
KLEIN PARADOX AND SCATTERING THEORY FOR THESEMI-CLASSICAL DIRAC EQUATIONABDALLAH KHOCHMANAbstra
t. We study the Klein paradox for the semi-
lassi
al Dira
 operator on R withpotentials having 
onstant limits, not ne
essarily the same at in�nity. Using the 
omplexWKB method, the time-independent s
attering theory in terms of in
oming and outgoingplane wave solutions is established. The 
orresponding s
attering matrix is unitary. Weobtain an asymptoti
 expansion, with respe
t to the semi-
lassi
al parameter h, of the s
at-tering matrix in the 
ases of the Klein paradox, the total transmission and the total re�e
tion.Finally, we treat the s
attering problem in the zero mass 
ase.Keywords: Semi-
lassi
al Dira
 operator - S
attering matrix - Klein paradox - ComplexWKB method.Mathemati
s 
lassi�
ation: 81Q05 - 47A40 - 34L40 - 34E20 - 34M60.1. Introdu
tionIn mathemati
s and physi
s, the s
attering theory is a framework for studying and under-standing the s
attering of waves and parti
les. The s
attering matrix for the one-dimensionalDira
 operator H is 
losely related to the transition probability of parti
les through a poten-tial. However, if the potential does not vanish at in�nity, a Klein paradox might o

ur. Thelatter is of great histori
al importan
e in order to justify the existen
e of the antiparti
le of anele
tron (the positron) and explaining qualitatively the pair 
reation pro
ess in the 
ollisionof parti
le beam with strongly repulsive ele
tri
 �eld. The explanation of this Klein paradoxusually resorted to the 
on
ept of "hole" in the "negative-energy ele
tron sea". For more phys-i
al interpretations we refer to Klein [14℄, Sauter [21℄, Bjorken-Drell [2℄, Sakurai [20℄, Thaller[23℄ and Calogera
os-Dombey [3℄ for the history of the Klein paradox. This paradox appearsalso for the Klein-Gordon equation, here no 
on
ept of "hole" is needed (see Winter [25℄ andNi-Zhou-Yan [16℄ for a 
onstant potential at in�nity and Ba
helot [1℄ for an ele
trostati
 po-tential having di�erent asymptoti
s at in�nity). The 
omparison between the Klein paradoxfor this two equations has been dis
ussed in [25, Part C℄. A Klein paradox phenomenon o

ursalso in quantum �eld theory (see Hund [13℄ and Manogue [15℄). It is 
lear that this paradox
annot appear for S
hrödinger operators.For a s
alar potential having real limits V ± at ±∞, the Klein paradox of the Dira
 equationo

urs if V +−V − > 2mc2. In this 
ase the higher part of σ(H) interse
ts its lower part. If theenergy E is in this interse
tion, for a wave-pa
ket whi
h 
omes from the left and moves towardsthe potential, a part of it is re�e
ted, another part being transmitted. The transmitted partmoves to the right and behaves like a solution with negative energy. Ruijsenaars-Bongaarts[19℄ (see also Thaller [23℄) have mathemati
ally treated the Klein paradox and the s
atteringDate: November 5, 2008. 1



2 ABDALLAH KHOCHMANtheory for the Dira
 equation with one-dimensional potentials 
onstant outside a 
ompa
tset. They have established the 
onne
tion between time-dependent and time-independents
attering theory in terms of in
oming and outgoing plane wave solutions. The exa
t 
al
ulusof the s
attering matrix for one-dimensional Dira
 operator is only known for a few numberof expli
it potentials (see Klein [14℄ for a re
tangular step potential and Flügge [6℄ for thepotential V (x) = tanh(x)). Nevertheless, we are neither aware of works dealing with theasymptoti
 expansion of the s
attering matrix, with respe
t to the semi-
lassi
al parameter h.For one-dimensional S
hrödinger operators, there are several approa
hes whi
h have beendeveloped dealing with the 
omputation of the transmission 
oe�
ient through a barrier.E
alle [5℄ and Voros [24℄ have developed the so-
alled 
omplex WKB analysis whi
h givesapproximations in the 
omplex plane of the solutions of a S
hrödinger equation. This approa
his used in a new formalism by Grigis for the Hill's equation [11℄. This method is also usedby C. Gérard-Grigis [10℄ to 
al
ulate the eigenvalues near a potential barrier and by Ramond[18℄ for s
attering problems. For referen
es and a histori
al dis
ussion, we refer to Ramond[18℄. The 
omplex WKB method has been extended to a 
lass of S
hrödinger systems byFujiié-Lasser-Nédele
 [9℄.The purpose of this paper is to give an asymptoti
 expansion, with respe
t to the semi-
lassi
al parameter h, of the 
oe�
ients of the s
attering matrix for the one-dimensionalDira
 operator with potentials having di�erent limits at in�nity. We establish the exponentialde
ay of the transmission 
oe�
ient in the Klein paradox 
ase (
f. Theorem 2.1 below). We
al
ulate the 
oe�
ients of the s
attering matrix in terms of in
oming and outgoing solutions.Therefore, we use the 
omplex WKB analysis to 
onstru
t solutions of the Dira
 equation.The usefulness of this analysis is that it provides, rather than approximate solutions with errorbounds, solutions in the 
omplex plane with a 
omplete asymptoti
 expansion with respe
t tothe semi-
lassi
al parameter h, with a priory estimates on the 
oe�
ients.The paper is organized as follows. In the next se
tion, we introdu
e the perturbed Dira
operator on R, study the time-independent s
attering theory and state our main results. InSe
tion 3, we develop the 
omplex WKB method and show a 
omplete asymptoti
 expansionof the 
oe�
ients. In Se
tion 4, the existen
e of in
oming and outgoing Jost solutions isproved. In Se
tion 5, we analyze the semi-
lassi
al behavior of the s
attering matrix in theKlein paradox 
ase. The total transmission over a potential barrier and the total re�e
tionare studied in Se
tion 6 and Se
tion 7. Finally, in Se
tion 8, we study the Klein paradox forthe zero mass 
ase. 2. Assumptions and resultsWe 
onsider the self-adjoint Hamiltonian H = H0 +V , where H0 is the semi-
lassi
al Dira
operator on R:
H0 = −ihcα

d

dx
+ mc2β,(2.1)with domain D(H0) = H1(R) ⊗ C

2 ⊂ H = L2(R) ⊗ C
2, where h ց 0 is the semi-
lassi
alparameter, m ≥ 0 is the mass of the Dira
 parti
le and c is the 
elerity of the light. The
oe�
ients α, β are the 2 × 2 Pauli matri
es satisfying the anti-
ommutation relation

αβ + βα = 0,and α2 = β2 = I2, where I2 is the 2 × 2 identity matrix.



KLEIN PARADOX AND SCATTERING THEORY 3The operator V is the multipli
ation by V I2, where V is a smooth ele
trostati
 potentialsatisfying:(A): The fun
tion V is real on the real axis, analyti
 in the se
tor
S = {x ∈ C, |Im x| < ǫ|Re x| + η},for some ǫ, η > 0, and satis�es the following estimates:

|(V (x) − V ±)| = O(〈x〉−δ) for Re (x) −→ ±∞ in S.(2.2)
Here, 〈x〉 = (1 + |x|2) 1

2 , δ > 1 and V − < V +.
PSfrag repla
ements 0

V −

V +

Fig. 1. The potential VThe spe
trum of the free Dira
 operator H0 is ] −∞,−mc2] ∪ [mc2,+∞[ and it is purelyabsolutely 
ontinuous. Under assumption (A) the operator H = H0 + V is a self-adjointoperator and has essential spe
trum (see Appendix A):
σess(H) = ] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.(2.3)There are several representations of the matri
es α, β. For example, Hiller [12℄ used α =

σ2, β = σ3, Nogami and Toyoma [17℄ used α = σ2, β = σ1, where σj, j = 1, 2, 3, are thestandard representation for Dira
-Pauli matri
es. Most 
al
ulations with Dira
 matri
es 
anbe done without referring to a parti
ular representation (see Thaller [23, Appendix 1A℄). Here,we 
hoose the 1 + 1 dimensional representation of the Dira
 matri
es
α = σ1 =

