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Abstract. We present numerical simulations of a new system of micro-pump based
on the thermal creep effect described by the kinetic theory of gases. This device is made of
a simple smooth and curved channel with a periodic temperature distribution. Using the
Boltzmann-BGK model as the governing equation for the gas flow, we develop a numerical
method based on a deterministic finite volume scheme, implicit in time, with an implicit
treatment of the boundary conditions. This method is comparatively less sensitive to the
slow flow velocity than the usual Direct Simulation Monte Carlo method in case of long
devices, and turns out to be accurate enough to compute macroscopic quantities like the
pressure field in the channel. Our simulations show the ability of the device to produce a
one-way flow that has a pumping effect.
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1 Introduction

In the vicinity of solid boundaries, flows of rarefied gases show a large variety of phenomena
that do not exist for dense gases as described by continuous gas dynamics (like Stokes or
Navier-Stokes equations). For instance, several effects due to a temperature field applied
on a solid boundary have been observed that cannot be explained in the framework of
classical gas dynamics: let us mention thermal stress slip flow, nonlinear thermal stress
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flow, flow induced near a heated plate edge, thermophoresis, and thermal creep flow (see
Sone [35, 36, 37]). This last phenomenon was already described (as thermal transpiration)
by Reynolds in 1879 [32]: in a rarefied gas contained in a pipe whose temperature has a
gradient along its axis, a flow is induced in the direction of the gradient, and this flow has a
pumping effect, while the device does not involve any moving part or mixing process. This
was also studied by Maxwell [25], and later by Knudsen [22, 23]. However, it is much more
recently that a complete and accurate analysis on the basis of the Boltzmann equation has
been proposed by Sone [34] (see also Ohwada, Sone and Aoki [30]). See also a continuum
theory of this phenomenon proposed by Bielenberg and Brenner [8]. Recently, interest in this
kind of flows is growing in connection with micro machine engineering, like Micro-Electro-
Mechanical Systems (see Karniadakis, Beskok and Aluru [21] and Cercignani [13]). Indeed,
the thermal creep is observed only if the gas is rarefied, that is to say when the characteristic
length scale of the device containing the gas is not large with respect to its mean free path.
This implies that one needs to use either very low pressure conditions, or a very small device
(for instance, for the air at atmospheric pressure, the characteristic size of the device should
be of the order of 0.1 microns). Different systems have recently been proposed to design
pumping systems using this effect. They are often called Knudsen compressors (e.g., Pham-
Van-Diep et al. [31]), since Knudsen himself in 1909 [22] described the first experimental
device of this kind. The basic idea is to use cascade systems whose single unit is a pipe
composed of a thin part connected to a thicker part.

In this paper, a simple device proposed in Aoki et al. [2, 3] is considered: the thermal
creep flow is created by applying a periodic temperature field along a simple curved channel.
As opposed to previous systems, we do not use any complex connection part. Up to our
knowledge, such a device had not been investigated before. Since any experimental study of
such micro-systems is a difficult challenge, our aim here is to use numerical simulations to
demonstrate that our device can effectively produce a one-way flow. We also want to confirm
that there exists a pumping effect in the corresponding cascade system [2, 3], which means
that it is indeed a Knudsen compressor. However, large numerical simulations of rarefied gas
problems are still a delicate issue, since this always implies using a large number of degrees
of freedom. Indeed, even for two-dimensional plane flows, the distribution function of the
particle velocities of the gas has six independent variables.

For that purpose, we propose a fast deterministic numerical method to accurately sim-
ulate rarefied gas flows. Actually, the most used numerical method for rarefied gases is the
direct simulation Monte-Carlo method (DSMC) proposed by Bird [9]. It is a very robust and
efficient method, now very well understood, in which complex physics can be included. How-
ever it remains that this method is intrinsically an unsteady method in which the numerical
time scale must be smaller than the physical time scale to compute the flow with enough
accuracy. This makes the DSMC method sometimes difficult to use when one is interested
in computing slow flows for which the steady state is reached after very long transients. In
such cases, the computational time needed to accurately capture the steady solution can be
huge (see an example in section 5.4). Nevertheless, it has already been shown in [43, 5] that
DSMC can be used in the context of Knudsen compressors (see also the numerical study of
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a Knudsen compressor made by Alexeenko et al. [1] with computations based on both the
DSMC method and the BGK model).

There also exist deterministic methods that use finite difference approximations of the
Boltzmann equation. We mention for instance the works of Rogier and Schneider [33],
Buet [11], or the works of Aristov and collaborators cited in [6]. Recently, for some simple
interaction potentials, fast approximations of the Boltzmann collision operator have been pro-
posed that considerably reduce its computational complexity (see Bobylev and Rjasanow [10],
Filbet, Mouhot and Pareschi [15]). However, all these methods generally make use of the
same splitting strategy between collision and transport process (as in the DSMC method).
This technique suffers from severe time step restrictions that can be prohibitive for steady
state calculations. Up to our knowledge, there are few methods for which the steady Boltz-
mann equation is directly solved. We mention the works of Ohwada [29] and Sone and
Takata [42] in which a very accurate discretization accounts for possible discontinuities of
the distribution function. However, these methods are restricted to very simple geometries,
in particular due to their marching-in-space algorithm.

Here we propose a different approach in which we apply classical computational fluid dy-
namics tools to the kinetic framework. First we consider the simpler Bhatnagar-Gross-Krook
(BGK) model of the Boltzmann equation. While this simplification is not physically well
justified, it allows to easily reduce the computational complexities of collisions. Moreover,
it is useful to obtain qualitative informations on a rarefied flow, and it is known to give
accurate results in some situations [16]. Then we discretize the unsteady BGK equation in
two dimensional (2D) plane geometries by a finite volume scheme using structured meshes
on arbitrary curvilinear grids. The steady state is rapidly reached by using a linearized time
implicit scheme. This implicit time discretization can be viewed as a compromise between
a direct solving of the steady equation by a Newton-Raphson procedure and an unsteady
computation. It allows to take very large time steps without stability problems. With the
linearization procedure, the use of expensive algebraic nonlinear solvers is avoided. More-
over, as it is classical in numerics for kinetic equations, we use a robust velocity discretization
of the collision operator that preserves the physical properties of conservation and entropy.
Our approach is an extension of a method developed by one of the authors in [26, 27] for
which we propose two major modifications: first, due to the simple structure of the 2D plane
BGK equation, we are able to use the reduced distribution technique [19] to remove the de-
pendency of the distribution function on the third component of the particle velocity. This
reduces the number of dimensions of the problem from 5 to 4. Second, we propose a new
implicit time discretization of the boundary conditions in order to speed up the convergence
of our algorithm towards steady state. The difficulty of such treatment is that the discretized
convection operator is much more complicated: the boundary conditions introduce non local
terms both in space positions and velocities. Usually, these terms are set to 0 by using an
explicit time discretization of the boundary conditions, but this is observed to give a poorly
convergent algorithm, in particular in the present case of long cascade systems. Here, we
introduce a simple implicit treatment that naturally makes use of the iterative linear solver
used in the scheme. This modification considerably speeds up the algorithm for some partic-
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ularly long computations. This numerical method has been implemented in a parallel code
which turns out to be very robust and flexible enough to treat various gas kinetic simulation
problems.

This method is then used to investigate the ability of our device to generate circulating
flows and pumping effects. The accuracy of our computation reveals the complex structure
of the flow in our device. We also investigate the pumping effect obtained with a various
number of units in our cascade system. Although DSMC computations in such cases are
expensive in terms of CPU time, we make several comparisons between this method and
our deterministic results that demonstrate both the accuracy of our approach as well as its
performance in terms of computational time.

The outline of this paper is the following. In section 2, we briefly give some elements
of kinetic theory needed to present our method, and we give some details on the thermal
creep flow mechanism. In section 3, a rapid review of previous Knudsen compressors is
presented, and our device is detailed. The numerical method is presented in section 4, while
some details are left to appendices A and B. Finally, we present our simulation results in
section 5.

