of type A).Proof. We denote ∂j = ∂
∂xj

and we alulate the term Uθ∂jU
−1
θ .

Uθ∂jU
−1
θ f(x) = Uθ∂j

(
J

−1

2

φθ
f(φ−1

θ (x))

)

= Uθ

(
∂j

(
J

−1

2

φθ

)
.f
(
φ−1
θ (x)

)
+ J

−1

2

φθ

(
∂jf(φ−1

θ (x))
))

= −1

2
J−1
φθ
∂jJφθ(x)f(x) +

3∑

k=1

∂kf(x)
(
∂jφ

−1
θ,k

)
(φθ(x)),with φ−1

θ (x) =
(
φ−1
θ,1(x), φ

−1
θ,2(x), φ

−1
θ,3(x)

).We remark that φ−1
θ (x) = x

1+θ outside the ompat set K, then
3∑

k=1

∂kf(x)
(
∂jφ

−1
θ,k

)
(φθ(x)) =

1

1 + θ
∂jf(x), outside K.



10 ABDALLAH KHOCHMANLet χK ∈ C∞
0 (R3), 0 ≤ χK ≤ 1, be equal to 1 on K and 0 outside a ompat set whihontains K. We have

Uθ∂jU
−1
θ f(x) = −1

2
J−1
φθ
∂jJφθ(x)f(x)+

1

1 + θ
∂jf(x)(1−χK)+

3∑

k=1

∂kf(x)
(
∂jφ

−1
θ,k

)
(φθ(x))χK .Sine ∂jJφθ(x) has ompat support,

Uθ∂jU
−1
θ =

1

1 + θ
∂j + qθ(x, ∂xj

)(15)with qθ(x, ∂xj
) satisfying same hypothesis as Qθ(x, ∂xj

).Now we just have to multiply (15) by −icαj , take the sum on all values of j and add βmc2to both hands. The estimate aα(x, θ) = O(θ) is lear using that Q0(x, ∂xj
) = 0 and theanalytiity of θ 7−→ aα(·, θ). �Lemma 4. Let Pθ = 1

1+θ (−ic
∑

j αj
∂
∂xj

) + βmc2. Then
σ(Pθ) = σess(Pθ) = Γθ = {z ∈ C; z = ±c( λ

(1 + θ)2
+m2c2)

1

2 , λ ∈ [0,+∞[}.Proof. Let F be the Fourier transform and
K(θ) = F Pθ F−1 =

c

1 + θ

∑

j

αjξj +mc2β

=

(
mc2I2 ( c

1+θ )(σ1ξ1 + σ2ξ2 + σ3ξ3)

( c
1+θ )(σ1ξ1 + σ2ξ2 + σ3ξ3) −mc2I2

)where ξ = (ξ1, ξ2, ξ3) ∈ R
3 and αjξj is the multipliation operator by the 4×4 matrix αjξj.Here σ1, σ2, σ3 are the 2× 2 Pauli matries. The spetrum of Pθ oinides with the spetrumof the multipliation operator K(θ). We easily prove that

σ(K(θ)) = σess(K(θ)) = Γθ = {z ∈ C; z = ±c( λ

(1 + θ)2
+m2c2)

1

2 , λ ∈ [0,+∞[},and we dedue the lemma. �The prinipal branh of the square root funtion is holomorphi on the set C\] −∞, 0]. Let
SDǫ = {z = λ

(1+θ)2
+m2c2, θ ∈ Dǫ, λ ∈ [0,+∞[}. Sine,

SDǫ ⊂]0,+∞[e]−
π
2
,π
2
[,the square root z 7−→ z

1

2 is holomorphi on SDǫ .Lemma 5. For H0,θ, Pθ, de�ned as above, we have σess(H0,θ) = σess(Pθ).Proof. We want to use Kato's theorem [24, Th.4.5.35℄. For λ≫ 1, λ ∈ R and Qθ de�nedin Lemma 3, we have
(H0,θ − iλ) = (1 +Qθ(Pθ − iλ)−1)(Pθ − iλ).Sine (Pθ − iλ)−1 ∈ L(H, (H1)4) and Qθ(Pθ − iλ)−1 = O( θλ), we obtain that iλ ∈ ρ(H0,θ) =

C \ σ(H0,θ). To apply Kato's Theorem, it is enough to show that
(H0,θ − iλ)−1 − (Pθ − iλ)−1 is ompat.(16)



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 11Using the resolvent equation, we have
(H0,θ − iλ)−1 − (Pθ − iλ)−1 = (H0,θ − iλ)−1Qθ(Pθ − iλ)−1.with Qθ(x, ∂xj

) =
∑

|α|≤1 aα(x, θ)∂
α
xj
ompatly supported. Sine the operaror (H0,θ−iλ)−1Qθis bounded and 1supp(Qθ)(Pθ − iλ)−1 is ompat, assertion (16) holds. �4. Definition of resonanesIn this setion we distort the perturbed Dira operator H = H0 + V , where the potential

V satis�es the assumption (AV) and we de�ne the resonanes for the semi-lassial Diraoperator.The distorted Dira operator is denoted by
Hθ = UθH0U

−1
θ + UθV U

−1
θ = H0,θ + V (φθ(x)).Proposition 5. We suppose that the potential V satis�es the assumption (AV), then(i) θ ∈ Dǫ 7−→ Hθ = H0,θ + V (φθ(x)) is an analyti family of type A.(ii) σess(Hθ) = Γθ.Proof. The assertion (i) is lear sine H0,θ is an analyti family of type A and V satis�esthe assumption (AV).Now, we prove (ii) as in the proof of Lemma 5. For λ≫ 1, iλ ∈ ρ(Hθ) and

(Hθ − iλ)−1 − (H0,θ − iλ)−1 = (Hθ − iλ)−1V (φθ(x))(H0,θ − iλ)−1.(17)Sine the operator V (φθ(x))(H0,θ−iλ)−1 is ompat (see (AV)) and the resolvent (Hθ−iλ)−1is bounded, the di�erene (Hθ−iλ)−1−(H0,θ−iλ)−1 is ompat. Aording to Kato's theorem[24, Theorem.4.5.35℄ and to lemmas 4, 5, we obtain (ii). �We denote
Σ = {z ∈ C; Im(z) ≥ 0, Re(z) > −mc2} ∪ {z ∈ C; Im (z) ≤ 0, Re(z) < mc2} \ σ(H).Theorem 4. With the notations used above, taking θ0 ∈ D+

ǫ = Dǫ ∩ {Im(θ) ≥ 0}, we have:(i) For all f, g ∈ B, the funtion: z ∈ Σ 7−→Mf,g(z) = 〈(z−H)−1f, g〉 has a meromorphiextension on Sθ0.(ii) The poles of Mf,g(z) are the eigenvalues of Hθ0.(iii) These poles are independent of the family Uθ0.(iv) σd(Hθ0) ∩ Σ = ∅, where σd(Hθ0) is the disrete spetrum of the operator Hθ0.Proof. (i) Sine Uθ is unitary for θ ∈ R,
Mf,g(z) = 〈(z −H)−1f, g〉 = 〈(z −Hθ)

−1Uθf, Uθg〉.We denote
Mf,g,θ(z) = 〈(z −Hθ)

−1Uθf, Uθ̄g〉, for θ ∈ Dǫ.(18)Aording to (i) of Proposition 5 and to the de�nition of Uθ, the funtions θ 7→ (z −Hθ)
−1,

θ 7→ Uθf and θ 7→ 〈ψ,Uθ̄g〉 are analyti on Dǫ for all ψ ∈ H and any z ∈ Σ.Thus, for z ∈ Σ, the funtion θ 7→Mf,g,θ(z) is analyti onDǫ. SineMf,g,θ(z) is independentof θ on the real axis and by uniqueness of the extension, it is independent of θ.Now, we �x θ0 ∈ D+
ǫ . Sine Sθ0 ∩ σess(Hθ0) = ∅, the funtion z ∈ Σ 7−→ Mf,g,θ0(z) has ameromorphi extension in Sθ0 .



12 ABDALLAH KHOCHMAN(ii) First, let z ∈ Sθ0 be a pole of Mf,g(z) whih is equal to Mf,g,θ0(z) for θ0 ∈ D+
ǫ . Then

z ∈ σd(Hθ0) ∩ Sθ0 (see proof of (i)).Now, let ω ∈ σd(Hθ0) ∩ Sθ0 . There exists u ∈ H suh that ‖u‖ = 1 and Hθ0u = ωu. Let
γ be a small disk entered at ω suh that γ◦ ∩ σ(Hθ0) = {ω} and Γ be the positively orientedboundary of γ.Let us introdue the projetor

Π =
1

2iπ

∫

Γ
(z −Hθ0)

−1dz; Πu = u.Sine Uθ0B = H = Uθ0 B (see Proposition 4), there exist fn, gn ∈ B suh that
|u− Uθ0fn| ≤

1

n
and |u− Uθ̄0gn| ≤

1

n
, n ∈ N.Therefore, as n goes to in�nity, we have

1

2iπ

∫

Γ
〈(z −Hθ0)

−1Uθ0fn, Uθ̄0gn〉dz =
1

2iπ

∫

Γ
〈(z −Hθ0)

−1u, u〉dz + o(1)

= 〈Πu, u〉 + o(1)

= ‖u‖2 + o(1)

= 1 + o(1),and then,
1

2iπ

∫

Γ
〈(z −H)−1fn, gn〉dz = 1 + o(1).So that Mfn,gn

(z) admits ω as a pole in γ.The assertion (iii) follows from (ii) beause Mf,g(z) is independent of Uθ.(iv) If there exists z ∈ σd(Hθ0) ∩ Σ, then z is a pole of 〈(z −H)−1f, g〉, for f, g ∈ B, but
〈(z −H)−1f, g〉 is analyti on this domain. We onlude that suh z does not exist. �Remark 6. (i) It follows from (ii) of Theorem 4 that for all θ ∈ D+

ǫ , the disrete spe-trum σd(H) is a subset of σd(Hθ).(ii) The previous theorem justi�es the de�nition of the resonanes (De�nition 1) and usingLemma 4, H0 has no resonanes.Remark 7. If θ ∈ Dǫ, then its onjugate θ̄ ∈ Dǫ. Repeating the arguments of the proof ofTheorem 4, we have(i) The funtion θ 7−→Mf,g,θ̄(z) has a analyti extension for θ ∈ Dǫ.(ii) The funtion z ∈ Σ̄ 7−→Mf,g,θ̄(z) has a meromorphi extension on Sθ̄0,wherē
Σ = {z ∈ C; Im(z) ≥ 0, Re(z) < mc2} ∪ {z ∈ C; Im(z) ≤ 0, Re(z) > −mc2} \ σ(H),and Sθ̄0 is the symmetri of Sθ0 with respet to the real axis