(
0 1
1 0

)
, β = σ3 =

(
1 0
0 −1

)
.(2.4)The solutions of

Hu =

(
−ihcσ1

d

dx
+ mc2σ3 + V (x)I2

)
u = Eu, E ∈ R,(2.5)should behave as x −→ ±∞ like

a+
±(E,h) exp(+

1

hc
(m2c4 − (V ± − E)2)1/2x) + a−±(E,h) exp(− 1

hc
(m2c4 − (V ± − E)2)1/2x).Here, the square root (·) 1

2 is to be de�ned more pre
isely a

ording to the sign of m2c4 −
(V ± − E)2.In the following, we will use these intervals on the E-axis:I. V + + mc2 < E,II. max(mc2 + V −, V + − mc2)< E < V + + mc2,III. V − + mc2 < E < V + − mc2 if V + − V − > 2mc2,



4 ABDALLAH KHOCHMANIV. V − − mc2 < E < min(V − + mc2, V + − mc2),V. E < V − − mc2.If V + − V − > 2mc2, the di�erent regions are represented in the following �gure:PSfrag repla
ements
V + + mc2

V + − mc2

V − + mc2

V − − mc2

E Region IRegion IIRegion IIIRegion IVRegion VFig. 2. Di�erent regions on the E-axisWe study the semi-
lassi
al behavior of the s
attering matrix for the di�erent values of theenergy E. Let us des
ribe now the time-independent s
attering problem brie�y. For E ∈ I,III or V, the four Jost solutions ω±
in, ω±

out (see Theorem 4.1) are the solutions of (2.5) whi
hbehave exa
tly as
ω±

in ∼ exp{∓ i

hc
Φ(E − V ±)x}

(
A(E − V ±)

∓A(E − V ±)−1

) as x −→ ±∞,(2.6)
ω±

out ∼ exp{± i

hc
Φ(E − V ±)x}

(
A(E − V ±)

±A(E − V ±)−1

) as x −→ ±∞,(2.7)with Φ(E) = sgn(E)
√

E2 − m2c4, A(E) = 4

√
E+mc2

E−mc2
and sgn(E) = E

|E| for E 6∈ [−mc2, mc2].Analogous de�nitions of Jost solutions 
an be found in the works of Ruijsenaars-Bongaarts[19℄ and Thaller [23℄ for one-dimensional step potentials. In this paper, we denote √
x, 4

√
xthe positive determination of x ∈ R

+ −→ (x)
1
2 , (x)

1
4 respe
tively.The ordinary s
attering problem is the following: what are the 
omponents of a solution uof the Dira
 equation (2.5) in the basis (ω+

out, ω−
out) of the outgoing Jost solutions, knowing its
omponents in the basis (ω−

in, ω+
in) of the in
oming Jost solutions. The 2 × 2 matrix relatingthese 
oe�
ients is 
alled the s
attering matrix and we will denote it by

S =

(
s11 s12

s21 s22

)
.Pre
isely, if we take u a solution of (2.5),

u = ainω
−
in + binω

+
in = aoutω

+
out + boutω

−
out,the s
attering matrix is su
h that

S

(
ain

bin

)
=

(
aout

bout

)
,whi
h is equivalent to

(ω−
in, ω

+
in) = (ω+

out, ω
−
out)S.(2.8)



KLEIN PARADOX AND SCATTERING THEORY 5Sin
e V is real on the real axis, we have (see (2.4))
ω±

in = βω±
out.(2.9)We also have the following relations between the 
oe�
ients of S(E,h):

s11(E,h) = s22(E,h) and s12(E,h) = −s21(E,h)
s11(E,h)

s11(E,h)
,(2.10)so that s11 and s12 determine 
ompletely the s
attering matrix.The re�e
tion and transmission 
oe�
ients R(E,h) and T (E,h) are, by de�nition, thesquare of the modulus of the 
oe�
ients s21 and s11 respe
tively. They 
orrespond to theprobability for a purely in
oming-from-the-left parti
le to be re�e
ted to the left or transmittedto the right. Using (2.9), (2.10) and 
al
ulating the determinant of (2.8), we have the well-known relation R(E,h) + T (E,h) = 1 and, the s
attering matrix S(E,h) is unitary.To 
al
ulate the s
attering matrix S(E,h) we will use the transfer matrix T, whi
h is de�nedby

(ω−
in, ω−

out) = (ω+
out, ω+

in)T.The determinant of this matrix is equal to 1 sin
e the two Wronskians W(ω−
in, ω−

out) and
W(ω+

out, ω+
in) are equal to −2 (see De�nition 3.4). Using the relation (2.9), we obtain that Tis determined by two 
oe�
ients:

T =

(
t(E,h) r(E,h)
r (E,h) t (E,h)

)
.(2.11)Moreover, using that det(T) = 1, we obtain

|t(E,h)|2 − |r(E,h)|2 = 1.(2.12)Consequently, we 
an write the s
attering matrix in terms of the 
oe�
ients of the transfermatrix T:
S =

1

t (E,h)

(
1 −r(E,h)

r (E,h) 1

)
.(2.13)We will use WKB approa
hes to des
ribe the amplitude of the 
oe�
ients of the s
atteringmatrix for h ց 0. For these, let us introdu
e the following de�nition.De�nition 2.1. (See Sjöstrand [22℄) A fun
tion f(z, h) de�ned in U×]0, h0[, where U is anopen set in C and h0 > 0, is 
alled a 
lassi
al analyti
 symbol (CAS) of order m ∈ N in h if

f is an analyti
 fun
tion of z ∈ U and if there exists a sequen
e (aj(z)) of analyti
 fun
tionsin U su
h that
• For all 
ompa
t set K ⊂ U , there exists C > 0 su
h that, for all z ∈ K, one has

|aj(z)| ≤ Cj+1jj .

• The fun
tion f(z, h) admits the series ∑0≤j≤+∞ aj(z)hm+j as asymptoti
 expansionas h goes to zero in the following sense. For any C1 > C, we have
f(z, h) −

∑

0≤j≤h−1/eC1

aj(z)hm+j = O(e−ρ/h),for some ρ > 0 and all z ∈ K



6 ABDALLAH KHOCHMANThe main theorem 
on
erning the Klein paradox 
ase for m > 0 (i.e. for the energy level
E ∈ III) is the following:

PSfrag repla
ements E t1(E)

t2(E)

V − + mc2

V − − mc2

V + + mc2

V + − mc2

Fig. 3. Graph of V (x) + mc2 and V (x) − mc2Theorem 2.1. [Klein paradox℄ Let V be a potential satisfying assumption (A), E ∈ III and
m > 0. Suppose that there are only two simple zeros t1(E) < t2(E) of m2c4 − (V (x) − E)2(see Fig. 3). Then there exists three 
lassi
al analyti
 symbols φ1(h), φ2(h) and φ3(h) ofnon-negative order su
h that:

s11 = s22 = (1 + hφ1(h)) exp{−S(E)/h} exp{iT (E)/h},(2.14)
s21 = (i + hφ2(h)) exp

{
2i

h

(
t1(E)

√
E− +

∫ t1(E)

−∞
Q−(t, E)dt

)}
,(2.15)

s12 = (i + hφ3(h)) exp

{
2i

h

(
t2(E)

√
E+ −

∫ +∞

t2(E)
Q+(t, E)dt

)}
,(2.16)where S(E) is the 
lassi
al a
tion between the two turning points t1(E) and t2(E)

S(E) =

∫ t2(E)

t1(E)

√
m2c4 − (V (t) − E)2

c2
dt.Moreover

Q−(t, E) =

√
−m2c4 + (V (t) − E)2

c2
−

√
E−, for t < t1(E),

Q+(t, E) =

√
−m2c4 + (V (t) − E)2

c2
−

√
E+, for t > t2(E),and

T (E) =

∫ t1(E)

−∞
Q−(t, E)dt −

∫ +∞

t2(E)
Q+(t, E)dt + t1(E)

√
E− + t2(E)

√
E+,where

E± =
−m2c4 + (V ± − E)2

c2
.