2 Rarefied gases and thermal creep flow

2.1 Kinetic description of a rarefied gas

In kinetic theory, a monoatomic gas is described by the distribution function F (t,x,v)
defined such that F (t,x,v)dxdv is the mass of molecules that at time t are located in an
elementary space volume dx centered in x = (x, y, z) and have a velocity in an elementary
volume dv centered in v = (vx, vy, vz).

Consequently, the macroscopic quantities as mass density ρ, momentum ρu and total
energy E are defined as the five first moments of F with respect to the velocity variable,
namely:

(ρ(t,x), ρu(t,x), E(t,x)) =

∫

R3

(1,v,
1

2
|v|2)F (t,x,v) dv. (1)

The temperature T of the gas is defined by the relation E = 1
2
ρ|u|2 + 3

2
ρRT , where R is the

gas constant defined as the ratio between the Boltzmann constant and the molecular mass
of the gas.

When the gas is in a thermodynamical equilibrium state, it is well known that the dis-
tribution function F is a Gaussian function M[ρ,u, T ] of v, called Maxwellian distribution,
that depends only on the macroscopic quantities as

M[ρ,u, T ] =
ρ

(2πRT )
3

2

exp(−|v − u|2
2RT

). (2)

It can easily be checked that M satisfies relations (1).
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If the gas is not in a thermodynamical equilibrium state, its evolution is described by the
following kinetic equation

∂tF + v · ∇xF = Q(F ), (3)

which means that the total variation of F (described by the left-hand side) is due to the
collisions between molecules (described by the right-hand side). The most realistic collision
model is the Boltzmann operator but it is still very computationally expensive to use. In
this paper, we prefer to use the simpler BGK model [7, 47]

Q(F ) =
1

τ
(M[ρ,u, T ] − F ) (4)

which models the effect of the collisions as a relaxation of F towards the local equilibrium
corresponding to the macroscopic quantities defined by (1). The relaxation time is defined
as τ = µ

ρRT
, where µ is the viscosity of the gas. This definition allows to match the correct

viscosity in the Navier-Stokes equations obtained by the Chapman-Enskog expansion. This
viscosity µ is usually supposed to fit the following law µ = µref(

T
Tref

)ω, where µref and Tref

are reference viscosity and temperature determined experimentally for each gas, as well as
the exponent ω (see a table in [9]). In this paper, we shall use the simplest law obtained
with ω = 1. This corresponds to the viscosity law obtained with the Boltzmann equation
for Maxwellian molecules [12].

2.2 Interaction with the boundaries

Modeling gas-surface interactions is an important problem, still the subject of current re-
search. In this work, we shall use the classical and simple diffuse reflection model. The
influence of other interaction models on the results presented in this paper is deferred to a
future work.

Let us suppose that the boundary has a velocity uw and temperature Tw. In the diffuse
reflection model, a molecule that collides with this boundary is supposed to be re-emitted
with a temperature equal to Tw, and with a random velocity normally distributed around
uw. This reads

F (t,x,v) = σM[1,uw, Tw](v) (5)

if v · n(x) > 0, where n(x) is the normal to the wall at point x directed into the gas. The
parameter σ is defined such that there is no normal mass flux across the boundary (all the
molecules are re-emitted). Namely, that is,

σ = −
(

∫

v·n(x)<0

F (t,x,v)v · n(x) dv

)

/

(
∫

v·n(x)>0

M[1,uw, Tw](v)v · n(x) dv

)

. (6)

2.3 Thermal creep flow

Without describing the theory in detail, we only give below a simple explanation (taken
from [36]) of the thermal creep physical mechanism. Consider a point A of the boundary
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(see figure 1) and the molecules that impact this point. Since the boundary is hotter at the
right of A than at the left, then the molecules coming from the right have a greater average
kinetic energy than those coming from the left. Consequently these molecules transfer a
momentum to A which is greater than the momentum transferred by left molecules. On
the other hand, the molecules reflected diffusely on the boundary do not contribute to the
tangential momentum transfer. Therefore the gas transfers a momentum to the boundary
in the opposite direction to the temperature gradient (that is to say, from the right to the
left). Finally, since the boundary is at rest, by reaction it transfers a force to the gas directed
from the left to the right. This produces a flow directed in the direction of the temperature
gradient. This flow is called thermal creep flow. Note that this phenomenon disappears in
the continuous (dense) regime.

This effect suggests that it is possible to create a gas flow without any mechanical part.
This has been studied for a long time (see the numerous references given in [36], section
3.11.6). Several experimental studies have clearly demonstrated the practical possibility to
use this phenomenon to create a pumping system, which is described in section 3.1.

3 Pumping systems using the thermal creep

3.1 Pumping effect and Knudsen compressors

The basic idea of the Knudsen compressors is the following: when two reservoirs are joined by
a pipe with a temperature gradient, classical fluid mechanics predicts that at steady state the
pressure is constant in the device. But if the pipe is thin enough, so that the gas contained
in the pipe is slightly rarefied, then a thermal creep flow is generated by the temperature
gradient in the direction of this gradient. A small amount of gas is then pumped out of
the reservoir of lower temperature and sent into the reservoir of higher temperature. This
creates a small pressure difference between the two reservoirs, which is called the pumping
effect.

However, this pressure difference is very small. It can be increased by using a larger
temperature gradient, but of course, this gradient cannot be increased indefinitely. Knudsen
suggested to use a cascade system in which a basic unit is composed of a pipe with a
temperature gradient connected to a section with an opposed temperature gradient so that
the two ends of the unit are kept at the same temperature. Of course, these two gradients
create two opposed thermal creep flows. The pipe and the connecting section must be
designed so that these flows do not cancel each other, and it is hoped that a global mass
flow will be generated.

With the growing of MEMS technology, several modern versions of the Knudsen compres-
sor have been proposed. For instance Pham-Van-Diep et al. [31] and Vargo and Muntz [46]
studied the pressure difference obtained with a Knudsen compressor in which capillary pipes
are obtained by using a thin membrane (see also Hudson and Bartel [20], Han et al. [17],
and also [1]). Another strategy (without membrane) was proposed by Sone, Waniguchi and
Aoki [43] and Aoki et al [5] who used a cascade system of channels or pipes with a periodic
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temperature. A basic unit is composed of a pipe with an increasing temperature in the first
part, and a decreasing temperature in the second part. The opposite thermal creep of the
second part is maintained in a recirculation flow in a ditch dug along the pipe. Then a global
mass flow due to the thermal creep of the first part is generated in the unit. A pumping
effect is also observed in the case of a system closed at both ends. This has been investigated
both numerically and experimentally in [43, 5, 39, 41].

Using this last idea, we present in the following section a device that could be used as a
Knudsen compressor.

3.2 A device using curved channels

While the previous systems have been proved to be very efficient, their geometrical structure
is not very simple. In particular, it seems difficult to use them for small systems as MEMS.
Here, we propose to use a simple smooth channel with curved boundaries ([2, 3]). This
should be much simpler to realize on MEMS.

Basically a single unit of our device is detailed in figure 2. It has a hook shape that
is composed of a straight channel joined to a circular curved part. A uniform temperature
gradient is applied to the straight part (the temperature increases linearly from TL to TH

along the channel), while an opposed temperature gradient is applied to the curved part.
For the same reasons as explained in section 3.1, it is expected that two opposed thermal
creep flows will be generated in the different parts. Due to the different geometries of these
parts, one can hope that one of these flows should be stronger than the other one. Then a
global net flow should be created.

Consequently, the first test we propose is to generate a circulating flow by joining one
unit and its symmetric image to form a ring as described in figure 3.

A similar test consists in joining one unit to its symmetric mirror image to form an S
shape (see figure 4). Then periodic boundary conditions can be applied to both ends to
generate an infinite cascade of S shapes.

Note that these two tests can be simulated by using only one unit as in figure 2 and
appropriate “periodic” boundary conditions at both ends (see below).

The second test we propose is similar to the previous cascade system, except that we
use a finite number N of units as described in figure 5. Moreover, this system is closed at
both ends to create a pumping effect. Namely, we want to observe that pressure and density
differences can be maintained at steady state between the two ends.

It should be mentioned that we have investigated the same problem using the DSMC
method and observed that the idea mentioned above actually works [2].

