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A stochastic algorithm is proposed, finding some elements from the set of intrinsic p-mean(s) associated
to a probability measure ν on a compact Riemannian manifold and to p ∈ [1,∞). It is fed sequentially
with independent random variables (Yn)n∈N distributed according to ν, which is often the only available
knowledge of ν. Furthermore, the algorithm is easy to implement, because it evolves like a Brownian motion
between the random times when it jumps in direction of one of the Yn, n ∈ N. Its principle is based on
simulated annealing and homogenization, so that temperature and approximations schemes must be tuned
up (plus a regularizing scheme if ν does not admit a Hölderian density). The analysis of the convergence is
restricted to the case where the state space is a circle. In its principle, the proof relies on the investigation of
the evolution of a time-inhomogeneous L2 functional and on the corresponding spectral gap estimates due
to Holley, Kusuoka and Stroock. But it requires new estimates on the discrepancies between the unknown
instantaneous invariant measures and some convenient Gibbs measures.
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1. Introduction

The purpose of this paper is to present a stochastic algorithm finding some of the geometric
p-means of probability measures defined on compact Riemannian manifolds, for p ∈ [1,∞). Its
convergence is analyzed in the restricted case of the circle, as a first step toward a more general
result which is conjectured to be true.

1.1. The general notion of p-means

The concepts of mean and median are well understood for real valued random variables. They
can be extended to random variables taking values in metric spaces in the following way. Let
be given ν a probability measure on a metric space M , whose distance is denoted d . For p ≥ 1,
consider the continuous mapping

Up : M � x �→
∫

dp(x, y)ν(dy). (1.1)
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A global minimum of Up is called a p-mean of ν, at least if this function is not identically equal
to +∞ (equivalently, if all its values are finite, as it can be easily deduced from the triangle
inequality). The set of p-means will be designated by Mp , it is non-empty as soon as Up goes
to infinity at infinity (in the Alexandroff sense), but in general it is not reduced to a singleton.
The notion of intrinsic mean and median correspond, respectively, to p = 2 and p = 1. If M is
R endowed with its absolute value, one recovers the usual mean and distance.

These extensions are justified by the increasing number of available graph or manifold valued
data samples in various scientific fields. Examples of manifold valued data samples are given by
sets of parameters for families of laws endowed with Fisher information metric, by Lie groups
(rotations, displacements) in control theory, by symmetric spaces in imaging or signal processing.

For some applications (see, e.g., [26]), it may be important to find Mp or at least some of its
elements. In practice, the knowledge of ν is often given by a finite sequence Y := (Yn)n∈{1,2,...,N}
of independent random variables, identically distributed according to ν. Since N ∈ N is in general
large enough, we will consider the limit situation where we have at our disposal an infinite
sequence Y := (Yn)n∈N. One is then looking for algorithms using this data and enabling to find
some elements of Mp . In this paper, we will be mainly interested in the case where M is the
circle, even if the proposed stochastic algorithm can be considered more generally for compact
Riemannian manifolds.

Algorithms for finding p-means or minimax centers have been investigated in [1,2,5–8,12,
13,20,27,28]. When possible a gradient descent algorithm is used. When the gradient of the
functional to minimize is difficult or impossible to compute, a Robbins Monro-type algorithm is
preferred. Either the functional to minimize has only one local minimum which is also global,
or (Bonnabel [7]) a local minimum is seeked. The case of Karcher means in the circle is treated
in [10] and [15]. In this special situation, the global minimum of the functional can be found by
explicit formula.

For generalized means on compact manifolds, the situation is different since the func-
tional (1.1) to minimize may have many local minima, and no explicit formula for a global
minimum can be expected.

1.2. The case of the circle

In this subsection, we consider the case where M is the circle T := R/(2πZ) endowed with its
natural angular distance d . As above, let Y := (Yn)n∈N be a sequence of independent random
variables distributed according to a fixed probability measure ν on T. Let p ∈ [1,+∞) be fixed,
we present now a stochastic algorithm finding some elements of Mp by using this data. It is
based on simulated annealing and homogenization procedures. Thus, we will need, respectively,
an inverse temperature evolution β :R+ → R+ and an inverse speed up evolution α :R+ →R

∗+,
where R

∗+ stands for the set of positive real numbers. Typically, they are, respectively, non-
decreasing and non-increasing and we have limt→+∞ βt = +∞ and limt→+∞ αt = 0, but we
are looking for more precise conditions so that the stochastic algorithm we describe below finds
Mp (namely, some elements from this set).

Let N := (Nt )t≥0 be a standard Poisson process: it starts at 0 at time 0 and has jumps of
length 1 whose inter-arrival times are independent and distributed according to exponential ran-
dom variables of parameter 1. The process N is assumed to be independent from the sequence Y .
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We define the speeded-up process N(α) := (N
(α)
t )t≥0 via

∀t ≥ 0, N
(α)
t := N∫ t

0 1/αs ds
. (1.2)

Consider the time-inhomogeneous Markov process X := (Xt )t≥0 which evolves in M in the fol-
lowing heuristic way: if T > 0 is a jump time of N(α), then X jumps at the same time, from
XT − to XT which is obtained by following the shortest geodesic leading from XT − to Y

N
(α)
T

at

speed 1 during the time (p/2)βT αT dp−1(XT− , Y
N

(α)
T

). Almost surely, the above shortest geodesic

is unique and there is no problem with its choice. Indeed, by the end of the description below,
XT− will be independent of Y

N
(α)
T

and the law of XT− will be absolutely continuous with re-

spect to the Lebesgue measure λ on T renormalized into a probability measure. It ensures that
almost surely, Y

N
(α)
T

is not the opposite point of XT− on T. The schemes α and β will satisfy

limt→+∞ αtβt = 0, so that for sufficiently large jump-times T , XT will be between XT − and
Y

N
(α)
T

on the above geodesic and quite close to XT −.

To proceed with the construction, we require that between consecutive jump times (and be-
tween time 0 and the first jump time), X evolves as a Brownian motion on T and independently of
Y and N . Very informally, the evolution of the algorithm X can be summarized by the equation

∀t ≥ 0, dXt = dBt + (p/2)αtβtd
p−1(XT− , Y

N
(α)
T

)σ (Xt−, Y
N

(α)
t

) dN
(α)
t ,

where (Bt )t≥0 is a Brownian motion on T and where σ(Xt−, Y
N

(α)
t

) is 1 (resp., −1) if the short-

est way from Xt− to Y
N

(α)
t

goes in the anti-clock wise (resp., the clock-wise) direction, in the

usual representation of R/(2πZ) in C. In the above equation, (Y
N

(α)
t

)t≥0 should be interpreted

as a fast auxiliary process. The law of X is then entirely determined by the initial distribution
m0 = L(X0). More generally at any time t ≥ 0, denote by mt the law of Xt .

The first main result of this paper states that at least if ν is sufficiently regular, the above
algorithm X finds in probability at large times the set Mp of p-means:

Theorem 1.1. Assume that ν admits a density with respect to λ and that this density is Hölder
continuous with exponent a ∈ (0,1]. Then there exist two constants ap > 0, depending on p ≥ 1
and a, and bp ≥ 0, depending on p, such that for any scheme of the form

∀t ≥ 0,

{
αt := (1 + t)−1/ap ,

βt := b−1 ln(1 + t),
(1.3)

where b > bp , we have for any neighborhood N of Mp and for any m0,

lim
t→+∞P[Xt ∈N ] = 1. (1.4)

Thus, to find an element of Mp with an important probability, one should pick up the value
of Xt for sufficiently large times t .
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The constant ap is the simplest to define, since it is given by

a(p) :=
{

a, if p = 1 or p ≥ 2,

min(a,p − 1), if p ∈ (1,2).
(1.5)

The constant bp ≥ 0 comes from the theory of simulated annealing (see, e.g., [14]), which will
be recalled in next section. For the moment being, we just describe the constant bp , in the setting
of a compact Riemannian manifold M , since there is no extra difficulty and we will need it
later on to express a conjecture extending Theorem 1.1. For any x, y ∈ M , let Cx,y be the set of
continuous paths C := (C(t))0≤t≤1 going from C(0) = x to C(1) = y. The elevation Up(C) of
such a path C relatively to Up is defined by

Up(C) := max
t∈[0,1]

Up

(
C(t)

)
and the minimal elevation Up(x, y) between x and y is given by

Up(x, y) := min
C∈Cx,y

Up(C).

Then we consider

b(Up) := max
x,y∈M

Up(x, y) − Up(x) − Up(y) + min
M

Up. (1.6)

This constant can also be seen as the largest depth of a well not containing a fixed global mini-
mum of Up . Namely, if x0 ∈ Mp , then it is not difficult to see that

b(Up) = max
y∈M

Up(x0, y) − Up(y), (1.7)

independently of the choice of x0 ∈Mp (cf. [14]).
Let us now describe a stochastic algorithm, derived from the previous one, which enables one

to find some of the p-means of any probability measure ν on T.
For any x ∈ T and κ > 0, consider the probability measure Kx,κ whose density with respect to

the Lebesgue measure λ(dy) is proportional to (1 − κ‖y − x‖)+. Assume next that we are given
an evolution κ : R+ � t �→ κt ∈ R

∗+ and consider the process Z := (Zt )t≥0 evolving similarly
to (Xt )t≥0, except that at the jump times T of N(α), the target Y

N
(α)
T

is replaced by a point WT

sampled from KY
N

(α)
T

,κT
, independently from the other variables.

Theorem 1.2. Let ν be an arbitrary probability measure on M = T. For p = 2, consider the
schemes

∀t ≥ 0,

⎧⎨⎩
αt := (1 + t)−c,

βt := b−1 ln(1 + t),

κt := (1 + t)k,
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with b > b(U2), k > 0 and c ≥ 2k + 1. Then, for any neighborhood N of M2 and for any initial
distribution L(Z0), we get

lim
t→+∞P[Zt ∈ N ] = 1,

where P stands for the underlying probability.

More generally, for any given p ≥ 1, it is possible to find similar schemes (where c depends
furthermore on p ≥ 1) enabling to find the set of p-means Mp (see Remark 5.2). Even if ν

satisfies the condition of Theorem 1.1, it could be more advantageous to consider the alternative
algorithm Z instead of X when the exponent a in (1.3) is too small.

Remark 1.1. The schemes α, β and κ presented above are simple examples of admissible evo-
lutions; they could be replaced, for instance, by

∀t ≥ 0,

⎧⎨⎩
αt := C1(r1 + t)−c,

βt := b−1 ln(r2 + t),

κt = C2(r3 + t)k,

where C1,C2 > 0, r1, r3 > 0, r2 ≥ 1 and still under the conditions b > b(Up), k > 0 and c ≥
2k + 1. It is possible to deduce more general conditions insuring the validity of the convergence
results of Theorems 1.1 and 1.2 (see, e.g., Proposition 4.3 below).

How to choose in practice the exponents c and k satisfying c ≥ 2k+1 in Theorem 1.2? We note
that the larger c, the faster α goes to zero and the faster the algorithm Z is using the data (Yn)n∈N.
In compensation, k can be chosen larger, which means that ν is closer to its approximation by
its transport through the kernel K·,κt (·) (defined before the statement of Theorem 1.2, for more
details see Section 5), namely the convergence will be more precise. This is quite natural, since
more data have been required at some fixed time. So in practice a trade-off has to be made
between the number of i.i.d. variables distributed according to ν one has at his disposal and the
quality of the approximation of Mp .

1.3. Numerical illustration

The algorithm X (and similarly for Z) is not so difficult to implement. Let us identify T with
(−π,π] and construct Xt for some fixed t > 0. Assume we are given (Yn)n∈N, (αs)s∈[0,t],
(βs)s∈[0,t] and X0 as in the Introduction. We need furthermore two independent sequences
(τn)n∈N and (Vn)n∈N, consisting of i.i.d. random variables, respectively, distributed according
to the exponential law of parameter 1 and to the Gaussian law with mean 0 and variance 1. We
begin by constructing the finite sequence (Tn)n∈[[0,N]] corresponding to the jump times of N(α):

let T0 := 0 and next by iteration, if Tn was defined, we take Tn+1 such that
∫ Tn+1
Tn

1/αs ds = τn+1.
This is done until TN > t , with N ∈ N, then we change the definition of TN by imposing TN = t .
Next, we consider the sequence ( qXn, X̂n)n∈[[0,N]] constructed through the following iteration
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(where the variables are reduced modulo 2π ): starting from qX0 := X̂0 := X0, if X̂n was defined,
with n ∈ [[0,N − 1]], we consider

qXn+1 := X̂n + √
Tn+1 − TnVn+1. (1.8)

Next, we define

X̂n+1 := qXn+1 + (p/2)αTn+1βTn+1 |Wn+1|p−2Vn+1, (1.9)

where Wn+1 is the representative of Yn+1 − qXn+1 in (−π,π] modulo 2π . Then qXN has the same
law as Xt .

Theorems 1.1 and 1.2 provide theoretical results at very large times, but in practice, one has
to work with a finite horizon t , for which the best corresponding scheme β may not be of the
form of those given in these theorems (see the lectures of [9] for the classical simulated annealing
algorithm). Thus, the previous theorems should only be seen as indications of what could be tried
in practice. Let us illustrate that by some numerical simulations. On the circle, still identified
with (−π,π], consider the probability distribution ν = (δ0 + δπ )/2. A priori we should resort to
Theorem 1.2, but let us just “apply” Theorem 1.1 with a = 1, namely with the scheme

∀t ≥ 0, αt := 1

1 + t
.

For p = 1 the function U1 is constant, meaning that the set of medians M1 is the whole circle.
For p > 1, the function Up admits two global minima, Mp = {−π/2,π/2}, and two global
maxima, 0 and π . It is easy to see that b(Up) = πp(1 − 21−p), so that we can take, for instance,

∀t ≥ 0, βt := 2

πp(1 − 21−p)
ln(1 + t),

(for p = 1, the factor in front of the logarithm can be chosen freely, one could even choose
the scheme β to be constant). With the above notation, let (Yn)n∈N, (τn)n∈N and (Vn)n∈N be
independent sequences consisting of i.i.d. random variables, respectively, distributed according
to the uniform law on {0,π}, to the exponential law of parameter 1 and to the Gaussian law with
mean 0 and variance 1. Let t > 0 be fixed. The finite sequence (Tn)n∈[[0,N]] is constructed through
the recurrence T0 = 100 and

∀n ∈ [[0,N − 1]], Tn+1 :=
√

(Tn + 1)2 + τn+1 − 1

until TN > t . Starting from qX0 := X̂0 := 0, we consider the sequence ( qXn, X̂n)n∈[[0,N]] defined
via (1.8) and (1.9). The histograms of Figure 1 of the distribution of qXN correspond to p = 1.1
and p = 2 and t = 200 and t = 400 and they are obtained with 100 samples of the procedure
described above.