KLEIN PARADOX AND SCATTERING THEORY 7We remark that this s
attering matrix behaves like in the 
ase of the S
hrödinger operatorwith a barrier potential. In parti
ular the term e−S(E)/h whi
h de
ays exponentially, 
an beviewed as a tunneling e�e
t (see Ramond [18, Theorem 1℄).In the zero mass 
ase, we have the following theorem:Theorem 2.2. [Zero mass 
ase℄ Let V ∈ L∞(R) be a potential satisfying |V (x) − V ±| =
O(〈x〉−δ) at ±∞ for some δ > 1, E ∈ III and m = 0. Then,

s11 = s22 = exp{iT0(E)/h},(2.17)
s21 = s12 = 0.(2.18)Here,

T0(E) =
1

c

(∫ 0

−∞
(−V (t) + V −)dt −

∫ +∞

0
(V (t) − V +)dt

)
.Remark 2.1. We 
an not permute the limits of the s
attering matrix S as m → 0 and h → 0.Indeed, if we take the limits of s12 in (2.16) and (2.18), we obtain

lim
m→0

lim
h→0

|s12| = 1, lim
h→0

lim
m→0

|s12| = 0.Now, we 
ome ba
k to the non-zero mass 
ase and we treat re�e
tion and transmission
ases (see Se
tions 7, 6).If we take the energy level E ∈II, there are two Jost solutions ω−
in, ω−

out satisfying (2.6) and(2.7) for x −→ −∞ and there does not exist an os
illating solution for x −→ +∞. Instead,as x → +∞, there exists an exponentially de
aying solution and an exponentially growingsolution. Sin
e the last fun
tion doesn't represent a physi
al state we limit ourself to the onedimensional spa
e generated by the de
aying solution ω+
d (unique up to a 
onstant). Thisfun
tion satis�es (see Theorem 4.1):

ω+
d ∼ exp{− 1

hc

√
m2c4 − (V + − E)2x}


 −i 4

√
mc2+E−V +

mc2−E+V +

4

√
mc2−E+V +

mc2+E−V +


 as x −→ +∞.(2.19)In this 
ase we haveTheorem 2.3. [Total re�e
tion℄ Let V be a potential satisfying assumption (A), E ∈ II and

m > 0. Suppose that there is only a simple zero t1(E) of m2c4− (V (x)−E)2. Then the ve
torspa
e of the solutions of (H − E)u = 0 with u bounded is a one dimensional spa
e generatedby
u = ω−

in + α−
outω

−
out, with

α−
out = −i(1 + hφ1(h)) exp

{
2i

h

(∫ t1(E)

−∞
Q−(t, E)dt +

√
E−t1(E)

)}
.(2.20)Moreover

u = β+
d ω+

d , with



8 ABDALLAH KHOCHMAN
β+

d = eiπ/4(1 + hφ2(h)) ×

exp

{
1

h

(∫ t1(E)

+∞
Q+

−(t, E)dt +
√

−E+t1(E) + i

∫ t1(E)

−∞
Q−(t, E)dt + i

√
E−t1(E)

)}
.Here

Q+
−(t, E) =

√
m2c4 − (V (t) − E)2

c2
−
√

−E+,

Q−(t, E) and E± are the fun
tions of Theorem 2.1 and φj(h), j = 1, 2 are 
lassi
al analyti
symbols of non-negative order.For E ∈ IV, there is also total re�e
tion 
ases whi
h 
an treated similarly to the previoustheorem. As in [19℄, there is also a s
attering interpretation of the previous theorem. Sin
ewe work in a one-dimensional spa
e, the s
attering matrix is now a s
alar.Remark 2.2. [S
attering interpretation℄ We 
all uin = ω−
in + α−

outω
−
out the �incoming�solution. In the same way, there exists a unique bounded solution

uout = ω−
out + α−

inω
−
in,whi
h is 
alled the �outgoing� solution.If u is a bounded solution of (H −E)u = 0 (i.e. u = Auin) then u = Buout. The s
atteringmatrix S is de�ned by

B = SA.From (2.20), we have
S = α−

out = −i(1 + hφ(h)) exp

{
2i

h

(∫ t1(E)

−∞
Q−(t, E)dt +

√
E−t1(E)

)}
.For E ∈ I or V, a total transmission phenomena o

ur:Theorem 2.4. [Total transmission℄ Let V be a potential satisfying assumption (A), E ∈I, m ≥ 0 and m2c4 − (V (x) − E)2 6= 0. Then there are a 
lassi
al analyti
 symbol φ(h) andpositive 
onstant C su
h that:

s11 = s22 = (1 + hφ(h)) exp{iT̃ (E)/h},(2.21)
s21 = O(e−C/h) and s12 = O(e−C/h),(2.22)where
T̃ (E) =

∫ 0

−∞
Q−(t, E)dt +

∫ +∞

0
Q+(t, E)dt,and Q−(t, E), Q+(t, E) are the fun
tions of Theorem 2.1 de�ned here for any t ∈ R.We 
an 
al
ulate the s
attering matrix for E ∈ V in the same way of E ∈ I. We remarkthat the behavior of the in
oming and outgoing Jost solutions ex
hanges between these two
ases. This is in agreement with the physi
al interpretation (see [23, p.121℄).



KLEIN PARADOX AND SCATTERING THEORY 93. Complex WKB solutionsWe wish to �nd a representation formula for the solutions of (2.5), from whi
h it is possibleto dedu
e the asymptoti
 expansion in h. The method is known as 
omplex WKB method.See [18℄ [10℄, [7℄, [8℄, [9℄ for 
onstru
tions of solutions of the S
hrödinger equation.In a 
omplex domain S, we study the Dira
 system (2.5) whi
h is of the form
(H − E)u(x) =

(
mc2 + V (x) − E −ihc d

dx
−ihc d

dx −mc2 + V (x) − E

)
u(x) = 0,(3.1)or equivalently

h

i

d

dx
v(x) =

(
0 g+(x)

−g−(x) 0

)
v(x),(3.2)where v(x) =

(
0 1
1 0

)
u(x) = M−1u, and the fun
tions

g±(x) =
−mc2 ∓ (V (x) − E)

c
,are holomorphi
 in S. The following 
onsiderations will lead to the 
onstru
tion of 
omplexWKB solutions for Dira
 system.3.1. Formal 
onstru
tion. First, we introdu
e a new 
omplex 
oordinate

z(x) = z(x, x0) =

∫

γ(x0,x)
(g+(t)g−(t))

1
2 dt =

∫ x

x0

(g+(t)g−(t))
1
2 dt, x0 ∈ D.(3.3)One of our tasks will be of 
ourse to 
hoose the simply 
onne
ted subset D of S su
h that

t −→ (g+(t)g−(t))
1
2 is well-de�ned, but let's work formally for a while. The γ(x0, x) is anypath in D beginning at x0 and ending at x.De�nition 3.1. The zeros of the fun
tion

g+(x)g−(x) =
m2c4 − (V (x) − E)2

c2
,are 
alled the turning points of the system (3.2).De�nition 3.2. For x �xed in D, the set

{
y ∈ D, Re ∫ y

x
(g+(t)g−(t))

1
2 dt = 0

}is 
alled the Stokes line passing through x.We look for solutions of the form e±
z

h w̃±(z). We note that due to the possible presen
e ofsu
h turning points, the square root in the de�nition of z(x) might be de�ned only lo
ally.By formal 
al
ulations, the amplitude ve
tor w̃±(z) has to satisfy
h

i

d

dz
w̃±(z) =

(
±i H(z)−2

−H(z)2 ±i

)
w̃±(z).(3.4)



10 ABDALLAH KHOCHMANThe fun
tion H(z(x)) is given by
H(z(x)) =

(
g−(x)

g+(x)