Sθ̄0 = {z ∈
⋃

θ∈D+
ǫ

Γθ̄ ; arg(1 + θ) < arg(1 + θ0),
1

|1 + θ| <
1

|1 + θ0|
}.Consequently, we obtain (see Theorem 4):

1) The poles of Mf,g(z) in Sθ̄0 are the eigenvalues of Hθ̄0 .
2) These poles are independent of the family Uθ̄0 .
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3) σd(Hθ̄0) ∩ Σ̄ = ∅.The assertions 3) and (ii) prove that the operator Hθ̄ has purely disrete spetrum in Sθ̄0 .Proof of Proposition 1. We onsider the anti-linear appliation on H,

C : ψ 7−→ Ucψ = iβα2ψ.Then, we have
C Hθ C

−1 = −H0,θ̄ + CV ◦ φθ(x)C−1

= −
(
H0,θ̄ − UcV ◦ φθ(x)U−1

c

)
.Using that V is analyti, we get V ◦ φθ(x) = V ◦ φθ̄(x). Then,

C Hθ C
−1 = −

(
H0,θ̄ − UcV ◦ φθ̄(x)U−1

c

)

= −
(
H0,θ̄ − UcUθ̄V (x)U−1

θ̄
U−1
c

)
.We reall that Uθf(x) = J

1

2

φθ(x)f(φθ(x)). Sine UcUθ = UθUc, we obtain
C Hθ C

−1 = −
(
H0,θ̄ − Uθ̄UcV (x)U−1

c U−1
θ̄

)

= −Uθ̄
(
H0 − UcV (x)U−1

c

)
U−1
θ̄

= −H−
θ̄
.Consequently, C (Hθ − z) C−1 = −(H−

θ̄
+ z̄), and the property follows. �Proof of Proposition 2.By de�nition of Hθ, we have

Hθ − z = Uθ̄
(
H0 + V − z̄

)
U−1
θ̄
.(19)Using that ᾱ1 = α1, ᾱ2 = −α2, ᾱ3 = α3, β̄ = β, we �nd

H0 = ic

3∑

j=1

αj
∂

∂xj
+ βmc2 = −ic

3∑

j=1

α′
j

∂

∂xj
+ β′mc2and

H0 + V = H.Using the last relation and equation (19), we obtain Proposition 2. �Finally, the study of resonanes in a domain of the omplex plane C is redued to the studyof resonanes in Ω ∩ {z ∈ C, Im(z) < 0}, with Ω satisfying assumption (A+
Ω) (see Fig.1).5. Upper bound for the number of resonanesIn this setion, we establish an upper bound on the number of resonanes in a ompatdomain Ω. To this purpose we onstrut an operator Ĥθ : D(H0) → H with some properties(see Proposition 7). Aording to Setion 4, it is su�ient to treat the ase where Ω satis�esassumption (A+

Ω).We shall use the theory of h-pseudo-di�erential operators (see [12℄, [35℄). Let m be an orderfuntion on R
2n (i.e. there are C0, N0 > 0, suh that m(x)≤C0〈x − y〉N0m(y)). The spae
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Sp(m) is the set of a(x, ξ;h) ∈ C∞(R2n)⊗C

4 suh that for every α ∈ N
2n, there exists Cα > 0,suh that

‖∇α
x,ξa(x, ξ;h)‖ ≤ Cαm(x, ξ)h−p.For a symbol a(x, ξ;h), we de�ne the Weyl quantization, aw(x, h∇x;h) := Opωh(a) by

Opωh(a)u(x) =
1

(2πh)n

∫

Rn

∫

Rn

eih
−1(x−y)·ξa(

x+ y

2
, ξ;h)u(y)dydξ,where u(x) is in the Shwartz spae.5.1. Constrution of Ĥθ. We follow the approah of Sjöstrand [40℄. Let Ω be a omplexdomain satisfying the assumption (A+

Ω) and ψ ∈ C∞
0 (R3) be suh that ψ(x) ≥ 0, ψ(x) = 1 if

|x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2. We reall the notations of Setion 3: φθ(x) = x+ θg(x) with
g(x) = 0 in the ompat set B(0, R0) ⊂ K and g(x) = x outside K ⊂ B(0, α0) where α0 > 0is su�iently large.Using Lemma 3, the semi-lassial prinipal symbol of Hθ is given by:

hθ(x, ξ) = α · ζθ(x, ξ) +mc2β + V (φθ(x)),with
ζθ(x, ξ) = (ζθ,1(x, ξ), ζθ,2(x, ξ), ζθ,3(x, ξ)) and ζθ,j(x, ξ) = c

3∑

k=1

ξk

(
∂jφ

−1
θ,k

)
(φθ(x)).For all (x, ξ), the matrix M = α · ζθ(x, ξ) +mc2β, has two eigenvalues

λ±θ = ±
√
ζθ(x, ξ)2 +m2c4.Consequently, there exists an invertible matrix U suh that

U−1MU = dθ :=

(
λ+
θ I2 0
0 λ−θ I2

)
,where

U =

(
I2

−1
λ+

θ
+mc2

σ · ζθ(x, ξ)
1

λ+

θ
+mc2

σ · ζθ(x, ξ) I2

)
,with σ = (σ1, σ2, σ3) and (σj)1≤j≤3 the 2×2 Pauli matries.One an easily prove that the norms of U, U−1 and their derivatives are bounded in thefollowing way:

‖∂αx ∂βξ U(x, ξ)‖ < C〈ξ〉−β,
‖∂αx ∂βξ U−1(x, ξ)‖ < C〈ξ〉−β, ∀α, β ∈ N.(20)Applying U−1 on the left and U on the right of hθ(x, ξ), we obtain

U−1hθ(x, ξ)U = dθ + Ṽθ(x, ξ),where Ṽθ(x, ξ) = U−1V (φθ(x))U . Sine the matrix V (φθ(x)), U, U
−1, and their derivativesare uniformly bounded, Ṽθ(x, ξ) and its derivatives are uniformly bounded.In order to onstrut Ĥθ, we introdue an intermediate funtion f(x, ξ):



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 15We denote |Ω| the diameter of Ω. Let us hoose β0 > 0 and C0 > 0, su�iently largesuh that
∀ ξ ∈ R

3; sup
x∈R3

‖Ṽθ(x, ξ)‖ + |Ω| ≤ 1

2
|λ±θ − iC0ψ(

ξ

β0
)|(21)

=
1

2

√
(Re(λ±θ )

)2
+

(Im(λ±θ )− C0ψ(
ξ

β0
)

)2

.We prove (21) onsidering the two ases:
• For |ξ| > β0, with β0 > 0, su�iently large we have

sup
x∈R3

‖Ṽθ(x, ξ)‖ + |Ω| ≤ 1

2
|Re(λ±θ )|.

• For |ξ| ≤ β0, sine λ±θ is bounded, we hoose C0 > 0, su�iently large suh that
sup
x∈R3

‖Ṽθ(x, ξ)‖ + |Ω| ≤ 1

2
|Im(λ±θ ) − C0|.For |x| > α0 > 0, su�iently large we have ζθ,j(x, ξ) =

cξj
1+θ and λ±θ = ±c

√
ξ2

(1+θ)2
+m2c2.Sine the domain Ω satis�es the assumption (A+

Ω), we havemin{dist(Ω, λ+
θ ), dist(Ω, λ−θ )} 6= 0,hene we an hoose α0 > 0 su�iently large suh that

∀|x| > α0, ‖Ṽθ(x, ξ)‖ ≤ 1

2
dist(Ω, λ±θ ) :=

1

2
min{dist(Ω, λ+

θ ), dist(Ω, λ−θ )}.(22)Now, we de�ne f(x, ξ) in the following way:
f(x, ξ) = C0ψ(

x

α0
)ψ(

ξ

β0
).(23)Lemma 6. The matrix hθ(x, ξ) − if(x, ξ) − z is invertible for all z ∈ Ω and satis�es

‖∂αx ∂βξ (hθ(x, ξ) − if(x, ξ) − z)−1 ‖ < C〈ξ〉−1−β, ∀α, β ∈ N.(24)Proof. Applying U−1 on the left and U on the right of hθ(x, ξ) − if(x, ξ) − z, we obtain
U−1 (hθ(x, ξ) − if(x, ξ) − z)U = dθ − if(x, ξ) − z + Ṽθ(x, ξ).1) Let us prove that the symbol σ := dθ − if(x, ξ) − z + Ṽθ(x, ξ) is invertible.

• For |x| ≤ α0,
σ = (dθ − iC0ψ(

ξ

β0
))

(
I4 +

(
dθ − iC0ψ(

ξ

β0
)

)−1 (
Ṽθ(x, ξ) − z

))
.Aording to (21), we have

‖
(
dθ − iC0ψ(

ξ

β0
)

)−1 (
Ṽθ(x, ξ) − z

)
‖ < 1

2
,thus σ is invertible and satis�es

‖σ−1‖ < 2
∥∥∥
(
dθ − iC0ψ(

ξ

β0
)

)−1 ∥∥∥ < C〈ξ〉−1.(25)
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• For |x| > α0, we have λ±θ = ±c

√
ξ2

(1+θ)2
+m2c2. Sine f(x, ξ) ≥ 0, we have

|λ+
θ − (z + if(x, ξ))| > dist(Ω, λ±θ ) > C〈ξ〉 > 0,and

|Re (λ−θ − (z + if(x, ξ))
)
| = |Re (λ−θ − z

)
| > dist(Ω, λ±θ ) > C〈ξ〉 > 0.Sine

σ = (dθ − if(x, ξ) − z)
(
I4 + (dθ − if(x, ξ) − z)−1 Ṽθ(x, ξ)

)
,and

‖ (dθ − if(x, ξ) − z)−1 Ṽθ(x, ξ)‖ <
1

2
, (see (22)),the matrix σ is invertible and

‖σ−1‖ < 2‖ (dθ − if(x, ξ) − z)−1 ‖ < C〈ξ〉−1.(26)2) Aording to 1), the matrix U−1(hθ(x, ξ)− if(x, ξ)− z)U is invertible. From (25), (26) and(20), we dedue that the matrix hθ(x, ξ) − if(x, ξ) − z is invertible and
‖ (hθ(x, ξ) − if(x, ξ) − z)−1 ‖ = ‖U−1

(
dθ − if(x, ξ)I4 − z + Ṽθ(x, ξ)

)−1
U‖

≤ ‖U‖‖U−1‖‖
(
dθ − if(x, ξ)I4 − z + Ṽθ(x, ξ)

)−1
‖

< C〈ξ〉−1.(27)This gives (24) for α = β = 0. Using (20) and (27) we obtain (24) for (α, β) ∈ N
2 by indution.