It appears that as time goes on, there is a tendency to concentrate on the set of means
{−π/2,π/2}, but that this is more difficult to achieve for small p > 1, due to the fact that in
the limit case p = 1, one is trying to sample according to the uniform distribution on (−π,π].
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(a) (b)

(c) (d)

Figure 1. (a) p = 2 and t = 200, (b) p = 2 and t = 400, (c) p = 1.1 and t = 200, (d) p = 1.1 and t = 400.

Figure 2 is plotting a typical trajectory (observed at the jump times), with p = 2, t = 400 and
for which the simulation gave N = 150,366 (close to 4002 − 1002). It should be emphasized that
if instead of using 100 samples in a Monte-Carlo procedure as above, one rather resorts to the
empirical measure generated by one trajectory, one would get similar histograms.

Figure 2. A trajectory for p = 2 and t = 400.
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1.4. The conjecture for Riemannian manifolds

The description of the algorithm given in Section 1.2 can be extended to any compact Riemannian
manifold M endowed with its distance d . For general books on Riemannian geometry, we refer
to [19].

As above, let Y := (Yn)n∈N be a sequence of independent random variables distributed ac-
cording to a fixed probability measure ν on M . Let p ∈ [1,+∞) be fixed. We also need an
inverse temperature evolution β : R+ → R+ and an inverse speed up evolution α : R+ → R

∗+,
which typically will be non-decreasing and non-increasing and satisfying limt→+∞ βt = +∞
and limt→+∞ αt = 0.

We consider again the speeded-up process N(α) := (N
(α)
t )t≥0 via

∀t ≥ 0, N
(α)
t := N∫ t

0 1/αs ds
,

where N := (Nt )t≥0 be a standard Poisson process independent from Y . The time-inhomoge-
neous Markov process X := (Xt )t≥0 evolves in M in the following heuristic way: if T > 0 is a
jump time of N(α), then X jumps at the same time, from XT − to

XT := expXT −
(
(p/2)βT αT dp−2(XT− , Y

N
(α)
T

)
−−−−−→
XT−Y

N
(α)
T

)
.

By definition, the latter point is obtained by the following the shortest geodesic leading from
XT − to Y

N
(α)
T

at time 1, during a time s � (p/2)βT αT dp−2(XT− , Y
N

(α)
T

) (and thus may not really

correspond to an image of the exponential mapping if s is not small enough). The schemes α and
β will satisfy limt→+∞ αtβt = 0, so that for sufficiently large jump-times T , XT will be between
XT − and Y

N
(α)
T

on the above geodesic and quite close to XT −. Almost surely, the above shortest

geodesics are unique and there is no problem with their choices in the previous construction.
Indeed, by the end of the description below, XT− will be independent of Y

N
(α)
T

and the law of XT−
will be absolutely continuous with respect to the Riemannian probability λ, namely the volume
measure standardized to total volume one. It ensures that almost surely, Y

N
(α)
T

is not in the cut-

locus of XT− (which is negligible with respect to λ) so that there is only one shortest geodesic
from XT − to Y

N
(α)
T

. To proceed with the construction, we require that between consecutive jump

times (and between time 0 and the first jump time), X evolves as a Brownian motion, relatively to
the Riemannian structure of M (see, e.g., the book of [18]) and independently of Y and N . Very
informally, the evolution of the algorithm X can be summarized by the equation (in the tangent
bundle T M)

∀t ≥ 0, dXt = dBt + (p/2)αtβtd
p−2(XT− , Y

N
(α)
T

)
−−−−−→
Xt−Y

N
(α)
t

dN
(α)
t ,

where (Bt )t≥0 would be a Brownian motion on M and where (Y
N

(α)
t

)t≥0 should be interpreted

as a fast auxiliary process. The law of X is then entirely determined by the initial distribution
m0 = L(X0). We believe that the above algorithm X finds in probability at large times the set
Mp of p-means, at least if ν is sufficiently regular, as in the case where M = T:
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Conjecture 1.1. Assume that ν admits a density with respect to λ and that this density is Hölder
continuous with exponent a ∈ (0,1]. Then there exist two constants ap > 0, depending on p ≥ 1
and a, and bp ≥ 0, depending on p and M , such that for any scheme of the form given in (1.3),
where b > bp , we have for any neighborhood N of Mp and for any m0,

lim
t→+∞P[Xt ∈N ] = 1.

So as in Section 1.2, to find an element of Mp with an important probability, one should pick
up the value of Xt for sufficiently large times t .

The constant bp ≥ 0 should still coincide with the one defined in (1.7).
Let us now extend the stochastic algorithm Z, which should enable one to find some of the

p-means of any probability measure ν on the compact Riemannian manifold M .
For any x ∈ M and κ > 0, consider, on the tangent space TxM , the probability measure K̃x,κ

whose density with respect to the Lebesgue measure dv is proportional to (1 − κ‖v‖)+ (where
the Lebesgue measure and the norm are relative to the Euclidean structure on TxM). Denote
Kx,κ the image by the exponential mapping at x of K̃x,κ . Assume next that we are given an
evolution κ : R+ � t �→ κt ∈ R

∗+ and consider the process Z := (Zt )t≥0 evolving similarly to
(Xt )t≥0, except that at the jump times T of N(α), the target Y

N
(α)
T

is replaced by a point WT

sampled from KY
N

(α)
T

,κT
, independently from the other variables. We believe that a variant of

Theorem 1.2 should hold more generally on compact Riemannian manifolds M . But it seems
that the geometry of M should play a role, especially through the behaviour of the volume of
small enlargements of the cut-locus of points.

Notice that a major difficulty for implementing an algorithm in a high-dimensional manifold
simulating the process Xt is to compute the logarithm map −→xy = exp−1

x (y). Moreover, this log-
arithm can be very instable around the cutlocus of x. In [4], it is proposed to replace it by the
gradient of some cost function and then to follow the flow of this gradient.

1.5. Discussion

The purpose of this paper is to propose a stochastic algorithm finding p-means by a sequential
use of samples from the underlying probability measure on a Riemannian manifold M , even if
the formal proof of its convergence is only shown for the circle, the first non-trivial example.

When ν is an empirical measure (
∑N

l=1 δxl
)/N , where the xl , l ∈ [[1,N ]], are points on the

circle, Charlier [10,15] and McKilliam, Quinn and Clarkson [21] proposed algorithms finding the
2-mean with complexities of order N ln(N) and N for the latter work. Empirical measures can
in practice be used to approximate more general probability measures on the circle, but it seems
this is not a very efficient method, since for each new point added to the empirical measure, the
whole algorithm finding the corresponding mean has to be started again from scratch. To our
knowledge, the process of Theorem 1.1 is the only algorithm finding p-means for any p ≥ 1 and
for any probability measure ν admitting Hölderian densities, even in the restricted situation of
the circle.



2246 M. Arnaudon and L. Miclo

Another strong motivation for this paper is the treatment of the jumps of the algorithms X

and Z, situation which is not covered by the techniques of [25] (to the contrary of the jumps of
the auxiliary process, which can be more easily dealt with).

In [4], we extend the ideas of the present paper to the situation were dp(x, y) in (1.1) is
replaced by a quantity κ(x, y) depending smoothly on the parameters x and y belonging to a
compact Riemannian manifold M . Via convolutions with the underlying heat kernel, it leads to
an algorithm enabling to deal with mappings κ which are only assumed to be continuous. But
due to this regularization procedure, the corresponding algorithm is less straightforward to put
in practice than the one presented here. Of course, the direct implementability has a price, since
it needs precise information about a crucial object, L∗

α,β [1]. It will be defined in Section 3 and
its investigation has to be divided in several cases depending on the value of p. This is hidden
in [4], because we were more interested there in the generalization to general compact manifolds
than in practicality considerations.

More technical discussions of the results are partially scattered over the manuscript, when it
seems more appropriate to introduce them; see, for instance, Remarks 4.1, 4.2, 5.1 and 5.2.

The paper is constructed on the following plan. In next section, we recall some results about
simulated annealing which give the heuristics for the above convergence. Another alternative
algorithm is presented, in the same spirit as X and Z, but without jumps. In Section 3, we
discuss about the regularity of the function Up , in terms of that of ν. It enables to see how
close is the instantaneous invariant measure associated to the algorithm at large times t ≥ 0 to
the Gibbs measures associated to the potential Up and to the inverse temperature β−1

t . The proof
of Theorem 1.1 is given in Section 4. The fifth section is devoted to the extension presented in
Theorem 1.2 and the Appendix deals with technicalities relative to the temporal marginal laws
of the algorithms.

2. Principles underlying the proof

Here, some results about the classical simulated annealing are reviewed. The algorithm X de-
scribed in the Introduction will then appear as a natural modification. This will also give us the
opportunity to present another intermediate algorithm.

2.1. Simulated annealing

Consider again M a compact Riemannian manifold and denote 〈·, ·〉, ∇ , � and λ the corre-
sponding scalar product, gradient, Laplacian operator and probability measure. Let U be a given
smooth function on M to which we associate the constant b(U) ≥ 0 defined similarly as in (1.6).
We denote by M the set of global minima of U .

A corresponding simulated annealing algorithm θ := (θt )t≥0 associated to a measurable in-
verse temperature scheme β :R+ → R+ is defined through the evolution equation

∀t ≥ 0, dθt = dBt − βt

2
∇U(θt ) dt.
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It is a shorthand meaning that θ is a time-inhomogeneous Markov process whose generator at
any time t ≥ 0 is Lβt , where

∀β ≥ 0, Lβ · := 1
2

(� · −β〈∇U,∇·〉). (2.1)

Holley, Kusuoka and Stroock [14] have proven the following result.

Theorem 2.1. For any fixed T ≥ 1, consider the inverse temperature scheme

∀t ≥ 0, βt = b−1 ln(T + t),

with b > b(U). Then for any neighborhood N of M and for any initial distribution L(θ0), we
have

lim
t→+∞P[θt ∈ N ] = 1.

A crucial ingredient of the proof of this convergence are the Gibbs measures associated to the
potential U . They are defined as the probability measures μβ given for any β ≥ 0 by

μβ(dx) := exp(−βU(x))

Zβ

λ(dx), (2.2)

where Zβ := ∫
exp(−βU(x))λ(dx) is the normalizing factor.

Indeed, [14] show that L(θt ) and μβt become closer and closer as t ≥ 0 goes to infinity, for
instance, in the sense of total variation:

lim
t→+∞

∥∥L(θt ) − μβt

∥∥
tv = 0. (2.3)

Theorem 2.1 is then an immediate consequence of the fact that for any neighborhood N of M,

lim
β→+∞μβ [N ] = 1.

The constant b(U) is critical for the behaviour (2.3), in the sense that if we take

∀t ≥ 0, βt = b−1 ln(T + t),

with T ≥ 1 and b < b(U), then there exist initial distributions L(θ0) such that (2.3) is not true.
But in general (see, e.g., [24]), the constant b(U) is not critical for Theorem 2.1, the corre-

sponding critical constant being, with the notation of the Introduction,

b′(U) := min
x0∈M

max
y∈M

U(x0, y) − U(y) ≤ b(U)

(compare with (1.7), where U replaces Up and where a global minimum x0 ∈M is fixed). Note
that it may happen that b′(U) = b(U), for instance, if M has only one connected component.
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Another remark about Theorem 2.1 is that the convergence in probability of θt for large t ≥ 0
toward M cannot be improved into an almost sure convergence. Denote by A the connected
component of {x ∈ M : U(x) ≤ minM U +b} which contains M (the condition b > b(U) ensures
that M is contained in only one connected component of the above set). Then almost surely, A is
the limiting set of the trajectory (θt )t≥0 (see [23], where the corresponding result is proven for a
finite state space but whose proof could be extended to the setting of Theorem 2.1). We believe
that all these remarks should also hold in the context of Conjecture 1.1 and Theorem 1.1.

2.2. Heuristic of the proof

Let us now heuristically put forward why a result such as Conjecture 1.1 should be true, in rela-
tion with Theorem 2.1. For simplicity of the exposition, assume that ν is absolutely continuous
with respect to λ. For almost every x, y ∈ M , there exists a unique minimal geodesic with speed 1
leading from x to y. Denote it by (γ (x, y, t))t∈R, so that γ (x, y,0) = x and γ (x, y, d(x, y)) = y.
The process (Xt )t≥0 underlying Theorem 2.1 is Markovian and its inhomogeneous family of gen-
erators is (Lαt ,βt )t≥0, where for any α > 0 and β ≥ 0, Lα,β acts on functions f from C2(M) via,
for all x ∈ M ,

Lα,β [f ](x) := 1

2
�f (x) + 1

α

∫
f

(
γ
(
x, y, (p/2)βαdp−1(x, y)

)) − f (x)ν(dy) (2.4)

(to simplify notation, we will try to avoid writing down explicitly the dependence on p ≥ 1). The
r is well-defined, due to the fact that ν � λ which implies that the cut-locus of x is negligible
with respect to ν. Furthermore Fubini’s theorem enables to see that the function Lα,β [f ] is at
least measurable. Next, we remark that as α goes to 0+, we have for any f ∈ C1(M), any x ∈ M

and any y ∈ M which is not in the cut-locus of x,

lim
α→0+

f (γ (x, y, (p/2)βαdp−1(x, y))) − f (x)

α
= 1

2
βpdp−1(x, y)

〈∇f (x), γ̇ (x, y,0)
〉
,

for all β ≥ 0, so that for any f ∈ C2(M) and x ∈ M ,

∀β ≥ 0, lim
α→0+

Lα,β [f ](x) = 1

2
�f (x) + β

2
p

∫
dp−1(x, y)

〈∇f (x), γ̇ (x, y,0)
〉
ν(dy).

Recall that the potential U = Up we are now interested in is given by (1.1) and that for almost
every (x, y) ∈ M2,

∇xd
p(x, y) = −pdd−1(x, y)γ̇ (x, y,0)

(problems occur for points x in the cut-locus of y and, if p = 1, for x = y), thus

∇Up(x) = −p

∫
dp−1(x, y)γ̇ (x, y,0)ν(dy). (2.5)
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It follows that or any f ∈ C2(M) and x ∈ M ,

∀β ≥ 0, lim
α→0+

Lα,β [f ](x) = Lβ [f ](x).

Since limt→+∞ αt = 0, it appears that at least for large times, (Xt )t≥0 and (θt )t≥0 should behave
in a similar way. The validity of Theorem 2.1 for any T ≥ 1 and any initial distribution L(θ0)

then suggests that Conjecture 1.1 should hold. But this rough explanation is not sufficient to
understand the choice of the scheme (αt )t≥0, which will require more rigorous computations
relatively to the corresponding homogenization property. The heuristics for Theorem 1.2 are
similar, since the underlying algorithm (Zt )t≥0 is Markovian and its inhomogeneous family of
generators (Lαt ,βt ,κt )t≥0 satisfies

∀f ∈ C2(M), lim
t→+∞

∥∥Lαt ,βt ,κt [f ] − Lβt [f ]∥∥∞ = 0.