)1/4

=

(−mc2 + (V (x) − E)

−mc2 − (V (x) − E)

)1/4

,(3.5)for z(x) in an open simply-
onne
ted domain of the z-plane, where z −→ H(z) is well-de�nedand analyti
.In order to obtain a de
omposition with respe
t to image and kernel of the previous system,we 
onjugate by
P±(z) =

1

2

(
H(z) ±iH(z)−1

H(z) ∓iH(z)−1

)
, P−1

± (z) =

(
H(z)−1 H(z)−1

∓iH(z) ±iH(z)

)
,and obtain a system for w±(z) = P±(z)w̃±(z),

d

dz
w±(z) =

(
0 H′(z)

H(z)
H′(z)
H(z) ∓ 2

h

)
w±(z),(3.6)where H ′(z) is shorthand for d

dz H(z). The series ansatz
w±(z) =

∑

n≥0

(
w2n,±(z)

w2n+1,±(z)

)
,(3.7)with w0,± = 1 and, for n ≥ 1, the re
urren
e equations

(
d

dz
± 2

h

)
w2n+1,±(z) =

H ′(z)

H(z)
w2n,±(z),(3.8)

d

dz
w2n+2,±(z) =

H ′(z)

H(z)
w2n+1,±(z),(3.9)give us a formal solution up to some additive 
onstants. The solutions are �xed by setting

wn,±(z̃) = 0, n ≥ 1,at a base point z̃ = z(x̃) where x̃ ∈ D is not a turning point. We note that the previousequations for wn,± are similar to the ones obtained by a 
omplex WKB 
onstru
tion for s
alarS
hrödinger equations. See for example the works of C. Gérard and Grigis [10℄ or Ramond[18℄.Let Ω = Ω(E) be a simply 
onne
ted subset of D whi
h does not 
ontain any turning point.Then the fun
tion z = z(x) is 
onformal from Ω onto z(Ω). Assume that z̃ ∈ z(Ω). If Γ±(z̃, z)denotes a path of �nite length in z(Ω) 
onne
ting z̃ and z ∈ z(Ω), we 
an formally rewrite theabove di�erential equations for n ≥ 0 as
w2n+1,±(z) =

∫

Γ±(ez,z)
exp(±2

h
(ζ − z))

H ′(ζ)

H(ζ)
w2n,±(ζ)dζ,

w2n+2,±(z) =

∫

Γ±(ez,z)

H ′(ζ)

H(ζ)
w2n+1,±(ζ)dζ,



KLEIN PARADOX AND SCATTERING THEORY 11or after iterated integrations, as
w2n+1,±(z) =

∫

Γ±(ez,z)

∫

Γ±(ez,ζ2n+1)
· · ·

∫

Γ±(ez,ζ2)
exp

(
±2

h
(ζ1 − ζ2 + · · · + ζ2n+1 − z)

)
×

× H ′(ζ1)

H(ζ1)
· · · H ′(ζ2n+1)

H(ζ2n+1)
dζ1 · · · dζ2n+1,

w2n+2,±(z) =

∫

Γ±(ez,z)

∫

Γ±(ez,ζ2n+2)
· · ·

∫

Γ±(ez,ζ2)
exp

(
±2

h
(ζ1 − ζ2 + · · · − ζ2n+2)

)
×

× H ′(ζ1)

H(ζ1)
· · · H ′(ζ2n+2)

H(ζ2n+2)
dζ1 · · · dζ2n+2.3.2. Convergen
e, h-dependen
e and Wronskians. We now give to the pre
eding formal
onstru
tion some mathemati
al meaning in simply 
onne
ted, turning point-free 
ompa
t sets

Ω ⊂ D.Lemma 3.1. For any �xed h > 0, the series (3.7) 
onverges uniformly in any 
ompa
t subsetof Ω, and
weven
± (x, h) =

∑

n≥0

w2n,±(z(x)), wodd
± (x, h) =

∑

n≥0

w2n+1,±(z(x)),(3.10)are holomorphi
 fun
tions in Ω.Proof. By assumption on Ω and on V , the fun
tions wn,± are well-de�ned analyti
 fun
tionsin Ω. For 
ompa
t subsets K ⊂ Ω and z̃, z ∈ z(K) there exist positive 
onstants Ch
±(K) > 0,depending on the semi-
lassi
al parameter h and the 
ompa
t K su
h that

sup
ζ∈Γ±(ez,z)

∣∣∣ exp(±2

h
ζ)

H ′(ζ)

H(ζ)

∣∣∣ ≤ Ch
±(K).(3.11)If we denote the maximal length of the paths Γ±(z̃, ·) ⊂ K in the pre
eding iterated integra-tions by

L = max
ez,z∈ z(K)

min
γ(ez,z)

|γ(z̃, z)| < ∞,then
sup

z∈z(K)
|wn,±(z)| ≤ Ch

±(K)nLn

n!
, n ≥ 0,where the bound Ln

n! 
omes from the volume of a simplex with length L. Then, the lemmafollows. �Thus, we have the uniform 
onvergen
e of the series (3.7) for w±(z) and 
omplex solutions
u±(x) = e±

z(x)
h T±(z(x))

(
weven
± (x)

wodd
± (x)

)
,(3.12)of the original problem (3.1) on any turning point-free set Ω, where

T±(z) = MP−1
± (z) =

(
0 1
1 0

)(
H(z)−1 H(z)−1

∓iH(z) ±iH(z)

)

=

(
∓iH(z) ±iH(z)
H(z)−1 H(z)−1

)
, z ∈ z(Ω).(3.13)



12 ABDALLAH KHOCHMANWe write these solutions u±(x) as
u±(x;x0, x̃),(3.14)indi
ating the parti
ular 
hoi
e of the phase base point x0, in (3.3), whi
h de�nes the phasefun
tion z(x) = z(x;x0), and the 
hoi
e of the amplitude base point z̃ = z(x̃), whi
h is theinitial point of the path Γ±(z̃, ·).De�nition 3.3. For x̃ ∈ Ω �xed, we de�ne Ω± = Ω±(x̃) the set of all x ∈ Ω su
h that thereexists a path Γ±(z(x̃), z(x)) along whi
h x −→ ±Re z(x) in
reases stri
tly.Proposition 3.1. The fun
tions wn,± are 
lassi
al analyti
 symbols of order [n+1

2 ℄ in Ω±.The fun
tions weven
± (x, h) and wodd

± (x, h) given by the identities (3.10) are 
lassi
al analyti
symbols of order 0 and 1 respe
tively in Ω±. Moreover, we have for any N ∈ N,
weven
± (x, h) −

N∑

n=0

w2n,±(z(x)) = O(hN+1),

wodd
± (x, h) −

N∑

n=0

w2n+1,±(z(x)) = O(hN+2),uniformly in any 
ompa
t subsets of Ω±. In parti
ular,
weven
± (x, h) = 1 + hφ(h), wodd

± (x, h) = hφ(h).Here and in all this paper, φ(h) is a 
lassi
al analyti
 symbol of non-negative order not ne
es-sarily the same in ea
h expression.The proof is just the same as that of [10, Prop. 1.2℄ and [9, Prop. 3.3℄. The key point is thefollowing: sin
e the iterated integrations de�ning wn,±(z) 
ontain terms of the form exp(± ζ
h),one has to make sure that x 7−→ ±Re (z(x)) is a stri
tly in
reasing fun
tion along the path

Γ±(z̃, z). In other words, the paths Γ±(z(x̃), z(x)) have to interse
t the Stokes lines, that isthe level 
urves of x 7−→ Re (z(x)), transversally in a suitable dire
tion.De�nition 3.4. One de�nes the Wronskian of two C
2-valued fun
tions u = (u1, u2), v =

(v1, v2) as
W(u, v) = u1v2 − u2v1.Remark 3.1. For two solutions u and v of the equation (2.5), the Wronskian W(u, v) doesn'tdepend on x and is zero if and only if u and v are proportional.If w = αu + βv with α, β ∈ C, then

