
KLEIN PARADOX AND SCATTERING THEORY FOR THESEMI-CLASSICAL DIRAC EQUATIONABDALLAH KHOCHMANAbstrat. We study the Klein paradox for the semi-lassial Dira operator on R withpotentials having onstant limits, not neessarily the same at in�nity. Using the omplexWKB method, the time-independent sattering theory in terms of inoming and outgoingplane wave solutions is established. The orresponding sattering matrix is unitary. Weobtain an asymptoti expansion, with respet to the semi-lassial parameter h, of the sat-tering matrix in the ases of the Klein paradox, the total transmission and the total re�etion.Finally, we treat the sattering problem in the zero mass ase.Keywords: Semi-lassial Dira operator - Sattering matrix - Klein paradox - ComplexWKB method.Mathematis lassi�ation: 81Q05 - 47A40 - 34L40 - 34E20 - 34M60.1. IntrodutionIn mathematis and physis, the sattering theory is a framework for studying and under-standing the sattering of waves and partiles. The sattering matrix for the one-dimensionalDira operator H is losely related to the transition probability of partiles through a poten-tial. However, if the potential does not vanish at in�nity, a Klein paradox might our. Thelatter is of great historial importane in order to justify the existene of the antipartile of aneletron (the positron) and explaining qualitatively the pair reation proess in the ollisionof partile beam with strongly repulsive eletri �eld. The explanation of this Klein paradoxusually resorted to the onept of "hole" in the "negative-energy eletron sea". For more phys-ial interpretations we refer to Klein [14℄, Sauter [21℄, Bjorken-Drell [2℄, Sakurai [20℄, Thaller[23℄ and Calogeraos-Dombey [3℄ for the history of the Klein paradox. This paradox appearsalso for the Klein-Gordon equation, here no onept of "hole" is needed (see Winter [25℄ andNi-Zhou-Yan [16℄ for a onstant potential at in�nity and Bahelot [1℄ for an eletrostati po-tential having di�erent asymptotis at in�nity). The omparison between the Klein paradoxfor this two equations has been disussed in [25, Part C℄. A Klein paradox phenomenon oursalso in quantum �eld theory (see Hund [13℄ and Manogue [15℄). It is lear that this paradoxannot appear for Shrödinger operators.For a salar potential having real limits V ± at ±∞, the Klein paradox of the Dira equationours if V +−V − > 2mc2. In this ase the higher part of σ(H) intersets its lower part. If theenergy E is in this intersetion, for a wave-paket whih omes from the left and moves towardsthe potential, a part of it is re�eted, another part being transmitted. The transmitted partmoves to the right and behaves like a solution with negative energy. Ruijsenaars-Bongaarts[19℄ (see also Thaller [23℄) have mathematially treated the Klein paradox and the satteringDate: November 5, 2008. 1



2 ABDALLAH KHOCHMANtheory for the Dira equation with one-dimensional potentials onstant outside a ompatset. They have established the onnetion between time-dependent and time-independentsattering theory in terms of inoming and outgoing plane wave solutions. The exat alulusof the sattering matrix for one-dimensional Dira operator is only known for a few numberof expliit potentials (see Klein [14℄ for a retangular step potential and Flügge [6℄ for thepotential V (x) = tanh(x)). Nevertheless, we are neither aware of works dealing with theasymptoti expansion of the sattering matrix, with respet to the semi-lassial parameter h.For one-dimensional Shrödinger operators, there are several approahes whih have beendeveloped dealing with the omputation of the transmission oe�ient through a barrier.Ealle [5℄ and Voros [24℄ have developed the so-alled omplex WKB analysis whih givesapproximations in the omplex plane of the solutions of a Shrödinger equation. This approahis used in a new formalism by Grigis for the Hill's equation [11℄. This method is also usedby C. Gérard-Grigis [10℄ to alulate the eigenvalues near a potential barrier and by Ramond[18℄ for sattering problems. For referenes and a historial disussion, we refer to Ramond[18℄. The omplex WKB method has been extended to a lass of Shrödinger systems byFujiié-Lasser-Nédele [9℄.The purpose of this paper is to give an asymptoti expansion, with respet to the semi-lassial parameter h, of the oe�ients of the sattering matrix for the one-dimensionalDira operator with potentials having di�erent limits at in�nity. We establish the exponentialdeay of the transmission oe�ient in the Klein paradox ase (f. Theorem 2.1 below). Wealulate the oe�ients of the sattering matrix in terms of inoming and outgoing solutions.Therefore, we use the omplex WKB analysis to onstrut solutions of the Dira equation.The usefulness of this analysis is that it provides, rather than approximate solutions with errorbounds, solutions in the omplex plane with a omplete asymptoti expansion with respet tothe semi-lassial parameter h, with a priory estimates on the oe�ients.The paper is organized as follows. In the next setion, we introdue the perturbed Diraoperator on R, study the time-independent sattering theory and state our main results. InSetion 3, we develop the omplex WKB method and show a omplete asymptoti expansionof the oe�ients. In Setion 4, the existene of inoming and outgoing Jost solutions isproved. In Setion 5, we analyze the semi-lassial behavior of the sattering matrix in theKlein paradox ase. The total transmission over a potential barrier and the total re�etionare studied in Setion 6 and Setion 7. Finally, in Setion 8, we study the Klein paradox forthe zero mass ase. 2. Assumptions and resultsWe onsider the self-adjoint Hamiltonian H = H0 +V , where H0 is the semi-lassial Diraoperator on R:
H0 = −ihcα

d

dx
+ mc2β,(2.1)with domain D(H0) = H1(R) ⊗ C

2 ⊂ H = L2(R) ⊗ C
2, where h ց 0 is the semi-lassialparameter, m ≥ 0 is the mass of the Dira partile and c is the elerity of the light. Theoe�ients α, β are the 2 × 2 Pauli matries satisfying the anti-ommutation relation

αβ + βα = 0,and α2 = β2 = I2, where I2 is the 2 × 2 identity matrix.



KLEIN PARADOX AND SCATTERING THEORY 3The operator V is the multipliation by V I2, where V is a smooth eletrostati potentialsatisfying:(A): The funtion V is real on the real axis, analyti in the setor
S = {x ∈ C, |Im x| < ǫ|Re x| + η},for some ǫ, η > 0, and satis�es the following estimates:

|(V (x) − V ±)| = O(〈x〉−δ) for Re (x) −→ ±∞ in S.(2.2)
Here, 〈x〉 = (1 + |x|2) 1

2 , δ > 1 and V − < V +.
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Fig. 1. The potential VThe spetrum of the free Dira operator H0 is ] −∞,−mc2] ∪ [mc2,+∞[ and it is purelyabsolutely ontinuous. Under assumption (A) the operator H = H0 + V is a self-adjointoperator and has essential spetrum (see Appendix A):
σess(H) = ] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.(2.3)There are several representations of the matries α, β. For example, Hiller [12℄ used α =

σ2, β = σ3, Nogami and Toyoma [17℄ used α = σ2, β = σ1, where σj, j = 1, 2, 3, are thestandard representation for Dira-Pauli matries. Most alulations with Dira matries anbe done without referring to a partiular representation (see Thaller [23, Appendix 1A℄). Here,we hoose the 1 + 1 dimensional representation of the Dira matries
α = σ1 =