For any α > 0, β ≥ 0 and κ > 0, the generator Lα,β,κ acts on functions f ∈ C2(M) via, for all
x ∈ M ,

Lα,β,κ [f ](x) := 1

2
�f (x) + 1

α

∫
f

(
γ
(
x, z, (p/2)βαdp−1(x, z)

)) − f (x)Ky,κ (dz)ν(dy).

The previous observations suggest another possible algorithm to find the mean of a probability
measure ν on M . Consider the M ×M-valued inhomogeneous Markov process (X̃t , YN

(α)
t +1

)t≥0

where (N
(α)
t )t≥0 was defined in (1.2) and where

∀t ≥ 0, dX̃t = dBt + (p/2)βtd
p−1(X̃t , YN

(α)
t +1

)γ̇ (X̃t , YN
(α)
t +1

,0) dt. (2.6)

Again, up to appropriate choices of the schemes (αt )t≥0 and (βt )t≥0, it can be expected that for
any neighborhood N of M and for any initial distribution L(X̃0),

lim
t→+∞P[X̃t ∈N ] = 1.

Indeed, this can be obtained by following the line of arguments presented in [25]; see [3].
But the main drawback of the algorithm (X̃t )t≥0 is that theoretically, it is asking for the com-

putation of the unit vector γ̇ (X̃t , YN
(α)
t +1

,0) and of the distance d(X̃t , YN
(α)
t +1

), at any time

t ≥ 0. From a practical point of view, its complexity will be bad in comparison with that of the
algorithm X := (Xt )t≥0, which is not so difficult to implement, as it was seen in Section 1.3.

2.3. Outline of the proof

Since the Gibbs measure μβ defined in (2.2), with U replaced by Up , concentrates on Mp for
large β , it will be sufficient to show that the law mt of Xt becomes closer and closer to μβt

for large t . To measure this closeness, we use the L
2-discrepancy of mt with respect to μβt
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defined by

∀t > 0, It :=
∫ (

mt

μβt

− 1

)2

dμβt .

(Alternatively, it would be interesting to see if the considerations that follow could be extended
to the case where this quantity is replaced by the more natural relative entropy of mt with respect
to μβt .) To show that this quantity goes to zero as t becomes large, we study its temporal evolu-
tion, by differentiating it. The fact that μβt is not the instantaneous invariant measure (namely the
probability measure left invariant by the generator at time t ), leads to supplementary term with
respect to what one usually gets by applying this approach (see, e.g., [22]). This term measures
in some sense the distance between μβt and the instantaneous invariant measure at time t (which
itself is not explicitly known). A large part of the paper is devoted to estimate this supplementary
term, the final result being presented in Proposition 3.5. In Proposition 4.1, we deduce a bound
on the evolution of the quantity It . To conclude in Proposition 4.3 that the obtained ordinary
differential inequality is sufficient to conclude that limt→+∞ It = 0, we need an estimate of the
spectral gap of the operator presented in (2.1) for large β . For that, we resort to a result due to
[14] recalled in Proposition 4.2.

Let us emphasize that the resort to the object L∗
α,β [1] defined and investigated in Section 3 to

estimate the discrepancy between a well-known measure and an instantaneous invariant measure,
which is more difficult to apprehend, should be of much broader use than the one presented here.
Indeed, the function L∗

α,β [1] is constructed by using directly only two objects which are supposed
to be known: the generator and the convenient measure we choose to replace the instantaneous
invariant measure, because L∗

α,β is just the dual operator of Lα,β in L
2[μβ ] and 1 is the constant

function taking the value 1.

3. Regularity issues

From this section on, we restrict ourselves to the case of the circle. Here, we investigate the
regularity of the potential Up introduced in (1.1) and use the obtained information to evaluate
how far are the instantaneous invariant measures of the algorithm X from the corresponding
Gibbs measures, as well as some other preliminary bounds.

For any x ∈ T, we denote x ′ the unique point in the cut-locus of x, namely the opposite point
x′ = x + π . Recall that for y ∈ T \ {x′}, (γ (x, y, t))t∈R denotes the unique minimal geodesic
with speed 1 going from x to y and that δx stands for the Dirac mass at x.

Lemma 3.1. For any probability measure ν on T, we have for the potential Up defined in (1.1),
in the distribution sense, for x ∈ T,

U ′′
p(x) =

⎧⎪⎪⎨⎪⎪⎩
p(p − 1)

∫
T

dp−2(y, x) − 2pπp−1δy′(x)ν(dy), if p > 1,

2
∫ (

δy(x) − δy′(x)
)
ν(dy), if p = 1.
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In particular if ν admits a continuous density with respect to λ, still denoted ν, then we have that
Up ∈ C2(T) and

∀x ∈ T, U ′′
p(x) =

⎧⎨⎩p(p − 1)

∫
T

dp−2(y, x)ν(dy) − pπp−2ν
(
x′), if p > 1,(

ν(x) − ν
(
x′))/π, if p = 1.

Proof. We begin by considering the case where p > 1. Furthermore, we first investigate the
situation where ν = δy for some fixed y ∈ T. Then Up(x) = dp(x, y) for any x ∈ T and we have
seen in (2.5) that

∀x �= y ′, U ′
p(x) = −pdp−1(x, y)γ̇ (x, y,0).

By continuity of Up , this equality holds in the sense of distributions on the whole set T. To
compute U ′′

p , consider a test function ϕ ∈ C∞(T):∫
T

ϕ′(x)U ′
p(x) dx = p

∫ y+π

y

ϕ′(x)(x − y)p−1 dx − p

∫ y

y−π

ϕ′(x)(y − x)p−1 dx

= p
[
ϕ(x)(x − y)p−1]y+π

y
− p(p − 1)

∫ y+π

y

ϕ(x)(x − y)p−2 dx

− p
[
ϕ(x)(y − x)p−1]y

y−π
− p(p − 1)

∫ y

y−π

ϕ(x)(y − x)p−2 dx

= 2pπp−1ϕ
(
y′) − p(p − 1)

∫
T

ϕ(x)dp−2(y, x) dx.

So we get that for x ∈ T,

U ′′
p(x) = p(p − 1)dp−2(y, x) − 2pπp−1δy′(x).

If p = 1, starting again from

∀x �= y′, U ′
1(x) = −γ̇ (x, y,0), (3.1)

we rather get for any test function ϕ ∈ C∞(T):∫
T

ϕ′(x)U ′
1(x) dx =

∫ y+π

y

ϕ′(x) dx −
∫ y

y−π

ϕ′(x) dx

= 2
(
ϕ
(
y′) − ϕ(y)

)
,

so that

U ′′
1 = 2(δy − δy′).

The general case of a probability measure ν follows by integration with respect to ν(dy).
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The second announced result follows from the observation that if ν admits a density with
respect to λ, we can write for any x ∈ T,∫

δy′(x)ν(dy) =
∫

δx′(y)ν(y)
dy

2π

= ν(x′)
2π

. �

In particular, it appears that the potential Up belongs to C∞(T), if the density ν is smooth.
Let us come back to the case of a general probability measure ν on T. For any α > 0 and β ≥ 0,
we are interested into the generator Lα,β defined in (2.4). Rigorously speaking, this definition
is only valid if ν is absolutely continuous. Otherwise, the right-hand side of (2.4) is not well-
defined for x ∈ T belonging to the union of the cut-locus of the atoms of ν. To get around this
little inconvenience, one can consider for x ∈ T, (γ+(x, x + π, t))t∈R and (γ−(x, x + π, t))t∈R,
the unique minimal geodesics with speed 1 leading from x to x + π , respectively, in the anti-
clockwise (namely increasing in the cover R of T) and clockwise direction. If y ∈ T \ {x ′}, we
take as before (γ+(x, y, t))t∈R := (γ (x, y, t))t∈R =: (γ−(x, y, t))t∈R. Next, let k be a Markov
kernel from T

2 to {−,+} and modify the definition (2.4) by imposing that for any f ∈ C2(T)

and any x ∈ T,

Lα,β [f ](x) := 1

2
∂2f (x) + 1

α

∫
f

(
γs

(
x, y, (p/2)βαdp−1(x, y)

)) − f (x)k
(
(x, y), ds

)
ν(dy),

where ∂ stands for the natural derivative on T. Then the function Lα,β [f ] is at least measurable.
But these considerations are not very relevant, since for any given measurable evolutions R+ �
t �→ αt ∈ R

∗+ and R+ � t �→ βt ∈ R+, the solutions to the martingale problems associated to the
inhomogeneous family of generators (Lαt ,βt )t≥0 (see, e.g., the book of [11]) are all the same
and are described in a probabilistic way as the trajectory laws of the processes X presented in
the Introduction. Indeed, this is a consequence of the absolute continuity of the heat kernel at
any positive time (for arguments in the same spirit, see the Appendix). So to simplify notation,
we only consider the case where k((x, y),−) = 0 for any x, y ∈ T, this brought us back to the
definition (2.4), where (γ (x, y, t))t∈R stands for (γ+(x, y, t))t∈R, for any x, y ∈ T.

As it was mentioned for usual simulated annealing algorithms in the previous section, a tradi-
tional approach to prove Theorem 1.1 would try to evaluate at any time t ≥ 0, how far is L(Xt )

from the instantaneous invariant probability μαt ,βt , namely that associated to Lαt ,βt . Unfortu-
nately, for any α > 0 and β ≥ 0, we have little information about the invariant probability μα,β

of Lα,β , even its existence cannot be deduced directly from the compactness of T, because the
functions Lα,β [f ] are not necessarily continuous for f ∈ C2(T). Indeed it will be more conve-
nient to use the Gibbs distribution μβ defined in (2.2) for β ≥ 0, where U is replaced by Up .
It has the advantage to be explicit and easy to work with, in particular it is clear that for large
β ≥ 0, μβ concentrates around Mp , the set of p-means of ν.

The remaining part of this section is mainly devoted to a quantification of what separates
μβ from being an invariant probability of Lα,β , for α > 0 and β ≥ 0. It will become clear in
the next section that a practical way to measure this discrepancy is through the evaluation of
μβ [(L∗

α,β [1])2], where L∗
α,β is the dual operator of Lα,β in L

2(μβ) and where 1 is the constant
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function taking the value 1. Indeed, it can be seen that L∗
α,β [1] = 0 in L

2(μβ) if and only if μβ

is invariant for Lα,β . We will also take advantage of the computations made in this direction to
provide some estimates on related quantities which will be helpful later on.

Since the situation of the usual mean p = 2 is important and is simpler than the other cases,
we first treat it in detail in the following subsection. Next, we will investigate the differences
appearing in the situation of the median. The third subsection will deal with the cases 1 < p < 2,
whose computations are technical and not very enlightening. We will only give some indications
about the remaining situation p ∈ (2,∞), which is less involved.

Some other preliminaries about the regularity of the time marginal laws of the considered
algorithms will be treated in the Appendix. They are of a more qualitative nature and will mainly
serve to justify some computations of the next sections, in some sense they are less relevant than
the estimates and proofs of Propositions 3.1, 3.2, 3.3 and 3.4 below, which are really at the heart
of our developments.

3.1. Estimate of L∗
α,β[1] in the case p = 2

Before being more precise about the definition of L∗
α,β , we need an elementary result, where we

will use the following notation: for y ∈ T and δ ≥ 0, B(y, δ) stands for the open ball centered at
y of radius δ and for any s ∈ R, Ty,s is the operator acting on measurable functions f defined on
T via

∀x ∈ T, Ty,sf (x) := f
(
γ
(
x, y, sd(x, y)

))
. (3.2)

Lemma 3.2. For any y ∈ T, any s ∈ [0,1) and any measurable and bounded functions f,g, we
have ∫

T

gTy,sf dλ = 1

1 − s

∫
B(y,(1−s)π)

f Ty,−s/(1−s)g dλ.

Proof. By definition, we have

2π

∫
T

gTy,sf dλ =
∫ y+π

y−π

g(x)f
(
x + s(y − x)

)
dx.

In the right-hand side, consider the change of variables z := sy + (1 − s)x to get that it is equal
to

1

1 − s

∫ y+(1−s)π

y−(1−s)π

g

(
z − sy

1 − s

)
f (z) dz = 2π

1 − s

∫
B(y,(1−s)π)

f Ty,−s/(1−s)f dλ,

which corresponds to the announced result. �

This lemma has for consequence the next result, where D is the subspace of L2(λ) consisting
of functions whose second derivative in the distribution sense belongs to L

2(λ) (or equivalently
to L

2(μβ) for any β ≥ 0).
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Lemma 3.3. For α > 0 and β ≥ 0 such that αβ ∈ [0,1), the domain of the maximal extension
of Lα,β on L

2(μβ) is D. Furthermore, the domain D∗ of its dual operator L∗
α,β in L

2(μβ) is the

space {f ∈ L
2(μβ) : exp(−βU2)f ∈D} and we have for any f ∈ D∗,

L∗
α,βf = 1

2
exp(βU2)∂

2[exp(−βU2)f
]

+ exp(βU2)

α(1 − αβ)

∫
1B(y,(1−αβ)π)Ty,−αβ/(1−αβ)

[
exp(−βU2)f

]
ν(dy) − f

α
.

In particular, if ν admits a continuous density, then D∗ =D and the above formula holds for any
f ∈ D.

Proof. With the previous definitions, we can write for any α > 0 and β ≥ 0,

Lα,β = 1

2
∂2 + 1

α

∫
Ty,αβν(dy) − I

α
,

where I is the identity operator. Note furthermore that the identity operator is bounded from
L

2(λ) to L
2(μβ) and conversely. Thus, to get the first assertion, it is sufficient to show that∫

Ty,αβν(dy) is bounded from L
2(λ) to itself, or even only that ‖Ty,αβ‖L2(λ)� is uniformly

bounded in y ∈ T. To see that this is true, consider a bounded and measurable function f and
assume that αβ ∈ [0,1). Since (Ty,αβf )2 = Ty,αβf 2, we can apply Lemma 3.2 with s = αβ ,
g = 1 and f replaced by f 2 to get that∫

(Ty,αβf )2 dλ = 1

1 − αβ

∫
B(y,(1−s)π)

f 2Ty,−αβ/(1−αβ)1dλ

= 1

1 − αβ

∫
B(y,(1−s)π)

f 2 dλ

≤ 1

1 − αβ

∫
f 2 dλ.