α =
W(w, v)

W(u, v)
, β = −W(w, u)

W(u, v)
.Elementary 
omputations give the following 
omplex Wronskian formulas for 
omplex WKBsolutions with di�erent phase and amplitude base points in terms of weven

± and wodd
± .Lemma 3.2. Let x0 and y0 be two points in Ω = Ω(E). If, for given x̃ and ỹ, the 
anoni
alsets Ω±(x̃) and Ω±(ỹ) have a non-empty interse
tion, then for any x ∈ Ω±(x̃) ∩ Ω±(ỹ) one
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W(u±(x;x0, x̃) , u±(x; y0, ỹ)) = ±2i exp

(
±1

h
(z(x;x0) + z(x; y0))

)(3.15)
×

(
wodd
± (x;x0, x̃)weven

± (x; y0, ỹ) − weven
± (x;x0, x̃)wodd

± (x; y0, ỹ)
)
.If, for given x̃ and ỹ the 
anoni
al sets Ω±(x̃) and Ω∓(ỹ) have a non-empty interse
tion, thenfor any x ∈ Ω±(x̃) ∩ Ω∓(ỹ) one has

W(u±(x;x0, x̃) , u∓(x; y0, ỹ)) = ±2i exp

(
±1

h
(z(x;x0) − z(x; y0))

)(3.16)
×

(
wodd
± (x;x0, x̃)wodd

∓ (x; y0, ỹ) − weven
± (x;x0, x̃)weven

∓ (x; y0, ỹ)
)
.4. Jost solutionsThe Jost solutions of Hu = Eu, are 
hara
terized by the behavior of the solutions atin�nity. We 
onstru
t here the Jost solutions 
opying the pro
edure des
ribed in Se
tion 3,the new point here being that the solutions we seek are normalized at in�nity. In all thisse
tion we will work in two unbounded, simply-
onne
ted domains Ω−(E), Ω+(E), whereRe (V (x) + mc2) < E, Re (V (x) − mc2) > E respe
tively and whi
h 
oin
ide with S forRe x su�
iently large. The existen
e of su
h domains is of 
ourse an easy 
onsequen
e of thebehavior of V at in�nity in S (see assumption (A)).First we de�ne the phase fun
tions with base point at in�nity,

z(x,±∞) =

∫ x

±∞

(
m2c4 − (V (t) − E)2

c2

)1/2

−
(

m2c4 − (V ± − E)2

c2

)1/2

dt(4.1)
+

(
m2c4 − (V ± − E)2

c2

)1/2

x.We also see that the integral 
onverges absolutely, hen
e
z(x,±∞) =

(
m2c4 − (V ± − E)2

c2

)1/2

x + o(1), (x −→ ±∞).If the determination of the square root in z(·, ·) are the same, we get the following equalities(4.2) z(t1,±∞) =z(x,±∞) − z(x, t1) = z(t2,±∞) − z(t2, t1)

z(t1,−∞) − z(t1,+∞) =z(x,−∞) − z(x,+∞) = z(t2,−∞) − z(t2,+∞),where z(·, ·) is de�ned in (3.3), (4.1) and x, t1, t2 ∈ D.Next we de�ne the amplitudes based at in�nity. We will only de�ne the amplitudes at +∞sin
e the situation is similar at −∞. As in Se
tion 3 of [18℄, we 
hoose in�nite paths γ±(x)starting from in�nity and ending at x, whi
h are asymptoti
ally like lines of the form {Imx =
∓ρRex} for some ρ > 0, su
h that x 7−→ ∓Rez(x) are stri
tly in
reasing fun
tions along
γ±(x). Denoting the path z(γ±(x)) by Γ±(+∞, z(x)) and setting w0,± ≡ 1, we indu
tively



14 ABDALLAH KHOCHMANde�ne wn,±(z) by
w2n+1,±(z) =

∫

Γ±(+∞,z)
exp(±2

h
(ζ − z))

H ′(ζ)

H(ζ)
w2n,±(ζ)dζ,

w2n+2,±(z) =

∫

Γ±(+∞,z)

H ′(ζ)

H(ζ)
w2n+1,±(ζ)dζ, n ≥ 0.Noti
ing that

H ′(x)

H(x)
=

mc2

2

V ′(x)

(V (x) − E)2 − m2c4
= O(〈x〉−δ), δ > 1, as |x| −→ ∞,one 
onstru
ts well-de�ned 
omplex WKB solutions u±

r,l 
orresponding to these base points,pro
eeding as in Se
tion 3. Here, l and r stand for left and right and 
orrespond respe
tivelyto x → −∞ and x → +∞. Up to a 
onstant pre-fa
tor, u±
r,l(x) are the previously de�ned Jostsolutions:Lemma 4.1. Let u±

r,l(x) be the 
omplex WKB solutions with phase and amplitude base pointat in�nity. Then
u±

r (x) ∼ exp(± 1

hc
(m2c4 − (V + − E)2)1/2x)

(
∓iα+

1/α+

)
, x −→ +∞,(4.3)

u±
l (x) ∼ exp(± 1

hc
(m2c4 − (V − − E)2)1/2x)

(
∓iα−

1/α−

)
, x −→ −∞,(4.4)with

α± =

(
V ± − E − mc2

−V ± + E − mc2

)1/4

.Proof. We just 
he
k the asymptoti
 behavior of u±
r,l(x) at in�nity. Sin
e H(z(x)) −→ α± as

x −→ ±∞, using (3.12) and (3.13) we get by an elementary 
al
ulation
u±

r (x) ∼ exp(± 1

hc
(m2c4 − (V + − E)2)1/2x)

(
∓iα+ ±iα+

1/α+ 1/α+

)(
1
0

)
, x −→ +∞,

u±
l (x) ∼ exp(± 1

hc
(m2c4 − (V − − E)2)1/2x)

(
∓iα− ±iα−

1/α− 1/α−

)(
1
0

)
, x −→ −∞.This ends the proof of lemma. �Let us now 
hoose the determinations of (m2c4 − (V ± − E)2)1/2 and α± a

ording to theintervals on the E-axis. This �xes the 
hoi
e of u±

l,r and we 
an 
onstru
t ω±
in, ω±

out satisfying(2.6) and (2.7).1. For E ∈ I, we 
hoose (m2c4 − (V ± − E)2)1/2 ∈ iR+, α± ∈ eiπ/4
R

+ and we denote
ω−

in := eiπ/4u+
l , ω+

in := −eiπ/4u−
r , ω+

out := eiπ/4u+
r , ω−

out := −eiπ/4u−
l .(4.5)2. For E ∈ II, we 
hoose (m2c4−(V −−E)2)1/2 ∈ iR+, α− ∈ eiπ/4

R
+, (m2c4−(V +−E)2)1/2 ∈

R
−, α+ ∈ R

+ and we denote
ω−

in := eiπ/4u+
l , ω−

out := −eiπ/4u−
l , ω+

d := u+
r .(4.6)3. For E ∈ III, we 
hoose (m2c4 − (V ± − E)2)1/2 ∈ iR+, α± ∈ e∓iπ/4

R
+ and we denote

ω−
in := eiπ/4u+

l , ω+
in := −e−iπ/4u+

r , ω+
out := e−iπ/4u−

r , ω−
out := −eiπ/4u−

l .(4.7)
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hoose (m2c4 − (V + − E)2)1/2 ∈ iR+, α+ ∈ e−iπ/4
R

+, (m2c4 − (V − −
E)2)1/2 ∈ R

−, α+ ∈ R
+ and we denote

ω+
in := −e−iπ/4u+

r , ω+
out := e−iπ/4u−

r , ω−
d := u−

l .(4.8)5. For E ∈ V, we 
hoose (m2c4 − (V ± − E)2)1/2 ∈ iR+, α± ∈ e−iπ/4
R

+ and we denote
ω−

in := e−iπ/4u−
l , ω+

in := −e−iπ/4u+
r , ω+

out := e−iπ/4u−
r , ω−

out := −e−iπ/4u+
l .(4.9)Theorem 4.1. For real E, (2.5) has solutions of the following form:1. For E ∈ I, III or V, there are four Jost solutions ω±

in, ω±
out whi
h behave like

ω±
in ∼ exp{∓ i

hc
Φ(E − V ±)x}

(
A(E − V ±)