�We denote H̃θ = Hθ+ T̃ , with T̃ = Opωh(−if(x, ξ)), where f(x, ξ) is de�ned in (23). It is learthat the semi-lassial prinipal symbol of (H̃θ − z) is
σ eHθ

:= hθ(x, ξ) − if(x, ξ) − z.Proposition 6. If h > 0 is small enough, the operator (z − H̃θ) is invertible for every z ∈ Ωand, for every N ∈ N its inverse satis�es:
(z − H̃θ)

−1 = ON (1) : D(HN ) 7−→ D(HN+1),uniformly for z ∈ Ω. Here D(HN ) denotes the domain of HN with the onvention D(H0) =
H.Proof. Let us prove that the operator (z − H̃θ) is a Fredholm operator of index 0. Wehave

(z − H̃θ)(z −H0,θ)
−1 = (z −H0,θ +H0,θ − H̃θ)(z −H0,θ)

−1

= I − (T̃ + V (φθ(x)))(z −H0,θ)
−1.Sine the right-hand side is a perturbation of the identity by a ompat operator and

(z−H0,θ)
−1 : (L2(R3))4 7→ D(H) is invertible,the operator (z − H̃θ) is Fredholm of index 0. Consequently, it is enough to show that

‖u‖2
D(HN+1) ≤ C‖(z − H̃θ)u‖2

D(HN ), for u ∈ D(HN+1).(28)



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 17Aording to Lemma 6, the symbol q0 = σ−1
eHθ

is well de�ned and satis�es
‖∂αx ∂βξ q0‖ < C〈ξ〉−1−β .Moreover, having

‖∂αx ∂βξ (σ eHθ
)‖ < C〈ξ〉+1−β ,the omposition theorem of h-pseudo-di�erential operators implies

Opωh(q0)Op
ω
h(σ eHθ

) = Opωh(r)where (r − 1) is in the spae of symbols S0(h). In partiular the operator
Opωh(r) : D(HN+1) 7−→ D(HN+1), ∀N ∈ N,is invertible for h small enough, then (28) follows. Therefore the operator (H̃θ − z) is alsoinvertible and we have
(z − H̃θ)

−1 = ON (1) : D(HN ) 7−→ D(HN+1).

�Proposition 7. There exists Ĥθ : D(H) 7−→ H, with the following properties.The di�erene K := Ĥθ −Hθ is of �nite rank O(h−3), has ompat support in the sense that
K = χ1Kχ1 for some χ1 ∈ C∞

0 (R3) and
K = O(1) : D(HN ) 7−→ D(HM ) ∀N,M ∈ N.Moreover, for every N ∈ N, we have
(Ĥθ − z)−1 = O(1) : D(HN ) 7−→ D(HN+1),uniformly for z ∈ Ω.Proof. (We again use all the previous notations) We de�ne
Ĥθ := Hθ + χ1Tχ1 = H̃θ + χ1Tχ1 − T̃ ,with χ1(x) = ψ( x

2α0
) and
T := χ(−h2∆ + x2)T̃ = χ(−h2∆ + x2)Opωh(−if(x, ξ))where χ ∈ C∞

0 (R) is suh that:
χ(ξ2 + x2) = 1 on the support of f(x, ξ) (see (23)).By the funtional alulus (see [12℄), we an prove that

H̃θ − Ĥθ = T̃ − χ1Tχ1 = O(h∞) : D(HN ) 7−→ D(HM ), ∀M, N ∈ N.(29)The last lemma, formula (29) and
(Ĥθ − z)−1 = (H̃θ − z)−1

(
I + (Ĥθ − H̃θ)(H̃θ − z)−1

)−1yield for all N ∈ N

(Ĥθ − z)−1 = O(1) : D(HN ) 7−→ D(HN+1).Aording to the fats that χ(−h2∆+x2) is of �nite rank O(h−3), that the Weyl quantization
Opωh(−if(x, ξ)) is bounded, and to the de�nition of χ1, the operator

K := Ĥθ −Hθ = χ1

(
χ(−h2∆ + x2)Opωh(−if(x, ξ))

)
χ1



18 ABDALLAH KHOCHMANis of �nite rank O(h−3) and ompatly supported. �5.2. Upper bound for the number of resonanes. In this setion we establish the upperbound on the number of resonanes given in Theorem 1.Lemma 7. Let ρ > 0, Ω be an open omplex relatively ompat subset of C and Hθ be de�ned asabove. There exists g satifying (Ag) suh that for h small enough and z ∈ Ω∩{Im z ≥ ρ > 0},we have (z −Hθ)
−1 = O(1).Proof. We again use the notations of Setion 3: φθ(x) = x + θg(x) with g(x) = 0 in theompat set B(0, R0), and the notations of Subsetion 5.1 onerning hθ(x, ξ), U, U−1, dθand Ṽθ(x, ξ) whih satisfy

U−1hθ(x, ξ)U = dθ + Ṽθ(x, ξ).The matrix hθ(x, ξ) is the semi-lassial prinipal symbol of Hθ.Aording to Setion 4, the resonanes are independent of the family Uθ. Then we anassume that g(x) = 0 in the ball B(0, Rg) ⊃ B(0, R0), with Rg > 0, su�iently large suhthat
∀x ∈ R

3, |x| > Rg > 0, ‖Ṽθ(x, ξ)‖ ≤ ρ

2
.Repeating arguments of Subsetion 5.1, we an prove that (dθ + Ṽθ(x, ξ) − z) is invertible,thus (hθ(x, ξ) − z) is invertible and

‖∂αx ∂βξ (hθ(x, ξ) − z)−1 ‖ < C〈ξ〉−1−β.Sine we have:
‖∂αx ∂βξ (hθ(x, ξ) − z) ‖ < C〈ξ〉+1−β,the omposition theorem of h-pseudo-di�erential operators implies

Opωh((hθ(x, ξ) − z)−1)Opωh(hθ(x, ξ) − z) = 1 +O(h),where O(h) orresponds to the norm in L(L2). �Proof of Theorem 1.Let K̂(z) = K(z − Ĥθ)
−1 with Ĥθ, K de�ned in Proposition 7. We remark that
(I + K̂(z))(z − Ĥθ) = (z − Ĥθ) +K = z −Hθ.Thus, the resonanes z ∈ Res(H)∩Ω repeated with their multipliities oinide with the zerosof the funtion

D(z) = det(I + K̂(z)).Indeed, in a neighborhood of a zero z0 of D(z) with multipliity l(z0), we write D(z) = (z −
z0)

l(z0)G0(z), where G0(z) is a holomorphi funtion in a neighborhood of z0 with G0(z0) 6= 0.As [40, Equation (4.31)℄ we have
−tr((Hθ − z)−1K(Ĥθ − z)−1

)
= ∂zlog det(1 + K̂(z)

)
.(30)On the other hand, by the de�nition of l(z0),

l(z0) =
1

2iπ

∫

Γ
∂zlog det(1 + K̂(z)

)
dz,



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 19where Γ is a small positively oriented irle entered at z0. From (30), we obtain
l(z0) =

−1

2iπ

∫

Γ
tr((Hθ − z)−1K(Ĥθ − z)−1

)
dz

=
−1

2iπ

∫

Γ
tr((Hθ − z)−1 − (Ĥθ − z)−1

)
dz

= rank 1

2iπ

∫

Γ
(z −Hθ)

−1dz,In the latter equality, we have used that the trae of the projetor oinides with its rank.Sine K is bounded and is of �nite rank O(h−3),
|D(z)| ≤ e‖

bK(z)‖tr ≤ eC0h−3

, for all z ∈ Ω.Using Lemma 7, we get (z −Hθ)
−1 = O(1) for Imz ≥ ρ > 0 and z ∈ Ω. Sine

(I + K̂(z))−1 = (z − Ĥθ)(z −Hθ)
−1,(31)then

‖(I + K̂(z))−1‖ ≤ C1, Imz ≥ ρ > 0.Writing the operator (I + K̂(z))−1 in the form
(I + K̂(z))−1 = I − K̂(z)(I + K̂(z))−1,we obtain

|det((I + K̂(z))−1
)
| ≤ eC2h−3

, Im z ≥ ρ,whih implies
|D(z)| ≥ Ce−C3h−3

, z ∈ Ω ∩ {Im z ≥ ρ}.Now, applying Jensen's inequality in a slightly larger domain, we obtain Theorem 1. �6. Representation of the derivative of the spetral shift funtionIn this setion we prove our prinipal result given in Theorem 2 and a generalization (seeTheorem 5). Moreover, we give a Sjöstrand type loal trae formula.The spetral shift funtion ξ(λ, h) (∈ D′(R)) assoiated to H0,H1 is de�ned (see [10℄, [37℄,[45℄) by
〈ξ′(λ, h), f(λ)〉 = tr(f(H1) − f(H0)), f ∈ C∞

0 (R).Proof of Proposition 3. The Dira operator H0 + V is unitarly equivalent to the operator
H0 + V − α · ∇Φg = e

i
hc

Φg(H0 + V )e
−i
hc

Φg .Then, for f(λ) ∈ C∞
0 (R), the SSF ξ(λ, h) for the operator pair (H0, H0+V −α ·∇Φg) satis�es

〈ξ′(λ, h), f(λ)〉D′(R),D(R) = tr(f(H0 + V − α · ∇Φg) − f(H0))

= tr(f(e
i

hc
Φg(H0 + V )e

−i
hc

Φg) − f(H0))(32)
= tr(e i

hc
Φgf(H0 + V )e

−i
hc

Φg − f(H0)).