Next to see that for any f,g ∈ C2(T),∫
gLα,βf dμβ =

∫
f L∗

α,βg dμβ, (3.3)

where L∗
α,β is the operator defined in the statement of the lemma, we note that, on one hand,∫

g∂2f dμβ = Z−1
β

∫
exp(−βU2)g∂2f dλ

=
∫

f exp(βU2)∂
2[exp(−βU2)g

]
dμβ
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and on the other hand, for any y ∈ T,∫
gTy,αβf dμβ = Z−1

β

∫
exp(−βU2)gTy,αβf dλ,

so that we can use again Lemma 3.2. After an additional integration with respect to ν(dy), (3.3)
follows without difficulty. To conclude, it is sufficient to see that for any f ∈ L

2(μβ), L∗
α,βf ∈

L
2(μβ) (where L∗

α,βf is first interpreted as a distribution) if and only if exp(−βU2)f ∈D. This
is done by adapting the arguments given in the first part of the proof, in particular we get that∥∥∥∥ exp(βU2)

α(1 − αβ)

∫
1B(y,(1−αβ)π)Ty,−αβ/(1−αβ)

[
exp(−βU2)·

]
ν(dy)

∥∥∥∥2

L2(λ)�

≤ exp(2β osc(U2))

α2(1 − αβ)
. �

Remark 3.1. By working in a similar spirit, the previous lemma, except for the expression of
L∗

α,β , is valid for any α > 0 and β ≥ 0 such that αβ �= 1. The case αβ = 1 can be different: it
follows from

Lα,1/α = 1

2
∂2 + 1

α
(ν − I ),

that if ν does not admit a density with respect to λ which belongs to L
2(λ), then the domain of

definition of L∗
α,1/α is D∗ ∩{f ∈ L

2(μβ) : μβ [f ] = 0}, subspace which is not dense in L
2(λ) and

worse for our purposes, which does not contain 1. Anyway, this degenerate situation is not very
interesting for us, because the evolutions (αt )t≥0 and (βt )t≥0 we consider satisfy αtβt ∈ (0,1)

for t large enough. Furthermore, we will consider probability measures ν admitting a continuous
density, in particular belonging to L

2(λ). In this case, Lα,1/α and L∗
α,1/α admit D for natural

domain, as in fact Lα,β and L∗
α,β for any β ≥ 0.

For any α > 0 and β ≥ 0 such that αβ ∈ [0,1), denote η = αβ/(1 − αβ). As seen from the
previous lemma, a consequence of the assumption that U2 is C2 is that for any x ∈ T,

L∗
α,β1(x) = 1

2
exp

(
βU2(x)

)
∂2 exp

(−βU2(x)
) − 1

α

+ exp(βU2(x))

α(1 − αβ)

∫
1B(y,(1−αβ)π)(x)Ty,−η

[
exp(−βU2)

]
(x)ν(dy)

(3.4)

= β2

2

(
U ′

2(x)
)2 − β

2
U ′′

2 (x) − 1

α

+ 1

α(1 − αβ)

∫
B(x,(1−αβ)π)

exp
(
β
[
U2(x) − U2

(
γ
(
x, y,−ηd(x, y)

))])
ν(dy).

It appears that L∗
α,β1 is defined and continuous if ν has a continuous density (with respect to λ).

The next result evaluates the uniform norm of this function under a little stronger regularity
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assumption. Despite it may seem quite plain, we would like to emphasize that the use of an
estimate of L∗

α,β1 to replace the invariant measure of Lα,β by the more tractable μβ is a key to
all the results presented in the Introduction.

Proposition 3.1. Assume that ν admits a density with respect to λ which is Hölder continuous,
that is, there exists a ∈ (0,1] and A > 0 such that

∀x, y ∈ T,
∣∣ν(y) − ν(x)

∣∣ ≤ Ada(x, y). (3.5)

Then there exists a constant C(A) > 0, only depending on A, such that for any β ≥ 1 and α ∈
(0,1/(2β2)), we have ∥∥L∗

α,β1
∥∥∞ ≤ C(A)max

(
αβ4, αaβ1+a

)
.

Proof. In view of the expression of L∗
α,β1(x) given before the statement of the proposition, we

want to estimate for any fixed x ∈ T, the quantity∫
B(x,(1−αβ)π)

exp
(
β
[
U2(x) − U2

(
γ
(
x, y,−ηd(x, y)

))])
ν(dy)

=
∫ x+(1−αβ)π

x−(1−αβ)π

exp
(
β
[
U2(x) − U2

(
x − η(y − x)

)])
ν(dy).

Lemma 3.1 and the continuity of the density ν ensure that U2 ∈ C2(T). Furthermore, since this
density takes the value 1 somewhere on T, we get that∥∥U ′′

2

∥∥∞ ≤ 2Aπa ≤ 2πA. (3.6)

Since U ′
2 vanishes somewhere on T, we can deduce from this bound that ‖U ′

2‖∞ ≤ 4π2A, but
for A > 1/(2π), it is better to use (2.5), which gives directly ‖U ′

2‖∞ ≤ 2π .
Expanding the function U2 around x, we see that for any y ∈ (x − (1 − αβ)π,x + (1 − αβ)π)

and η ∈ (0,1] (this is satisfied because the assumptions on α and β ensure that αβ ∈ (0,1/2)),
we can find z ∈ (x − (1 − αβ)π,x + (1 − αβ)π) such that

β
[
U2(x) − U2

(
x − η(y − x)

)] = βηU ′
2(x)(y − x) − βη2U ′′

2 (z)
(y − x)2

2
.

The last term can be written under the form OA(α2β3), where for any ε > 0, OA(ε) designates a
quantity which is bounded by K(A)ε, where K(A) is a constant depending only on A (as usual
O has a similar meaning, but with a universal constant). Note that we also have βηU ′

2(x)(y −
x) = O(αβ2). Observing that for any r, s ∈ R, we can find u,v ∈ (0,1) such that exp(r + s) =
(1 + r + r2 exp(ur)/2)(1 + s exp(vs)) and in conjunction with the assumption αβ2 ≤ 1/2, we
can write that

exp
(
β
[
U2(x) − U2

(
x − η(y − x)

)]) = 1 + βηU ′
2(x)(y − x) +OA

(
α2β4). (3.7)
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Integrating this expression, we get that∫
B(x,(1−αβ)π)

exp
(
β
[
U2(x) − U2

(
γ (x, y,−η)

)])
ν(dy)

= ν
[
B

(
x, (1 − αβ)π

)] + βηU ′
2(x)

∫ x+(1−αβ)π

x−(1−αβ)π

y − xν(dy) +OA

(
α2β4).

Recalling that ν has no atom, the first term is equal to 1 − ν(B(x′, αβπ). Taking into account
(2.5), we have U ′

2(x) = −2
∫ x+π

x−π
y − xν(dy), so that the second term is equal to

βηU ′
2(x)

∫ x+π

x−π

y − xν(dy) − βηU ′
2(x)

∫ x′+αβπ

x′−αβπ

y − xν(dy) = −βη

2

(
U ′

2(x)
)2 +OA

(
α2β3)

(in the last term of the left-hand side, y − x is to be interpreted as its representative in (−π,π]
modulo 2π ). We can now return to (3.4) and recalling the expression for U ′′

2 given in Lemma 3.1,
we obtain that for any x ∈ T,

L∗
α,β1(x) = β2

2

(
U ′

2(x)
)2 − β

(
1 − ν

(
x′)) − 1

α

+ 1

α(1 − αβ)

(
1 − ν

(
B

(
x′, αβπ

)) − βη

2

(
U ′

2(x)
)2 +OA

(
α2β4))

= 1

α(1 − αβ)
− β − 1

α
+ β2

2

(
1 − 1

(1 − αβ)2

)(
U ′

2(x)
)2

+ β

(
ν
(
x′) − ν(B(x′, αβπ))

αβ(1 − αβ)

)
+OA

(
αβ4)

= β

(
ν
(
x′) − ν(B(x′, αβπ))

αβ(1 − αβ)

)
+OA

(
αβ4)

= β

1 − αβ

(
ν
(
x′) − ν(B(x′, αβπ))

αβ

)
− αβ2

1 − αβ
ν
(
x′) +OA

(
αβ4)

= β

1 − αβ

1

2παβ

∫ x′+αβπ

x′−αβπ

ν
(
x′) − ν(y) dy +OA

(
αβ4).

The justification of the Hölder continuity comes above all from the evaluation of the latter inte-
gral: ∣∣∣∣∫ x′+αβπ

x′−αβπ

ν
(
x′) − ν(y) dy

∣∣∣∣ ≤ A

∫ x′+αβπ

x′−αβπ

∣∣x′ − y
∣∣a dy

= 2A
(αβπ)1+a

1 + a

≤ 2A(αβπ)1+a.
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The bound announced in the lemma follows at once. �

To finish this subsection, let us present a related but more straightforward preliminary bound.

Lemma 3.4. There exists a constant k > 0 such that for any s > 0 and β ≥ 1 with βs ≤ 1/2, we
have, for any y ∈ T and f ∈ C1(T),∫

B(y,(1−s)π)

(
T ∗

y,s[gy](x) − gy(x)
)2

μβ(dx) ≤ ks2β2
(∫

(∂f )2 dμβ +
∫

f 2 dμβ

)
, (3.8)

where T ∗
y,s is the adjoint operator of Ty,s in L

2(μβ) and where for any fixed y ∈ T,

∀x ∈ T \ {
y ′}, gy(x) := f (x)d(x, y)γ̇ (x, y,0)

(neglecting the cut-locus point y′ of y).

Proof. Since the problem is clearly invariant by translation of y ∈ T, we can work with a fixed
value of y, the most convenient to simplify the notation being y = 0 ∈ R/(2πZ). Then the func-
tion g ≡ g0 is given by g(x) = −xf (x) for x ∈ (−π,π).

Due to the above assumptions, s ∈ (0,1/2) and we are in position to use Lemma 3.2 to see
that for s ∈ (0,1/2) and for a.e. x ∈ (−(1 − s)π, (1 − s)π),

T ∗
s [g](x) = 1

1 − s
exp

(
βU2(x)

)
T−η

[
exp(−βU2)g

]
(x),

with η := s/(1 − s) and where we simplified notation by replacing T ∗
0,s and T0,−η by T ∗

s and
T−η . This observation induces us to introduce on (−(1 − s)π, (1 − s)π) the decomposition

T ∗
s [g] − g = T ∗

s [g] − 1

1 − s
T−η[g] + 1

1 − s

(
T−η[g] − g

) + s

1 − s
g,

leading to ∫ (
T ∗

s [g](x) − g(x)
)2

μβ(dx) ≤ 3

(1 − s)2
J1 + 3

(1 − s)2
J2 + 3s2

(1 − s)2
J3, (3.9)

where

J1 :=
∫ (1−s)π

−(1−s)π

(
exp

(
β
[
U2(x) − U2

(
(1 + η)x

)]) − 1
)2(

T−η[g])2
μβ(dx),

J2 :=
∫ (1−s)π

−(1−s)π

(
T−η[g] − g

)2
dμβ,

J3 :=
∫ (1−s)π

−(1−s)π

g2 dμβ.
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The simplest term to treat is J3: we just bound it above by
∫

g2 dμβ . Recalling that g ≤ π2f 2,
we end up with a bound which goes in the direction of (3.8), due to the factor 3s2/(1 − s)2

in (3.9) and the fact that β ≥ 1.
Next, we estimate the term J1. Via the change of variable z := (1 + η)x, Lemma 3.2 enables

to write it down under the form

(1 − s)

∫
T

(
exp

(
β
[
U2

(
(1 − s)z

) − U2(z)
]) − 1

)2
g2(z) exp(β

[
U2(z) − U2

(
(1 − s)z

)]
μβ(dz)

= 4(1 − s)

∫
T

sinh2(β[
U2

(
(1 − s)z

) − U2(z)
]
/2

)
g2(z)μβ(dz).

Since βs ≤ 1/2, we are assured of the bounds∣∣β[
U2

(
(1 − s)z

) − U2(z)
]∣∣ ≤ β

∥∥U ′
2

∥∥∞πs

≤ 4π2βs (3.10)

≤ 2π2

and we deduce that

J1 ≤ 16π4 cosh2(π2)β2s2
∫

g2 dμβ.

Again this bound is going in the direction of (3.8).
We are thus left with the task of finding a bound on J2 and this is where the Dirichlet type

quantity
∫
(f ′)2 dμβ will be needed. Of course, its origin is to be found in the fundamental

theorem of calculus, which enables to write for any x ∈ (−(1 − s)π, (1 − s)π),

T−η[g](x) − g(x) = −η

∫ 1

0
g′((1 + ηv)x

)
x dv.

It follows that

J2 ≤ π2η2
∫ (1−s)π

−(1−s)π

μβ(dx)

∫ 1

0
dv

(
g′((1 + ηv)x

))2
. (3.11)

Recalling the definition of g, we have for any z ∈ (−π,π),(
g′(z)

)2 ≤ 2
(
π2(f ′(z)

)2 + f 2(z)
)
,

where we used again that ‖U ′
2‖∞ ≤ 2π and that β ≥ 1. Next, we deduce from a computation

similar to (3.10) and from η ≤ 2s that

μβ(x)

μβ((1 + ηv)x)
≤ exp

(
4π2),
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so it appears that there exists a universal constant k1 > 0 such that∫ (1−s)π

−(1−s)π

μβ(dx)

∫ 1

0
dv

(
g′((1 + ηv)x

))2 ≤ k1

∫ 1

0
dv

∫ (1−s)π

−(1−s)π

λ(dx)T−ηv[h](x),

where

∀x ∈ T, h(x) := [(
f ′(x)

)2 + f 2(x)
]
μβ(x).

The proof of Lemma 3.2 shows that for any fixed v ∈ [0,1],∫ (1−s)π

−(1−s)π

T−ηv[h](x)λ(dx) ≤ 1

1 + vη

∫
T

h(x)λ(dx)

≤
∫
T

h(x)λ(dx)

=
∫
T

(
f ′)2

dμβ +
∫
T

f 2 dμβ.

Coming back to (3.11) and recalling that η = s/(1 − s), we obtain that

J2 ≤ k2s
2
(∫

T

(
f ′)2

dμβ +
∫
T

f 2 dμβ

)
,

for another universal constant k2 > 0. This ends the proof of (3.8). �

3.2. Estimate of L∗
α,β[1] in the case p = 1

When we are interested in finding medians, the definition (3.2) must be modified into

∀x ∈ T, Ty,sf (x) := f
(
γ (x, y, s)

)
. (3.12)

Similarly to what we have done in Lemma 3.2, we begin by computing the adjoint T
†
y,s of Ty,s

in L
2(λ), for any fixed y ∈ T and s ∈R+ small enough.

Lemma 3.5. Assume that s ∈ [0,π/2). Then for any bounded and measurable function g, we
have, for almost every x ∈ T (identified with its representative in (y − π,y + π)),

T †
y,s[g](x) = 1(y−π+s,y−s)(x)g(x − s) + 1(y−s,y+s)(x)

(
g(x − s) + g(x + s)

)
+ 1(y+s,y+π−s)(x)g(x + s).

Proof. By definition, we have, for any bounded and measurable functions f,g,

2π

∫
T

gTy,sf dλ =
∫ y+π

y−π

g(x)f
(
x + sign(y − x)s

)
dx.
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Let us first consider the integral∫ y+π

y

g(x)f
(
x + sign(y − x)s

)
dx =

∫ y+π

y

g(x)f (x − s) dx

=
∫ y+π−s

y−s

g(x + s)f (x) dx

=
∫ y+π−s

y+s

g(x + s)f (x) dx +
∫ y+s

y−s

g(x + s)f (x) dx.