(
0 1
1 0

)
, β = σ3 =

(
1 0
0 −1

)
.(2.4)The solutions of

Hu =

(
−ihcσ1

d

dx
+ mc2σ3 + V (x)I2

)
u = Eu, E ∈ R,(2.5)should behave as x −→ ±∞ like

a+
±(E,h) exp(+

1

hc
(m2c4 − (V ± − E)2)1/2x) + a−±(E,h) exp(− 1

hc
(m2c4 − (V ± − E)2)1/2x).Here, the square root (·) 1

2 is to be de�ned more preisely aording to the sign of m2c4 −
(V ± − E)2.In the following, we will use these intervals on the E-axis:I. V + + mc2 < E,II. max(mc2 + V −, V + − mc2)< E < V + + mc2,III. V − + mc2 < E < V + − mc2 if V + − V − > 2mc2,



4 ABDALLAH KHOCHMANIV. V − − mc2 < E < min(V − + mc2, V + − mc2),V. E < V − − mc2.If V + − V − > 2mc2, the di�erent regions are represented in the following �gure:PSfrag replaements
V + + mc2

V + − mc2

V − + mc2

V − − mc2

E Region IRegion IIRegion IIIRegion IVRegion VFig. 2. Di�erent regions on the E-axisWe study the semi-lassial behavior of the sattering matrix for the di�erent values of theenergy E. Let us desribe now the time-independent sattering problem brie�y. For E ∈ I,III or V, the four Jost solutions ω±
in, ω±

out (see Theorem 4.1) are the solutions of (2.5) whihbehave exatly as
ω±

in ∼ exp{∓ i

hc
Φ(E − V ±)x}

(
A(E − V ±)

∓A(E − V ±)−1

) as x −→ ±∞,(2.6)
ω±

out ∼ exp{± i

hc
Φ(E − V ±)x}

(
A(E − V ±)

±A(E − V ±)−1

) as x −→ ±∞,(2.7)with Φ(E) = sgn(E)
√

E2 − m2c4, A(E) = 4

√
E+mc2

E−mc2
and sgn(E) = E

|E| for E 6∈ [−mc2, mc2].Analogous de�nitions of Jost solutions an be found in the works of Ruijsenaars-Bongaarts[19℄ and Thaller [23℄ for one-dimensional step potentials. In this paper, we denote √
x, 4

√
xthe positive determination of x ∈ R

+ −→ (x)
1
2 , (x)

1
4 respetively.The ordinary sattering problem is the following: what are the omponents of a solution uof the Dira equation (2.5) in the basis (ω+

out, ω−
out) of the outgoing Jost solutions, knowing itsomponents in the basis (ω−

in, ω+
in) of the inoming Jost solutions. The 2 × 2 matrix relatingthese oe�ients is alled the sattering matrix and we will denote it by

S =

(
s11 s12

s21 s22

)
.Preisely, if we take u a solution of (2.5),

u = ainω
−
in + binω

+
in = aoutω

+
out + boutω

−
out,the sattering matrix is suh that

S

(
ain

bin

)
=

(
aout

bout

)
,whih is equivalent to

(ω−
in, ω

+
in) = (ω+

out, ω
−
out)S.(2.8)



KLEIN PARADOX AND SCATTERING THEORY 5Sine V is real on the real axis, we have (see (2.4))
ω±

in = βω±
out.(2.9)We also have the following relations between the oe�ients of S(E,h):

s11(E,h) = s22(E,h) and s12(E,h) = −s21(E,h)
s11(E,h)

s11(E,h)
,(2.10)so that s11 and s12 determine ompletely the sattering matrix.The re�etion and transmission oe�ients R(E,h) and T (E,h) are, by de�nition, thesquare of the modulus of the oe�ients s21 and s11 respetively. They orrespond to theprobability for a purely inoming-from-the-left partile to be re�eted to the left or transmittedto the right. Using (2.9), (2.10) and alulating the determinant of (2.8), we have the well-known relation R(E,h) + T (E,h) = 1 and, the sattering matrix S(E,h) is unitary.To alulate the sattering matrix S(E,h) we will use the transfer matrix T, whih is de�nedby

(ω−
in, ω−

out) = (ω+
out, ω+

in)T.The determinant of this matrix is equal to 1 sine the two Wronskians W(ω−
in, ω−

out) and
W(ω+

out, ω+
in) are equal to −2 (see De�nition 3.4). Using the relation (2.9), we obtain that Tis determined by two oe�ients:

T =

(
t(E,h) r(E,h)
r (E,h) t (E,h)

)
.(2.11)Moreover, using that det(T) = 1, we obtain

|t(E,h)|2 − |r(E,h)|2 = 1.(2.12)Consequently, we an write the sattering matrix in terms of the oe�ients of the transfermatrix T:
S =

1

t (E,h)

(
1 −r(E,h)

r (E,h) 1

)
.(2.13)We will use WKB approahes to desribe the amplitude of the oe�ients of the satteringmatrix for h ց 0. For these, let us introdue the following de�nition.De�nition 2.1. (See Sjöstrand [22℄) A funtion f(z, h) de�ned in U×]0, h0[, where U is anopen set in C and h0 > 0, is alled a lassial analyti symbol (CAS) of order m ∈ N in h if

f is an analyti funtion of z ∈ U and if there exists a sequene (aj(z)) of analyti funtionsin U suh that
• For all ompat set K ⊂ U , there exists C > 0 suh that, for all z ∈ K, one has

|aj(z)| ≤ Cj+1jj .

• The funtion f(z, h) admits the series ∑0≤j≤+∞ aj(z)hm+j as asymptoti expansionas h goes to zero in the following sense. For any C1 > C, we have
f(z, h) −

∑

0≤j≤h−1/eC1

aj(z)hm+j = O(e−ρ/h),for some ρ > 0 and all z ∈ K



6 ABDALLAH KHOCHMANThe main theorem onerning the Klein paradox ase for m > 0 (i.e. for the energy level
E ∈ III) is the following:

PSfrag replaements E t1(E)

t2(E)

V − + mc2

V − − mc2

V + + mc2

V + − mc2

Fig. 3. Graph of V (x) + mc2 and V (x) − mc2Theorem 2.1. [Klein paradox℄ Let V be a potential satisfying assumption (A), E ∈ III and
m > 0. Suppose that there are only two simple zeros t1(E) < t2(E) of m2c4 − (V (x) − E)2(see Fig. 3). Then there exists three lassial analyti symbols φ1(h), φ2(h) and φ3(h) ofnon-negative order suh that:

s11 = s22 = (1 + hφ1(h)) exp{−S(E)/h} exp{iT (E)/h},(2.14)
s21 = (i + hφ2(h)) exp

{
2i

h

(
t1(E)

√
E− +

∫ t1(E)

−∞
Q−(t, E)dt

)}
,(2.15)

s12 = (i + hφ3(h)) exp

{
2i

h

(
t2(E)

√
E+ −

∫ +∞

t2(E)
Q+(t, E)dt

)}
,(2.16)where S(E) is the lassial ation between the two turning points t1(E) and t2(E)

S(E) =

∫ t2(E)

t1(E)

√
m2c4 − (V (t) − E)2

c2
dt.Moreover

Q−(t, E) =

√
−m2c4 + (V (t) − E)2

c2
−

√
E−, for t < t1(E),

Q+(t, E) =

√
−m2c4 + (V (t) − E)2

c2
−

√
E+, for t > t2(E),and

T (E) =

∫ t1(E)

−∞
Q−(t, E)dt −

∫ +∞

t2(E)
Q+(t, E)dt + t1(E)

√
E− + t2(E)

√
E+,where

E± =
−m2c4 + (V ± − E)2

c2
.