∓A(E − V ±)−1

) as x −→ ±∞,(4.10)
ω±

out ∼ exp{± i

hc
Φ(E − V ±)x}

(
A(E − V ±)

±A(E − V ±)−1

) as x −→ ±∞,(4.11)with Φ(E) = sgn(E)
√

E2 − m2c4, A(E) = 4

√
E+mc2

E−mc2 and sgn(E) = E
|E| for E 6∈ [−mc2,mc2].2. For E ∈ II (resp. E ∈ IV), there are two Jost solutions ω−

in, ω−
out (resp. ω+

in, ω+
out) whi
hbehave as in (4.10), (4.11) and a de
reasing solution ω+

d (resp. ω−
d ). The solutions ω±

d behaveexa
tly like
ω±

d ∼ exp{∓ 1

hc

√
m2c4 − (V ± − E)2x}


 ∓i 4

√
mc2+E−V ±

mc2−E+V ±

4

√
mc2−E+V ±

mc2+E−V ±


 as x −→ ±∞.(4.12)For E ∈ I, III or V, a

ording to the relation (2.13), it is su�
ient to 
al
ulate the two terms

r(E,h), t(E,h) in T to obtain the matrix S. The de�nition of the Wronskian (see De�nition3.4) leads to:
t(E,h) =

W(ω−
in, ω

+
in)

W(ω+
out, ω

+
in)

,(4.13)
r(E,h) =

W(ω−
out, ω

+
in)

W(ω+
out, ω

+
in)

.(4.14) 5. The Klein paradox 
aseWe suppose that V satis�es assumption (A), the energy E ∈ III and m > 0 (see Fig. 2).In this se
tion we will work in two unbounded, simply-
onne
ted domains Ω−(E), Ω+(E),where Re (V (x) + mc2) < E, Re (V (x) − mc2) > E respe
tively and whi
h 
oin
ide with Sfor |Re x| su�
iently large. Using Theorem 4.1, Proposition 3.1 and (4.7) there are two Jostsolutions in Ω±(E):
ω±

in = exp{1

h
z(x,±∞)}

(
H̃(z(x))

∓H̃(z(x))−1

)
(1 + hφ(h))(5.1)

ω±
out = exp{−1

h
z(x,±∞)}

(
H̃(z(x))

±H̃(z(x))−1

)
(1 + hφ(h)).(5.2)The fun
tion z(x,±∞) is de�ned by (4.1) and

H̃(z(x)) =

(
E − V (x) + mc2

E − V (x) − mc2

) 1
4

.(5.3)



16 ABDALLAH KHOCHMANOn Ω±(E) ∩ R, we have:
z(x,±∞) = i

∫ x

±∞

√
(E − V (t))2 − m2c4

c2
−
√

(E − V ±)2 − m2c4

c2
dt(5.4)

+i

√
(E − V ±)2 − m2c4

c2
x

H̃(z(x)) = 4

√
E − V (x) + mc2

E − V (x) − mc2
.(5.5)We suppose that there are only two real turning points t1(E) < t2(E) and that they aresimple. Noti
e that t1(E) is a zero of E − V (t)− mc2 and t2(E) is a zero of E − V (t) + mc2.In that 
ase the Stokes lines are as shown in Fig. 4. In order to obtain S, we 
ompute theWronskians given in (4.13), (4.14) and then the 
oe�
ients t(E,h), r(E,h).PSfrag repla
ements

t2(E)

t1(E)

γ1

γ2Fig. 4. The turning points and the paths γjComputation of W(ω+
out, ω

+
in): Sin
e the two solutions ω+

out, ω
+
in are de�ned in Ω+(E), we
an 
ompute this Wronskian in Ω+(E) and from Lemma 3.2 we obtain

W(ω+
out, ω

+
in) = −2.(5.6)Computation of W(ω−

in, ω
+
in): The two solutions ω−

in, ω
+
in are de�ned in Ω−(E),Ω+(E) re-spe
tively. Sin
e the Wronkians W(ω−

in, ω
+
in)(x) are independent on x (see Remark 3.1) we
ompute this Wronskian in Ω−(E) for example. For that we extend ω+

in , whi
h is de�ned in
Ω+(E), into Ω−(E). We will extend the square root in ω+

in whi
h is de�ned in Ω+(E), into
C \ {−Im (z) > 0, Re (z) = t1(E)} ∪ {−Im (z) > 0, Re (z) = t2(E)}. Thanks to the stru
-ture of the Stokes lines between t1(E) and t2(E), we 
an �nd a path γ1 from +∞(1 + iδ1) to
−∞(1− iδ1) (for δ1 > 0) transverse to the Stokes lines along whi
h we 
an extend ω+

in. We re-mark that between t1(E) and t2(E) on the real axis we have (E−V (t))2−m2c4 < 0. The exten-sion of t ∈]t2(E),+∞[−→
√

(E−V (t))2−m2c4

c2

oin
ide with i

√
m2c4−(E−V (t))2

c2
on ]t1(E), t2(E)[and with −

√
(E−V (t))2−m2c4

c2
on ] −∞, t1(E)[. On the other hand, the extension of H̃(z(x))stay in R

+ on ] −∞, t1(E)[. If we denote by ω+,1
in the extension of ω+

in along γ1, we have:
ω+,1

in = exp{1

h
(−z(x, t1(E)) + z(t2(E),+∞) + S(E))}

(
H̃(z(x))

−H̃(z(x))−1

)
(1 + hφ(h)),
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z(x, t1(E)) = i

∫ x

t1(E)

(
(E − V (t))2 − m2c4

c2

) 1
2

dt,(5.7)
S(E) =

∫ t2(E)

t1(E)

√
m2c4 − (E − V (t))2

c2
dt.(5.8)Here, ( (E−V (t))2−m2c4

c2

) 1
2 ∈ R

+ for t ∈] −∞, t1(E)[.Then,
W(ω−

in, ω
+
in) = −2(1 + hφ(h)) exp{1

h
(z(t1(E),−∞) + z(t2(E),+∞) + S(E))},where z(t2(E),+∞), z(t1(E),−∞) are de�ned in (5.4).Computation of W(ω−

out, ω
+
in): This wronskian is also between two solutions whi
h are de-�ned in di�erent domains, then we extend one of these solutions into the domain of the othersolution. For example we extend ω+

in, whi
h is de�ned in Ω+(E), into Ω−(E) whi
h is a subsetof C \ {Im (z) > 0, Re (z) = t1(E)} ∪ {−Im (z) > 0, Re (z) = t2(E)}. Here, we 
an also �nda path γ2 from +∞(1 + iδ2) to −∞(1 + iδ2) for δ2 > 0 transverse to the Stokes lines alongwhi
h we 
an extend ω+
in into Ω−(E). If we denote by ω+,2

in the extension of ω+
in along γ2, wehave:

ω+,2
in = exp{1

h
(z(x, t1(E)) + z(t2(E),+∞) + S(E))}

(
iH̃(z(x))

iH̃(z(x))−1

)
(1 + hφ(h)).Here H̃(z(x)) ∈ R

+ on ] −∞, t1(E)[ and z(x, t1(E)), S(E) are de�ned in (5.7), (5.8).The 
omputation of W(ω−
out, ω

+
in) yields:

W(ω−
out, ω

+
in) = 2i(1 + hφ(h)) exp{1

h
(−z(t1(E),−∞) + z(t2(E),+∞) + S(E))}.Then, we obtain (see (4.13) and (4.14)):

t(E,h) = (1 + hφ(h)) exp{1

h
(z(t1(E),−∞) + z(t2(E),+∞) + S(E))},

r(E,h) = −i(1 + hφ(h)) exp{1

h
(−z(t1(E),−∞) + z(t2(E),+∞) + S(E))}.Sin
e φ(h) is a 
lassi
al analyti
 symbols of non-negative order and using (2.13) we have:

s11 =
1

t (E,h)
= (1 + hφ1(h)) exp{1

h
(z(t1(E),−∞) + z(t2(E),+∞) − S(E))},

s21 =
r (E,h)

t (E,h)
= (i + hφ2(h)) exp{2

h
(z(t1(E),−∞)},

s12 =
−r(E,h)

t (E,h)
= (i + hφ3(h)) exp{2

h
(z(t2(E),+∞)}.The fun
tions φ1(h), φ2(h), φ3(h) are 
lassi
al analyti
 symbols of non-negative order. Thisends the proof of Theorem 2.1.