20 ABDALLAH KHOCHMANLet us now alulate tr(χR [e i
hc

Φgf(H0 + V )e
−i
hc

Φg − f(H0)
]) where χR(x) = χ( xR), χ ∈

C∞
0 (R3), χ(x) = 1 if |x| ≤ 1 and χ(x) = 0 if |x| ≥ 2. Using that χRf(H0 + V ) and χRf(H0)are trae lass operators and the yliity of the trae, we get:tr(χR [e i

hc
Φgf(H0 + V )e

−i
hc

Φg − f(H0)
])

= tr(e i
hc

ΦgχRf(H0 + V )e
−i
hc

Φ
)
− tr (χRf(H0))

= tr (χRf(H0 + V )) − tr (χRf(H0))(33)
= tr (χR [f(H0 + V ) − f(H0)]) .Using Theorem 6.3 of [17℄, we an take the limit R→ ∞ in (33). From (32), we obtain

〈ξ′(λ, h), f(λ)〉D′(R),D(R) = tr (f(H0 + V ) − f(H0)) ,and the proposition follows. �In the following, we will use the notations:
H1 = H, K1 :=K=Ĥ1,θ −H1,θ :=Ĥθ −Hθ and [a· ]

1
0 = a1 − a0.For an integer m > 3, we de�ne the funtions:

σ±(z) = (z2 + 1)mtr[(H· − i)−m(H· + i)−m(z −H·)
−1
]1
0
, ±Im z > 0.(34)The σ± satisfy the relation

σ−(z) = σ+(z̄), Im (z) < 0.(35)Proposition 8. For a potential V satisfying the assumption (AV) with δ > 3, the funtion
θ 7−→

[
(H·,θ − i)−m(H·,θ + i)−m(z −H·,θ)−1

]1
0
is holomorphi from D+

ǫ to the spae of traelass operators. Moreover, for any θ ∈ D+
ǫ , we have

σ±(z) = (z2 + 1)mtr[(H·,θ − i)−m(H·,θ + i)−m(z −H·,θ)
−1
]1
0
, ±Im z > 0.(36)Proof. For θ ∈ R, the operator

(H· − i)−m(H· + i)−m(z −H·)
−1,is unitarly equivalent to the operator

(H·,θ − i)−m(H·,θ + i)−m(z −H·,θ)
−1.Using the yliity of the trae, we dedue

σ±(z) = (z2 + 1)mtr[(H·,θ − i)−m(H·,θ + i)−m(z −H·,θ)
−1
]1
0
, ±Im z > 0, θ ∈ R.(37)Aording to the proof of Theorem 4, the resolvent (z − H·,θ)−1 is analyti for θ ∈ D+

ǫ and
z ∈ Ω ∩ {Imz > 0}. Then, the funtion θ 7−→ (H·,θ − i)−m(H·,θ + i)−m(z − H·,θ)−1 is alsoanalyti on D+

ǫ .Now, we treat the di�erene
[
(z −H·,θ)

−1(H·,θ − i)−m(H·,θ + i)−m
]1
0

= A1B1C1 −A0B0C0

= A1B1(C1 − C0) +A1(B1 −B0)C0

+ (A1 −A0)B0C0.(38)



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 21Clearly, the terms A· := (z −H·,θ)−1 for Im z > 0, B· := (H·,θ − i)−m and C· := (H·,θ + i)−mare bounded.For any integer m > 3, the term
B1(C1 − C0) =

(
B1(C1 − C0)〈x〉δ〈h∇x〉m

)(
〈h∇x〉−m〈x〉−δ

)
,(39)is analyti for θ ∈ D+

ǫ with values in the spae of trae lass operators. This an be provedusing funtional alulus in the framework of h-pseudo-di�erential operators (see [12℄): The�rst fator B1(C1−C0)〈x〉δ〈h∇x〉m is analyti for θ ∈ D+
ǫ , the seond fator (〈h∇x〉−m〈x〉−δ

)is in the spae of trae lass operators and its trae norm is bounded by O(h−3). Then, theleft-hand side of equation (39) is in the spae of trae lass operators and its trae normsis bounded by O(h−3). The same argument an be used for the terms A1(B1 − B0) and
(A1 −A0)B0, then their trae norm are bounded by O(h−3).Sine the funtion tr[(H·,θ − i)−m(H·,θ + i)−m(z − H·,θ)−1

]1
0
is analyti with respet to

θ ∈ D+
ǫ and independent of θ on the real axis, formula (36) follows. �Repeating the onstrution of Ĥ1,θ, we an onstrut an operator Ĥ0,θ : D(H0) → H withthe properties of Ĥ0,θ suh that the di�erene K0 := Ĥ0,θ−H0,θ satis�es the properties of K1(see Proposition 7).Proposition 9. There exists a funtion a+(z, h) holomorphi in Ω, suh that for all

z ∈ Ω ∩ {Im(z) > 0}, we have:
σ+(z) = tr[(H·,θ − z)−1K·(Ĥ·,θ − z)−1

]1
0
+ a+(z, h),(40)

|a+(z, h)| ≤ C(Ω)h−3, z ∈ Ω,with C(Ω) a onstant independent of h.Proof. For z ∈ Ω ∩ {Imz > 0}, we have
(H·,θ − z)−1 = (Ĥ·,θ − z)−1 + (H·,θ − z)−1K·(Ĥ·,θ − z)−1.(41)From the equations (41) and (36), we dedue:

σ+(z) = ((z − i)(z + i))m tr[ ((Ĥ·,θ − z)−1(H·,θ − i)−m(H·,θ + i)−m
) ]1

0

+ ((z − i)(z + i))m tr[ ((H·,θ − z)−1K·(Ĥ·,θ − z)−1(H·,θ − i)−m(H·,θ + i)−m
) ]1

0

= A(z) +B(z).Starting with the resolvent equation, we obtain:
((z − i)(z + i))m(H·,θ − i)−m(H·,θ + i)−m(H·,θ − z)−1

= (H·,θ − z)−1 −
m∑

k=1

(z + i)k−1(H·,θ + i)−k

− (z + i)
m∑

k=1

(z − i)k−1(H·,θ + i)−m(H·,θ − i)−k.



22 ABDALLAH KHOCHMANUsing the last equation, the yliity of the trae and Proposition 7 we obtain
B(z) = tr[K·(Ĥ·,θ − z)−1

(
(H·,θ − z)−1 −

m∑

k=1

(z + i)k−1(H·,θ + i)−k

−(z + i)
m∑

k=1

(z − i)k−1(H·,θ + i)−m(H·,θ − i)−k
)]1

0

= tr[(H·,θ − z)−1K·(Ĥ·,θ − z)−1
)]1

0
+ b(z).Sine the operator (Ĥ·,θ − z)−1 is bounded and holomorphi in Ω by onstrution, b(z) isholomorphi and bounded by O(h−3).It remains to show that

A(z) = ((z − i)(z + i))m tr[(Ĥ·,θ − z)−1(H·,θ − i)−m(H·,θ + i)−m
]1
0

= ((z − i)(z + i))m tr(Â1B1C1 − Â0B0C0),is holomorphi and bounded by O(h−3).We reall that the terms Â· := (Ĥ·,θ − z)−1 for z ∈ Ω, B· := (H·,θ − i)−m and C· :=
(H·,θ + i)−m are bounded. Using the assumption (AV) with δ > 3, we treat the di�erene
(Â1B1C1 − Â0B0C0) as (38). The only di�erene is for the term (Â1 − Â0)B0. We write

(Â1 − Â0)B0 = (Ĥ1,θ − z)−1(Ĥ0,θ − Ĥ1,θ)(Ĥ0,θ − z)−1(H0,θ − i)−m,with Ĥ0,θ − Ĥ1,θ = H0,θ −H1,θ +K0 −K1.Then, modulo a trae lass operator uniformly bounded, with trae norm bounded by O(h−3),we have
(Â1 − Â0)B0 = (Ĥ1,θ − z)−1 ◦

(
(H0,θ −H1,θ)(H1,θ − i)−m

)

◦
(
(H1,θ − i)m(Ĥ0,θ − z)−1(H0,θ − i)−m

)
.The seond fator (H0,θ − H1,θ)(H1,θ − i)−m is trae lass and its trae is O(h−3), the �rstand the third fators are bounded. Then, the term (Â1 − Â0)B0 is analyti for z ∈ Ω withvalues in the spae of trae lass operators and its trae is bounded by O(h−3) and so is thedi�erene (Â1B1C1 − Â0B0C0). �Lemma 8. For f ∈ C∞

0 (R), we have
〈ξ′, f〉 = lim

ε→0

i

2π

∫
f(λ)[σ+(λ+ iε) − σ−(λ− iε)]dλ.(42)This limit is taken in the sense of distributions.Proof. We follow the proof of [13, Lemma 1℄. Let f ∈ C∞

0 (R), f̃(z) ∈ C∞
0 (R2) be analmost analyti extension of f and

g(x) = f(x)(x2 + 1)m.Then
g(H·) = − 1

π

∫
∂̄z f̃(z)(z2 + 1)m(z −H·)

−1L(dz),



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 23where L(dz) is the Lebesgue measure on C. Clearly
f(H·) = (H· − i)−m(H· + i)−mg(H·)

= − 1

π

∫
∂̄z f̃(z)(z2 + 1)m(H· − i)−m(H· + i)−m(z −H·)

−1L(dz)whih implies:tr (f(H1) − f(H0)) = − 1

π

∫
∂̄z f̃(z)(z2 + 1)m

× tr[(H· − i)−m(H· + i)−m(z −H·)
−1
]1
0
L(dz).(43)We have σ±(z) = O(h−3|Im z|−2) and the derivative ∂̄z f̃ = O(|Im z|N ) for all N ∈ N(f ∈ C∞

0 (R)), so we write the right-hand side of (43) as
〈ξ′, f〉 = tr (f(H1) − f(H0))

= − 1

π
lim
ε→0

(∫Im z>0
∂̄z f̃(z)σ+(z + iε)L(dz) +

∫Im z<0
∂̄z f̃(z)σ−(z − iε)L(dz)

)
.Aording to Proposition 9, the funtions σ+(z + iε) and σ−(z − iε) are holomorphi in

{z ∈ Ω; Imz > 0} and {z ∈ Ω; Imz < 0} respetively. Applying the Green formula, we obtainthe lemma. �Before the proof of Theorem 2, let us give the following proposition:Proposition 10. (see [39℄, [40℄) Let F (z, h) be a holomorphi funtion in an open simplyonneted domain Ω ontaining a number N(h) of zeros. We suppose that,
F (z, h) = O(1)eO(1)N(h), z ∈ Ω,and for all ρ > 0 small enough, there exists C > 0 suh that for all z ∈ Ωρ := Ω ∩ {Im z > ρ}we have

|F (z, h)| ≥ e−CN(h).Then for eah open simply onneted subset Ω̃ ⋐ Ω there exists g(., h) holomorphi in Ω̃ suhthat
F (z, h) =

N(h)∏

j=1

(z − zj)e
g(z,h), ∂zg(z, h) = O(N(h)), z ∈ Ω̃.Proof of Theorem 2. We follow the argument of Sjöstrand ([40℄). Let

K̂·(z) = K·(z − Ĥ·,θ)
−1.From formula (30) and Proposition 9, we have, modulo a holomorphi funtion that is O(h−3)in Ω,

σ+(z) = −
[
∂zlog det(1 + K̂·(z)

) ]1
0
, for all z ∈ Ω ∩ {Im(z) > 0}.From Subsetion 5.2 the resonanes are the zeros of the funtion

D(z, h) = det(I + K̂1(z)
)

= O(1)ech
−3

.Sine the funtion det(1 + K̂0(z)) has no zeros in Ω (see (31) and Remark 6) , the term
∂zlog det(1 + K̂0(z)

) is analyti and using Proposition 10, it is bounded by O(h−3).