KLEIN PARADOX AND SCATTERING THEORY 7We remark that this sattering matrix behaves like in the ase of the Shrödinger operatorwith a barrier potential. In partiular the term e−S(E)/h whih deays exponentially, an beviewed as a tunneling e�et (see Ramond [18, Theorem 1℄).In the zero mass ase, we have the following theorem:Theorem 2.2. [Zero mass ase℄ Let V ∈ L∞(R) be a potential satisfying |V (x) − V ±| =
O(〈x〉−δ) at ±∞ for some δ > 1, E ∈ III and m = 0. Then,

s11 = s22 = exp{iT0(E)/h},(2.17)
s21 = s12 = 0.(2.18)Here,

T0(E) =
1

c

(∫ 0

−∞
(−V (t) + V −)dt −

∫ +∞

0
(V (t) − V +)dt

)
.Remark 2.1. We an not permute the limits of the sattering matrix S as m → 0 and h → 0.Indeed, if we take the limits of s12 in (2.16) and (2.18), we obtain

lim
m→0

lim
h→0

|s12| = 1, lim
h→0

lim
m→0

|s12| = 0.Now, we ome bak to the non-zero mass ase and we treat re�etion and transmissionases (see Setions 7, 6).If we take the energy level E ∈II, there are two Jost solutions ω−
in, ω−

out satisfying (2.6) and(2.7) for x −→ −∞ and there does not exist an osillating solution for x −→ +∞. Instead,as x → +∞, there exists an exponentially deaying solution and an exponentially growingsolution. Sine the last funtion doesn't represent a physial state we limit ourself to the onedimensional spae generated by the deaying solution ω+
d (unique up to a onstant). Thisfuntion satis�es (see Theorem 4.1):

ω+
d ∼ exp{− 1

hc

√
m2c4 − (V + − E)2x}


 −i 4

√
mc2+E−V +

mc2−E+V +

4

√
mc2−E+V +

mc2+E−V +


 as x −→ +∞.(2.19)In this ase we haveTheorem 2.3. [Total re�etion℄ Let V be a potential satisfying assumption (A), E ∈ II and

m > 0. Suppose that there is only a simple zero t1(E) of m2c4− (V (x)−E)2. Then the vetorspae of the solutions of (H − E)u = 0 with u bounded is a one dimensional spae generatedby
u = ω−

in + α−
outω

−
out, with

α−
out = −i(1 + hφ1(h)) exp

{
2i

h

(∫ t1(E)

−∞
Q−(t, E)dt +

√
E−t1(E)

)}
.(2.20)Moreover

u = β+
d ω+

d , with



8 ABDALLAH KHOCHMAN
β+

d = eiπ/4(1 + hφ2(h)) ×

exp

{
1

h

(∫ t1(E)

+∞
Q+

−(t, E)dt +
√

−E+t1(E) + i

∫ t1(E)

−∞
Q−(t, E)dt + i

√
E−t1(E)

)}
.Here

Q+
−(t, E) =

√
m2c4 − (V (t) − E)2

c2
−
√

−E+,

Q−(t, E) and E± are the funtions of Theorem 2.1 and φj(h), j = 1, 2 are lassial analytisymbols of non-negative order.For E ∈ IV, there is also total re�etion ases whih an treated similarly to the previoustheorem. As in [19℄, there is also a sattering interpretation of the previous theorem. Sinewe work in a one-dimensional spae, the sattering matrix is now a salar.Remark 2.2. [Sattering interpretation℄ We all uin = ω−
in + α−

outω
−
out the �incoming�solution. In the same way, there exists a unique bounded solution

uout = ω−
out + α−

inω
−
in,whih is alled the �outgoing� solution.If u is a bounded solution of (H −E)u = 0 (i.e. u = Auin) then u = Buout. The satteringmatrix S is de�ned by

B = SA.From (2.20), we have
S = α−

out = −i(1 + hφ(h)) exp

{
2i

h

(∫ t1(E)

−∞
Q−(t, E)dt +

√
E−t1(E)

)}
.For E ∈ I or V, a total transmission phenomena our:Theorem 2.4. [Total transmission℄ Let V be a potential satisfying assumption (A), E ∈I, m ≥ 0 and m2c4 − (V (x) − E)2 6= 0. Then there are a lassial analyti symbol φ(h) andpositive onstant C suh that:

s11 = s22 = (1 + hφ(h)) exp{iT̃ (E)/h},(2.21)
s21 = O(e−C/h) and s12 = O(e−C/h),(2.22)where
T̃ (E) =

∫ 0

−∞
Q−(t, E)dt +

∫ +∞

0
Q+(t, E)dt,and Q−(t, E), Q+(t, E) are the funtions of Theorem 2.1 de�ned here for any t ∈ R.We an alulate the sattering matrix for E ∈ V in the same way of E ∈ I. We remarkthat the behavior of the inoming and outgoing Jost solutions exhanges between these twoases. This is in agreement with the physial interpretation (see [23, p.121℄).



KLEIN PARADOX AND SCATTERING THEORY 93. Complex WKB solutionsWe wish to �nd a representation formula for the solutions of (2.5), from whih it is possibleto dedue the asymptoti expansion in h. The method is known as omplex WKB method.See [18℄ [10℄, [7℄, [8℄, [9℄ for onstrutions of solutions of the Shrödinger equation.In a omplex domain S, we study the Dira system (2.5) whih is of the form
(H − E)u(x) =

(
mc2 + V (x) − E −ihc d

dx
−ihc d

dx −mc2 + V (x) − E

)
u(x) = 0,(3.1)or equivalently

h

i

d

dx
v(x) =

(
0 g+(x)

−g−(x) 0

)
v(x),(3.2)where v(x) =

(
0 1
1 0

)
u(x) = M−1u, and the funtions

g±(x) =
−mc2 ∓ (V (x) − E)

c
,are holomorphi in S. The following onsiderations will lead to the onstrution of omplexWKB solutions for Dira system.3.1. Formal onstrution. First, we introdue a new omplex oordinate

z(x) = z(x, x0) =

∫

γ(x0,x)
(g+(t)g−(t))

1
2 dt =

∫ x

x0

(g+(t)g−(t))
1
2 dt, x0 ∈ D.(3.3)One of our tasks will be of ourse to hoose the simply onneted subset D of S suh that

t −→ (g+(t)g−(t))
1
2 is well-de�ned, but let's work formally for a while. The γ(x0, x) is anypath in D beginning at x0 and ending at x.De�nition 3.1. The zeros of the funtion

g+(x)g−(x) =
m2c4 − (V (x) − E)2

c2
,are alled the turning points of the system (3.2).De�nition 3.2. For x �xed in D, the set

{
y ∈ D, Re ∫ y

x
(g+(t)g−(t))

1
2 dt = 0

}is alled the Stokes line passing through x.We look for solutions of the form e±
z

h w̃±(z). We note that due to the possible presene ofsuh turning points, the square root in the de�nition of z(x) might be de�ned only loally.By formal alulations, the amplitude vetor w̃±(z) has to satisfy
h

i

d

dz
w̃±(z) =

(
±i H(z)−2

−H(z)2 ±i

)
w̃±(z).(3.4)



10 ABDALLAH KHOCHMANThe funtion H(z(x)) is given by
H(z(x)) =

(
g−(x)

g+(x)

)1/4

=

(−mc2 + (V (x) − E)

−mc2 − (V (x) − E)

)1/4

,(3.5)for z(x) in an open simply-onneted domain of the z-plane, where z −→ H(z) is well-de�nedand analyti.In order to obtain a deomposition with respet to image and kernel of the previous system,we onjugate by
P±(z) =

1

2

(
H(z) ±iH(z)−1

H(z) ∓iH(z)−1

)
, P−1

± (z) =

(
H(z)−1 H(z)−1

∓iH(z) ±iH(z)