18 ABDALLAH KHOCHMAN6. Total transmissionWe suppose that V satis�es assumption (A), the energy E ∈ I or E ∈ V and m ≥ 0 (seeFig. 5, Fig. 6).PSfrag repla
ements E
V −+ mc2

V −− mc2

V + + mc2

V + − mc2

Fig. 5. V ± mc2 and E ∈IFig. 6. and V
PSfrag repla
ements

EV −+ mc2

V −− mc2

V + + mc2

V + − mc2

Fig. 5. and I Fig. 6. V ± mc2 and E ∈VWe suppose that there exists no real turning point. In that 
ase the Stokes lines are hor-izontal lines near the real axis. We will only work for E ∈ I. The 
ase where E ∈ V 
an betreated similarly.In this se
tion we work in Ω−(E) de�ned in the previous se
tion. Now this set is a neigh-borhood of the real axis. Using Theorem 4.1, Proposition 3.1 and (4.5) there are four Jostsolutions:(6.1) ω±
in = exp{∓1

h
z(x,±∞)}

(
H̃(z(x))

∓H̃(z(x))−1

)
(1 + hφ(h))

ω±
out = exp{±1

h
z(x,±∞)}

(
H̃(z(x))

±H̃(z(x))−1

)
(1 + hφ(h)).The fun
tions z(x,±∞) and H̃(z(x)) are de�ned in (4.1) and (5.3) and 
oin
ide with (5.4),(5.5) on the real axis. Here, the setting is di�erent from the previous se
tion. The solutions

ω±
in and ω±

out are de�ned in the same domain Ω−(E) and there are no problem to extend thedi�erent square roots.As in Se
tion 4, it is su�
ient to 
al
ulate the two terms r(E,h), t(E,h) (see (4.13), (4.14))to obtain the matrix S.Computation of W(ω−
in, ω+

in), W(ω+
out, ω

+
in): Sin
e the fun
tion H̃ in (6.1) is the same for ω−

inand ω+
in, we have:

W(ω−
in, ω

+
in)(x) = −2(1 + hφ(h)) exp{1

h
(z(x,+∞) − z(x,−∞))}(6.2)

= −2(1 + hφ(h)) exp{1

h
(z(0,+∞) − z(0,−∞))}.Moreover, as in (5.6)

W(ω+
out, ω

+
in)(x) = −2.Then, we obtain (see (4.13))

t(E,h) = (1 + hφ(h)) exp{1

h
(z(0,+∞) − z(0,−∞))},(6.3)
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z(0,±∞) = i

∫ 0

±∞

√
(E − V (t))2 − m2c4

c2
−
√

(E − V ±)2 − m2c4

c2
dt.(6.4)Sin
e φ(h) is a 
lassi
al analyti
 symbol of non-negative order and using (2.13) we have:

s11 =
1

t (E,h)
= (1 + hφ̃(h)) exp{1

h
(z(0,+∞) − z(0,−∞))}.Computation of W(ω−

out, ω
+
in): As in (6.2),

W(ω−
out, ω

+
in)(x) = O(h) exp{−1

h
(z(x,+∞) + z(x,−∞))}.Using that the square root in z(x,+∞) and z(x,−∞) have the same determination, we have

W(ω−
out, ω

+
in)(x) = O(h) exp{−1

h
(z(0,+∞) + z(0,−∞))} exp{−2

h
(z(x, 0))},where z(0,±∞) ∈ iR is de�ned in (6.4) and z(x, 0) = i

∫ x
0

√
(E−V (t))2−m2c4

c2
dt. Sin
e theWronskians are independent on x, we estimate the term z(x, 0) for x = −iy, 0 < y ≪ 1.Here, we have z(x, 0) = z(−iy, 0) = −iy(i

√
(E−V (0))2−m2c4

c2
)+ O(y2) = Cy + O(y2) for C > 0.Thereafter, W(ω−

out, ω
+
in) = O(e−C/h) for an other C > 0 and then

r(E,h) = O(e−C/h).(6.5)Consequently, using (2.13), we have, for a positive 
onstant C,
s21 =

r (E,h)

t (E,h)
= O(e−C/h),

s12 =
−r(E,h)

t (E,h)
= O(e−C/h).This ends the proof of Theorem 2.4.7. Total refle
tionWe suppose here that V satis�es assumption (A), the energy E ∈ II or IV and m > 0 (seeFig. 7 or Fig. 8).PSfrag repla
ements E t1(E)

V − + mc2

V − − mc2

V ++ mc2

V +− mc2

Fig. 7. E ∈IIFig. 8. IV
PSfrag repla
ements

E
t2(E)

V − + mc2

V − − mc2

V ++ mc2

V +− mc2

Fig. 7. II Fig. 8. E ∈IV
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tion 5, we will work in two unbounded, simply-
onne
ted domains Ω−(E),
Ω+(E), where Re (V (x) − E + mc2) < E, Re (V (x) − mc2) > 0 respe
tively and whi
h
oin
ide with S for |Re x| su�
iently large. We will only work for E ∈ II. The 
ase E ∈ IV
an be treated similarly. Using Theorem 4.1, Proposition 3.1 and (4.6) there are two Jostsolutions in Ω−(E):

ω−
in = exp{1

h
z(x,−∞)}

(
H̃(z(x))

+H̃(z(x))−1

)
(1 + hφ(h))

ω−
out = exp{−1

h
z(x,−∞)}

(
H̃(z(x))

−H̃(z(x))−1

)
(1 + hφ(h))with φ(h) a 
lassi
al analyti
 symbol of non-negative order. The fun
tions z(x,−∞), H̃(z(x))are de�ned in (4.1), (5.3) and 
oin
ide with (5.4), (5.5) on the real axis. From Lemma 4.1,there exist an exponentially de
reasing Jost solution and an exponentially in
reasing one. Asexplained before Theorem 2.3, we ex
lude the in
reasing solutions whi
h does not representa physi
al state. We limit ourself to the one-dimensional spa
e generated by the de
reasingsolution ω+

d whi
h satis�es in Ω+(E):
ω+

d = exp{−1

h
z(x,+∞)}

(
−iH(z(x))
H(z(x))−1

)
(1 + hφ(h)),(7.1)from Theorem 4.1, Proposition 3.1 and (4.6). The fun
tions z(x,+∞), H(z(x)) are de�nedin (4.1), (3.5) respe
tively and 
oin
ide, on the real axis, with

z(x,+∞) =
1

c

∫ x

+∞

√
m2c4 − (E − V (t))2 −

√
m2c4 − (E − V +)2 dt(7.2)

+
1

c

√
m2c4 − (E − V +)2 x

H(z(x)) = 4

√
mc2 + E − V (x)

mc2 − E + V (x)
.(7.3)We suppose that there is only one real turning point t1(E) and that it is simple. In that
ase the Stokes lines are as shown in the �g. Fig. 9.PSfrag repla
ements

t1

Fig. 9. Stokes lines for E ∈IIFig. 10. Stokes lines for IV
PSfrag repla
ements

t2Fig. 9. Stokes lines for II Fig. 10. Stokes lines for E ∈IVA

ording to the de�nition of the Wronskian, we have
α−

out =
W(ω−

in, ω
+
d )