24 ABDALLAH KHOCHMANWe reall that Res(H) is the set of resonanes of H and let
D(z, h) = G(z, h)

∏

w∈Res(H)∩Ω

(z − w),where, G(z, h) and its inverse are holomorphi funtions in Ω. Obviously,
∂zlogD(z, h) = ∂zlogG(z, h) +

∑

w∈Res(H)∩Ω

1

z − w
.(44)Using Proposition 10, we have

|∂zlogG(z, h)| ≤ C(Ω̃)h−3, z ∈ Ω̃,where Ω̃ ⊂⊂ Ω is an open simply onneted set and C(Ω̃) is independent of h.Now, we treat the non-holomorphi term in (σ+(λ+ iε) − σ−(λ− iε)) when ε → 0, whihis
∑

w∈Res(H)∩Ω

(
1

λ+ iε− w
− 1

λ− iε− w

)
, forλ ∈ I.If Im(w) 6= 0, we have

−1

2iπ
lim
ε→0

(
1

λ+ iε− w
− 1

λ− iε− w

)
=

−Im(w)

π|λ− w|2 ,while for w ∈ R we get
−1

2iπ
lim
ε→0

(
1

λ+ iε− w
− 1

λ− iε−w

)
= δ(λ −w) = δw(λ).The seond limit is taken in the sense of distributions.Lemma 8 and Proposition 9 show that the funtion r(z, h) = g(z, h) − g(z̄, h), with g(z, h) =

a+(z, h) + ∂zlogG(z, h) + ∂zlog det(1 + K̂0(z)
) a holomorphi funtion in Ω and satisfyingthe following estimate:

|g(z, h)| ≤ C(Ω)h−3, z ∈W,(45)with C(Ω) > 0 independent of h. �Theorem 2 an be extended to a more general situation:Theorem 5. Assume that H1 = H0 + V1, H2 = H0 + V2. The potentials V1, V2 (resp.
V = V1 − V2) satisfy the assumption (AV) with δ > 0 (resp. δ > 3). Let Ω be a omplexdomain satisfying the assumption (A±

Ω), W ⋐ Ω be an open simply onneted and relativelyompat set whih is symmetri with respet to R. Assume that I = W ∩ R is an interval.Then for all λ ∈ I we have a representation of the derivative of the spetral shift funtionassoiated to the operator pairs (H2, H1) of the form:
ξ′(λ, h) =

1

π
Im r(λ, h) +

[ ∑

w∈Res(H·)∩ΩImw 6=0

−Imw

π|λ− w|2 +
∑

w∈Res(H·)∩I
δw(λ)

]1
2
,(46)



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 25where r(z, h) = g(z, h) − ḡ(z̄, h), g(z, h) is a holomorphi funtion in Ω whih satis�es thefollowing estimate:
|g(z, h)| ≤ C(W )h−3, z ∈W,(47)with C(W ) > 0 independent of h. Here δw(·) is the Dira mass at w ∈ R.Proof. We denote H2,θ = UθH2U

−1
θ (Uθ de�ned in Setion 3). As in Subsetion 5.1, oneonstruts Ĥ2,θ : D(H) 7−→ H with the following properties:

K2 := Ĥ2,θ−H2,θ is of �nite rank O(h−3), has ompat support in the sense thatK2 = χ2K2χ2if χ2 ∈ C∞
0 is equal to 1 on B(0, R) for some su�iently large R, and

(Ĥ2,θ − z)−1 = O(1) : H 7−→ D(H), uniformly for z ∈ Ω.We repeat the proof of Theorem 2 replaing K0 by K2 and K̂0(z) by K̂2(z) = K2(z− Ĥ2,θ)
−1.Consequently ∂zlog det(1 + K̂0(z)

) is replaed by ∂zlog det(1 + K̂2(z)
) whih is a non-holomorphi funtion. We treat this term as the term ∂zlog det(1 + K̂1(z)
) in the proof ofTheorem 2. �Remark 8. Equation (6) shows that the spetral shift funtion ξ(λ, h) satis�es

ξ(λ, h) − ξ(λ0, h) =
∑

w∈Res(H1)∩ΩImw 6=0

1

π

∫ λ

λ0

−Imw

|µ− w|2 dµ +
1

π

∫ λ

λ0

Im r(µ, h)dµ

+ #{µ ∈ [λ0, λ]; µ ∈ σd(H1)}.(48)In partiular, for λ ∈ I\σd(H1) the distribution ξ(λ, h) is ontinuous, and the funtion
η(λ, h) − η(λ0, h) = ξ(λ, h) − ξ(λ0, h) − #{µ ∈ [λ0, λ]; µ ∈ σd(H1)}is real analyti in I. �Repeating the argument used in the proof of [8, Theorem 4℄, the following theorem is adiret onsequene of Theorem 2.Theorem 6. (Loal trae formula) Let Ω be an open, omplex, simply onneted andrelatively ompat set satisfying assumption (A±

Ω) suh that I = Ω ∩ R is an interval.We suppose that f is a holomorphi funtion in Ω and ψ ∈ C∞
0 (R) satis�es

ψ(λ) =

{
0, d(I, λ) > 2ε,
1, d(I, λ) < ε,where ε > 0 and su�iently small. Then

tr[(ψf)(H·)]
1
0 =

∑

z∈Res(H1)∩Ω

f(z) + EΩ,f,ψ(h), with
|EΩ,f,ψ(h)| ≤M(ψ,Ω) sup{|f(z)|; 0 ≤ d(∂Ω, z) ≤ 2ε, Im (z) ≤ 0}h−3.



26 ABDALLAH KHOCHMAN7. Weyl AsymptotisIn this setion we obtain a Weyl-type asymptotis for the spetral shift funtion ξ(λ, h)assoiated to the operators H0 and H1 = H0 + V . Here we assume that V is an eletro-magneti potential (8),
H1 = −

3∑

j=1

αj(ich∂j + eAj) +mc2β + ev.In the following, we �x I0 ⊂ R\{±mc2} and hoose W0 an open simply onneted, relativelyompat subset of Ω satisfying assumption (A+
Ω) suh that I0 = W0 ∩ R.For the h-pseudo-di�erential and funtional alulus for the Dira operator, we refer to([12℄,[10℄,[35℄,[20℄). We reall that Hν = Opωh(Dν) and ϕ(Hν) are h-pseudo-di�erential opera-tors for a smooth funtion ϕ. The semi-lassial symbol Dν is de�ned in (10).Let us introdue the intervals I1, I2 ⊂ I0 neighborhoods of λ1, λ respetively suh that,eah λ ∈ I1 ∪ I2 is a nonritial energy level for H (see De�nition 2). Let ϕj ∈ C∞

0 (R,R+) besuh that
ϕ1 = 1 on I1, ϕ2 = 1 on I2 and ϕ1 + ϕ2 + ϕ3 = 1 on I0.(49)Consider a funtion θ(t) ∈ C∞

0 (] − δ1, δ1[), θ(0) = 1, θ(−t) = θ(t), so that the Fouriertransform θ̂ of θ satis�es θ̂(λ) ≥ 0 on R, and assume that there exist 0 < ǫ0 < 1, δ0 > 0, suhthat θ̂(λ) ≥ δ0 > 0 for |λ| ≤ ǫ0. Next, we introdue
(F−1

h θ)(λ) = (2πh)−1

∫
eitλh

−1

θ(t)dt = (2πh)−1θ̂(−h−1λ).To prove Theorem 3, we need the proposition:Proposition 11. For the trae involving Hν , ν = 0, 1, we have for λ ∈ Ij ,tr([(F−1
h θ)(λ−H·)ϕj(H·)

]1
0

)
= wj(λ)h−3 +O(h−2), j = 1, 2,(50)with wj(λ) ∈ C∞

0 (Ij) and O(h−2) uniform with respet to λ ∈ Ij.Proof. Proposition 11 is lose to the alulation of the trae in [5, Setion 4℄ and to theappendix of [8℄ for the Shrödinger operator. But, here we use a trik of Robert [10℄. We �x
j = 2 (it is similar for j = 1). The proof of (50) is obtained following these two steps:

• First, we reall that λ ∈ I2 and Supp θ(t) ⊂ [−δ1, δ1]. Let us write
T = tr[(F−1

h θ)(λ−H·)ϕ2(H·)
]1
0
=tr[∫ θ(t)

2πh
eit(λ−H·)h−1

ϕ2(H·)dt
]1
0

=
1

2πh

∫
eitλh

−1

θ(t)tr[e−itH·h−1

ϕ2(H·)]
1
0dtIn the order to alulate the traetr(f(H1) − f(H0)), for all f ∈ C∞

0 (R\{±mc2})we use [10, Proposition 3.2℄. If we note W (h) = Q − 1
2 i[Q,A(h)] with Q = H2

1 − H2
0 ,

A(h) = 1
2(x · h∂x + h∂x · x) and [Q,A(h)] = QA(h) −A(h)Q, we havetr(f(H1) − f(H0)) = tr(W (h)(H2

1 −m2c4)−1f(H1)).(51)



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 27Applying formula (51) for f(λ) = e−itλh
−1

ϕ2(λ), we have
T =

1

2πh

∫
eitλh

−1

θ(t)tr(W (h)(H2
1 −m2c4)−1e−itH1h−1

ϕ2(H1)
)
dt.Remark 9. Of ourse (H2

1−m2c4)−1 is not well de�ned, however for f ∈ C∞
0 (R\{±mc2}), wean de�ne (H2

1 −m2c4)−1f(H1) as the self-adjoint operator ϕ(H1) where ϕ ∈ C∞
0 (R) satis�es:

ϕ(λ) =

{
(λ2 −m2c4)−1f(λ) for λ 6= ±mc2,

0 for λ = ±mc2.
• Now, we treat T following the analysis of [5, Setion 4.2℄. By the h-pseudo-di�erentialalulus, we obtain the existene of a h-pseudo-di�erential operator S whih is trae lass withsymbol

s(x, y, ξ, h) ∈ S0(〈x〉−δ〈ξ〉−N ), ∀N ∈ N, δ > 3,(52)having ompat support in ξ and in (x − y) (i.e. supp(x−y)(s) = {x − y, ∃ ξ ; (x, y, ξ, h) ∈supp(s)} is ompat) and support in {(x, ξ); |x| > R, (x, ξ) ∈ D−1
1 (I2)}, with D1 the semi-lassial symbol of H1, so that

T =
1

2πh
tr(∫ eitλh

−1

θ(t)e−itH1h−1

Sdt

)
+O(h∞).Using Theorem 9 in Appendix A and the hypothesis on S by omposition of Fourier integraloperators, we obtain a Fourier integral operator Ũt = Ũ+

t + Ũ−
t , suh that for |t| ≤ δ1 and δ1su�iently small, we have

‖Ũt − e−itH1h−1

S‖tr = O(h∞),(53)where the kernel of the operator ∫ eitλh−1

θ(t)Ũtdt is equal to K̃+(x, y;h) + K̃−(x, y;h) with
K̃±(x, y;h) =

1

(2πh)3

∫ ∫
ei(tλ+Φ±(t,x,ξ)−y·ξ)h−1

θ(t)Ẽ±(t, x, y, ξ;h)dtdξ.The amplitudes Ẽ±, satisfy
Ẽ±(t, x, y, ξ;h) ∈ S0(〈x〉−δ〈ξ〉−N ), ∀N ∈ Nand are ompatly supported in ξ and in (x− y).Using the Taylor formula for the funtions Φ±(t, x, ξ) in a neighborhood of t = 0, we have:

Φ±(t, x, ξ) = x · ξ − tH±
1 (x, ξ) +O(t2).We will dedue that T = T + + T −, with

T ± =
1

(2πh)4

∫ ∫ ∫
ei(tλ+Φ±(t,x,ξ)−x·ξ)h−1

θ(t)Ẽ±(t, x, x, ξ;h)dtdxdξ +O(h∞).Moreover, the symbol Ẽ±(t, x, x, ξ;h) has support in {(x, ξ); |x| > R, |ξ| ≤ C1, (x, ξ) ∈
D−1

1 (I2)}, so that for all α and |t| ≤ δ1, we have
|∂αẼ±(t, x, x, ξ;h)| ≤ Cα〈x〉−δ , δ > 3.(54)The last estimate enables us to alulate T by using an in�nite partition of unity

∑

α∈N3

Ψ(x− α) = 1, ∀x ∈ R
3,



28 ABDALLAH KHOCHMANwhere Ψ ∈ C∞
0 (K),Ψ ≥ 0, K being a neighborhood of the unit ube. Consequently, for every�xed h ∈]0, h0], we have

T ± =
1

(2πh)4
lim
m→∞

∫∫∫
ei(tλ+Φ±(t,x,ξ)−x·ξ)h−1

θ(t)

×
∑

|α|≤m
Ψ(x− α)Ẽ±(t, x, x, ξ;h)dtdxdξ +O(h∞) = lim

m→∞
I±m +O(h∞),and we redue the problem to the analysis of the integrals I±m. Conerning the phase funtion,we observe that

tλ+ Φ±(t, x, ξ) − x · ξ = t(λ−H±
1 (x, ξ) +O(t)),(55)where O(t) and its derivatives are uniformly bounded on the support of θ(t)Ẽ±(t, x, x, ξ;h)sine the derivatives of (Φ±(t, x, ξ) − x · ξ) are bounded on this set.Now we look for ritial points of the phase funtion (tλ+ Φ±(t, x, ξ) − x · ξ). Putting thederivative with respet to t equal to 0, we see thatH±

1 (x, ξ) = λ+O(t). Sine ∂x,ξH±
1 (x, ξ) 6= 0,when H±

1 (x, ξ) = λ, and putting the derivative of the phase funtion t(λ−H±
1 (x, ξ) + O(t))with respet to H±

1 (x, ξ) equal to 0, we have
t = O(t2).Then the phase is ritial for |t| small preisely when t = 0, λ = H±

1 . Near any suh ritialpoint we hoose loal oordinates t, H±
1 (x, ξ), w1, · · · , w5 and onsider the Hessian of (55)with respet to t, H±

1 (x, ξ) at the ritial point:
(

⋆ −1
−1 0

)This is a non-degenerate matrix of determinant −1 and of signature 0. By the stationaryphase method we obtain
I±m =

ψ±(λ)

(2πh)3

∫

λ=H±

1

∑

|α|≤m
Ψ(x− α)Ẽ±(0, x, ξ, λ;h)L±

λ (dw) +O(h2),where L±
λ (dw) is the Liouville measure on λ = H±

1 and the remainder O(h−2) is uniform withrespet to λ ∈ I2 and m ∈ N. Here ψ±(λ) ∈ C∞
0 (I2). Taking the limit limm→∞ I±m, we obtainan asymptotis of T . �Lemma 9. With the above de�nitions of θ(t), ξ(λ, h), ϕj(λ), Ij, j = 1, 2, we have

∫ λ

−∞
F−1
h θ ∗ ϕjξ′(µ, h)dµ −

∫ λ

−∞
ϕj(µ)ξ′(µ)dµ = O(h−2), λ ∈ Ij .(56)Proof. We deal only with the analysis of (56) for j = 2 sine that for j = 1 is similar.Aording to Theorem 2, there exists a holomorphi funtion r(z, h) in Ω suh that for all

λ ∈ I0 = W0 ∩ R, we have
ξ′(λ, h) =

1

π
Im r(λ, h) +

∑

w∈Res(H1)∩ΩImw 6=0

−Imw
π|λ− w|2 +

∑

w∈Res(H1)∩I0

δw(λ),



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 29where r(z, h) satis�es the following estimate:
|r(z, h)| ≤ C(W )h−3, z ∈W,(57)with C(W ) > 0 independent of h. Let us denote
Gϕ2

(λ) =
1

π

∫ λ

−∞
Im r(µ, h)ϕ2(µ)dµ,

Mϕ2
(λ) =

∑

w∈Res(H1)∩ΩImw 6=0

∫ λ

−∞

−Im w

π|λ− w|2ϕ2(µ)dµ+
∑

w∈Res(H1)∩]c0,λ]

ϕ2(w).(58)Using the Cauhy inequality and (57), it follows easily that
G′
ϕ2

(λ) = O(h−3) and G′′
ϕ2

(λ) = O(h−3),and we immediately obtain
F−1
h θ ∗G′

ϕ2
−G′

ϕ2
= O(h−2).(59)Now, we want to apply a Tauberian theorem (see [35, Theorem V-13 ℄) for the inreasingfuntion Mϕ2

(λ). For this purpose, we need the estimates
Mϕ2

(λ) = O(h−3),
d

dλ
(F−1

h θ ∗Mϕ2
)(λ) = O(h−3), ∀λ ∈ R,(60)and the equality Mϕ2

(µ) = Gϕ2
(µ) = 0, µ ≤ infI2.The �rst estimate in (60) follows easily from equation (58) with the upper bound of the numberof the resonanes in Ω (see Theorem 1), and the seond follows from (50) and the equation

d

dλ
(F−1

h θ ∗Mϕ2
)(λ) = F−1

h θ ∗ ϕ2ξ
′(λ) − d

dλ
(F−1

h θ ∗Gϕ2
)(λ).Then, aording to the Tauberian theorem we have

(F−1
h θ ∗Mϕ2

)(λ) = Mϕ2
(λ) +O(h−2),this enables us to obtain

∫ λ

−∞
ϕ2(µ)ξ′(µ)dµ = Mϕ2

(λ) +

∫ λ

−∞
G′
ϕ2

(µ)dµ

=

∫ λ

−∞

d

dµ
(F−1

h θ ∗Mϕ2
+ F−1

h θ ∗Gϕ2
)(µ)dµ +O(h−2)

=

∫ λ

−∞
F−1
h θ ∗ ϕ2ξ

′(µ, h)dµ +O(h−2).

�



30 ABDALLAH KHOCHMANProof of Theorem 3. For λ1 ∈ I1, λ ∈ I2, using the funtions de�ned in (49), we have
ξ(λ, h) − ξ(λ1, h) =

∫ λ

−∞
ϕ1(µ)ξ′(µ, h)dµ −

∫ λ1

−∞
ϕ2(µ)ξ′(µ, h)dµ

−
∫ λ1

−∞
ϕ1(µ)ξ′(µ, h)dµ +

∫ λ

−∞
ϕ2(µ)ξ′(µ, h)dµ

+

∫ λ

λ1

ϕ3(µ)ξ′(µ, h)dµ.(61)Sine ϕj = 0 on I3−j for j = 1, 2, the �rst term (resp. the seond term) is indepen-dent of λ ∈ I2 (resp. λ1 ∈ I1) and is equal to tr[ϕ1(H.)]
1
0 = C(ϕ1)h

−3 + O(h−2) (resp.tr[ϕ2(H.)]
1
0 = C(ϕ2)h

−3 + O(h−2)), where C(ϕj) is a onstant depending on ϕj for j = 1, 2.Sine ϕ3 = 0 on Ij , j = 1, 2, the last term is independent of λ ∈ I2, λ1 ∈ I1 and is equal to
C(ϕ3)h

−3 + O(h−2), where C(ϕ3) is a onstant depending on ϕ3. The proof of these resultsis based on the funtional alulus in the framework of h-pseudo-di�erential operators.Using the equations (50), (56) and (61) we omplete the proof of asymptoti expansion (13)by writing
(F−1

h θ ∗ (ϕjξ
′))(λ) = 〈(F−1

h θ)(λ− ·)ϕj(·), ξ′〉

= tr([(F−1
h θ)(λ−H·)ϕj(H·)

]1
0

)

= wj(λ)h−3 +O(h−2), j = 1, 2.(62)It remains to ompute the Weyl term (14).Aording to the de�nition of the spetral shift funtion ξ(λ, h) in (5), we have:
〈ξ′(λ, h), ϕ(λ)〉 = tr(ϕ(H1) − ϕ(H0)), ϕ(λ) ∈ C∞

0 (R).(63)We use weak asymptotis whih is a diret onsequene of the funtional alulus in theframework of h-pseudo-di�erential operators, as established in [12℄, [35℄, [10℄. We �nd
Hν = Opωh(Dν), ν = 0, 1, (Dν de�ned in (10)),and tr (ϕ(H1) − ϕ(H0)) = h−3

∑

j≥0

γj(ϕ)hj

= h−3γ0(ϕ) +O(h−2),with γ0(ϕ) = (2π)−3
∫

R3

∫
R3 tr (ϕ(D1(x, ξ)) − ϕ(D0(x, ξ))) dxdξ.(tr(A) is the trae of the matrix A).The matrix Dν(x, ξ) is Hermitian and has two eigenvalues H±

ν (x, ξ) (see (11)), whenetr (ϕ(D1) − ϕ(D0)) = 2
(
ϕ(H+

1 ) + ϕ(H−
1 ) − ϕ(H+

0 ) − ϕ(H−
0 )
)
.Aording to the asymptoti expansions (13) and (63) we obtain

w(λ, λ1) = w(λ) − w(λ1),
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w(λ) =

1

4π3

∫

R3

(∫

H+

1
(x,ξ)≤λ

dξ −
∫

H+

0
(x,ξ)≤λ

dξ −
∫

H−

1
(x,ξ)≥λ

dξ +

∫

H−

0
(x,ξ)≥λ

dξ

)
dx.Putting ζν = cξ − νeA(x) for ν = 0, 1 and ζ = rω (ω ∈ S2), we get

±H±
ν ≤ ±λ ⇔

(
ζ2
ν + (mc2 + ν

e(v+ − v−)

2
)2
) 1

2

± ν
e(v+ + v−)

2
≤ ±λ

⇔
(
ζ2
ν + (mc2 + ν

e(v+ − v−)

2
)2
) 1

2

≤ ±
(
λ− ν

e(v+ + v−)

2

)
,thus

∫

H+

1
(x,ξ)≤λ

dξ −
∫

H−

1
(x,ξ)≥λ

dξ =
4π

3

(
(λ− e(v+ + v−)