The symmetrical computation on (y − π,y) leads to the announced result. �

It is not difficult to adapt the proof of Lemma 3.3, to get, with the same notation,

Lemma 3.6. For α > 0 and β ≥ 0 such that αβ ∈ [0,π), the domain of the maximal extension
of Lα,β on L

2(μβ) is D. Furthermore, the domain of its dual operator L∗
α,β in L

2(μβ) is D∗ and
we have for any f ∈ D∗,

L∗
α,βf = 1

2
exp(βU1)∂

2[exp(−βU1)f
] + 1

α

∫
T ∗

y,(αβ)/2[f ]ν(dy) − f

α
,

where

T ∗
y,(αβ)/2[f ] = exp(βU1)T

†
y,(αβ)/2

[
exp(−βU1)f

]
.

In particular, if ν admits a continuous density, then D∗ =D and the above formula holds for any
f ∈D.

To be able to consider L∗
α,β1, we have thus to assume that ν admits a continuous density, so

that 1 ∈D∗ =D. Furthermore, we obtain then that for almost every x ∈ T,

L∗
α,β1(x) = β2

2

(
U ′

1(x)
)2 − β

2
U ′′

1 (x) + 1

α

(∫
T ∗

y,(αβ)/2[1](x)ν(dy) − 1

)
.

By expanding the various terms of the right-hand side, we are to show the equivalent of Proposi-
tion 3.1.

Proposition 3.2. Assume that ν admits a density with respect to λ satisfying (3.5). Then there
exists a constant C(A) > 0, only depending on A, such that for any β ≥ 1 and α ∈ (0,πβ−2), we
have ∥∥L∗

α,β1
∥∥∞ ≤ C(A)max

(
αβ4, αaβ1+a

)
.
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Proof. From (2.5) and Lemma 3.1, we deduce, respectively, that for all x ∈ T,

U ′
1(x) = −

∫
γ̇ (x, y,0)ν(dy)

(3.13)
= ν

(
(x − π,x)

) − ν
(
(x, x + π)

)
,

U ′′
1 (x) = (

ν(x) − ν
(
x′))/π. (3.14)

On the other hand, from Lemma 3.5 we get that for all s ∈ [0,π/2) and for almost every x ∈ T,∫
T ∗

y,s[1](x)ν(dy)

= ν
(
(x + s, x + π − s)

)
exp

(
β
(
U1(x) − U1(x − s)

))
+ ν

(
(x − s, x + s)

)[
exp

(
β
(
U1(x) − U1(x − s)

)) + exp
(
β
(
U1(x) − U1(x + s)

))]
+ ν

(
(x − π + s, x − s)

)
exp

(
β
(
U1(x) − U1(x + s)

))
= ν

(
(x, x + π)

)
exp

(
β
(
U1(x) − U1(x − s)

)) + ν
(
(x − π,x)

)
exp

(
β
(
U1(x) − U1(x + s)

))
+ ν

(
(x − s, x)

)
exp

(
β
(
U1(x) − U1(x − s)

))
+ ν

(
(x, x + s)

)
exp

(
β
(
U1(x) − U1(x + s)

))
− ν

((
x′ − s, x′)) exp

(
β
(
U1(x) − U1(x − s)

)) − ν
((

x′, x′ + s
))

× exp
(
β
(
U1(x) − U1(x + s)

))
.

This leads us to define s = αβ/2 ∈ (0,π/2), so that we can decompose

2

β
L∗

α,β1(x) = I1(x, s) + I2(x, s) + I3(x, s),

with

I1(x, s) := 1

π

(
π

ν((x − s, x + s))

s
− ν(x)

)
− 1

π

(
π

ν((x′ − s, x′ + s))

s
− ν

(
x′)),

I2(x, s) := ν((x − s, x)) − ν((x′ − s, x′))
s

[
exp

(
β
(
U1(x) − U1(x − s)

)) − 1
]

+ ν((x, x + s)) − ν((x′, x′ + s))

s

[
exp

(
β
(
U1(x) − U1(x + s)

)) − 1
]
,

I3(x, s) := ν
(
(x, x + π)

)exp(β(U1(x) − U1(x − s))) − 1 − sβU ′
1(x)

s

+ ν
(
(x − π,x)

)exp(β(U1(x) − U1(x + s))) − 1 + sβU ′
1(x)

s
.
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Assumption (3.5) enables to evaluate I1(x, s), because we have for any x ∈ T and s ∈ (0,π/2),∣∣∣∣π ν((x − s, x + s))

s
− ν(x)

∣∣∣∣ = 1

2s

∣∣∣∣∫
(x−s,x+s)

ν(z) − ν(x) dz

∣∣∣∣
≤ A

2s

∫
(x−s,x+s)

|z − x|a dz

= Asa

1 + a

≤ Asa.

By considering the Taylor’s expansion with remainder at the first order of the mapping s �→
exp(β[U1(x) − U1(x − s)]) at s = 0 and by taking into account (3.13), we get for any x ∈ T and
s ∈ (0,π/(2β)), ∣∣I2(x, s)

∣∣ ≤ 2
‖ν‖∞

2π
exp

(
β
∥∥U ′

1

∥∥∞s
)
β
∥∥U ′

1

∥∥∞s

≤ ‖ν‖∞
π

exp(βs)βs

≤ 2
1 + πA

π
exp(π/2)βs.

The term I3(x, s) is bounded in a similar manner, rather expanding at the second order the pre-
vious mapping and using (3.14) to see that ‖U ′′

1 ‖∞ ≤ A. �

We finish this subsection with the a variant of Lemma 3.4.

Lemma 3.7. There exists a universal constant k > 0, such that for any s > 0 and β ≥ 1 with
βs ≤ 1, we have, for any f ∈ C1(T),∫

B(y,π−s)

(
T ∗

y,s [̃gy](x) − gy(x)
)2

μβ(dx) ≤ ks2β2
(∫

(∂f )2 dμβ +
∫

f 2 dμβ

)
,

where T ∗
y,s is the adjoint operator of Ty,s in L

2(μβ) and where for any fixed y ∈ T,

∀x ∈ T \ {
y ′}, {

gy(x) := f (x)γ̇ (x, y,0),

g̃y(x) := 1(y−π,y−s)�(y+s,y+π)(x)gy(x).

Proof. As remarked at the beginning of the proof of Lemma 3.4, it is sufficient to deal with the
case y = 0. To simplify the notation, we remove y = 0 from the indices, in particular we consider
the mappings g and g̃ defined by g(x) = − sign(x)f (x) and g̃(x) = 1(−π,−s)�(s,π)(x)g(x).

Taking into account that g̃ vanishes on (−s, s), we deduce from Lemmas 3.5 and 3.6 that for
a.e. x ∈ (−π + s,π − s),

T ∗
s [̃g](x) = exp

(
βU2(x)

)
T−s

[
exp(−βU2)g̃

]
(x).
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This observation leads us to consider the upper bound∫ π−s

−π+s

(
T ∗

s [̃g](x) − g(x)
)2

μβ(dx) ≤ 2J1 + 2J2,

where

J1 :=
∫ π−s

−π+s

(
exp

(
β
[
U2(x) − U2

(
x + sign(x)s

)]) − 1
)2(

T−s [̃g])2
μβ(dx),

J2 :=
∫ π−s

−π+s

(
T−s [̃g] − g

)2
dμβ.

The arguments used in the proof of Lemma 3.4 to deal with J1 and J2 can now be easily adapted
(even simplified) to obtain the wanted bounds. For instance, one would have noted that

J2 =
∫ 0

−π+s

(
g(x − s) − g(x)

)2
μβ(dx) +

∫ π−s

0

(
g(x + s) − g(x)

)2
μβ(dx). �

3.3. Estimate of L∗
α,β[1] in the cases 1 < p < 2

In this situation, for any fixed y ∈ T and s ≥ 0, the definition (3.2) must be replaced by

∀x ∈ T, Ty,sf (x) := f
(
γ
(
x, y, sdp−1(x, y)

))
. (3.15)

It leads us to introduce the function z defined on (y − π,y + π) by

z(x) :=
{

x − s(x − y)p−1, if x ∈ [y, y + π),

x + s(y − x)p−1, if x ∈ (y − π,y]. (3.16)

To study the variations of this function, by symmetry, it is sufficient to consider its restriction
to (y, y + π). We need the following definitions, all of them depending on y ∈ T, s ≥ 0 and
p ∈ (1,2):

u+ := y + (p − 1)1/(2−p)s1/(2−p),

ũ+ := y + s1/(2−p),

v+ := y − (
(p − 1)(p−1)/(2−p) − (p − 1)1/(2−p)

)
s1/(2−p),

w+ := y + π − πp−1s.

Let σ(p) be the largest positive real number in (0,1/2) such that for s ∈ (0, σ (p)), we have
u+ < y +π , v+ > y −π and w+ −y > y −v+. One checks that for s ∈ (0, σ (p)), the function z

is decreasing on (y,u+) and increasing on (u+, y+π). Furthermore v+ = z(u+), w+ = z(y+π)
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Figure 3. The function z.

and ũ+ is the unique point in (u+, y + π) such that z(̃u+) = y. Let us also introduce û+ the
unique point in (̃u+, y + π) such that and z(̂u+) = −v+. All these definitions, as well as the
symmetric notions with respect to (y, y), where the indices + are replaced by −, are summarized
in the following picture (see Figure 3).

Thus for s ∈ (0, σ (p)), we can consider ϕ+ : [v+, y] → [y,u+] and ψ+ : [v+,w+] →
[u+, y + π] the inverses of z, respectively, restricted to [y,u+] and [u+, y + π]. The map-
pings ϕ− and ψ− are defined in a symmetrical manner on [y, v−] and [w−, v−]. These quantities
were necessary to compute the adjoint T

†
y,s of Ty,s in L

2(λ), for any fixed y ∈ T and s > 0 small
enough.

Lemma 3.8. Assume that s ∈ (0, σ (p)). Then for any bounded and measurable function g, we
have, for almost every x ∈ T (identified with its representative in (y − π,y + π)),

T †
y,s[g](x) = 1(w−,v+)(x)ψ ′−(x)g

(
ψ−(x)

) + 1(v−,w+)(x)ψ ′+(x)g
(
ψ+(x)

)
+ 1(v+,y)(x)

[
ψ ′−(x)g

(
ψ−(x)

) + ψ ′+(x)g
(
ψ+(x)

) + ∣∣ϕ′+(x)
∣∣g(

ϕ+(x)
)]

+ 1(y,v−)(x)
[
ψ ′−(x)g

(
ψ−(x)

) + ψ ′+(x)g
(
ψ+(x)

) + ∣∣ϕ′−(x)
∣∣g(

ϕ−(x)
)]

.

Proof. The above formula is based on straightforward applications of the change of variable
formula. For instance one can write for any bounded and measurable functions f,g defined
on (y − π,y + π),∫

(y,u+)

g(x)f
(
Ty,s(x)

)
dx =

∫
(v+,y)

f (z)g
(
ϕ+(z)

)∣∣ϕ′+(z)
∣∣dz. �
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Since we are more interested in adjoint operators in L
2(μβ), let us define for any fixed y ∈ T,

s ∈ (0, σ (p)) and any bounded and measurable function f defined on (y − π,y + π),

T ∗
y,s[f ] := exp(βUp)T †

y,s

[
exp(−βUp)f

]
. (3.17)

Then we get the equivalent of Lemmas 3.3 and 3.6.

Lemma 3.9. For α > 0 and β > 0 such that s := pαβ/2 ∈ (0, σ (p)), the domain of the maximal
extension of Lα,β on L

2(μβ) is D. Furthermore, the domain of its dual operator L∗
α,β in L

2(μβ)

is D∗ and we have for any f ∈ D∗,

L∗
α,βf = 1

2
exp(βUp)∂2[exp(−βUp)f

] + 1

α

∫
T ∗

y,s[f ]ν(dy) − f

α
.

In particular, if ν admits a continuous density, then D∗ =D and the above formula holds for any
f ∈ D.

Once again, the assumption that ν admits a continuous density enables us to consider L∗
α,β1,

which is given, under the conditions of the previous lemma, for almost every x ∈ T, by

L∗
α,β1(x) = β2

2

(
U ′

p(x)
)2 − β

2
U ′′

p(x) + 1

α

(∫
T ∗

y,(pαβ)/2[1](x)ν(dy) − 1

)
. (3.18)

We deduce the following.

Proposition 3.3. Assume that ν admits a density with respect to λ satisfying (3.5). Then there
exists a constant C(A,p) > 0, only depending on A > 0 and p ∈ (1,2), such that for any β ≥ 1
and α ∈ (0, σ (p)/β2), we have∥∥L∗

α,β1
∥∥∞ ≤ C(A,p)max

(
αβ4, αp−1β1+p,αaβ1+a

)
.

Proof. We first keep in mind that from (2.5) and Lemma 3.1, we have for all x ∈ T,

U ′
p(x) = p

(∫ x

x−π

(x − y)p−1ν(dy) −
∫ x+π

x

(y − x)p−1ν(dy)

)
, (3.19)

U ′′
p(x) = p(p − 1)

∫
T

dp−2(y, x)ν(dy) − pπp−2ν
(
x′). (3.20)

Taking into account (3.18), our goal is to see how the terms β(U ′
p(x))2 and −U ′′

p(x) cancel with
some parts of the integral

p

s

∫
T ∗

y,s[1](x) − 1ν(dy),

where s := pαβ/2 ∈ (0, σ (p)/β) ⊂ (0, σ (p)), and to bound what remains by a quantity of the
form C ′(A,p)(β2s +βsp−1 + sa), for another constant C′(A,p) > 0, only depending on A > 0
and p ∈ (1,2).
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We decompose the domain of integration of ν(dy) into six essential parts (with the convention
that −π ≤ y − x < π and remember that the points w−, v+, v− and w+ depend on y):

J1 := {y ∈ T : y − π < x < w−},
J2 := {y ∈ T : w− < x < v+},
J3 := {y ∈ T : v+ < x < y},
J4 := {y ∈ T : y < x < v−},
J5 := {y ∈ T : v− < x < w+},
J6 := {y ∈ T : w+ < x < y + π}.

The cases of J1 and J6 are the simplest to treat. For instance, for J6, we write that

p

s

∫
J6

T ∗
y,s[1](x) − 1ν(dy) = −p

s

∫ x′+πp−1s

x′
1ν(dy)

= −p

s

∫ x′+πp−1s

x′
ν(y)

dy

2π

= −pπp−2

2
ν
(
x′) − p

2πs

∫ x′+πp−1s

x′
ν(y) − ν

(
x′)dy.