The boundary conditions we use are diffuse reflection on the straight and curved bound-
aries (as detailed in section 2.2). For the circulating flow in the ring shape, we apply the
following symmetry periodic boundary conditions at both ends A and B of a single unit

F (t, A, vx, vy, vz) = F (t, B,−vx,−vy, vz). (7)

For the one-way flow in the infinite cascade of S shapes, we apply this different symmetry
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periodic boundary condition

F (t, A, vx, vy, vz) = F (t, B,−vx, vy, vz). (8)

Note that even if the flow is subsonic, the kinetic setting which is used here does not require
any subsonic boundary conditions, as opposed to Navier-Stokes equations, for instance. Fi-
nally, for the pumping system, the diffuse reflection condition is applied to both ends with
the low temperature TL.

In the next sections, we detail our numerical method to solve the BGK equation in these
three different devices. However, note that for computational cost reasons, this study is
restricted to plane channels. That is to say, figures 3, 4, and 5 represent constant sections of
channels that are infinite in the direction orthogonal to the figures. More realistic circular
pipes would require full 3D computations, which is at present far from being reachable, in
particular with the third device in case of a large number of units.

4 Numerical method

4.1 Reduced BGK model

In case of plane flows, F is independent of z and hence the transport operator in (3) does
not contain explicitly the velocity vz.

Consequently, the computational complexity of the BGK equation (3) can be reduced by
using the classical reduced distribution technique (first introduced—up to our knowledge—
by Huang and Hwang for polyatomic gases in [19]). This approach is widely used to compute
2D flows, see for instance [48, 4, 38]. For the sake of completeness, this method is briefly
described below.

We define the reduced distribution functions

f(t, x, y, vx, vy) =

∫

R

F dvz,

g(t, x, y, vx, vy) =

∫

R

1

2
v2

zF dvz.

Now we denote by v = (vx, vy) and x = (x, y) the 2-dimensional velocity and position
variables. By symmetry the macroscopic velocity u has no component along z and we shall
denote accordingly by u = (ux, uy) its component in the plane (x, y). Then it is easy to show
that f and g are solutions of the following coupled system of relaxation equations

∂tf + v · ∇xf =
1

τ
(M [ρ, u, T ] − f),

∂tg + v · ∇xg =
1

τ
(
RT

2
M [ρ, u, T ] − g),

(9)

where M [ρ, u, T ] is the reduced Maxwellian defined by

M [ρ, u, T ] =

∫

R

M[ρ,u, T ] dvz =
ρ

2πRT
exp(−|v − u|2

2RT
),
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and the macroscopic quantities are obtained through f and g by

ρ =

∫

R2

f dv,

ρu =

∫

R2

vf dv,

T =
1

3
2
ρR

∫

R2

(
1

2
|v − u|2f + g) dv.

(10)

With this procedure, the variable vz is eliminated. Consequently, system (9) is compu-
tationally less expensive than (3).

Note that the second distribution function g is necessary to obtain a closed system of
equations. Indeed, the temperature T is defined through the integral of (v2

x + v2
y + v2

z)F , and
hence it cannot be defined through the reduced distribution f only. Consequently, the first
equation of (9) is not closed if g is not used. Also note that the reduced distributions f and
g as well as the macroscopic quantities are indeed those of the full distribution F without
any approximation. Once the macroscopic quantities are obtained, F can be reconstructed
easily from the original equation (3) with (4) that is just a differential equation for F .

4.2 Velocity discretization

Here we propose a robust velocity discretization of (9). This approach is based on the
work of Mieussens in [26, 27] (see also a similar extension for a reduced BGK model for
polyatomic gases in [14]). The main idea is to design a discretization of the Maxwellian
distribution M [ρ, u, T ] such that the discretized version of (9) satisfies the same properties
as the continuous one, namely conservation and entropy properties. We refer to [28, 14] for
mathematical proofs of existence and consistency results for such approximations.

More precisely, we define a Cartesian grid V of Nv nodes vk = (vk
x = a + k∆vx, v

l
y =

b + l∆vy) where k = (k, l) is a couple of bounded indexes. We denote by fk and gk the
approximations of f(vk) and g(vk). The macroscopic quantities are now defined by using a
simple rectangle quadrature as

ρ =
∑

k

fk∆v,

ρu =
∑

k

vkfk∆v,

E =
1

2
|u|2 +

3

2
ρRT =

∑

k

(
1

2
|vk|2fk + gk)∆v,

(11)

where ∆v = ∆vx∆vy. For clarity, we now introduce the following 4-dimensional vectors

~ρ = (ρ, ρu, E)T , ~m(v) = (1, v,
1

2
|v|2)T , ~e = (0, 0, 0, 1)T .
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Then the previous relations (11) read in a very compact form

~ρ =
∑

k

(~m(vk)fk + ~e gk) ∆v. (12)

These notations allow to simplify the writing of the velocity discretization of (9). This
approximation now is

∂tfk + vk · ∇xfk =
1

τ
(Mk[~ρ ] − fk),

∂tgk + vk · ∇xgk =
1

τ
(Nk[~ρ ] − gk),

(13)

where Mk[~ρ ] and Nk[~ρ ] are approximations of M [ρ, u, T ](vk) and RT
2
M [ρ, u, T ](vk) defined

to ensure that the discrete BGK system (13) satisfies the same properties of conservation
and entropy as the continuous model (9). Namely we have

Mk[~ρ ] = exp(~α(~ρ )T ~m(vk)), Nk[~ρ ] = − 1

2α4(~ρ )
Mk[~ρ ], (14)

where ~α = (α1, α2, α3, α4)
T is the solution of the following non linear 4 × 4 system

∑

k

~m(vk) exp(~α(~ρ )T ~m(vk))∆v − ρ

2α4(~ρ )
~e = ~ρ. (15)

Note that in the continuous case (that is to say with integrals on R
2 instead of quadratures),

we have an explicit relation between ~α(~ρ ) and ~ρ, namely

~α(~ρ ) =

(

log
( ρ

2πRT

)

− |u|2
2RT

,
u

RT
,− 1

RT

)T

. (16)

This relation is not valid in the discrete case, but it is used in our code to solve nonlinear
system (15) by a Newton algorithm.

4.3 Linearized implicit scheme

Here we propose a time and space discretization of the system of the reduced discrete BGK
equations (13).

Consider a spatial Cartesian grid defined by nodes (xi, yj) = (i∆x, j∆y) and cells ]xi− 1

2

, xi+ 1

2

[

×]yj− 1

2

, yj+ 1

2

[ for i = 1 to imax and j = 1 to jmax. The number of cells is denoted by
Nc = imaxjmax. Consider also a time discretization with tn = n∆t. If fn

k,i,j and gn
k,i,j are

approximations of fk(tn, xi, yj) and gk(tn, xi, yj), the moments ~ρ defined by (12) are naturally
approximated by

~ρn
i,j =

∑

k

(~m(vk)f
n
k,i,j + ~egn

k,i,j) ∆v.
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The transport part of (13) is approximated by a standard finite volume scheme which
has second order accuracy in space. For the nonlinear relaxation term, a standard centered
approximation technique is used. Our scheme thus reads

fn+1
k,i,j = fn

k,i,j − ∆t

∆x

(

Fi+ 1

2
,j(f

n
k ) − Fi− 1

2
,j(f

n
k )

)

− ∆t

∆y

(

Fi,j+ 1

2

(fn
k ) −Fi,j− 1

2

(fn
k )

)

+
∆t

τn
i,j

(Mk[~ρ
n
i,j] − fn

k,i,j), (17)

gn+1
k,i,j = gn

k,i,j − ∆t

∆x

(

Fi+ 1

2
,j(g

n
k ) −Fi− 1

2
,j(g

n
k )

)

− ∆t

∆y

(

Fi,j+ 1

2

(gn
k ) − Fi,j− 1

2

(gn
k )

)

+
∆t

τn
i,j

(Nk[~ρ
n
i,j] − gn

k,i,j)

where the numerical fluxes are defined for every grid function {ϕk,i,j} by

Fi+ 1

2
,j(ϕk) =

1

2

(

vk
x(ϕk,i+1,j + ϕk,i,j) − |vk

x|(∆ϕk,i+ 1

2
,j − Φn

k,i+ 1

2
,j
)
)

Fi,j+ 1

2

(ϕk) =
1

2

(

vl
y(ϕk,i,j+1 + ϕk,i,j) − |vl

y|(∆ϕk,i,j+ 1

2

− Φn
k,i,j+ 1

2

)
)

(18)

with the notation ∆ϕk,i+ 1

2
,j = ϕk,i+1,j − ϕk,i,j, and the flux limiter function Φn

k,i+ 1

2
,j

allows

to obtain a second order scheme. Note that according to section 4.2, the discrete equilibria
Mk[~ρ

n
i,j] and Nk[~ρ

n
i,j ] are defined for each cell (i, j) through relations (14) and (15) by using

~ρn
i,j instead of ~ρ in the formula.