)
,and obtain a system for w±(z) = P±(z)w̃±(z),

d

dz
w±(z) =

(
0 H′(z)

H(z)
H′(z)
H(z) ∓ 2

h

)
w±(z),(3.6)where H ′(z) is shorthand for d

dz H(z). The series ansatz
w±(z) =

∑

n≥0

(
w2n,±(z)

w2n+1,±(z)

)
,(3.7)with w0,± = 1 and, for n ≥ 1, the reurrene equations

(
d

dz
± 2

h

)
w2n+1,±(z) =

H ′(z)

H(z)
w2n,±(z),(3.8)

d

dz
w2n+2,±(z) =

H ′(z)

H(z)
w2n+1,±(z),(3.9)give us a formal solution up to some additive onstants. The solutions are �xed by setting

wn,±(z̃) = 0, n ≥ 1,at a base point z̃ = z(x̃) where x̃ ∈ D is not a turning point. We note that the previousequations for wn,± are similar to the ones obtained by a omplex WKB onstrution for salarShrödinger equations. See for example the works of C. Gérard and Grigis [10℄ or Ramond[18℄.Let Ω = Ω(E) be a simply onneted subset of D whih does not ontain any turning point.Then the funtion z = z(x) is onformal from Ω onto z(Ω). Assume that z̃ ∈ z(Ω). If Γ±(z̃, z)denotes a path of �nite length in z(Ω) onneting z̃ and z ∈ z(Ω), we an formally rewrite theabove di�erential equations for n ≥ 0 as
w2n+1,±(z) =

∫

Γ±(ez,z)
exp(±2

h
(ζ − z))

H ′(ζ)

H(ζ)
w2n,±(ζ)dζ,

w2n+2,±(z) =

∫

Γ±(ez,z)

H ′(ζ)

H(ζ)
w2n+1,±(ζ)dζ,



KLEIN PARADOX AND SCATTERING THEORY 11or after iterated integrations, as
w2n+1,±(z) =

∫

Γ±(ez,z)

∫

Γ±(ez,ζ2n+1)
· · ·

∫

Γ±(ez,ζ2)
exp

(
±2

h
(ζ1 − ζ2 + · · · + ζ2n+1 − z)

)
×

× H ′(ζ1)

H(ζ1)
· · · H ′(ζ2n+1)

H(ζ2n+1)
dζ1 · · · dζ2n+1,

w2n+2,±(z) =

∫

Γ±(ez,z)

∫

Γ±(ez,ζ2n+2)
· · ·

∫

Γ±(ez,ζ2)
exp

(
±2

h
(ζ1 − ζ2 + · · · − ζ2n+2)

)
×

× H ′(ζ1)

H(ζ1)
· · · H ′(ζ2n+2)

H(ζ2n+2)
dζ1 · · · dζ2n+2.3.2. Convergene, h-dependene and Wronskians. We now give to the preeding formalonstrution some mathematial meaning in simply onneted, turning point-free ompat sets

Ω ⊂ D.Lemma 3.1. For any �xed h > 0, the series (3.7) onverges uniformly in any ompat subsetof Ω, and
weven
± (x, h) =

∑

n≥0

w2n,±(z(x)), wodd
± (x, h) =

∑

n≥0

w2n+1,±(z(x)),(3.10)are holomorphi funtions in Ω.Proof. By assumption on Ω and on V , the funtions wn,± are well-de�ned analyti funtionsin Ω. For ompat subsets K ⊂ Ω and z̃, z ∈ z(K) there exist positive onstants Ch
±(K) > 0,depending on the semi-lassial parameter h and the ompat K suh that

sup
ζ∈Γ±(ez,z)

∣∣∣ exp(±2

h
ζ)

H ′(ζ)

H(ζ)

∣∣∣ ≤ Ch
±(K).(3.11)If we denote the maximal length of the paths Γ±(z̃, ·) ⊂ K in the preeding iterated integra-tions by

L = max
ez,z∈ z(K)

min
γ(ez,z)

|γ(z̃, z)| < ∞,then
sup

z∈z(K)
|wn,±(z)| ≤ Ch

±(K)nLn

n!
, n ≥ 0,where the bound Ln

n! omes from the volume of a simplex with length L. Then, the lemmafollows. �Thus, we have the uniform onvergene of the series (3.7) for w±(z) and omplex solutions
u±(x) = e±

z(x)
h T±(z(x))

(
weven
± (x)

wodd
± (x)

)
,(3.12)of the original problem (3.1) on any turning point-free set Ω, where

T±(z) = MP−1
± (z) =

(
0 1
1 0

)(
H(z)−1 H(z)−1

∓iH(z) ±iH(z)

)

=

(
∓iH(z) ±iH(z)
H(z)−1 H(z)−1

)
, z ∈ z(Ω).(3.13)



12 ABDALLAH KHOCHMANWe write these solutions u±(x) as
u±(x;x0, x̃),(3.14)indiating the partiular hoie of the phase base point x0, in (3.3), whih de�nes the phasefuntion z(x) = z(x;x0), and the hoie of the amplitude base point z̃ = z(x̃), whih is theinitial point of the path Γ±(z̃, ·).De�nition 3.3. For x̃ ∈ Ω �xed, we de�ne Ω± = Ω±(x̃) the set of all x ∈ Ω suh that thereexists a path Γ±(z(x̃), z(x)) along whih x −→ ±Re z(x) inreases stritly.Proposition 3.1. The funtions wn,± are lassial analyti symbols of order [n+1

2 ℄ in Ω±.The funtions weven
± (x, h) and wodd

± (x, h) given by the identities (3.10) are lassial analytisymbols of order 0 and 1 respetively in Ω±. Moreover, we have for any N ∈ N,
weven
± (x, h) −

N∑

n=0

w2n,±(z(x)) = O(hN+1),

wodd
± (x, h) −

N∑

n=0

w2n+1,±(z(x)) = O(hN+2),uniformly in any ompat subsets of Ω±. In partiular,
weven
± (x, h) = 1 + hφ(h), wodd

± (x, h) = hφ(h).Here and in all this paper, φ(h) is a lassial analyti symbol of non-negative order not nees-sarily the same in eah expression.The proof is just the same as that of [10, Prop. 1.2℄ and [9, Prop. 3.3℄. The key point is thefollowing: sine the iterated integrations de�ning wn,±(z) ontain terms of the form exp(± ζ
h),one has to make sure that x 7−→ ±Re (z(x)) is a stritly inreasing funtion along the path

Γ±(z̃, z). In other words, the paths Γ±(z(x̃), z(x)) have to interset the Stokes lines, that isthe level urves of x 7−→ Re (z(x)), transversally in a suitable diretion.De�nition 3.4. One de�nes the Wronskian of two C
2-valued funtions u = (u1, u2), v =

(v1, v2) as
W(u, v) = u1v2 − u2v1.Remark 3.1. For two solutions u and v of the equation (2.5), the Wronskian W(u, v) doesn'tdepend on x and is zero if and only if u and v are proportional.If w = αu + βv with α, β ∈ C, then

α =
W(w, v)

W(u, v)
, β = −W(w, u)

W(u, v)
.Elementary omputations give the following omplex Wronskian formulas for omplex WKBsolutions with di�erent phase and amplitude base points in terms of weven

± and wodd
± .Lemma 3.2. Let x0 and y0 be two points in Ω = Ω(E). If, for given x̃ and ỹ, the anonialsets Ω±(x̃) and Ω±(ỹ) have a non-empty intersetion, then for any x ∈ Ω±(x̃) ∩ Ω±(ỹ) one
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W(u±(x;x0, x̃) , u±(x; y0, ỹ)) = ±2i exp