2
)2+ − (mc2 +

e(v+ − v−)

2
)2
) 3

2

+

− 4π

3

(
(λ− e(v+ + v−)

2
)2− − (mc2 +

e(v+ − v−)

2
)2
) 3

2

+

,and
−
∫

H+

0
(x,ξ)≤λ

dξ +

∫

H−

0
(x,ξ)≥λ

dξ = ∓4π

3

(
λ2 − (mc2)2

) 3

2

+
, for ± λ ≥ 0,with (x)+ = max(x, 0) and (x)− = max(−x, 0) for x ∈ R. �Remark 10. Theorem 3 an be extended to the operator pairs (H1 = H0+V1, H2 = H0+V2),where the potentials V1, V2 are eletro-magneti potentials

V·(x) = e(−α · A· + v·)(x) = −
3∑

j=1

αj · eA·
j(x) + e

(
v·+(x)I2 0

0 v·−(x)I2

)satisfying assumption (AV) with δ > 0 (or ‖Vj(x)‖ −→ 0) and the potential V = V2 − V1satis�es assumption (AV) with δ > 3:For all λ, λ1 nonritial energy levels for H1, H2 suh that ±mc2 6∈ ]λ1, λ[ and h ∈]0, h0[, wehave the asymptoti expansion
ξ(λ, h) − ξ(λ1, h) = w(λ, λ1)h

−3 +O(h−2).(64)Here the O(h−2) is uniform for λ (resp.λ1) in a small interval I2 (resp. I1). The �rst term
w(λ, λ1) ∈ C∞(I2 × I1) is given by

w(λ, λ1) = w(λ) − w(λ1)with,
w(λ) =

1

3π2

∫

R3

[
W+(λ, v·+, v

·
−) −W+(λ, v·+, v

·
−)
]2
1
dx(65)where W±(λ, a, b) =

((
λ− e(a+b)

2

)2

±
−
(
mc2 + e(a−b)

2

)2
) 3

2

+

.In this setting, we do not have a formula like (51). But it ould be possible to use the ap-proah due to Bruneau-Petkov in [8℄. For this we need more information on the approximationof the propagator e−itHjh
−1 by the Fourier integral operator Ut.



32 ABDALLAH KHOCHMAN8. Resonanes in small domainsIn this setion, we assume that the Hamiltonian is H = H0 + V , where V is an eletro-magneti potential:
H = −

3∑

j=1

αj(ich∂j + eAj) +mc2β + ev.8.1. Upper bound for the number of resonanes in domains of width h. We adapt,for the Dira operator, Theorem 1 of [9℄ whih is based on a representation formula for thespetral shift funtion (see Theorem 2).Theorem 7. Suppose that eah λ ∈ [E0, E1] is a non-ritial energy level for H. Then for
h ∈]0, h0], the following assertions are equivalent:(i) There exist positive onstants B, C, b, h0, suh that for any λ ∈ [E0 − b,E1 + b],

h ∈]0, h0] and h/B ≤ ρ ≤ B, we have
#{z ∈ C : z ∈ Res(H), |z − λ| ≤ ρ} ≤ Cρh−3.(ii) There exist positive onstants B1, C1, ε1, h1, suh that for any λ ∈ [E0 − ε1, E1 + ε1],

h ∈]0, h1] and h/B1 ≤ ρ ≤ B1, we have
|ξ(λ+ ρ, h) − ξ(λ− ρ, h)| ≤ Cρh−3.As a onsequene of Theorem 7, we have an upper bound O(h−2) for the number of reso-nanes for the semi-lassial Dira operator lose to a non-ritial energy level in a domain ofwidth h:Proposition 12. Assume that V is the eletro-magneti potential (8) satisfying the assump-tion (AV) with δ > 3. We suppose also that eah λ ∈ [E0, E1] is a non-ritial energy level for

H. There are positive onstants C, B, b, h0 suh that for any λ ∈ [E0 − b,E1 + b], h ∈]0, h0]and h/B ≤ ρ ≤ B, we have
#{z ∈ C : z ∈ Res(H), |z − λ| ≤ ρ} ≤ Cρh−3.Proof. It follows from Theorem 7 and equation (13). �8.2. Breit-Wigner approximation. In this part, we onsider small domains of width h, andwe prove a Breit-Wigner approximation for ξ(λ, h) (see [32℄, [33℄, [16℄, [6℄, [8℄). Let η(λ, h) bethe real analyti funtion de�ned by
η(λ, h) = ξ(λ, h) − #{µ ∈ [E0, λ] : µ ∈ σd(H)}.Using Proposition 12 and the arguments used in [8, Setion 6℄, we obtain a Breit-Wignerapproximation for the derivative of the spetral shift funtion ξ(λ, h).Theorem 8. (Breit-Wigner) Assume that V is an eletro-magneti potential (8), for any

λ ∈ [E0, E1] a non-ritial energy level for H, 0 < ρ < h/B, 0 < B1 < B, and h su�ientlysmall, we have
η(λ+ ρ, h) − η(λ− ρ, h) =

∑

w∈Res(H)Imw 6=0, |w−λ|<h/B1

ωC−
(w, [λ − ρ, λ+ ρ]) +O(ρ)h−3,
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is the harmoni measure

ωC−
(w,E) = − 1

π

∫

E

Im(w)

|t− w|2 dt, E ⊂ R = ∂C−.Using Theorem 7 and repeating with little modi�ations the arguments used in [7, Setion6℄, we obtain the following orollary whih entails also a trae formula in small domains.Corollary 1. Under the assumptions of Theorem 8 and supposing that [E0, E1] ontains onlynon-ritial energy levels for H, for eah E ∈ [E0, E1] there exist onstants C2 > C1 > 0, h0 >
0 so that for |λ− E| ≤ C1h, h ∈]0, h0], we have

ξ′(λ, h) = − 1

π

∑

w∈Res(H)

|E−w|≤C2h

Im(w)

|λ− w|2 +
∑

w∈σd(H)

|E−w|≤C1h

δw(λ) +O(h−3).(66)Here δw(·) is the Dira mass at w ∈ R.Appendix A. Constrution of UtIn this appendix, we onstrut a parametrix at small time of the propagator for the Diraequation in an external eletro-magneti �eld
ih∂tψ = H1ψ,with H1 = H0 + V . Here H0 is the selfadjoint operator de�ned in (1) and V is an eletro-magneti potential (8).Theorem 9. (Approximation of the propagator) There exist δ1 > 0 small enough anda Fourier integral operator Ut = U+

t + U−
t with

U±
t f(y) =

1

(2πh)3

∫ ∫
ei(Φ

±(t,x,ξ)−y·ξ)h−1

E±(t, x, y, ξ;h)f(y)dξdy,de�ned for |t| < δ1 suh that:
• The amplitudes E±(t, x, y, ξ;h) ∈ S0(1).
• ‖Ut − e−itH1h−1‖ = O(h∞), uniformly for |t| < δ1.
• The phase funtion Φ±(t, x, ξ) − x · ξ and its derivatives ∂αt ∂βx∂γξ (Φ±(t, x, ξ) − x · ξ)are uniformly bounded for (t, x, ξ) ∈ [−δ1, δ1]× R

3 ×B(0, C1), (α, β, γ) 6= (0, 0, 0) and
C1 > 0 (see(71)).With a di�erent approah, a similar result has been obtained by Yajima [47℄ for a salareletri potential (v+ = v−).Proof. We onsider the equivalent problem for Ut

{
ih∂tUt −H1Ut = 0,

U0 = I.
(67)We solve this problem using the B.K.W. method. We assume that the kernel of the operator
Ut is Kt, where

Kt(x, y;h) =
1

(2πh)3

∫
ei(Φ(t,x,ξ)−y·ξ)h−1

E(t, x, y, ξ;h)dξ,



34 ABDALLAH KHOCHMANwith E(t, x, y, ξ;h) = E0(t, x, y, ξ) + hE1(t, x, y, ξ) + · · · .Thus, if we look for E(t, x, y, ξ;h) having the asymptoti expansion above, it is enough tosolve (in some �xed neighborhood of t = 0) the sequene of equations




0 =
(
∂tΦ(t, x, ξ) + cα · ∇xΦ − eα ·A+mc2β + ev

)
E0,

i(∂t + cα · ∇x)Ej =
(
∂tΦ(t, x, ξ) + cα · ∇xΦ − eα ·A+mc2β + ev

)
Ej+1,

E0(0, x, ξ) = I4,
Ej(0, x, ξ) = 0, for j ≥ 1.

(68)On the support of E0, we dedue the eikonal equation
{

det
(
∂tΦ(t, x, ξ) + cα · ∇xΦ − eα · A+mc2β + ev

)
= 0,

Φ(0, x, ξ) = x · ξ.(69)The system (69) is equivalent to
{
∂tΦ

±(t, x, ξ) +H±
1 (x,∇xΦ) = 0, (see (11)),

Φ±(0, x, ξ) = x · ξ.(70)The latter system an be solved using the Hamilton-Jaobi method (see [2℄) and all derivatives
∂αt ∂

β
x∂

γ
ξ

(
Φ±(t, x, ξ) − x · ξ

)(71)are uniformly bounded for (t, x, ξ) ∈ [−δ1, δ1] × R
3 ×B(0, C1) and (α, β, γ) 6= (0, 0, 0).Using the Taylor formula in a neighborhood of t = 0, the two solutions of (70) satisfy:

Φ±(t, x, ξ) = x · ξ − tH±
1 (x, ξ) +O(t2).Then Ut = U+

t + U−
t , and the kernel of the operator Ut is Kt = K+

t +K−
t , with

K±
t (x, y;h) =

1

(2πh)3

∫
ei(Φ

±(t,x,ξ)−y·ξ)h−1

E±(t, x, y, ξ;h)dξ.We look for the amplitude E±(t, x, y, ξ;h) having an asymptoti expansion in powers of h:
E±

0 (t, x, y, ξ) + hE±
1 (t, x, y, ξ) + · · · .Consequently, the oe�ients E±

j (t, x, y, ξ) are the solutions of the transport equations




0 =
(
∂tΦ

± + cα · ∇xΦ
± − eα ·A+mc2β + ev

)
E±

0 ,
i(∂t + cα · ∇x)E

±
j =

(
∂tΦ

± + cα · ∇xΦ
± − eα ·A+mc2β + ev

)
E±
j+1,

E+
j (0, x, ξ) + E−

j (0, x, ξ) = 0 for j ≥ 1,

E±
0 (0, x, ξ) = Π±

1 (x, ξ),

(72)with Π±
1 (x, ξ) de�ned by (12).Resolution of (72).Let us denote by L = ∂t + cα · ∇x, with α · ∇x =

∑3
j=1 αj∂xj

. The matrix
M± = ∂tΦ

± + cα · ∇xΦ
± − eα · A+mc2β + ev,is Hermitian and has two real eigenvalues whih are linearly independent with multipliity 2.