When indexes i and j correspond to cells located at the boundaries of the domain, there
appear unknown values in the numerical fluxes, like fn

k,0,j , f
n
k,imax+1,j, f

n
k,i,0, f

n
k,i,jmax+1 for the

first order scheme. Corresponding cells (0, j), (imax + 1, j), (i, 0), (i, jmax + 1) are called
ghost-cells. These values are classically defined according to the boundary conditions (B.C
for short) specified for the problem. Here we consider two types of B.C: diffuse reflections,
that are local in space but global in velocities, and symmetry periodic conditions, that
couple two different cells and two symmetric velocities. For instance, incident molecules in
a boundary cell of indexes (i, j = 1) are supposed to be re-emitted by the wall from a ghost
cell of indexes (i, 0). This cell is the mirror cell of (i, 1) with respect to the wall. The diffuse
reflection (5) is then modeled by

(fn
k,i,0, g

n
k,i,0) = σi,1 (Mk[1, uw, Tw], Nk[1, uw, Tw]), vk · ni,1 > 0, (19)

where σi,1 is determined so as to avoid a mass flux across the wall, i.e. between cells (i, 0)
and (i, 1). Relation (6) gives

σi,1 = −
∑

vk·ni,1<0 vk · ni,1 f
n
k,i,1∆v

∑

vk·ni,1>0 vk · ni,1Mk[1, uw, Tw]∆v
.

For the symmetry periodic B.C of the ring shaped channel, relation (7) gives

fn
k,0,j = fn

k′,imax,j, (20)

11



where k′ is such that vk′ = −vk. Finally, the symmetry periodic B.C (8) for the infinite
cascade of S shaped channel gives the same relation with now k′ such that vk′ = (−vk

x, v
l
y).

This scheme can also be written for curvilinear meshes as we did for the numerical
simulations of section 5. But to simplify the presentation, this is not presented here (see an
example for a single distribution BGK model in [27]).

Since this scheme is explicit, the CFL condition can be very restrictive, in particular for
steady state computations. A classical way to overcome this difficulty is to use an implicit
scheme. It is derived from the explicit scheme by evaluating at tn+1 the transport and
relaxation terms responsible for stability problems with large ∆t. This scheme reads

fn+1
k,i,j = fn

k,i,j − ∆t

∆x

(

Fi+ 1

2
,j(f

n+1
k ) − Fi− 1

2
,j(f

n+1
k )

)

− ∆t

∆y

(

Fi,j+ 1

2

(fn+1
k ) − Fi,j− 1

2

(fn+1
k )

)

+
∆t

τn
i,j

(Mk[~ρ
n+1
i,j ] − fn+1

k,i,j ), (21)

gn+1
k,i,j = gn

k,i,j − ∆t

∆x

(

Fi+ 1

2
,j(g

n+1
k ) −Fi− 1

2
,j(g

n+1
k )

)

− ∆t

∆y

(

Fi,j+ 1

2

(gn+1
k ) −Fi,j− 1

2

(gn+1
k )

)

+
∆t

τn
i,j

(Nk[~ρ
n+1
i,j ] − gn+1

k,i,j )

The relaxation time is kept explicit, and for the second order scheme, the flux limiters
(non differentiable) are kept explicit too. However this scheme is still nonlinear due to the
equilibria Mk[~ρ

n+1
i,j ] and Nk[~ρ

n+1
i,j ]. As usual in hyperbolic implicit schemes, these terms are

linearized as follows

Mk[~ρ
n+1
i,j ] ≈Mk[~ρ

n
i,j] + ∂~ρMk[~ρ

n+1
i,j ](~ρn+1

i,j − ~ρn
i,j),

Nk[~ρ
n+1
i,j ] ≈ Nk[~ρ

n
i,j ] + ∂~ρNk[~ρ

n+1
i,j ](~ρn+1

i,j − ~ρn
i,j),

where ∂~ρMk[~ρ
n+1
i,j ] and ∂~ρNk[~ρ

n+1
i,j ] are the Jacobian matrices of the mappings ~ρ 7→ Mk[~ρ ]

and ~ρ 7→ Nk[~ρ ]. See appendix A for detailed expressions of these Jacobian matrices.
For implementation, it is useful to store all the unknowns into a single large 2-block

vector Un = (fn, gn), with blocks fn = {fn
k }k and gn = {gn

k}k. The sub-blocks fn
k and gn

k

are then stored as fn
k = {fn

k,i,j}k,i,j and gn
k = {gn

k,i,j}k,i,j. Then the linearized implicit scheme
is rewritten under this δ matrix-form

(

I

∆t
+ T +Rn

)

δUn = RHSn, (22)

where δUn = Un+1 − Un, I is the unit matrix, T is a matrix such that for every 2-block
vector V = (ϕ, ψ)

TV =

(

{ 1

∆x

(

Fi+ 1

2
,j(ϕk) −Fi− 1

2
,j(ϕk)

)

− 1

∆y

(

Fi,j+ 1

2

(ϕk) −Fi,j− 1

2

(ϕk)
)}

k,i,j

,
{ 1

∆x

(

Fi+ 1

2
,j(ψk) −Fi− 1

2
,j(ψk)

)

− 1

∆y

(

Fi,j+ 1

2

(ψk) − Fi,j− 1

2

(ψk)
)}

k,i,j

) (23)
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with only the first order fluxes. Moreover, the coefficient of T that would correspond to the
boundary conditions are classically set to 0. This corresponds to set δUn = 0, that is to say
fn+1 = fn and gn+1 = gn at these cells. This is called an explicit treatment of the boundary
conditions, since on the contrary the right-hand side defined in (25) contains indeed the
boundary terms. This considerably simplifies the structure of T , since it is now a discrete
convection operator with homogeneous Dirichlet B.C (see below).

The relaxation matrix Rn is such that for every 2-block vector V = (ϕ, ψ)

RnV =

(

{ 1

τn
i,j

(ϕk,i,j − ∂~ρMk[~ρ
n+1
i,j ]~ρ(Vi,j))

}

k,i,j
,
{ 1

τn
i,j

(ψk,i,j − ∂~ρNk[~ρ
n+1
i,j ]~ρ(Vi,j))

}

k,i,j

)

,

(24)
where we set ~ρ(Vi,j) =

∑

k(~m(vk)ϕk,i,j + ~eψk,i,j) ∆v. Finally, we set the right-hand side to

RHSn =

(

{

− 1

∆x

(

Fi+ 1

2
,j(f

n
k ) − Fi− 1

2
,j(f

n
k )

)

− 1

∆y

(

Fi,j+ 1

2

(fn
k ) − Fi,j− 1

2

(fn
k )

)

+
1

τn
i,j

(Mk[~ρ
n
i,j] − fn

k,i,j)
}

k,i,j

,
{

− 1

∆x

(

Fi+ 1

2
,j(g

n
k ) − Fi− 1

2
,j(g

n
k )

)

− 1

∆y

(

Fi,j+ 1

2

(gn
k ) − Fi,j− 1

2

(gn
k )

)

+
1

τn
i,j

(Nk[~ρ
n
i,j] − fn

k,i,j)
}

k,i,j

)

,

(25)

which contains the limiters for the second-order scheme and the boundary conditions.
Note that when our scheme (22) converges to steady state, the discrete steady solution

necessarily satisfies RHSn = 0. This discrete relation is independent of the time step (see
the definition of the fluxes of (25) given in (18)). Consequently, our discrete solution is also
independent of this time step.