A similar computation for J1 and the use of assumption (3.5) lead to the bound∣∣∣∣ps
∫

J1�J6

T ∗
y,s[1](x) − 1ν(dy) + pπp−2ν

(
x′)∣∣∣∣ ≤ Ap

π(1+a)(p−1)−1

1 + a
sa

(3.21)
≤ 2πAsa.

The most important parts correspond to J2 and J5. For example, considering J5, which can be
written down as the segment (x−, x+), with

x− := x − π + πp−1s,

x+ := x − (
(p − 1)(p−1)/(2−p) − (p − 1)1/(2−p)

)
s1/(2−p),

we have to evaluate the integral

p

s

∫ x+

x−
ψ ′+(x) exp

(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1ν(dy) (3.22)

(y is present in the integrand through ψ+(x) and ψ ′+(x)). Indeed, in view of (3.19) and (3.20),
we would like to compare it to

−βU ′
p(x)

∫ x+

x−
(x − y)p−1ν(dy) + p(p − 1)

∫ x+

x−
(x − y)p−2ν(dy). (3.23)
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To do so, we will expand the terms ψ ′+(x) and exp(β[Up(x) − Up(ψ+(x))]) as functions of the
(hidden) parameter s > 0. Fix y ∈ J5 and recall that it amounts to x ∈ (v−,w+). Due to (3.16)
and to the definition of ψ+, we have for such x,

ψ ′+(x) = 1

1 − s(p − 1)(ψ+(x) − y)p−2
. (3.24)

Let us begin by working heuristically, to outline why the quantities (3.22) and (3.23) should
be close. From the above expression, we get

ψ ′+(x) � 1 + s(p − 1)
(
ψ+(x) − y

)p−2
.

By definition of ψ+, we have

x − y = ψ+(x) − y − s
(
ψ+(x) − y

)p−1

(3.25)
= (

ψ+(x) − y
)(

1 − s
(
ψ+(x) − y

)p−2)
,

so that x − y � ψ+(x) − y and

ψ ′+(x) � 1 + s(p − 1)(x − y)p−2.

On the other hand,

exp
(
β
[
Up(x) − Up

(
ψ+(x)

)]) � 1 + β
[
Up(x) − Up

(
ψ+(x)

)]
� 1 + βU ′

p(x)
(
x − ψ+(x)

)
= 1 − sβU ′

p(x)
(
ψ+(x) − y

)p−1

� 1 − sβU ′
p(x)(x − y)p−1.

Putting together these approximations, we end up with

ψ ′+(x) exp
(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1 � s
[
(p − 1)(x − y)p−2 − βU ′

p(x)(x − y)p−1],
suggesting the proximity of (3.22) and (3.23), after integration with respect to ν(dy) on (x−, x+).

To justify and quantify these computations, we start by remarking that ψ+(x) − y is bounded
below by û+ − y, itself bounded below by ũ+ − y = s1/(2−p). But this lower bound will not be
sufficient in (3.25), so let us improve it a little. By definition of û+, we have

v− − y = û − y − s(̂u − y)p−1,

so that û+ − y = kps1/(2−p) where kp is the unique solution larger than 1 of the equation

kp − k
p−1
p = (p − 1)(p−1)/(2−p) − (p − 1)1/(2−p). (3.26)
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It follows that for any y ∈ J5,

1 ≤ 1

1 − s(ψ+(x) − y)p−2
≤ 1

1 − s(̂u+ − y)p−2

= û+ − y

v− − y
(3.27)

= Kp,

where the latter quantity only depends on p ∈ (1,2) and is given by

Kp := kp

(p − 1)(p−1)/(2−p) − (p − 1)1/(2−p)
.

In particular, coming back to (3.24) and taking into account (3.25), we get that for y ∈ J ′
5,

∣∣ψ ′+(x) − 1 − s(p − 1)
(
ψ+(x) − y

)p−2∣∣ = (s(p − 1)(ψ+(x) − y)p−2)2

1 − s(p − 1)(ψ+(x) − y)p−2

≤ (p − 1)2s2 (ψ+(x) − y)2(p−2)

1 − s(ψ+(x) − y)p−2

= (p − 1)2s2 (x − y)2(p−2)

(1 − s(ψ+(x) − y)p−2)1+2(p−2)

≤ (p − 1)2K
(2p−3)+
p s2(x − y)2(p−2).

To complete this estimate, we note that in a similar way, still for y ∈ J5,∣∣(ψ+(x) − y
)p−2 − (x − y)p−2

∣∣ = (x − y)p−2
∣∣1 − (

1 − s
(
ψ+(x) − y

)p−2)2−p∣∣
≤ (x − y)p−2

∣∣1 − (
1 − s

(
ψ+(x) − y

)p−2)∣∣
= s(x − y)p−2(ψ+(x) − y

)p−2

= s(x − y)2(p−2)
(
1 − s

(
ψ+(x) − y

)p−2)2−p

≤ s(x − y)2(p−2),

so that in the end,∣∣ψ ′+(x) − 1 − s(p − 1)(x − y)p−2
∣∣ ≤ [

(p − 1)2K
(2p−3)+
p + p − 1

]
s2(x − y)2(p−2). (3.28)

We now come to the term exp(β[Up(x) − Up(ψ+(x))]). First we remark that∣∣Up(x) − Up

(
ψ+(x)

)∣∣ ≤ ∥∥U ′
p

∥∥∞
∣∣x − ψ+(x)

∣∣
≤ pπp−1s

(
ψ+(x) − y

)p−1
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≤ pπ2(p−1)s

≤ 2π2s.

It follows, recalling our assumption βs ≤ σ(p), that∣∣exp
(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1 − β
[
Up(x) − Up

(
ψ+(x)

)]∣∣
≤ β2[Up(x) − Up(ψ+(x))]2

2
exp

(
2π2βs

)
≤ 2π4β2 exp

(
2π2σ(p)

)
s2.

In addition, we have

∣∣Up(x) − Up

(
ψ+(x)

) − U ′
p(x)

(
x − ψ+(x)

)∣∣ ≤ ‖U ′′
p‖∞
2

(
x − ψ+(x)

)2
.

In view of (3.20) and taking into account that
∫

U ′′
p dλ = 0, we have

∥∥U ′′
p

∥∥∞ ≤ 2p(p − 1)‖ν‖∞
∫ π

0
up−2 du

2π

= 2pπp−1(1 + πA).

So we get∣∣Up(x) − Up

(
ψ+(x)

) − U ′
p(x)

(
x − ψ+(x)

)∣∣ ≤ 2π(1 + πA)
(
x − ψ+(x)

)2

≤ 2π(1 + πA)s2(ψ+(x) − y
)2(p−1)

≤ 2π3(1 + πA)s2,

namely ∣∣Up(x) − Up

(
ψ+(x)

) + sU ′
p(x)

(
ψ+(x) − y

)p−1∣∣ ≤ 2π3s2.

Finally, using the inequality

∀u,v ≥ 0,∀p ∈ (1,2),
∣∣up−1 − vp−1

∣∣ ≤ |u − v|p−1,

it appears that ∣∣(ψ+(x) − y
)p−1 − (x − y)p−1

∣∣ ≤ ∣∣ψ+(x) − x
∣∣p−1

= ∣∣ψ+(x) − y
∣∣(p−1)2

sp−1 (3.29)

≤ π(p−1)2
sp−1,
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so we can deduce that∣∣exp
(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1 + βsU ′
p(x)(x − y)p−1

∣∣
≤ pπpKpβsp + 2π3β

(
1 + πA + π exp

(
2π2σ(p)

)
β
)
s2.

From the latter bound and (3.28), we obtain a constant K(p,A) > 0 depending only on p ∈
(1,2) and A > 0, such that

p

s

∣∣∣∣∫ x+

x−
ψ ′+(x) exp

(
β
[
Up(x) − Up

(
ψ+(x)

)])
−

(
1 + s(p − 1)

(x − y)2−p

)(
1 − βsU ′

p(x)(x − y)p−1)ν(dy)

∣∣∣∣ (3.30)

≤ K(p,A)

(
βsp−1 + β2s + s

∫ x+

x−
(x − y)2(p−2)ν(dy)

)
.

This leads us to upper bound∫ x+

x−
(x − y)2(p−2)ν(dy) ≤ ‖ν‖∞

2π

∫ x+

x−
(x − y)2(p−2) dy

≤ 1 + Aπ

2π

∫ π−πp−1s

κps1/(2−p)

y2(p−2) dy,

with

κp := (p − 1)(p−1)/(2−p) − (p − 1)1/(2−p). (3.31)

An immediate computation gives, for p ∈ (1,2), a constant κ ′
p > 0 such that for any s ∈

(0, σ (p)),

∫ π−πp−1s

κps1/(2−p)

y2(p−2) dy ≤ κ ′
p

⎧⎪⎨⎪⎩
1, if p > 3/2,

ln
((

1 + σ(p)
)
/s

)
, if p = 3/2,

s(2p−3)/(2−p), if p < 3/2.

(3.32)

Since 1 + 2p−3
2−p

> p − 1, β ≥ 1 and s ∈ (0, σ (p)), we can find another constant K ′(p,A) > 0

such that the right-hand side of (3.30) can be replaced by K ′(p,A)(βsp−1 +β2s). It is now easy
to see that such an expression, up to a new change of the factor K ′(p,A), bounds the difference
between (3.22) and (3.23). Indeed, just use that∫ π−πp−1s

κps1/(2−p)

y2p−3 dy ≤ π

∫ π−πp−1s

κps1/(2−p)

y2(p−2) dy

and resort to (3.32).
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There is no more difficulty in checking that the cost of replacing x− and x+, respec-
tively, by x − π and x in (3.23) is also bounded by K ′′(p,A)(βsp/(2−p) + s(p−1)/(2−p)) ≤
2K ′′(p,A)βsp−1, for an appropriate choice of the factor K ′′(p,A) depending on p ∈ (1,2)

and A > 0.
Symmetrical computations for J2 and remembering (3.21) lead to the existence of a constant

K ′′′(p,A) > 0, depending only on p ∈ (1,2) and A > 0, such that for β ≥ 1 and s ∈ (0, σ (p)/β),
we have ∣∣∣∣β(

U ′
p(x)

)2 − U ′′
p(x) + p

s

(∫
J1�J2�J5�J6

T ∗
y,s[1](x)ν(dy) − 1

)∣∣∣∣
≤ K ′′′(p,A)

(
sa + βsp−1 + β2s

)
.

It remains to treat the segments J3 and J4 and again by symmetry, let us deal with J4 only: it
is sufficient to exhibit a constant K(4)(p,A) > 0, depending on p ∈ (1,2) and A > 0, such that
for β ≥ 1 and s ∈ (0, σ (p)/β),

p

s

∣∣∣∣∫
J4

T ∗
y,s[1](x) − 1ν(dy)

∣∣∣∣ ≤ K(4)(p,A)s(p−1)/(2−p)

(since the right-hand side is itself bounded by K(4)(p,A)(σ (p))(p−1)2/(2−p)sp−1), or equiva-
lently ∣∣∣∣∫

J4

T ∗
y,s[1](x) − 1ν(dy)

∣∣∣∣ ≤ K(4)(p,A)

p
s1/(2−p). (3.33)

The constant part is immediate to bound:∫
J4

1ν(dy) ≤ ‖ν‖∞
2π

∫
J4

1dy

≤ 1 + πA

2π

∫ x

x−κps1/(2−p)

1dy

= (1 + πA)κp

2π
s1/(2−p).

For the other part, we first remark that for y ∈ J4, we have

y < x < y + κps1/(2−p),

y + s1/(2−p) < ψ+(x) < y + kps1/(2−p),

y − (p − 1)1/(2−p)s1/(2−p) < ϕ−(x) < y,

y − s1/(2−p) < ψ−(x) < y − (p − 1)1/(2−p)s1/(2−p)
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(recall that û+ = y + kps1/(2−p) with kp defined in (3.26)). It follows that we can find a constant
κ ′′
p > 0, depending only on p ∈ (1,2), such that for s ∈ (0, σ (p)),

max
(∣∣Up(x) − Up

(
ψ+(x)

)∣∣, ∣∣Up(x) − Up

(
ψ−(x)

)∣∣, ∣∣Up(x) − Up

(
ϕ−(x)

)∣∣)
≤ κ ′′

ps1/(2−p)

≤ κ ′′
p

(
σ(p)

)(p−1)/(2−p)
s.

In particular, we can find another constant κ ′′′
p > 0, such that under the conditions that β ≥ 1 and

βs ∈ (0, σ (p)),

exp
(
β max

(∣∣Up(x) − Up

(
ψ+(x)

)∣∣, ∣∣Up(x) − Up

(
ψ−(x)

)∣∣, ∣∣Up(x) − Up

(
ϕ−(x)

)∣∣)) ≤ κ ′′′
p .

Thus, denoting ψ one of the functions ψ+, ϕ− or ψ−, and remembering the bound ‖ν‖∞ ≤
1 + πA, it is sufficient to exhibit another constant κ

(4)
p > 0 such that∫

J4

∣∣ψ ′(x)
∣∣dy ≤ κ(4)

p s1/(2−p). (3.34)

Let us consider the case ψ = ψ+, the other functions admit a similar treatment. We begin by
making the dependence of ψ+(x) more explicit by writing it ψ+(x, y). From the definition of
this quantity (see the first line of (3.25)) and from (3.24), we get

∂yψ+(x, y) = − s(p − 1)(ψ+(x, y) − y)p−2

1 − s(p − 1)(ψ+(x, y) − y)p−2

= −s(p − 1)
(
ψ+(x, y) − y

)p−2
∂xψ+(x, y),

so that the left-hand side of (3.34) can be rewritten

1

s(p − 1)

∫
J4

∣∣(ψ+(x, y) − y
)2−p

∂yψ+(x, y)
∣∣dy

≤ 1

s(p − 1)

∫
J4

(
kps1/(2−p)

)2−p∣∣∂yψ+(x, y)
∣∣dy

≤ k
2−p
p

(p − 1)

∫
J4

∣∣∂yψ+(x, y)
∣∣dy.

Checking that J4 = (x − κps1/(2−p), x), the last integral is equal to |ψ+(x, x) − ψ+(x, x −
κps1/(2−p))|. By definition of ψ+, we have ψ+(x, x) = x and it appears that the quantity ζ :=
ψ+(x, x − κps1/(2−p)) − x is a positive solution to the equation

ζ = s
(
ζ + κps1/(2−p)

)p−1
.

It follows that ζ = k′
ps1/(2−p) where k′

p is the unique positive solution of k′
p = (k′

p + κp)p−1.
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Thus, (3.34) is proven and we can conclude to the validity of (3.33). �

To finish this subsection, here is a version of Lemma 3.7 for p ∈ (1,2), which is a little weaker,
since we need a preliminary integration with respect to ν(y).