(
±1

h
(z(x;x0) + z(x; y0))

)(3.15)
×

(
wodd
± (x;x0, x̃)weven

± (x; y0, ỹ) − weven
± (x;x0, x̃)wodd

± (x; y0, ỹ)
)
.If, for given x̃ and ỹ the anonial sets Ω±(x̃) and Ω∓(ỹ) have a non-empty intersetion, thenfor any x ∈ Ω±(x̃) ∩ Ω∓(ỹ) one has

W(u±(x;x0, x̃) , u∓(x; y0, ỹ)) = ±2i exp

(
±1

h
(z(x;x0) − z(x; y0))

)(3.16)
×

(
wodd
± (x;x0, x̃)wodd

∓ (x; y0, ỹ) − weven
± (x;x0, x̃)weven

∓ (x; y0, ỹ)
)
.4. Jost solutionsThe Jost solutions of Hu = Eu, are haraterized by the behavior of the solutions atin�nity. We onstrut here the Jost solutions opying the proedure desribed in Setion 3,the new point here being that the solutions we seek are normalized at in�nity. In all thissetion we will work in two unbounded, simply-onneted domains Ω−(E), Ω+(E), whereRe (V (x) + mc2) < E, Re (V (x) − mc2) > E respetively and whih oinide with S forRe x su�iently large. The existene of suh domains is of ourse an easy onsequene of thebehavior of V at in�nity in S (see assumption (A)).First we de�ne the phase funtions with base point at in�nity,

z(x,±∞) =

∫ x

±∞

(
m2c4 − (V (t) − E)2

c2

)1/2

−
(

m2c4 − (V ± − E)2

c2

)1/2

dt(4.1)
+

(
m2c4 − (V ± − E)2

c2

)1/2

x.We also see that the integral onverges absolutely, hene
z(x,±∞) =

(
m2c4 − (V ± − E)2

c2

)1/2

x + o(1), (x −→ ±∞).If the determination of the square root in z(·, ·) are the same, we get the following equalities(4.2) z(t1,±∞) =z(x,±∞) − z(x, t1) = z(t2,±∞) − z(t2, t1)

z(t1,−∞) − z(t1,+∞) =z(x,−∞) − z(x,+∞) = z(t2,−∞) − z(t2,+∞),where z(·, ·) is de�ned in (3.3), (4.1) and x, t1, t2 ∈ D.Next we de�ne the amplitudes based at in�nity. We will only de�ne the amplitudes at +∞sine the situation is similar at −∞. As in Setion 3 of [18℄, we hoose in�nite paths γ±(x)starting from in�nity and ending at x, whih are asymptotially like lines of the form {Imx =
∓ρRex} for some ρ > 0, suh that x 7−→ ∓Rez(x) are stritly inreasing funtions along
γ±(x). Denoting the path z(γ±(x)) by Γ±(+∞, z(x)) and setting w0,± ≡ 1, we indutively



14 ABDALLAH KHOCHMANde�ne wn,±(z) by
w2n+1,±(z) =

∫

Γ±(+∞,z)
exp(±2

h
(ζ − z))

H ′(ζ)

H(ζ)
w2n,±(ζ)dζ,

w2n+2,±(z) =

∫

Γ±(+∞,z)

H ′(ζ)

H(ζ)
w2n+1,±(ζ)dζ, n ≥ 0.Notiing that

H ′(x)

H(x)
=

mc2

2

V ′(x)

(V (x) − E)2 − m2c4
= O(〈x〉−δ), δ > 1, as |x| −→ ∞,one onstruts well-de�ned omplex WKB solutions u±

r,l orresponding to these base points,proeeding as in Setion 3. Here, l and r stand for left and right and orrespond respetivelyto x → −∞ and x → +∞. Up to a onstant pre-fator, u±
r,l(x) are the previously de�ned Jostsolutions:Lemma 4.1. Let u±

r,l(x) be the omplex WKB solutions with phase and amplitude base pointat in�nity. Then
u±

r (x) ∼ exp(± 1

hc
(m2c4 − (V + − E)2)1/2x)

(
∓iα+

1/α+

)
, x −→ +∞,(4.3)

u±
l (x) ∼ exp(± 1

hc
(m2c4 − (V − − E)2)1/2x)

(
∓iα−

1/α−

)
, x −→ −∞,(4.4)with

α± =

(
V ± − E − mc2

−V ± + E − mc2

)1/4

.Proof. We just hek the asymptoti behavior of u±
r,l(x) at in�nity. Sine H(z(x)) −→ α± as

x −→ ±∞, using (3.12) and (3.13) we get by an elementary alulation
u±

r (x) ∼ exp(± 1

hc
(m2c4 − (V + − E)2)1/2x)

(
∓iα+ ±iα+

1/α+ 1/α+

)(
1
0

)
, x −→ +∞,

u±
l (x) ∼ exp(± 1

hc
(m2c4 − (V − − E)2)1/2x)

(
∓iα− ±iα−

1/α− 1/α−

)(
1
0

)
, x −→ −∞.This ends the proof of lemma. �Let us now hoose the determinations of (m2c4 − (V ± − E)2)1/2 and α± aording to theintervals on the E-axis. This �xes the hoie of u±

l,r and we an onstrut ω±
in, ω±

out satisfying(2.6) and (2.7).1. For E ∈ I, we hoose (m2c4 − (V ± − E)2)1/2 ∈ iR+, α± ∈ eiπ/4
R

+ and we denote
ω−

in := eiπ/4u+
l , ω+

in := −eiπ/4u−
r , ω+

out := eiπ/4u+
r , ω−

out := −eiπ/4u−
l .(4.5)2. For E ∈ II, we hoose (m2c4−(V −−E)2)1/2 ∈ iR+, α− ∈ eiπ/4

R
+, (m2c4−(V +−E)2)1/2 ∈

R
−, α+ ∈ R

+ and we denote
ω−

in := eiπ/4u+
l , ω−

out := −eiπ/4u−
l , ω+

d := u+
r .(4.6)3. For E ∈ III, we hoose (m2c4 − (V ± − E)2)1/2 ∈ iR+, α± ∈ e∓iπ/4

R
+ and we denote

ω−
in := eiπ/4u+

l , ω+
in := −e−iπ/4u+

r , ω+
out := e−iπ/4u−

r , ω−
out := −eiπ/4u−

l .(4.7)



KLEIN PARADOX AND SCATTERING THEORY 154. For E ∈ IV, we hoose (m2c4 − (V + − E)2)1/2 ∈ iR+, α+ ∈ e−iπ/4
R

+, (m2c4 − (V − −
E)2)1/2 ∈ R

−, α+ ∈ R
+ and we denote

ω+
in := −e−iπ/4u+

r , ω+
out := e−iπ/4u−

r , ω−
d := u−

l .(4.8)5. For E ∈ V, we hoose (m2c4 − (V ± − E)2)1/2 ∈ iR+, α± ∈ e−iπ/4
R

+ and we denote
ω−

in := e−iπ/4u−
l , ω+

in := −e−iπ/4u+
r , ω+

out := e−iπ/4u−
r , ω−

out := −e−iπ/4u+
l .(4.9)Theorem 4.1. For real E, (2.5) has solutions of the following form:1. For E ∈ I, III or V, there are four Jost solutions ω±

in, ω±
out whih behave like

ω±
in ∼ exp{∓ i

hc
Φ(E − V ±)x}

(
A(E − V ±)