It can be noted that relation (23) and (18) imply that T is a 2 × 2 block diagonal
matrix, in which each block of the diagonal is itself a Nv × Nv block diagonal matrix. The
sub-blocks—denoted by Tk—are Nc × Nc pentadiagonal matrices (see figure 6). Since the
relaxation operator couples the velocities, but not the different space cells, the matrix Rn is
a 2× 2 block matrix, in which the blocks are Nv ×Nv full block matrices. These sub-blocks
are composed of Nc ×Nc diagonal matrices denoted by Rn

k,k′ on figure 6.
The linear system (22) to be solved at each iteration is very large, since its size is 2NvNc×

2NvNc. An iterative method well adapted to the different sparse structures of the matrices
may then be used. First, we extend the algorithm proposed in [27], which is based on
a coupling between Jacobi and Gauss-Seidel methods. At the level of its small Nc × Nc

sub-blocks, Rn is separated into its block diagonal ∆n and its block off-diagonal En, i.e.
Rn = ∆n −En (this is the Jacobi step). Then system (22) is equivalent to

(

I

∆t
+ T + ∆n

)

δUn = RHSn + EnδUn.

13



Since the matrix of this linear system is block diagonal with pentadiagonal blocks I
∆t

+
Tk+∆n

k (see figure 6), it is possible to use a line Gauss-Seidel method by setting Tk = Mk−Nk.
This gives the following algorithm:

Algorithm 4.1. set V (0) = 0,
for p = 0, . . . , P , solve

(

I

∆t
+Mk + ∆n

k

)

V
(p+1)
k = RHSn

k +NkV
(p)
k + [EnV (p)]k, ∀k (26)

set δUn = V (P+1).

The linear systems (26) may easily and exactly be solved by successive LU decompositions
of tridiagonal matrices of R

imax×imax or R
jmax×jmax . Note that we do not need to store nor to

form the different matrices. Indeed, we only have to compute the coefficients of the diagonal
blocks ∆n

k of Rn (see appendix B for a detailed expression). The matrix-vector products of
the right-hand side of (26) are just the results of formula similar to (23) and (24).

While the number of iterations of the linear solver may be very large to reach convergence
to the exact solution, we only use a small number P ≤ 8. This is sufficient for the global
algorithm to reach steady state.

In fact, we explain in the following section how we propose to modify this linear solver
to improve the speed of convergence by taking into account the boundary conditions more
accurately.

4.4 Implicit boundary conditions

It is observed in some cases that the convergence of our algorithm is quite slow, in particular
for long channels. Therefore it is natural to try to improve the treatment of the B.C so as
to speed up this convergence.

In this section, we propose a simple implicit treatment of the B.C. The problem of
fully implicit B.C is that it deteriorates the simple block structure of the transport matrix
T . Indeed, the diffuse reflection introduces a coupling between different velocities and the
symmetry periodic conditions introduce a coupling between very distant cells, as this can be
seen in (19) and (20).

Consequently, for implicit boundary conditions, T is replaced in scheme (22) by the
matrix T +B where T is untouched and B contains all the boundary terms. We find

(

I

∆t
+ T +B +Rn

)

δUn = RHSn, (27)

Now, our algorithm 4.1 is modified as follows. Since system (27) is equivalent to ( I
∆t

+ T +
∆n)δUn = RHSn + EnδUn − BδUn, the matrix B can be treated in the right-hand side
of (26), like the block off-diagonal En. Therefore, we can use the same line Gauss-Seidel
method as in algorithm 4.1 to obtain:
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Algorithm 4.2. set V (0) = 0,
for p = 0, . . . , P , solve

(

I

∆t
+Mk + ∆n

k

)

V
(p+1)
k = RHSn

k +NkV
(p)
k + [EnV (p)]k − [BV (p)]k, ∀k (28)

set δUn = V (P+1).

Note that B is very sparse, even much sparser than T and Rn: it has at most 4(imax +
jmax)Nv non-zero coefficients. Therefore, the additional cost of each iteration of this algo-
rithm is very small, while we have observed that this simple modification speeds up the
convergence of the global method to steady state.

4.5 Numerical comparisons with other methods

Our algorithm has been compared with the results obtained in [26, 27]. In these references,
the BGK model (3)–(4) is solved with a similar algorithm, but with a single distribution
function (with 3D velocity variables), and with an explicit treatment of the B.C. For 1D
cases (as Couette flows and shock structure problem) and 2D cases (flow around a cylinder,
compression ramp) we compared the pointwise values of the macroscopic quantities (density,
velocity, temperature, pressure). We found that the two methods give almost indistinguish-
able results, while the present method is very much faster. Consequently, this shows that
our algorithm accurately solves the BGK equation. Moreover, all the conclusions deduced
in [26, 27] from various comparisons (such as DSMC, for instance) also apply to our method.

5 Numerical simulations

5.1 Parameters of the simulations

The circulating flow problem is characterized by four parameters. The two geometric ones
are κ = D

R
that measures the ratio between the width of the channel to the radius of the

circular part and B = LS

LS+πR
which is the ratio between the length of the straight pipe to

the total length of one unit (see figure 2). The two physical parameters are the temperature
ratio TH

TL
and the Knudsen number

Kn =
l0
D

=

√
2RTL

Dρ0RTref/µref

(29)

where l0 is the mean free path of the molecules at the equilibrium state at rest (ρ0 is the
global average density in the channel).

The pumping problem is characterized by these parameters and the number N of ele-
mentary units.
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In the simulations presented here, only the parameters κ, Kn and N will vary. The
temperature ratio TH

TL
is set to 3 and the length ratio B is set to 0.5.

The gas we use is argon of molecular mass 0.663 10−20 kg, the initial velocity of the gas
is zero, the low temperature TL is set to 300 K, and consequently the high temperature TH

is set to 900 K.
The second order linearized implicit scheme is used in all the computations, with a CFL

number of 1000 (i.e. ∆t is 1000 times the explicit time step). The criterion used to determine
whether the flow has reached steady state is the reduction of the quadratic global residual
1

∆t
(
∑

k,i,j |RHSn
k,i,j|2)

1

2 by a factor of 105.
The space domain is discretized by a curvilinear mesh with a uniform distribution of

nodes on the boundaries. The number of mesh cells depend on the test case.
Note that the velocity grid is appropriately chosen for each case. Since the same grid

is used in each point of space, it should be large and precise enough to correctly describe
the flow (i.e. the distributions everywhere in the space domain). The bounds are given
by a combination between the maximum macroscopic velocity and temperature of the flow
(maxx(u + c

√
RT ), where we take c = 4). The step of the grid is given by the smallest

temperature (i.e. ∆v = minx

√
RT ). These quantities are estimated here by the data,

e.g velocity and temperature of the walls. Therefore, the velocity space is bounded to
[−vmax, vmax]

2 with vmax = 1731 m.s−1. The velocity grid is then a regular Cartesian grid
with 40 points in vx and vy directions.

Finally, note that all the tests presented here have been computed on the SGI Altix 3700
of the scientific grouping CALMIP (see http://www.calmip.cict.fr ). The algorithm
presented in section 4 has been implemented by L. Mieussens in a code called CORBIS
(COde Raréfié Bidimensionel Implicite Stationnaire) by using the language Fortran 90 and
the shared memory parallel programming interface OpenMP. The total CPU time (sum of
the CPU times used by each processor) for all the different simulations was between two
hours for the smallest case to 300 hours for the largest one (pumping effect with 16 units).
Generally, we only used six processors for the simulations.

5.2 Circulating flow

5.2.1 Ring-shaped channel

We first test the ring-shaped device described in figure 3, for which one unit as described
in figure 2 is connected to its symmetric image. Due to this symmetry, the flow can be
simulated in a single unit only, by using appropriate boundary conditions at the ends of the
unit (see section 3.2).

We compute the steady flow for three different sizes of channel: thick (κ = 1), medium
(κ = 0.5), thin (κ = 0.1), and for three different Knudsen numbers: Kn = 1, 0.5, 0.1. The
channel is discretized with a number of cells that depends on its size: for the thick, medium,
and thin channels we use respectively 400 × 96, 400 × 48, and 1600 × 24 cells. The first
number is the number of cells along the curvilinear direction parallel to the boundary of the
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channel, and the second one is the number of cells along the orthogonal direction. These
grids have been chosen according to an accuracy study given at the end of this section.