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 35First, we multiply system (72) by the olumn-vetor N1 = (1, 0, 0, 0)† , the supersript †indiates the omplex onjugate of the transposed. We denote
E±
j,1 = E±

j N1 for j = 1, 2, · · · , E±
0,1(0, x, ξ) = Π±

1 (x, ξ)N1.(73)Sine det(M±) = 0, there exist l±k and r±k , left and right eigenvetors of the matrix M±,orresponding to the eigenvalue zero, suh that
M±r±k = 0, l±k M± = 0, l±k = (r±k )†, k = 1, 2,(74)(here r±k is a olumn-vetor and l±k is a row-vetor). We hoose

r+1 =




u+

0
v+

w+
+


 , r+2 =




0
u+

w+
−

−v+


 , r−1 =




w−
+

v−

0
u−


 , r−2 =




−v−
w−
−
u−

0


 ,

l±ν r
±
k = (∓2p±5 u

±)δνk, ν, k = 1, 2.(75)Here u±, v± and w±
± are de�ned by

u± = p±4 ∓ p±5 , v± = p±3 , w±
+ = ±p±1 + ip±2 , w±

− = ±p±1 − ip±2 ,where p±4 = mc2 + e(v+−v−)
2 , p±5 = ∂tΦ

± + e(v++v−)
2 , p±j = c∂xj

Φ± − eAj , for j = 1, 2, 3.It is easy to see that the vetor-valued funtions r±k (t, x, ξ) and l±k (t, x, ξ) an be hosensmooth in t and x and nowhere vanishing. All the derivatives of r±k , l±k , k = 1, 2, are uniformlybounded for (t, x, ξ) ∈ [−δ1, δ1] × R
3 × B(0, C1). Then it follows from the �rst equation in(72) that

E±
0,1 = σ±0,1(t, x, ξ)r

±
1 (t, x, ξ) + σ±0,2(t, x, ξ)r

±
2 (t, x, ξ),where σ±0,1, σ±0,2, are salar-valued funtions. If we multiply the seond equation in (72) for

j = 0 on the left by l±k for k = 1, 2, we dedue the following di�erential equations for σ±0,k:
{
l±1 L(σ±0,1r

±
1 ) + l±1 L(σ±0,2r

±
2 ) = 0,

l±2 L(σ±0,1r
±
1 ) + l±2 L(σ±0,2r

±
2 ) = 0.We onlude




l±1 r
±
1 ∂t(σ

±
0,1) + c

∑3
j=1 l

±
1 αjr

±
1 ∂xj

(σ±0,1) + c
∑3

j=1 l
±
1 αjr

±
2 ∂xj

(σ±0,2)

+l±1 L(r±1 )σ±0,1 + l±1 L(r±2 )σ±0,2 = 0,

l±2 r
±
2 ∂t(σ

±
0,2) + c

∑3
j=1 l

±
2 αjr

±
2 ∂xj

(σ±0,2) + c
∑3

j=1 l
±
2 αjr

±
1 ∂xj

(σ±0,1)

+l±2 L(r±1 )σ±0,1 + l±2 L(r±2 )σ±0,2 = 0.

(76)
We now use Lemma 10 (see below) in system (76). Sine p±5 6= 0, u± = p±4 ∓ p±5 6= 0 then,after multiplying (76) by (∓2p±5 u

±)−1, (76) an be written as
D±σ±0 = M±σ±0 := (∓2p±5 u

±)−1

(
l±1 L(r±1 ) l±1 L(r±2 )
l±2 L(r±1 ) l±2 L(r±2 )

)(
σ±0,1
σ±0,2

)
,(77)



36 ABDALLAH KHOCHMANwith D± = ∂t + a± · ∇x = ∂t +
∑3

j=1 a
±
j (t, x)∂xj

, and
a± = c(∓2p±5 u

±)−1(l±1 α1r
±
1 , l±1 α2r

±
1 , l±1 α3r

±
1 ).Thus the funtion σ±0,k an be found provided its value is known for t = 0, and it is as smoothas σ±0,k(0, x, ξ) (for more details, see a method for solving a similar equation in [38℄). Theequality

E±
0,1(0, x, ξ) = σ±0,1(0, x, ξ)r

±
1 (0, x, ξ) + σ±0,2(0, x, ξ)r

±
2 (0, x, ξ) = Π±

1 (x, ξ)N1,gives the value of σ±0 at t = 0.Sine the derivatives of σ±0,k, r±k , for k = 1, 2, are uniformly bounded, then all the derivatives
(∂αt ∂

β
x∂

γ
ξE

±
0,1) are uniformly bounded for (α, β, γ) ∈ N × N

3 × N
3.It follows from the seond equation in (72) for j = 0, that

iLE±
0,1 = M±E±

1,1,i.e., E±
1,1 = σ±1,1r

±
1 + σ±1,2r

±
2 + h±1 , where σ±1,k is a salar-valued funtion for k = 1, 2, and h±1is expressed in terms of LE±

0,1. To �nd σ±1,k it is su�ient to multiply the seond equation in
(72) for j = 1 on the left by l±k for k = 1, 2. Then





l±1 L(σ±1,1r
±
1 ) + l±1 L(σ±1,2r

±
2 ) + l±1 L(h±1 ) = 0,

l±2 L(σ±1,1r
±
1 ) + l±2 L(σ±1,2r

±
2 ) + l±2 L(h±1 ) = 0.From this equation, σ±1,k an be found provided the funtion σ1,k(0, x) is known. By thesame proedure, for all j = 1, 2, · · · , we obtain





σ±j,1r
±
1 + σ±j,2r

±
2 + h±j = E±

j,1,

l±1 L(σ±j,1r
±
1 ) + l±1 L(σ±j,2r

±
2 ) + l±1 L(h±j ) = 0,

l±2 L(σ±j,1r
±
1 ) + l±2 L(σ±j,2r

±
2 ) + l±2 L(h±j ) = 0.For t = 0, j = 1, 2, · · · , we have

σ±0,1r
±
1 + σ±0,2r

±
2 = Π±

1 N1, σ+
j,1r

+
1 + σ−j,1r

−
1 + σ+

j,2r
+
2 + σ−j,2r

−
2 = −(h+

j + h−j ),and the quantity h±j is determined provided E±
0,1, E

±
1,1, · · · , E±

j−1,1, are known. Solving thedi�erential equation for σ±j =

(
σ±j,1
σ±j,2

), we �nd these funtions for all su�iently small t.Repeating this group of alulations, multiplying by N2 = (0, 1, 0, 0)† , N3 = (0, 0, 1, 0)† and
N4 = (0, 0, 0, 1)† instead of N1 in (73), we �nd E±

j,2 = E±
j N2, E

±
j,3 = E±

j N3 and E±
j,4 = E±

j N4.Consequently, we have:Proposition 13. There exists a family of matries
E±
j = (E±

j,1, E
±
j,2, E

±
j,3, E

±
j,4), for j ≥ 0,solution of (72). Moreover, for all j ≥ 0, E±

j ∈ C∞ and all derivatives (∂αt ∂
β
x∂

γ
ξE

±
j ) areuniformly bounded for all (t, x, ξ) ∈ [−δ1, δ1] × R

3 ×B(0, C1) and (α, β, γ) ∈ N × N
3 × N

3.



DIRAC RESONANCES AND SPECTRAL SHIFT FUNCTION 37Consequently, the Borel proedure provides a symbol E±(t, x, y, ξ;h) ∈ S0(1) with om-pat support in ξ and (x−y) with E±
0 (t, x, y, ξ)+hE±

1 (t, x, y, ξ)+· · · its asymptoti expansion.Desired estimate.Next, we remark that for all N ∈ N:
(ih∂t −H1)


ei(Φ±(t,x,ξ)−y·ξ)h−1

N∑

j=0

hjE±
j


 = ei(Φ

±(t,x,ξ)−y·ξ)h−1

× ∑N
j=0(ihL(E±

j ) + M±E±
j )hj

= PN (t, x, ξ;h)hN ,(78)and all derivatives Dα
x,ξPN (t, x, ξ;h) are bounded as h→ 0 for all α. Then for all N ∈ N,

{
ih∂tUt −H1Ut = O(hN ),

U0 = I +O(hN ),
(79)thus

{
d
dt(e

+itH1h−1Ut) = O(hN ),
U0 = I +O(hN ),

(80)where O(hN ) is uniform in t and orresponds to the norm in L(L2). Then we get:
‖Ut − e−itH1h−1‖ = O(h∞).(81)

�Lemma 10. Under the notations used above, we have
l±1 αjr

±
1 = l±2 αjr

±
2 , l±1 αjr

±
2 = l±2 αjr

±
1 = 0, j = 1, 2, 3.(82)Proof. As Rubinow and Keller in [38℄ let us work in a general situation.We onsider the n Hermitian matries Mµ and n real salars pµ, µ = 1, · · · , n. Let G be theHermitian matrix de�ned by

G =
n∑

µ=1

pµMµ.Let λ be a multiple eigenvalue of G and B1, · · · , Bq, a set of assoiated orthormal eigenvetorswhih are di�erentiable funtions of pµ. Then
B†
jBk = δjk,(83)
GBk = λBk.(84)If λ(p1, · · · , pµ) is di�erentiable, we di�erentiate (84) with respet to pµ and obtain

MµBk +G
∂Bk
∂pµ

=
∂λ

∂pµ
Bk + λ

∂Bk
∂pµ

.(85)The multipliation of (85) on the left by B†
j , the use of (84), and the fat that G is Hermitianyield

B†
jMµBk =

∂λ

∂pµ
δjk.(86)



38 ABDALLAH KHOCHMANIn order to treat our ase, we take
G = M± =

5∑

µ=1

p±µMµ,where Mj = αj for j = 1, 2, 3, M4 = β and M5 = I4 are Hermitian matries (αj , β are theDira matries) and p±µ are �ve real salars.We also take λ± = p±5 ±
√

(p±1 )2 + (p±2 )2 + (p±3 )2 + (p±4 )2 and F± the point with oordinates
p±µ : p±j = c∂xj

Φ± − eAj for j = 1, 2, 3, p±4 = mc2 + e(v+−v−)
2 , p±5 = ∂tΦ

± + e(v++v−)
2 .When Φ± satis�es (69) and (70), r±1 , r±2 are two orthogonal eigenvetors of M± orre-sponding to the eigenvalue λ± = λ±(F±) = 0. Sine |e(v+ − v−)| < 2mc2 (see (9)), λ± isdi�erentiable near the point F±. Now, we apply (86) with B†

j = l±j and Bk = r±k . After thenormalization of r±k , l±j we obtain
l±j Mµr

±
k =

∂λ±
(
p±1 , · · · , p±5

)

∂p±µ

∣∣∣
F±

(∓2p±5 u
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