Lemma 3.10. Under the assumption (3.5), there exists a universal constant k(p,A) > 0, de-
pending only on p ∈ (1,2) and A > 0, such that for any s > 0 and β ≥ 1 with βs ≤ σ(p), we
have, for any f ∈ C1(T),∫

T

ν(dy)

∫
B(y,π−πp−1s)

(
T ∗

y,s [̃gy](x) − gy(x)
)2

μβ(dx)

(3.35)

≤ k(p,A)
(
s2(p−1) + β2s2)(∫

(∂f )2 dμβ +
∫

f 2 dμβ

)
,

where T ∗
y,s is the adjoint operator of Ty,s in L

2(μβ) and where for any fixed y ∈ T,

∀x ∈ T \ {
y ′}, {

gy(x) := f (x)dp−1(x, y)γ̇ (x, y,0),

g̃y(x) := 1(y−π,y−s1/(2−p))�(y+s1/(2−p),y+π)(x)gy(x).

Proof. We begin by fixing y ∈ T and by remembering the notation of the proof of Proposition 3.3
(see Figure 3). Due to fact that g̃y vanishes on (̃u−, ũ+) = (y−s1/(2−p), y+s1/(2−p)), we deduce
from Lemma 3.8 and (3.17) that for a.e. x ∈ (y − π + πp−1s, y + π − πp−1s),

T ∗
y,s [̃gy](x) = ψ ′

ε(x) exp
(
β
[
Up(x) − Up

(
ψε(x)

)])
g̃y

(
ψε(x)

)
,

where ε ∈ {−,+} stands for the sign of x−y with the conventions of the proof of Proposition 3.3.
Thus, we are led to the decomposition∫

B(y,π−πp−1s)

(
T ∗

y,s [̃gy](x) − gy(x)
)2

μβ(dx) ≤ 3J1(y) + 3J2(y) + 3J3(y),

where

J1(y) :=
∫

B(y,π−πp−1s)

(
exp

(
β
[
Up(x) − Up

(
ψε(x)

)]) − 1
)2(

ψ ′
ε(x)g̃y

(
ψε(x)

))2
μβ(dx),

J2(y) :=
∫

B(y,π−πp−1s)

(
ψ ′

ε(x)
)2(

g̃y

(
ψε(x)

) − gy(x)
)2

μβ(dx),

J3(y) :=
∫

B(y,π−πp−1s)

(
ψ ′

ε(x) − 1
)2

g2
y(x)μβ(dx).

We begin by dealing with J1(y), or rather with just half of it, by symmetry and to avoid the
consideration of ε:∫ y+π−πp−1s

y

(
exp

(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1
)2(

ψ ′+(x)g̃y

(
ψ+(x)

))2
μβ(dx).
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Let us recall that x = ψ+(x)− s(ψ+(x)−y)p−1 and that ψ+(x)−y ≥ s1/(2−p). From (3.24), we
deduce that for x ∈ (y, y + π − πp−1s), 1 ≤ ψ+(x) ≤ 1/(2 − p). Thus, it is sufficient to bound∫ y+π−πp−1s

y

(
exp

(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1
)2(

g̃y

(
ψ+(x)

))2
μβ(dx).

Furthermore, for x ∈ (y, y + π − πp−1s), we have∣∣x − ψ+(x)
∣∣ ≤ sπp−1, (3.36)

so under the assumption that sβ ∈ (0,1/2), we can bound (exp(β[Up(x) − Up(ψ+(x))]) − 1)2

by a term of the form kβ2s2 for a universal constant k > 0. It remains to use g̃2
y(x) ≤ π2f 2(x) to

get an upper bound going in the direction of (3.35).
We now come to J2(y) and again only to half of it:∫ y+π−πp−1s

y

(
ψ ′+(x)

)2(
g̃y

(
ψ+(x)

) − gy(x)
)2

μβ(dx).

Due to the upper bound on ψ+ seen just above, it is sufficient to deal with∫ y+π−πp−1s

y

(
g̃y

(
ψ+(x)

) − gy(x)
)2

μβ(dx).

But for x ∈ (y, y + π − πp−1s), we have ψ+(x) ∈ (y + s1/(2−p), y + π), so that g̃y(ψ+(x)) =
gy(ψ+(x)) and the above expression is equal to

∫ y+π−πp−1s

y

(
gy

(
ψ+(x)

) − gy(x)
)2

μβ(dx).

Coming back to the definition of gy , it appears that for x ∈ (y, y + π − πp−1s), both ψ+(x) and
x belong to the same hemicircle obtained by cutting T at y and y′, so(

gy

(
ψ+(x)

) − gy(x)
)2

= (
dp−1(y,ψ+(x)

)
f

(
ψ+(x)

) − dp−1(y, x)f (x)
)2

≤ 2d2(p−1)
(
y,ψ+(x)

)(
f

(
ψ+(x)

) − f (x)
)2 + 2f 2(x)

(
dp−1(y,ψ+(x)

) − dp−1(y, x)
)2

≤ 2π2(p−1)
(
f

(
ψ+(x)

) − f (x)
)2 + 2π2(p−1)2

s2(p−1)f 2(x),

where we have used (3.29) to majorize the last term. From (3.36), we deduce that

(
f

(
ψ+(x)

) − f (x)
)2 ≤ 2sπp−1

∫ x+sπp−1

x−sπp−1

(
f ′(z)

)2
dz.
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As usual, the assumption 0 < sβ ≤ 1/2 enables to find a universal constant k > 0 such that for
any z ∈ (x − sπp−1, x + sπp−1), we have μβ(x) ≤ kμβ(z). From the above computations, it
follows there exists another universal constant k′ > 0 such that for any y ∈ T,

J2(y) ≤ k′
(

s2(p−1)

∫
f 2 dμβ + s2

∫ (
f ′)2

dμβ

)
≤ k′s2(p−1)

(∫
f 2 dμβ +

∫ (
f ′)2

dμβ

)
.

Finally, we come to J3(y), which will need to be integrated with respect to ν(dy). From (3.24),
we first get that

J3(y) =
∫

B(y,π−πp−1s)

(
s(p − 1)dp−2(ψε(x), y)

1 − s(p − 1)dp−2(ψε(x), y)

)2

g2
y(x)μβ(dx)

≤ (p − 1)2

(2 − p)2
s2

∫
B(y,π−πp−1s)

d2(p−2)
(
ψε(x), y

)
g2

y(x)μβ(dx)

≤ π2(p−1)(p − 1)2

(2 − p)2
s2

∫
B(y,π−πp−1s)

d2(p−2)
(
ψε(x), y

)
f 2(x)μβ(dx).

Next, recalling that ‖ν‖∞ ≤ 1 + πA and that d(ψε(x), y) ≥ s1/(2−p) for any x ∈ B(y,π −
πp−1s), it appears that∫

T

J3(y)ν(dy)

≤ 1 + πA

2π

π2(p−1)(p − 1)2

(2 − p)2
s2

∫
T

dy

∫
B(y,π−πp−1s)

d2(p−2)
(
ψε(x), y

)
f 2(x)μβ(dx)

≤ 1 + πA

2π

π2(p−1)(p − 1)2

(2 − p)2
s2

∫
T

μβ(dx)f 2(x)

×
∫
T

1{d(ψε(x),y)≥s1/(2−p)}d2(p−2)
(
ψε(x), y

)
dy.

But for any fixed z ∈ R/(2πZ), we compute that∫
T

1{d(z,y)≥s1/(2−p)}d2(p−2)(z, y) dy = 2
∫ π

s1/(2−p)

1

y2(2−p)
dy

≤ k′′
p

⎧⎨⎩
1, if p > 3/2,

ln(1/s), if p = 3/2,

s(2p−3)/(2−p), if p < 3/2,
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for s ∈ (0,1/2) and for an appropriate constant k′′
p > 0 depending only on p ∈ (1,2). It is not

difficult to check that as s → 0+, we have

s2(p−1) �

⎧⎪⎨⎪⎩
s2, if p > 3/2,

s2 ln(1/s), if p = 3/2,

s2s(2p−3)/(2−p), if p < 3/2.

It follows that for any p ∈ (1,2), we can find a constant k′(p,A) > 0, depending only on p ∈
(1,2) and A > 0, such that∫

T

J3(y)ν(dy) ≤ k′(p,A)s2(p−1)

∫
T

f 2(x)μβ(dx).

This ends the proof of the estimate (3.35). �

3.4. Estimate of L∗
α,β[1] in the cases p > 2

This situation is simpler than the one treated in the previous subsection and is similar to the
case p = 2, because for y ∈ T fixed and s ≥ 0 small enough, the mapping z defined in (3.16) is
injective when p > 2. Again for any fixed y ∈ T and s ≥ 0, the definition (3.2) has to be replaced
by (3.15), namely,

∀x ∈ T, Ty,sf (x) := f
(
z(x)

)
. (3.37)

With the previous subsections in mind, the computations are quite straightforward, so we will
just outline them.

The first task is to determine the adjoint T
†
y,s of Ty,s in L

2(λ). An immediate change of variable
gives that for any s ∈ (0, σ ), for any bounded and measurable function g, we have, for almost
every x ∈ T (identified with its representative in (y − π,y + π)),

T †
y,s[g](x) = 1(y,z(y))(x)ψ ′(x)g

(
ψ(x)

)
,

where σ := π2−p/(p−1) and ψ : (z(y −π), z(y +π)) → (y −π,y +π) is the inverse mapping
of z (with the slight abuses of notation: z(y −π) := x −π +πp−1s, z(y +π) := x +π −πp−1s).
The adjoint T ∗

y,s of Ty,s in L
2(μβ) is still given by (3.17). As in the previous subsections, this

operator is bounded in L
2(μβ). It follows, if ν admits a continuous density with respect to λ and

at least for α > 0 and β ≥ 0 such that s := (p/2)αβ ∈ [0, σ ), that the adjoint L∗
α,β of Lα,β in

L
2(μβ) is defined on D. In particular, we can consider L∗

α,β1, which is given, for almost every
x ∈ T, by

L∗
α,β1(x) = β2

2

(
U ′

p(x)
)2 − β

2
U ′′

p(x) + pβ

2s

(∫
T ∗

y,s[1](x)ν(dy) − 1

)
. (3.38)

From this formula, we deduce the following.
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Proposition 3.4. Assume that ν admits a density with respect to λ satisfying (3.5). Then there
exists a constant C(A,p) > 0, only depending on A > 0 and p > 2, such that for any β ≥ 1 and
α ∈ (0, σ/(pβ2)), we have∥∥L∗

α,β1
∥∥∞ ≤ C(A,p)max

(
αβ4, αaβ1+a

)
.

Proof. The arguments are similar to those of the case J5 in the proof of Proposition 3.3, but are
less involved, because the omnipresent term 1 − s(p − 1)(ψ(x) − y)p−2 is now easy to bound:
for any s ∈ [0, σ/2], we have for any y ∈ T and x ∈ (z(y − π), z(y + π)),

1
2 ≤ 1 − (p − 1)

∣∣ψ(x) − y
∣∣p−2

s ≤ 1.

In particular, we have under these conditions,

ψ ′(x) = 1

1 − (p − 1)|ψ(x) − y|p−2s
∈ [1,2].

Following the arguments of the previous subsection, one finds a constant K(p,A), depending
only on p > 2 and A > 0, such that for any β ≥ 1, s ∈ [0, σ/(2β)] and x ∈ (z(y − π), z(y + π)),∣∣ψ ′+(x) − 1 − (p − 1)

∣∣ψ+(x) − y
∣∣p−2

s
∣∣ ≤ K(p,A)s2,∣∣exp

(
β
[
Up(x) − Up

(
ψ+(x)

)]) − 1 + β sign(x − y)U ′
p(x)|x − y|p−1s

∣∣ ≤ K(p,A)β2s2.

This bound enables us to approximate T ∗
α,β1(x) − 1 up to a term Op,A(β2s2) (recall that this

designates a quantity which is bounded by an expression of the form K ′(p,A)β2s2 for a constant
K ′(p,A) > 0 depending on p > 2 and A > 0), by(

(p − 1)
∣∣ψ+(x) − y

∣∣p−2 − β sign(x − y)U ′
p(x)|x − y|p−1)s.

Next, we consider

J := {
y ∈ T : x ∈ (

z(y − π), z(y + π)
)}

(3.39)
= T \ [

x′ − sπp−1, x′ + sπp−1],
in order to decompose

pβ

2s

∫
T

T ∗
y,s[1](x) − 1ν(dy)

(3.40)

= pβ

2s

∫
J

T ∗
y,s[1](x) − 1ν(dy) − pβ

2s
ν
([

x′ − sπp−1, x′ + sπp−1]).
According to the previous estimate, up to a term Op,A(β3s2) the first integral is equal to

p(p − 1)β

2

∫
J

dp−2(y, x)ν(dy) − pβ2

2
U ′

p(x)

∫
J

sign(x − y)dp−1(x, y)ν(dy).
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In view of (3.39), up to an additional term Op,A(β2s), we can replace J in the above integrals
by T. Thus putting together (3.38) and (3.40) with (3.19) and (3.20) (which are also valid here),
it remains to estimate

pβ

2

∣∣∣∣πp−2ν
(
x′) − 1

s
ν
[
x′ − sπp−1, x′ + sπp−1]∣∣∣∣

and this is easily done through the assumption (3.5). �

We finish this subsection with the equivalent of Lemma 3.4.

Lemma 3.11. For p > 2, there exists a constant k(p) > 0, depending only on p > 2, such that
for any s ∈ (0, σ ), with σ := π2−p/(p − 1), and β ≥ 1 with βs ≤ 1, we have, for any y ∈ T and
f ∈ C1(T),∫

B(y,π−sπp−1)

(
T ∗

y,s[gy](x) − gy(x)
)2

μβ(dx) ≤ k(p)s2β2
(∫

(∂f )2 dμβ +
∫

f 2 dμβ

)
,

where T ∗
y,s is the adjoint operator of Ty,s in L

2(μβ) and where for any fixed y ∈ T,

∀x ∈ T \ {
y ′}, gy(x) := f (x)dp−1(x, y)γ̇ (x, y,0).

Proof. We only sketch the arguments, which are just an adaptation of those of the proof of
Lemma 3.4. Again it is sufficient to deal with the case y = 0, which is removed from the notation,
and consequently with the function g(x) = − sign(x)|x|p−1f (x). As seen previously in this
subsection, we have for s ∈ (0, σ ) and x ∈ (−π,π),

T ∗
s [g](x) = 1(−π+sπp−1,π−sπp−1)(x) exp

(
β
[
Up(x) − Up

(
ψ(x)

)])
ψ ′(x)g

(
ψ(x)

)
,

where ψ is the inverse mapping of (−π,π) � x �→ x − sign(x)|x|p−1. Recall that for x ∈ (−π +
sπp−1,π − sπp−1),

ψ ′(x) = 1

1 − (p − 1)|ψ(x)|p−2s
∈ [1,2]. (3.41)

Considering the decomposition

T ∗
s [g](x) − g(x) = (

exp
(
β
[
Up(x) − Up

(
ψ(x)

)]) − 1
)
ψ ′(x)g

(
ψ(x)

)
+ ψ ′(x)

(
g
(
ψ(x)

) − g(x)
) + (

ψ ′(x) − 1
)
g(x),

we are led, after integration with respect to 1(−π+sπp−1,π−sπp−1)(x)μβ(dx), to computations
similar to those of Sections 3.1 and 3.3, and indeed simpler than in the latter one, due to the
boundedness property described in (3.41). �

Let us summarize the Propositions 3.1, 3.2, 3.3 and 3.4 of the previous subsections into the
statement.
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Proposition 3.5. Assume that (3.5) is satisfied and for p ≥ 1, consider the constant a(p) > 0
defined in (1.5). Then there exists two constants σ(p) ∈ (0,1/2) and C(A,p) > 0, depending
only on the quantities inside the parentheses, such that for any α > 0 and β > 1 such that αβ <

σ(p), we have √
μβ

[(
L∗

α,β1
)2] ≤ C(A,p)αa(p)β4.