In figures 7–9, we plot the non-dimensional velocity field u√
2RTL

obtained at steady state

(left plots). We also show a few streamlines plotted with the magnitude of the velocity field
in gray scale (right plots). This allows to clearly see the movement of the gas. It appears that
a circulating flow is well generated, at least for Knudsen numbers Kn = 1 and 0.5. The flow
circulates in the direction of the temperature gradient of the circular part, and is therefore
opposed to the direction of the temperature gradient of the straight part. This means that
the thermal creep flow generated by the circular part is stronger than that created by the
straight part. This last one remains confined close to the straight boundaries, while the main
flow created by the circular part propagates in the whole channel. In other words, for Kn = 1
and 0.5, the flow is in the transition regime: the pressure driven flow spread over the whole
channel, inducing a large velocity slip on the boundary. This velocity slip compensates or
even dominates the thermal creep on the straight surface. Therefore, the thermal creep is
invisible on the straight surface (top and middle plots of figures 7–9). This is due to the
twofold effect of curvature, which, on one hand, increases the temperature gradient along the
inner curved boundary and thus enhances the thermal creep there and, on the other, gives
rise to a higher resistance for the pressure-driven flow in the curved channel. To sum up, the
straight part plays the same role as the ditches of the device studied in [5, 43]. However, for
Kn = 0.1, the flow is in the slip-flow regime: although the pressure driven flow is dominant
in the middle of the straight channel, one observes the thermal creep on the straight surface
(bottom plots of figures 7–9).

Also note that the flow is far from being uniform in the channel. We can observe some
recirculation zones located at the beginning of the circular part, and the other one at the end
of the straight part. The velocities in these zones are very weak, but they are also stronger
as κ decreases (the channel becomes thiner and longer). Moreover, the recirculation zones
enlarge as κ and Kn decrease. Note that the recirculation zones show inward and outward
spiraling streamline patterns. This suggests that our results are not accurate enough in these
zones (the velocity field is under-resolved). The reason is that the flow is very slow there
(see the velocity scales in the figures), and hence can hardly be captured. Therefore the
streamlines plotted in the recirculation zones give only approximate information about the
structure of the flow.

Finally, for the smallest Knudsen number Kn = 0.1 it is not clear wether a global mass
flow is really created along the channel. In the thick case (figure 7, bottom) there are very
large recirculation zones, and in the medium thin cases (figures 8–9, bottom) the thermal
creep flow generated by the straight part looks as strong as the one of the circular part.
However, it can be noticed that the maximum velocities are still located close to the inner
circular boundary.

Consequently, it seems more reliable to compute the average mass flow rate across a
section of the channel to determine if there is or not a net mass flow created by our devices.
Following [43, 5], we define the non-dimensionalized mass flow rate across a section Σ of the
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channel by

M =

∫

Σ
ρu · n dΣ

ρav

√
2RTLD

,

where ρav is the average density in the channel. According to equations (3) or (9), this
quantity must be constant along the channel. However, due to numerical errors, it presents
some small fluctuations. Therefore, we compute an average of M along the channel, as
well as its standard deviation from this average (this also gives a good accuracy test for our
method). The results are plotted in figure 10 for the three different channels and for the
three different Knudsen numbers. We observe that there is indeed a positive mass flow for
every case, except for the thinest channel (κ = 0.2) with Kn = 0.1. In this case, the standard
deviation is larger than the average value. This means that there is practically no net mass
flow in the device, or at least it is too small to be captured by our computation.

5.2.2 Accuracy of the computations

The accuracy of our computations has been studied by using three different grids for each
geometry: a coarse mesh, a fine mesh, and a very fine mesh. Each mesh has twice as many
cells as the coarser mesh in each direction.

For instance for the thick channel with Kn = 1, we used 100 × 24, 200 × 48, and then
400×96 cells. First we compared the values obtained for the density profiles averaged in the
section of the channel. We found that the difference between the coarse and the very fine
meshes is less than 1.3 %, while the difference between the fine and the very fine meshes is
less than 0.3 %. This means that the coarse mesh is accurate enough to accurately capture
the macroscopic profiles. We also compared the values obtained for the mass flow rate across
a section. For this quantity, the standard deviation from the average value is a good test of
accuracy. We found 4 % for the coarse mesh, 1 % for the fine mesh, and then 0.2 % for the
very fine mesh. Consequently, since the mass flow rate is the most important quantity to be
computed in this section, we used the very fine mesh for this case.

The same analysis has been carried out for the other Knudsen numbers, and for the
medium and thin channels. The density profiles can be computed with the coarse mesh
up to 2 % of accuracy as compared to the very fine mesh. To compute the mass flow
rate, the very fine grid must be used, but the standard deviation reaches up to 6 % for the
medium channel with Kn = 0.5. Note that for the thin channel, as previously mentioned, the
circulating flow effect seems to be so small for Kn = 0.1 that we were not able to correctly
compute the mass flow rate, even with the very fine mesh (1600 × 24 cells).

It is known that the velocity distribution function possesses a discontinuity in the gas
around a convex body [36, 42, 37], and this fact applies to the present problem. That is,
the inner curved boundary produces a discontinuity in F in the velocity space. It should be
mentioned, however, that the present numerical method, which is quite flexible concerning
the geometry, is not designed to describe the discontinuity. For accurate numerical treatment
of the discontinuity produced by a convex body, the reader is referred to for instance [4, 42,
44, 40, 45]. Below, we investigate the effects of the velocity grid on the simulations.
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For the thick channel with Kn = 1, and a space grid of 400 × 96 cells, we compared the
results obtained for three different velocity steps ∆v = 2

√
RTL/a with a = 5, 10, 20, and three

different velocity bounds given by vmax = c
√
RTH with c = 2, 4, 8. The number of velocities

then varies from 10× 10 to 180× 180. The velocity grid (c = 4, a = 20) is considered as the
reference solution in these comparisons (the finest grid (c = 8, a = 20) is too computationally
expensive). In table 1, according to the discussion at the end of section 5.2.1, we give the
average mass flux along the channel, as well as its standard deviation from the average. It
appears that the average is wrong for small bounds (c = 2). The grid (c = 4, a = 10) can
be considered as sufficiently fine, since the average mass flux is different from the reference
value by less than 5 %, and its standard deviation is less than 0.3 %. Increasing the bounds
does not increase the accuracy. In table 2, we give the maximum pointwise relative difference
(in %) of the density and the horizontal velocity, computed in the whole space domain, with
respect to the reference solution. For the density, the grid (c = 4, a = 10) is again sufficiently
accurate (the same results have been obtained for the temperature and pressure). For the
horizontal velocity, this grid gives a difference of around 28%, which is quite large. However,
this large difference is located in very small zones, and does not seem to propagate outside
these zones. Since we are mainly interested in the pressure and density profile in our tests,
the grid (c = 4, a = 10) is sufficiently fine to be used in the remainder of this paper.

5.2.3 Infinite cascade of S-shaped channels

For this test—corresponding to the device presented in figure 4—we also simulate the flow
in a single unit by changing the periodic boundary conditions (see section 3.2). We observed
that the results are almost the same as for the ring-shaped channel: the same mass flow rate
and the same average macroscopic profiles are obtained. The only difference is the direction
of the velocity field at the junction between the straight and circular parts. A comparison of
the two systems (closed ring and infinite cascade) is given in figure 11 for the case κ = 1 and
Kn = 1: we plot the velocity field in the whole ring (top) and in one period of the cascade.
Note that these picture are not the result of a computation in the full domain but are in fact
obtained by symmetry from computations in a single unit only.

5.3 Pumping effect

Now we test the device presented in figure 5 where the channel of N units is closed at both
ends. We define the non-dimensionalized average pressure and density in a section Σ of the
channel by

P (s) =

∫

Σ(s)
p dΣ(s)

DρavRTL

, R(s) =

∫

Σ(s)
ρ dΣ(s)

Dρav

, (30)

where s is a curvilinear abscissa given by the length of the median curve of the channel.
Note that s varies between 0 and L = 2NLS.