∓A(E − V ±)−1

) as x −→ ±∞,(4.10)
ω±

out ∼ exp{± i

hc
Φ(E − V ±)x}

(
A(E − V ±)

±A(E − V ±)−1

) as x −→ ±∞,(4.11)with Φ(E) = sgn(E)
√

E2 − m2c4, A(E) = 4

√
E+mc2

E−mc2 and sgn(E) = E
|E| for E 6∈ [−mc2,mc2].2. For E ∈ II (resp. E ∈ IV), there are two Jost solutions ω−

in, ω−
out (resp. ω+

in, ω+
out) whihbehave as in (4.10), (4.11) and a dereasing solution ω+

d (resp. ω−
d ). The solutions ω±

d behaveexatly like
ω±

d ∼ exp{∓ 1

hc

√
m2c4 − (V ± − E)2x}


 ∓i 4

√
mc2+E−V ±

mc2−E+V ±

4

√
mc2−E+V ±

mc2+E−V ±


 as x −→ ±∞.(4.12)For E ∈ I, III or V, aording to the relation (2.13), it is su�ient to alulate the two terms

r(E,h), t(E,h) in T to obtain the matrix S. The de�nition of the Wronskian (see De�nition3.4) leads to:
t(E,h) =

W(ω−
in, ω

+
in)

W(ω+
out, ω

+
in)

,(4.13)
r(E,h) =

W(ω−
out, ω

+
in)

W(ω+
out, ω

+
in)

.(4.14) 5. The Klein paradox aseWe suppose that V satis�es assumption (A), the energy E ∈ III and m > 0 (see Fig. 2).In this setion we will work in two unbounded, simply-onneted domains Ω−(E), Ω+(E),where Re (V (x) + mc2) < E, Re (V (x) − mc2) > E respetively and whih oinide with Sfor |Re x| su�iently large. Using Theorem 4.1, Proposition 3.1 and (4.7) there are two Jostsolutions in Ω±(E):
ω±

in = exp{1

h
z(x,±∞)}

(
H̃(z(x))

∓H̃(z(x))−1

)
(1 + hφ(h))(5.1)

ω±
out = exp{−1

h
z(x,±∞)}

(
H̃(z(x))

±H̃(z(x))−1

)
(1 + hφ(h)).(5.2)The funtion z(x,±∞) is de�ned by (4.1) and

H̃(z(x)) =

(
E − V (x) + mc2

E − V (x) − mc2

) 1
4

.(5.3)



16 ABDALLAH KHOCHMANOn Ω±(E) ∩ R, we have:
z(x,±∞) = i

∫ x

±∞

√
(E − V (t))2 − m2c4

c2
−
√

(E − V ±)2 − m2c4

c2
dt(5.4)

+i

√
(E − V ±)2 − m2c4

c2
x

H̃(z(x)) = 4

√
E − V (x) + mc2

E − V (x) − mc2
.(5.5)We suppose that there are only two real turning points t1(E) < t2(E) and that they aresimple. Notie that t1(E) is a zero of E − V (t)− mc2 and t2(E) is a zero of E − V (t) + mc2.In that ase the Stokes lines are as shown in Fig. 4. In order to obtain S, we ompute theWronskians given in (4.13), (4.14) and then the oe�ients t(E,h), r(E,h).PSfrag replaements

t2(E)

t1(E)

γ1

γ2Fig. 4. The turning points and the paths γjComputation of W(ω+
out, ω

+
in): Sine the two solutions ω+

out, ω
+
in are de�ned in Ω+(E), wean ompute this Wronskian in Ω+(E) and from Lemma 3.2 we obtain

W(ω+
out, ω

+
in) = −2.(5.6)Computation of W(ω−

in, ω
+
in): The two solutions ω−

in, ω
+
in are de�ned in Ω−(E),Ω+(E) re-spetively. Sine the Wronkians W(ω−

in, ω
+
in)(x) are independent on x (see Remark 3.1) weompute this Wronskian in Ω−(E) for example. For that we extend ω+

in , whih is de�ned in
Ω+(E), into Ω−(E). We will extend the square root in ω+

in whih is de�ned in Ω+(E), into
C \ {−Im (z) > 0, Re (z) = t1(E)} ∪ {−Im (z) > 0, Re (z) = t2(E)}. Thanks to the stru-ture of the Stokes lines between t1(E) and t2(E), we an �nd a path γ1 from +∞(1 + iδ1) to
−∞(1− iδ1) (for δ1 > 0) transverse to the Stokes lines along whih we an extend ω+

in. We re-mark that between t1(E) and t2(E) on the real axis we have (E−V (t))2−m2c4 < 0. The exten-sion of t ∈]t2(E),+∞[−→
√

(E−V (t))2−m2c4

c2
oinide with i

√
m2c4−(E−V (t))2

c2
on ]t1(E), t2(E)[and with −

√
(E−V (t))2−m2c4

c2
on ] −∞, t1(E)[. On the other hand, the extension of H̃(z(x))stay in R

+ on ] −∞, t1(E)[. If we denote by ω+,1
in the extension of ω+

in along γ1, we have:
ω+,1

in = exp{1

h
(−z(x, t1(E)) + z(t2(E),+∞) + S(E))}

(
H̃(z(x))

−H̃(z(x))−1

)
(1 + hφ(h)),
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z(x, t1(E)) = i

∫ x

t1(E)

(
(E − V (t))2 − m2c4

c2

) 1
2

dt,(5.7)
S(E) =

∫ t2(E)

t1(E)

√
m2c4 − (E − V (t))2

c2
dt.(5.8)Here, ( (E−V (t))2−m2c4

c2

) 1
2 ∈ R

+ for t ∈] −∞, t1(E)[.Then,
W(ω−

in, ω
+
in) = −2(1 + hφ(h)) exp{1

h
(z(t1(E),−∞) + z(t2(E),+∞) + S(E))},where z(t2(E),+∞), z(t1(E),−∞) are de�ned in (5.4).Computation of W(ω−

out, ω
+
in): This wronskian is also between two solutions whih are de-�ned in di�erent domains, then we extend one of these solutions into the domain of the othersolution. For example we extend ω+

in, whih is de�ned in Ω+(E), into Ω−(E) whih is a subsetof C \ {Im (z) > 0, Re (z) = t1(E)} ∪ {−Im (z) > 0, Re (z) = t2(E)}. Here, we an also �nda path γ2 from +∞(1 + iδ2) to −∞(1 + iδ2) for δ2 > 0 transverse to the Stokes lines alongwhih we an extend ω+
in into Ω−(E). If we denote by ω+,2

in the extension of ω+
in along γ2, wehave:

ω+,2
in = exp{1

h
(z(x, t1(E)) + z(t2(E),+∞) + S(E))}

(
iH̃(z(x))

iH̃(z(x))−1

)
(1 + hφ(h)).Here H̃(z(x)) ∈ R

+ on ] −∞, t1(E)[ and z(x, t1(E)), S(E) are de�ned in (5.7), (5.8).The omputation of W(ω−
out, ω

+
in) yields:

W(ω−
out, ω

+
in) = 2i(1 + hφ(h)) exp{1

h
(−z(t1(E),−∞) + z(t2(E),+∞) + S(E))}.Then, we obtain (see (4.13) and (4.14)):

t(E,h) = (1 + hφ(h)) exp{1

h
(z(t1(E),−∞) + z(t2(E),+∞) + S(E))},

r(E,h) = −i(1 + hφ(h)) exp{1

h
(−z(t1(E),−∞) + z(t2(E),+∞) + S(E))}.Sine φ(h) is a lassial analyti symbols of non-negative order and using (2.13) we have:

s11 =
1

t (E,h)
= (1 + hφ1(h)) exp{1

h
(z(t1(E),−∞) + z(t2(E),+∞) − S(E))},

s21 =
r (E,h)

t (E,h)
= (i + hφ2(h)) exp{2

h
(z(t1(E),−∞)},

s12 =
−r(E,h)

t (E,h)
= (i + hφ3(h)) exp{2

h
(z(t2(E),+∞)}.The funtions φ1(h), φ2(h), φ3(h) are lassial analyti symbols of non-negative order. Thisends the proof of Theorem 2.1.