W(ω+
d , ω−

out)
, β+

d =
W(ω−

in, ω
−
out)

W(ω+
d , ω−

out)
.
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in, ω

+
d ): In order to 
al
ulate this Wronskian we need to extend oneof the solutions ω−

in, ω+
d from its domain to the domain of the other solution, for example, weextend ω+

d from Ω+(E) to Ω−(E). For that, we extend the square root in ω+
d to C\{−Im (z) >

0, Re (z) = t1}. Thanks to the stru
ture of the Stokes lines , we 
an �nd a path γ̃1 from
+∞(1 − iδ̃1) to −∞(1 − iδ̃1) (for δ̃1 > 0) transverse to the Stokes lines along whi
h we
an extend ω−

d . The extension of t ∈]t1(E),+∞[−→
√

m2c4 − (E − V (t))2 
oin
ides with
i
√

(E − V (t))2 − m2c4 on ] −∞, t1(E)[. On the other hand, on ] −∞, t1(E)[, H(z(x)) takesits values in e−iπ/4
R

+. If we denote by ω+,1
d the extension of ω+

d along γ̃1, we have
ω+,1

d = exp{1

h
(−z(x, t1(E)) − z(t1(E),+∞))}

(
−eiπ/4H̃(z(x))

eiπ/4H̃(z(x))−1

)
(1 + hφ(h)),with z(t1(E),+∞), H̃(z(x)) de�ned in (7.2), (5.3) and

z(x, t1(E)) =
i

c

∫ x

t1(E)
((E − V (t))2 − m2c4)

1
2 dt.(7.4)On ]−∞, t1(E)[ the fun
tions ((E −V (t))2 −m2c4)

1
2 and H̃(z(x)) are in R

+. Then, we have
W(ω−

in, ω
+
d ) = 2eiπ/4(1 + hφ(h)) exp{1

h
(z(t1(E),−∞) − z(t1(E),+∞))},where, z(t1,+∞), z(t1(E),−∞) are de�ned respe
tively in (7.2) and (5.4).Computation of W(ω+

d , ω−
out): As in the previous paragraph we extend ω+

d and the squareroots written there from Ω+(E) to Ω−(E) ⊂ C \ {Im (z) > 0, Re (z) = t1}. We 
an also �nda path γ̃2 from +∞(1 − iδ̃2) to −∞(1 + iδ̃2) (for δ̃2 > 0) transverse to the Stokes lines alongwhi
h we 
an extend ω+
d . If we denote by ω+,2

d the extension of ω+
d along γ̃2, we have

ω+,2
d = exp{1

h
(+z(x, t1(E)) − z(t1(E),+∞))}

(
e−iπ/4H̃(z(x))

e−iπ/4H̃(z(x))−1

)
(1 + hφ(h)),with z(x, t1(E)), z(t1(E),+∞) and H̃(z(x)) de�ned respe
tively in (7.4), (7.2) and (5.3). On

] −∞, t1(E)[ the quantities ((E − V (t))2 − m2c4)
1
2 and H̃(z(x)) are in R

+. Then, we have
W(ω+

d , ω−
out) = −2e−iπ/4(1 + hφ(h)) exp{1

h
(−z(t1(E),−∞) − z(t1,+∞))},where, z(t1,+∞), z(t1(E),−∞) are de�ned respe
tively in (7.2) and (5.4).Computation of W(ω−

in, ω
−
out): Sin
e the two solutions ω−

in, ω
−
out are de�ned in Ω−(E), we
ompute the Wronskian between these solutions as in (5.6) and obtain

W(ω−
in, ω

−
out) = −2.Then, we have

α−
out =

W(ω−
in, ω

+
d )

W(ω+
d , ω−

out)
= −i(1 + hφ(h)) exp{2

h
z(t1(E),−∞)}

β+
d =

W(ω−
in, ω

−
out)

W(ω+
d , ω−

out)
= eiπ/4(1 + hφ(h)) exp{1

h
(z(t1(E),−∞) + z(t1,+∞))},
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z(t1(E),−∞) =

i

c

∫ t1(E)

−∞

√
(E − V (t))2 − m2c4 −

√
(E − V −)2 − m2c4 dt

+
i

c

√
(E − V −)2 − m2c4 t1(E)

z(t1(E),+∞) =
1

c

∫ t1(E)

+∞

√
m2c4 − (E − V (t))2 −

√
m2c4 − (E − V +)2 dt

+
1

c

√
m2c4 − (E − V +)2 t1(E).This ends the proof of Theorem 2.3.8. Zero mass 
aseWe suppose that m = 0, E ∈]V −, V +[ and V as in Theorem 2.2, (see Fig. 11).PSfrag repla
ements

V −

V +E
Fig. 11. Zero mass 
aseIn this 
ase, the Dira
 system (3.1) is equivalent to

y′(x) =
V (x) − E

ihc

(
−1 0
0 1

)
y,(8.1)with y(x) =

(
1 −1
1 1

)
u(x). The resolution of the Dira
 equation (8.1) 
an be done withoutthe 
omplex WKB analysis. We solve this equation expli
itly with suitable initial 
onditionat in�nity and we have four solutions of (3.1),

ω±
in = exp{1

h
z0(x,±∞)}

(
1
∓1

)(8.2)
ω±

out = exp{−1

h
z0(x,±∞)}

(
1
±1

)
,(8.3)whi
h behave like

ω±
in ∼ exp{±i

hc
(V ± − E)x}

(
1
∓1

) as x −→ ±∞,

ω±
out ∼ exp{∓i

hc
(V ± − E) x}

(
1
±1

) as x −→ ±∞.The fun
tions z0(x,±∞) are de�ned by
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z0(x,±∞) = ± i

c

∫ x

±∞
(V (t) − V ±)dt ± i

c
(V ± − E)x.We remark that

ω−
in = ω+

out exp{ i

h
T0(E)},with

T0(E) =
1

c

(∫ 0

+∞
(V (t) − V +)dt −

∫ 0

−∞
(V (t) − V −)dt

)
.Using (2.8) and (2.10), Theorem 2.2 holds.Appendix A. Spe
trum of the Dira
 operatorProposition A.1. Suppose that V (x) is a L∞ appli
ation with values in the spa
e of Hermit-ian 2−matrix. Moreover we assume that

‖V (x) − V ±I2‖ → 0, as x → ±∞.Then the operator H = H0 + V is a selfadjoint operator on D(H0) and
σess(H) = ] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.(A.1)Proof. In order to prove this proposition, we �rst 
al
ulate the essential spe
trum of H0 + W ,where W is a L∞ potential with W (x) = V ±I2 for ±x > R > 0. From Lemma 5.1 of [19℄, weknow the following in
lusion:

σess(H0 + W ) ⊂] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.(A.2)Let us now prove the se
ond in
lusion. We denote
I+ :=] −∞,−mc2 + V +], and I− := [mc2 + V −,+∞[.For E ∈ I±, we 
onsider the sequen
e

f±
n = exp{∓ i

hc
Φ(E − V ±)x}

(
A(E − V ±)

∓A(E − V ±)−1

)
χ(±x/n) for n ∈ N,with Φ(E) = sgn(E)

√
E2 − m2c4, A(E) = 4

√
E+mc2

E−mc2 and sgn(E) = E
|E| for E 6∈ [−mc2,mc2].The fun
tion χ ∈ C∞

0 (R) is su
h that χ(x) = 1 if 2 < x < 3 and χ(x) = 0 if x < 1 and x > 4.The normed sequen
e ( f±
n

‖f±
n ‖

)n∈N has no 
onvergent subsequen
e and satis�es
(H0 + W − E)

f±
n

‖f±
n ‖ −→ 0, as n −→ +∞.From the Weyl 
riterion, we dedu
e I± ⊂ σess(H0 + W ). Consequently

σess(H0 + W ) =] −∞,−mc2 + V +] ∪ [mc2 + V −,+∞[.Finally, using Weyl's theorem we obtain
σess(H) = σess(H0 + W ),and the proposition holds. �
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