The size of this unit is given by κ = 0.5 (thick case), and the Knudsen number is set
to 0.5. Our simulations are made for the following number of units: N = 2, 4, 8, 16. Since
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we are interested in average macroscopic quantities only, a coarse mesh as defined in the
previous section is sufficient (see the end of section 5.2.1). Consequently, we use a mesh of
100 × 24 cells per unit (we remind that for this mesh with a single unit in the circulating
flow test, the density profile is the same as the profile computed with a very fine mesh of
400 × 96 cells, up to an error of 1.5 %).

We plot in figure 12 the average pressure and density profiles as functions of s as defined
in (30), as well as their average values in each unit. Although these profiles oscillate with
the same frequency as the wall temperature (lines with symbols), they are globally affine
functions of the length of the channel. More precisely, if we look at the average of these
profiles in each unit and then link each averaged values, we obtain curves that are close
to straight lines (the dotted lines in figure 12). This may give an easy estimation of the
pressure gain that could be obtained with a larger number of units. However, note that for
16 units, this curve is slightly convex (especially for the pressure profile). This means that
the pressure gain may be smaller than expected. This is discussed below.

We also plot in figure 13 the pressure and density gains (in percent) defined as

P (0) − P (L)

P (L)
× 100,

R(0) − R(L)

R(L)
× 100. (31)

We observe that these gains are almost 50% for 16 units and that they look as affine functions
of the number of units. If we extrapolate the line obtained with 2,4,8 and 16 units, we find
that a gain of 100% could be obtained with 32 or 36 units. This is of course a rough
estimation. As noted below, it is possible that this gain is actually smaller than expected,
mainly for the following reason. Indeed as the density increases at one end of the channel,
the local Knudsen number decreases and the gas becomes more and more dense. According
to the kinetic theory, the thermal creep flow should be less and less strong. Consequently, the
pumping effect should be weaker and weaker as well. This fact is already visible in figure 12
on the pressure profile.

A two dimensional picture of the macroscopic quantities in the 16 unit device can be
viewed in figure 14. The periodic temperature field is clearly visible, as well as the increase
of the density and pressure values along the channel. There is almost no variation of these
three fields along the transverse direction. The velocity field has a more complex structure,
but its magnitude is rather small.

5.4 A comparison with the true Boltzmann model

It is generally admitted that the BGK model is physically correct only for flows that are
close to equilibrium. This belief relies on the facts that the structure of the BGK collision
operator is very simple as compared to the real Boltzmann equation, while it gives the same
fluid equations for small Knudsen numbers. However, it is a model for any deviation from a
local equilibrium designed in such a way that it satisfies basic properties of the Boltzmann
equation, and for some cases, it turns out that the BGK model is able to give precise results
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that are quantitatively very close to that of the Boltzmann model, even for intermediate
Knudsen numbers. This is in particular true in our study, as it is shown in the following.

We use the test of section 5.3 to compare the BGK and Boltzmann models. The Boltz-
mann equation is solved with the classical Direct Simulation Monte-Carlo (DSMC) method
(see [9]; the computation was carried out by H. Yoshida basically using the code developed
in [2]). The parameters of the DSMC computation are the followings: the number of cells
is 4000 for each unit (that is 1.7 times as many cells as in our BGK computations); the
total number of particles is 200,000 per unit, thus averaged number of particles per cell is
50; the time step ∆t is 2t0/

√
π×10−2, where t0 = (

√
π/2)(2RT0)

−1/2l0 is the mean free time
corresponding to l0(mean free path), which gives ∆t ≈ 10−5. The longest case took more
than 6,000,000 steps to reach the steady state while the other cases took about 3,000,000
steps. In order to get the time-averaged steady state profile (so as to reduce the statistical
noise), 1,000,000 steps more are needed. Note that for DSMC the hard-sphere model is used,
hence the definition of the Knudsen number is not given by (29) but rather by Kn = l0

D
with

l0 = m√
2πd2

mρ0

and dm is the diameter of the molecules (see [43]). Finally, we mention that

the DSMC code is implemented with Fortran 90 and is parallelized with MPI.
We plot the non-dimensional average pressure obtained in pumping devices of 1, 2, 4,

and 8 units with both the BGK and Boltzmann models (figure 15). It clearly appears with
this figure that the two models are very close for 2 to 8 units. More precisely, the maximum
relative difference is found to be lower than 1.7 %. For the 1 unit device, the difference is
larger, since the maximum relative difference is 5.2 %.

This clearly demonstrates that the BGK model is accurate enough to describe the flows
considered in this study, at least if one is only interested in the average macroscopic quantities
as the pressure. It is likely that more fine comparisons, like velocity field at the boundary
for instance, would show larger differences between BGK and DSMC. In this case, it may
be tried to modify the relaxation time so as to match the heat conductivity instead of the
viscosity, or rather to use the Ellipsoidal-Statistical BGK (ES-BGK) model [18]. This model
allows to get the correct Prandtl number, that is to say to match both the viscosity and heat
conductivity coefficients. While these models have not been tested in this manuscript, this
should not be a difficult issue: indeed, the code CORBIS used in this work could easily be
modified, since it is based on an algorithm that is able to treat the ES-BGK model, see [27].

Even if the two methods have not been used on the same computer, we give below
a rough comparison on the CPU time consumed for the 8 unit case: the DSMC compu-
tation required around 15 days with 8 processors Pentium IV (2.4 Ghz) for a total time
of 4 months, while our BGK computation required only 1 day and a half with 6 proces-
sors Itanium II (1.5 Ghz) of the SGI Altix 3700, for a total time of 7 days. The main
reason for the very large CPU time of the DSMC computation is that, due to the long
size of the channel, the steady state is reached after a very long physical time. Note that
this comparison probably over-estimates the performance of our BGK code, since it is well
known that Itanium II is faster than Pentium IV for scientific computing (see, for instance,
http://www.netlib.org/benchmark/performance.ps).
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5.5 Efficiency of the implicit boundary conditions

Here the performance of the implicit treatment of the boundary conditions (see section 4.4)
is shown for the pumping device with 8 and 16 units.

For this case, we plot the residual histories at the top of figure 16 for our linearized
implicit scheme used with explicit and implicit boundary conditions. We observe that the
scheme with implicit B.C converges faster: it requires 900 iterations while the scheme with
explicit B.C converges in 1250 iterations. The speed of convergence is thus increased by a
factor of 40% for this test case.

For the 16 unit case, the same comparison has not been performed completely, since the
computation is very long with explicit B.C. However, it seems that the performance of the
implicit B.C is enhanced for this case, as it can be seen at the bottom of figure 16, even if
the computation with explicit B.C has not been carried at convergence. Indeed, the linear
profile of the residual suggests that the number of iterations to reach the steady state would
be around 6500 with the explicit B.C, while with the implicit B.C the algorithm only needs
2200 iterations (which is therefore 3 times as fast in this case).

Consequently, the implicit treatment of the B.C seems to speed up the convergence of
our scheme, as well as its scalability. However, the convergence is still globally linear (after
the rapid decreasing between 0 and 100 iterations), and the scalability is still not very good,
since the number of iterations to reach the steady state seems to be a highly increasing
function of the number of units: for 1, 2, 4, 8, and 16 units, the number of iterations is
respectively 100, 127, 267, 732, and 2272.

It is therefore difficult to compute a flow for a device with more than 32 units with this
algorithm. We hope that a more sophisticated linear solver could further improve this con-
vergence. However, for very long devices, we have proposed an alternative strategy presented
in [3] which consists in using an asymptotic model for the thin channel approximation. This
allows to compute macroscopic profiles with an arbitrary large number of units very rapidly.

6 Conclusion

In this paper, we have presented a system of Knudsen pump in a channel that works without
moving part for a gas under rarefied conditions or in micro-scales. Our device is based both
on the thermal creep effect and on a varying curvature of the channel that makes the system
very simple.