18 ABDALLAH KHOCHMAN6. Total transmissionWe suppose that V satis�es assumption (A), the energy E ∈ I or E ∈ V and m ≥ 0 (seeFig. 5, Fig. 6).PSfrag replaements E
V −+ mc2

V −− mc2

V + + mc2

V + − mc2

Fig. 5. V ± mc2 and E ∈IFig. 6. and V
PSfrag replaements

EV −+ mc2

V −− mc2

V + + mc2

V + − mc2

Fig. 5. and I Fig. 6. V ± mc2 and E ∈VWe suppose that there exists no real turning point. In that ase the Stokes lines are hor-izontal lines near the real axis. We will only work for E ∈ I. The ase where E ∈ V an betreated similarly.In this setion we work in Ω−(E) de�ned in the previous setion. Now this set is a neigh-borhood of the real axis. Using Theorem 4.1, Proposition 3.1 and (4.5) there are four Jostsolutions:(6.1) ω±
in = exp{∓1

h
z(x,±∞)}

(
H̃(z(x))

∓H̃(z(x))−1

)
(1 + hφ(h))

ω±
out = exp{±1

h
z(x,±∞)}

(
H̃(z(x))

±H̃(z(x))−1

)
(1 + hφ(h)).The funtions z(x,±∞) and H̃(z(x)) are de�ned in (4.1) and (5.3) and oinide with (5.4),(5.5) on the real axis. Here, the setting is di�erent from the previous setion. The solutions

ω±
in and ω±

out are de�ned in the same domain Ω−(E) and there are no problem to extend thedi�erent square roots.As in Setion 4, it is su�ient to alulate the two terms r(E,h), t(E,h) (see (4.13), (4.14))to obtain the matrix S.Computation of W(ω−
in, ω+

in), W(ω+
out, ω

+
in): Sine the funtion H̃ in (6.1) is the same for ω−

inand ω+
in, we have:

W(ω−
in, ω

+
in)(x) = −2(1 + hφ(h)) exp{1

h
(z(x,+∞) − z(x,−∞))}(6.2)

= −2(1 + hφ(h)) exp{1

h
(z(0,+∞) − z(0,−∞))}.Moreover, as in (5.6)

W(ω+
out, ω

+
in)(x) = −2.Then, we obtain (see (4.13))

t(E,h) = (1 + hφ(h)) exp{1

h
(z(0,+∞) − z(0,−∞))},(6.3)
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z(0,±∞) = i

∫ 0

±∞

√
(E − V (t))2 − m2c4

c2
−
√

(E − V ±)2 − m2c4

c2
dt.(6.4)Sine φ(h) is a lassial analyti symbol of non-negative order and using (2.13) we have:

s11 =
1

t (E,h)
= (1 + hφ̃(h)) exp{1

h
(z(0,+∞) − z(0,−∞))}.Computation of W(ω−

out, ω
+
in): As in (6.2),

W(ω−
out, ω

+
in)(x) = O(h) exp{−1

h
(z(x,+∞) + z(x,−∞))}.Using that the square root in z(x,+∞) and z(x,−∞) have the same determination, we have

W(ω−
out, ω

+
in)(x) = O(h) exp{−1

h
(z(0,+∞) + z(0,−∞))} exp{−2

h
(z(x, 0))},where z(0,±∞) ∈ iR is de�ned in (6.4) and z(x, 0) = i

∫ x
0

√
(E−V (t))2−m2c4

c2
dt. Sine theWronskians are independent on x, we estimate the term z(x, 0) for x = −iy, 0 < y ≪ 1.Here, we have z(x, 0) = z(−iy, 0) = −iy(i

√
(E−V (0))2−m2c4

c2
)+ O(y2) = Cy + O(y2) for C > 0.Thereafter, W(ω−

out, ω
+
in) = O(e−C/h) for an other C > 0 and then

r(E,h) = O(e−C/h).(6.5)Consequently, using (2.13), we have, for a positive onstant C,
s21 =

r (E,h)

t (E,h)
= O(e−C/h),

s12 =
−r(E,h)

t (E,h)
= O(e−C/h).This ends the proof of Theorem 2.4.7. Total refletionWe suppose here that V satis�es assumption (A), the energy E ∈ II or IV and m > 0 (seeFig. 7 or Fig. 8).PSfrag replaements E t1(E)

V − + mc2

V − − mc2

V ++ mc2

V +− mc2

Fig. 7. E ∈IIFig. 8. IV
PSfrag replaements
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Fig. 7. II Fig. 8. E ∈IV



20 ABDALLAH KHOCHMANAs in the Setion 5, we will work in two unbounded, simply-onneted domains Ω−(E),
Ω+(E), where Re (V (x) − E + mc2) < E, Re (V (x) − mc2) > 0 respetively and whihoinide with S for |Re x| su�iently large. We will only work for E ∈ II. The ase E ∈ IVan be treated similarly. Using Theorem 4.1, Proposition 3.1 and (4.6) there are two Jostsolutions in Ω−(E):

ω−
in = exp{1

h
z(x,−∞)}

(
H̃(z(x))

+H̃(z(x))−1

)
(1 + hφ(h))

ω−
out = exp{−1

h
z(x,−∞)}

(
H̃(z(x))

−H̃(z(x))−1

)
(1 + hφ(h))with φ(h) a lassial analyti symbol of non-negative order. The funtions z(x,−∞), H̃(z(x))are de�ned in (4.1), (5.3) and oinide with (5.4), (5.5) on the real axis. From Lemma 4.1,there exist an exponentially dereasing Jost solution and an exponentially inreasing one. Asexplained before Theorem 2.3, we exlude the inreasing solutions whih does not representa physial state. We limit ourself to the one-dimensional spae generated by the dereasingsolution ω+

d whih satis�es in Ω+(E):
ω+

d = exp{−1

h
z(x,+∞)}

(
−iH(z(x))
H(z(x))−1

)
(1 + hφ(h)),(7.1)from Theorem 4.1, Proposition 3.1 and (4.6). The funtions z(x,+∞), H(z(x)) are de�nedin (4.1), (3.5) respetively and oinide, on the real axis, with

z(x,+∞) =
1

c

∫ x

+∞

√
m2c4 − (E − V (t))2 −

√
m2c4 − (E − V +)2 dt(7.2)

+
1

c

√
m2c4 − (E − V +)2 x

H(z(x)) = 4

√
mc2 + E − V (x)

mc2 − E + V (x)
.(7.3)We suppose that there is only one real turning point t1(E) and that it is simple. In thatase the Stokes lines are as shown in the �g. Fig. 9.PSfrag replaements
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t2Fig. 9. Stokes lines for II Fig. 10. Stokes lines for E ∈IVAording to the de�nition of the Wronskian, we have
α−

out =
W(ω−

in, ω
+
d )

W(ω+
d , ω−

out)
, β+

d =
W(ω−

in, ω
−
out)