A numerical method has been proposed to simulate the pump. This method—while it is
based on a simplified kinetic model—turns out to be very efficient and gives results that are
very close to what can be obtained by a classical DSMC, for a small computational time.
As compared to other numerical methods for the BGK equation (such as in [4]), our method
is not restricted to rectangular Cartesian grids. Our numerical tests demonstrate that a
circulating flow can be controlled in our device, as well as a non negligible pressure ratio in
case of a cascade of several units closed at both ends.

We hope that this system could be efficiently used on MEMS. Now it should be necessary
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to make an intensive optimization study in order to determine the optimal parameters of
our device, so as to maximize the compression ratio. We believe that our numerical method
is an efficient tool for such a study.

We also mention that this new device is the core of a large project in which we also
have investigated the applicability of simpler macroscopic fluid models derived from kinetic
theory by means of asymptotic methods (see [24] for a fluid-dynamic model for small Knudsen
numbers and [3] for a simple one dimensional diffusion model). The present study is also a
relevant way to validate these fluid models.

However, for a practical application of our device, it should be equally (or even more)
important to use a pipe instead of a plane channel. The behavior of the device may be
slightly different in this case, since, as it has been noted in [5], the pipe resistance to the
pressure is larger than that of a plane channel. This results in a device with a weaker flow,
but a stronger compression ratio. But for such a system, full three dimensional computations
are necessary, which—for long pipes—requires at present prohibitively large computational
times when using kinetic simulations. Therefore, as a preliminary study, it is very useful to
use fast kinetic simulations of a 2D plane device.

From the point of view of engineering, it might be very difficult to maintain a temperature
gradient as strong as it is in this study (TH/TL = 3). However, this gradient was mainly used
to make the computation easier, since it allows to exaggerate the flow. Indeed, the typical
normalized flow speed (which is more or less the typical Mach number) is 0.005 in figure 7,
for instance. This shows that if our device could be used in a room with standard ambient
pressure and temperature, the flow speed could be more than 1m/sec, which is quite large.
Consequently, even if the imposed temperature difference is small, say, TH = 440K and
TL = 400K (TH/TL = 1.1), one can still expect a flow of a few centimeters per second, which
is of practical level in microscale applications. There is no technical problem to maintain
such a small temperature difference in microscale devices. Finally, we should also note that in
macroscale applications for vacuum technology, it is possible to realize the large temperature
ratio by cooling.
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2006.

[14] B. Dubroca and L. Mieussens. A conservative and entropic discrete-velocity model for
rarefied polyatomic gases. In CEMRACS 1999 (Orsay), volume 10 of ESAIM Proc.,
pages 127–139 (electronic). Soc. Math. Appl. Indust., Paris, 1999.

[15] F. Filbet, C. Mouhot, and L. Pareschi. Solving the Boltzmann equation in N log2N .
SIAM J. Sci. Comput., 28(3):1029–1053 (electronic), 2006.
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A Jacobian matrices of the Maxwellian mappings ~ρ 7→
Mk[~ρ ] and ~ρ 7→ Nk[~ρ ]

Elementary calculus gives the following formulae:

∂~ρMk[~ρ ] = Mk[~ρ ]~m(vk)
TA(~ρ )−1

∂~ρNk[~ρ ] = Nk[~ρ ](~m(vk) −
1

α4(~ρ )
~e )TA(~ρ )−1,

where A(~ρ ) is the following 4 × 4 matrix

A(~ρ ) =
∑

k

(

~m(vk)~m(vk)
TMk[~ρ ] + ~e

(

~m(vk) −
1

α4(~ρ )
~e
)T

Nk[~ρ ]

)

∆v.

B Diagonal of the relaxation matrix Rn

Using the relations given in appendix A, the first half of this diagonal—related the 2 × 2
block structure of Rn—is

∆n
i,j,k =

1

τn
i,j

(

Mk[~ρ
n
i,j ]~m(vk)

TA(~ρn
i,j)

−1 ~m(vk)∆v − 1
)

,

while the second half is

∆n
i,j,k =

1

τn
i,j

(

Nk[~ρ
n
i,j]

(

~m(vk) −
1

α4(~ρn
i,j)
~e
)T

A(~ρn
i,j)

−1~e∆v − 1

)

.
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low temperature TL high temperature TH

thermal creep flow

of cold molecules
momentum

momentum
of hot molecules

momentum transfered by the molecules to the wall

A

Figure 1: Physical mechanism of the thermal creep flow: the average momentum transferred
to the boundary by the molecules coming from the right to point A (large black arrow) is
larger than that transferred by molecules coming from the left (small black arrow). This
results in a net momentum transferred to the boundary directed from the right to the left
(horizontal black arrow). By reaction, the wall makes the gas move from the left to the right
(gray arrow).
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Figure 2: Basic unit of our devices : a hook shaped channel.
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Figure 3: Ring shaped channel to generate a circulating flow.
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Figure 7: Non-dimensional velocity fields u√
2RTL

(left) and streamlines (right) with magnitude
of the velocity in gray scale in half of the ring-shaped channel. The non-dimensional vector
field scale is shown with the arrow and the corresponding numeric value printed below it
(left). Thick case (κ = 1) with Kn = 1 (top), Kn = 0.5 (middle), and Kn = 0.1 (bottom).
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Figure 8: Same as figure 7 for the medium case (κ = 0.5).
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Figure 9: Same as figure 7 for the thin case (κ = 0.1).
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Figure 10: Averaged values of the mass flow rate in the ring-shaped channel as a function
of the Knudsen number. Each curve corresponds to one of the three different channel (thick
κ = 1, medium κ = 0.5, and thin κ = 0.2). The horizontal bars represent the standard
deviation of the mass flow rate from its average.
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c = 2 c = 4 c = 8
a = 5 −1.693 × 10−4 ± 5.2% 2.308 × 10−3 ± 0.4% 2.311 × 10−3 ± 0.4%
a = 10 −1.940 × 10−4 ± 4.0% 2.783 × 10−3 ± 0.3% 2.787 × 10−3 ± 0.3%
a = 20 −3.267 × 10−4 ± 2.4% 2.910 × 10−3 ± 0.3%

Table 1: Average of the mass flux along the ring-shaped channel and its standard deviation
(in %) for velocity grids with three different steps ∆v = 2

√
RTL/a with a = 5, 10, 20 and

three different bounds given by vmax = c
√
RTH with c = 2, 4, 8.

c = 2 c = 4 c = 8
a = 5 2.988 2.521 2.521
a = 10 1.803 0.818 0.818
a = 20 2.037

c = 2 c = 4 c = 8
a = 5 151 103 103
a = 10 114 28 28
a = 20 110

Table 2: Maximum relative difference max |q(x)− qref (x)|/max |qref(x)|, in the whole ring-
shaped channel (in %), of the density (q = ρ, left) and the horizontal velocity (q = ux, right)
with respect to the reference solution (grid (c = 4, a = 20)), for different velocity grids.
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Figure 11: Velocity field in the whole of the ring-shaped channel (left) and in the whole of
the S-shaped channel (right). Thick case (κ = 1) with Kn = 1.
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Figure 12: Non-dimensionalized average pressure (top) and density (bottom) profiles as
defined in equation (30) for the pumping device (see figure 5) with several numbers N of
units. Profiles plotted with black and white circles and squares. The dotted curves are the
corresponding profiles obtained by plotting only the average values in each unit. Thick case
(κ = 1) with Kn = 0.5.
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Figure 13: Pressure (top) and density gain (bottom) as defined in equation (31) for the
pumping device (see figure 5) with several numbers N of units. Thick case (κ = 1) with
Kn = 0.5.
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Figure 14: Non-dimensional macroscopic fields in the 16 unit pump. For each field, the
bounds used for the linear gray-scale is given. Thick case (κ = 1) with Kn = 0.5.
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Figure 15: Comparison between BGK (solid line) and Boltzmann-DSMC (circles): non-
dimensionalized average pressure profile as defined in equation (30) for the pumping device
(see figure 5) for 1 (top, left), 2 (top, right), 4 (bottom, left), and 8 units (bottom, right).
Thick case (κ = 1) with Kn = 0.5.
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Figure 16: Residual history for 8 units (top) and 16 units (bottom) for the BGK scheme
with explicit and implicit boundary conditions. Thick case (κ = 1) with Kn = 0.5.
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