W(ω+
d , ω−

out)
.
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in, ω

+
d ): In order to alulate this Wronskian we need to extend oneof the solutions ω−

in, ω+
d from its domain to the domain of the other solution, for example, weextend ω+

d from Ω+(E) to Ω−(E). For that, we extend the square root in ω+
d to C\{−Im (z) >

0, Re (z) = t1}. Thanks to the struture of the Stokes lines , we an �nd a path γ̃1 from
+∞(1 − iδ̃1) to −∞(1 − iδ̃1) (for δ̃1 > 0) transverse to the Stokes lines along whih wean extend ω−

d . The extension of t ∈]t1(E),+∞[−→
√

m2c4 − (E − V (t))2 oinides with
i
√

(E − V (t))2 − m2c4 on ] −∞, t1(E)[. On the other hand, on ] −∞, t1(E)[, H(z(x)) takesits values in e−iπ/4
R

+. If we denote by ω+,1
d the extension of ω+

d along γ̃1, we have
ω+,1

d = exp{1

h
(−z(x, t1(E)) − z(t1(E),+∞))}

(
−eiπ/4H̃(z(x))

eiπ/4H̃(z(x))−1

)
(1 + hφ(h)),with z(t1(E),+∞), H̃(z(x)) de�ned in (7.2), (5.3) and

z(x, t1(E)) =
i

c

∫ x

t1(E)
((E − V (t))2 − m2c4)

1
2 dt.(7.4)On ]−∞, t1(E)[ the funtions ((E −V (t))2 −m2c4)

1
2 and H̃(z(x)) are in R

+. Then, we have
W(ω−

in, ω
+
d ) = 2eiπ/4(1 + hφ(h)) exp{1

h
(z(t1(E),−∞) − z(t1(E),+∞))},where, z(t1,+∞), z(t1(E),−∞) are de�ned respetively in (7.2) and (5.4).Computation of W(ω+

d , ω−
out): As in the previous paragraph we extend ω+

d and the squareroots written there from Ω+(E) to Ω−(E) ⊂ C \ {Im (z) > 0, Re (z) = t1}. We an also �nda path γ̃2 from +∞(1 − iδ̃2) to −∞(1 + iδ̃2) (for δ̃2 > 0) transverse to the Stokes lines alongwhih we an extend ω+
d . If we denote by ω+,2

d the extension of ω+
d along γ̃2, we have

ω+,2
d = exp{1

h
(+z(x, t1(E)) − z(t1(E),+∞))}

(
e−iπ/4H̃(z(x))

e−iπ/4H̃(z(x))−1

)
(1 + hφ(h)),with z(x, t1(E)), z(t1(E),+∞) and H̃(z(x)) de�ned respetively in (7.4), (7.2) and (5.3). On

] −∞, t1(E)[ the quantities ((E − V (t))2 − m2c4)
1
2 and H̃(z(x)) are in R

+. Then, we have
W(ω+

d , ω−
out) = −2e−iπ/4(1 + hφ(h)) exp{1

h
(−z(t1(E),−∞) − z(t1,+∞))},where, z(t1,+∞), z(t1(E),−∞) are de�ned respetively in (7.2) and (5.4).Computation of W(ω−

in, ω
−
out): Sine the two solutions ω−

in, ω
−
out are de�ned in Ω−(E), weompute the Wronskian between these solutions as in (5.6) and obtain

W(ω−
in, ω

−
out) = −2.Then, we have

α−
out =

W(ω−
in, ω

+
d )

W(ω+
d , ω−

out)
= −i(1 + hφ(h)) exp{2

h
z(t1(E),−∞)}

β+
d =

W(ω−
in, ω

−
out)

W(ω+
d , ω−

out)
= eiπ/4(1 + hφ(h)) exp{1

h
(z(t1(E),−∞) + z(t1,+∞))},
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z(t1(E),−∞) =

i

c

∫ t1(E)

−∞

√
(E − V (t))2 − m2c4 −

√
(E − V −)2 − m2c4 dt

+
i

c

√
(E − V −)2 − m2c4 t1(E)

z(t1(E),+∞) =
1

c

∫ t1(E)

+∞

√
m2c4 − (E − V (t))2 −

√
m2c4 − (E − V +)2 dt

+
1

c

√
m2c4 − (E − V +)2 t1(E).This ends the proof of Theorem 2.3.8. Zero mass aseWe suppose that m = 0, E ∈]V −, V +[ and V as in Theorem 2.2, (see Fig. 11).PSfrag replaements

V −

V +E
Fig. 11. Zero mass aseIn this ase, the Dira system (3.1) is equivalent to

y′(x) =
V (x) − E

ihc

(
−1 0
0 1

)
y,(8.1)with y(x) =

(
1 −1
1 1

)
u(x). The resolution of the Dira equation (8.1) an be done withoutthe omplex WKB analysis. We solve this equation expliitly with suitable initial onditionat in�nity and we have four solutions of (3.1),

ω±
in = exp{1

h
z0(x,±∞)}

(
1
∓1

)(8.2)
ω±

out = exp{−1

h
z0(x,±∞)}

(
1
±1

)
,(8.3)whih behave like

ω±
in ∼ exp{±i

hc
(V ± − E)x}

(
1
∓1

) as x −→ ±∞,

ω±
out ∼ exp{∓i

hc
(V ± − E) x}

(
1
±1

) as x −→ ±∞.The funtions z0(x,±∞) are de�ned by
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z0(x,±∞) = ± i

c

∫ x

±∞
(V (t) − V ±)dt ± i

c
(V ± − E)x.We remark that

ω−
in = ω+

out exp{ i

h
T0(E)},with

T0(E) =
1

c

(∫ 0

+∞
(V (t) − V +)dt −

∫ 0

−∞
(V (t) − V −)dt

)
.Using (2.8) and (2.10), Theorem 2.2 holds.Appendix A. Spetrum of the Dira operatorProposition A.1. Suppose that V (x) is a L∞ appliation with values in the spae of Hermit-ian 2−matrix. Moreover we assume that

‖V (x) − V ±I2‖ → 0, as x → ±∞.Then the operator H = H0 + V is a selfadjoint operator on D(H0) and
σess(H) = ] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.(A.1)Proof. In order to prove this proposition, we �rst alulate the essential spetrum of H0 + W ,where W is a L∞ potential with W (x) = V ±I2 for ±x > R > 0. From Lemma 5.1 of [19℄, weknow the following inlusion:

σess(H0 + W ) ⊂] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.(A.2)Let us now prove the seond inlusion. We denote
I+ :=] −∞,−mc2 + V +], and I− := [mc2 + V −,+∞[.For E ∈ I±, we onsider the sequene

f±
n = exp{∓ i

hc
Φ(E − V ±)x}

(
A(E − V ±)

∓A(E − V ±)−1

)
χ(±x/n) for n ∈ N,with Φ(E) = sgn(E)

√
E2 − m2c4, A(E) = 4

√
E+mc2

E−mc2 and sgn(E) = E
|E| for E 6∈ [−mc2,mc2].The funtion χ ∈ C∞

0 (R) is suh that χ(x) = 1 if 2 < x < 3 and χ(x) = 0 if x < 1 and x > 4.The normed sequene ( f±
n

‖f±
n ‖

)n∈N has no onvergent subsequene and satis�es
(H0 + W − E)

f±
n

‖f±
n ‖ −→ 0, as n −→ +∞.From the Weyl riterion, we dedue I± ⊂ σess(H0 + W ). Consequently

σess(H0 + W ) =] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.Finally, using Weyl's theorem we obtain
σess(H) = σess(H0 + W ),and the proposition holds. �
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