Despite this bound is very rough, since we have replaced an essential norm by a L
2 norm,

it will be sufficient in the next section, when αa(p)β4 is small, as a measure of the discrepancy
between μβ and the invariant measure for Lα,β .

4. Proof of convergence

This is the main part of the paper: we are going to prove Theorem 1.1 by the investigation of the
evolution of a L

2 type functional.
On T consider the algorithm X := (Xt )t≥0 described in the Introduction. We require that the

underlying probability measure ν admits a density with respect to λ which is Hölder contin-
uous: a ∈ (0,1] and A > 0 are constants such that (3.5) is satisfied. For the time being, the
schemes α : R+ → R

∗+ and β : R+ → R+ are assumed to be, respectively, continuous and con-
tinuously differentiable. Only later on, in Proposition 4.3, will we present the conditions insuring
the wanted convergence (1.4). On the initial distribution m0, the last ingredient necessary to
specify the law of X, no hypothesis is made. We also denote mt the law of Xt , for any t > 0.
From the lemmas given in the Appendix, we have that mt admits a C1 density with respect to λ,
which is equally written mt . As it was mentioned in the previous section, we want to compare
these temporal marginal laws with the corresponding instantaneous Gibbs measures, which were
defined in (2.2) with respect to the potential Up given in (1.1). A convenient way to quantify
this discrepancy is to consider the variance of the density of mt with respect to μβt under the
probability measure μβt :

∀t > 0, It :=
∫ (

mt

μβt

− 1

)2

dμβt . (4.1)

Our goal here is to derive a differential inequality satisfied by this quantity, which implies its
convergence to zero under appropriate conditions on the schemes α and β . More precisely, our
purpose is to obtain the following.

Proposition 4.1. There exists two constants c1(p,A), c2(p,A) > 0, depending on p ≥ 1 and
A > 0, and a constant ς(p) ∈ (0,1/2), depending on p ≥ 1, such that for any t > 0 with βt ≥ 1
and 0 < αtβ

2
t ≤ ς(p), we have

I ′
t ≤ −c1(p,A)

(
β−3

t exp
(−b(Up)βt

) − α
ã(p)
t β3

t − ∣∣β ′
t

∣∣)It + c2(p,A)
(
α

a(p)
t β4

t + ∣∣β ′
t

∣∣)√It ,
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where b(Up) was defined in (1.6), a(p) in Proposition 3.5 and

ã(p) :=
{

1, if p = 1 or p ≥ 3/2,

2(p − 1), if p ∈ (1,3/2).

At least formally, there is no difficulty to differentiate the quantity It with respect to the time
t > 0. But we postpone the rigorous justification of the following computations to the end of the
Appendix, where the regularity of the temporal marginal laws is discussed in detail. Thus, we get
at any time t > 0,

I ′
t = 2

∫ (
mt

μβt

− 1

)
∂tmt

μβt

dμβt − 2
∫ (

mt

μβt

− 1

)
mt

μβt

∂t ln(μβt ) dμβt

+
∫ (

mt

μβt

− 1

)2

∂t ln(μβt ) dμβt

= 2
∫ (

mt

μβt

− 1

)
∂tmt dλ −

∫ (
mt

μβt

− 1

)2

∂t ln(μβt ) dμβt − 2
∫ (

mt

μβt

− 1

)
∂t ln(μβt ) dμβt

≤ 2
∫ (

mt

μβt

− 1

)
∂tmt dλ + ∥∥∂t ln(μβt )

∥∥∞

(∫ (
mt

μβt

− 1

)2

dμβt + 2
∫ ∣∣∣∣ mt

μβt

− 1

∣∣∣∣dμβt

)
≤ 2

∫ (
mt

μβt

− 1

)
∂tmt dλ + ∥∥∂t ln(μβt )

∥∥∞(It + 2
√

It ),

where we used the Cauchy–Schwarz inequality. The last term is easy to deal with.

Lemma 4.1. For any t ≥ 0, we have∥∥∂t ln(μβt )
∥∥∞ ≤ πp

∣∣β ′
t

∣∣.
Proof. Since for any t ≥ 0, we have

∀x ∈ T, ln(μβt ) = −βtUp(x) − ln

(∫
exp

(−βtUp(y)
)
λ(dy)

)
,

it appears that

∀x ∈ T, ∂t ln(μβt ) = β ′
t

∫
Up(y) − Up(x)μβt (dy),

so that ∥∥∂t ln(μβt )
∥∥∞ ≤ osc(Up)

∣∣β ′
t

∣∣.
The bound osc(Up) ≤ πp is an immediate consequence of the definition (1.1) of Up and of the
fact that the (intrinsic) diameter of T is π . �
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Denote for any t > 0, ft := mt/μβt . If this function was to be C2, we would get, by the
martingale problem satisfied by the law of X, that∫ (

mt

μβt

− 1

)
∂tmt dλ =

∫
Lαt ,βt [ft − 1]dmt

=
∫

Lαt ,βt [ft − 1]ft dμβt ,

where Lαt ,βt , described in the previous section, is the instantaneous generator at time t ≥ 0 of X.
The interest of the estimate of Proposition 3.5 comes from the decomposition of the previous
term into ∫

Lαt ,βt [ft − 1](ft − 1) dμβt +
∫

Lαt ,βt [ft − 1]dμβt

=
∫

Lαt ,βt [ft − 1](ft − 1) dμβt +
∫

(ft − 1)L∗
αt ,βt

[1]dμβt

≤
∫

Lαt ,βt [ft − 1](ft − 1) dμβt + √
It

√
μβt

[(
L∗

αt ,βt
[1])2]

.

It follows that to prove Proposition 4.1, it remains to treat the first term in the above right-hand
side. A first step is the following.

Lemma 4.2. There exist a constant c3(p,A) > 0, depending on p ≥ 1 and A > 0 and a constant
σ̃ (p) ∈ (0,1/2), such that for any α > 0 and β ≥ 1 such that αβ2 ≤ σ̃ (p), we have, for any
f ∈ C2(T),∫

Lα,β [f − 1](f − 1) dμβ

≤ −
(

1

2
− c3(p,A)αã(p)β3

)∫
(∂f )2 dμβ + c3(p,A)αã(p)β3

∫
(f − 1)2 dμβ,

where ã(p) is defined in Proposition 4.1.

Proof. For any α > 0 and β ≥ 0, we begin by decomposing the generator Lα,β into

Lα,β = Lβ + Rα,β, (4.2)

where Lβ := (∂2 − βU ′
p∂)/2 was defined in (2.1) (recall that U ′

p is well-defined, since ν has no
atom) and where Rα,β is the remaining operator. An immediate integration by parts leads to∫

Lβ [f − 1](f − 1) dμβ = −1

2

∫ (
∂(f − 1)

)2
dμβ

= −1

2

∫
(∂f )2 dμβ.
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Thus, our main task is to find constants c3(p,A) > 0 and σ̃ (p) ∈ (0,1/2) such that for any α > 0
and β ≥ 1 with αβ2 ≤ σ̃ (p), we have, for any f ∈ C2(T),∣∣∣∣∫ Rα,β [f − 1](f − 1) dμβ

∣∣∣∣ ≤ c3(p,A)αã(p)β3
(∫

(∂f )2 dμβ +
∫

(f − 1)2 dμβ

)
. (4.3)

By definition, we have for any f ∈ C2(T) (but what follows is valid for f ∈ C1(T)),

Rα,β [f ](x) = 1

α

∫
f

(
γ
(
x, y, (p/2)αβdp−1(x, y)

)) − f (x)ν(dy) + β

2
U ′

p(x)f ′(x)

∀x ∈ T.

To evaluate this quantity, on one hand, recall that we have for any x ∈ T,

U ′
p(x) = −p

∫
T

dp−1(x, y)γ̇ (x, y,0)ν(dy)

and on the other hand, write that for any x ∈ T and y ∈ T \ {x},
f

(
γ
(
x, y, (p/2)αβdp−1(x, y)

)) − f (x)

= p

2
αβ

∫ 1

0
f ′(γ (

x, y, (p/2)αβd(x, y)u
))

dp−1(x, y)γ̇ (x, y,0) du.

Writing s := (p/2)αβ and considering again the operators introduced in (3.15) (now for any
p ≥ 1), it follows that∫

Rα,β [f − 1](f − 1) dμβ

= pβ

2

∫ 1

0
du

∫
ν(dy)

∫
μβ(dx)

(
Ty,su

[
f ′](x) − f ′(x)

)(
f (x) − 1

)
dp−1(x, y)γ̇ (x, y,0)

= pβ

2

∫ 1

0
du

∫
ν(dy)

∫
μβ(dx)

(
Ty,su

[
f ′](x) − f ′(x)

)
gy(x),

where for any fixed y ∈ T,

∀x ∈ T \ {y}, gy(x) := (
f (x) − 1

)
dp−1(x, y)γ̇ (x, y,0) (4.4)

(with, e.g., the convention that gy(y
′) := 0). Let us also fix the variable u ∈ [0,1] for a while.

We begin by considering the case where p ≥ 2. By definition of T ∗
y,su (discussed in Section 3),

we have∫ (
Ty,su

[
f ′](x) − f ′(x)

)
gy(x)μβ(dx) =

∫
f ′(x)

(
T ∗

y,su[gy](x) − gy(x)
)
μβ(dx)

(4.5)
= I1(y,u) + I2(y,u),
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where for any y ∈ T,

I1(y,u) :=
∫

B(y,π−suπp−1)

f ′(x)
(
T ∗

y,su[gy](x) − gy(x)
)
μβ(dx),

(4.6)

I2(y,u) := −
∫

B(y′,suπp−1)

f ′(x)gy(x)μβ(dx)

(recall from Sections 3.1 and 3.4 that for any measurable function g, T ∗
y,s[g] vanishes on

B(y′, suπp−1)). The first integral is treated through the Cauchy–Schwarz inequality,

∣∣I1(y,u)
∣∣ ≤

√∫ (
f ′)2

dμβ

√∫
B(y,π−suπp−1)

(
T ∗

y,su[gy] − gy

)2
μβ

and Lemmas 3.4 and 3.11, at least if sβ > 0 is smaller than a certain constant σ̃ (p) ∈ (0, /12). It
follows that for a universal constant k > 0, we have∫

T×[0,1]
∣∣I1(y,u)

∣∣ν(dy)du ≤ ks2β2
(∫

(∂f )2 dμβ +
∫

(f − 1)2 dμβ

)∫ 1

0
u2 du

= k

2
s2β2

(∫
(∂f )2 dμβ +

∫
f 2 dμβ

)
≤ k

4
sβ

(∫
(∂f )2 dμβ +

∫
f 2 dμβ

)
,

bound going in the direction of (4.3).
Next, we turn to the integral I2(y,u). We cannot deal with it uniformly over y ∈ T but we

get a convenient bound by integrating it with respect to ν(dy). Recalling that under the assump-
tion (3.5) the density of ν with respect to λ is bounded by 1 + Aπ , it appears that∫ ∣∣I2(y,u)

∣∣ν(dy) ≤ 1 + Aπ

2π

∫ π

−π

∣∣I2(y,u)
∣∣dy

≤ 1 + Aπ

2π

∫
T

dy

∫
B(y′,suπp−1)

∣∣f ′(x)
∣∣∣∣gy(x)

∣∣μβ(dx)

(4.7)

≤ 1 + Aπ

2
πp−2

∫
T

μβ(dx)
∣∣f ′(x)

∣∣∣∣f (x) − 1
∣∣ ∫

B(x′,suπp−1)

1dy

= (1 + Aπ)π2p−3su

∫
T

∣∣f ′∣∣|f − 1|dμβ.

The Cauchy–Schwarz inequality and integration with respect to 1[0,1](u) du lead again to a
bound contributing to (4.3).

It is time to consider the cases where p ∈ [1,2). We will rather decompose the left-hand side of
(4.5) into three parts. Let us extend the notation ũ± := y ± (su)1/(2−p) from Section 3.3 to all p ∈
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[1,2). Next, we modify the definition (4.4) by introducing g̃y(x) := 1[y−π,̃u−]�[̃u+,y+π](x)gy(x).
Then we write∫ (

Ty,su

[
f ′](x) − f ′(x)

)
gy(x)μβ(dx) = Ĩ1(y,u) + I2(y,u) + I3(y,u),

where

Ĩ1(y,u) :=
∫

B(y,π−suπp−1)

f ′(x)
(
T ∗

y,su [̃gy](x) − gy(x)
)
μβ(dx),

I2(y,u) := −
∫

B(y′,suπp−1)

f ′(x)gy(x)μβ(dx),

I3(y,u) :=
∫

[̃u− ,̃u+]
Ty,su

[
f ′](x)gy(x)μβ(dx).

The treatment of Ĩ1(y,u) is similar to that of I1(y,u), with Lemmas 3.7 and 3.10 (where a
preliminary integration with respect to ν(dy) was necessary) replacing Lemmas 3.4 and 3.11.

Concerning I2(y,u), it is bounded in the same manner as the corresponding quantity defined
in (4.6).

It seems that the most convenient way to deal with I3(y,u) is to first integrate it with respect
to 1[0,1](u)ν(dy)du. Taking into account that ‖ν‖∞ ≤ (1 + Aπ) and using Cauchy–Schwarz
inequality, we get∫ ∣∣I3(y,u)

∣∣1[0,1](u)ν(y) du

≤ 1 + Aπ

2π

∫ ∣∣I3(y,u)
∣∣1[0,1](u) dy du

≤ 1 + Aπ

2π

√∫
1[̃u− ,̃u+](x)

(
Ty,su

[
f ′](x)

)21[0,1](u)μβ(dx)dy du

×
√∫

1[̃u− ,̃u+](x)g2
y(x)1[0,1](u)μβ(dx)dy du.

The last factor can be rewritten under the form√∫
μβ(dx)

∫
1[x−s1/(2−p),x+s1/(2−p)](y)g2

y(x) dy

≤ πp−1

√∫
μβ(dx)

(
f (x) − 1

)2
∫ x+s1/(2−p)

x−s1/(2−p)

dy (4.8)

= π
√

2s1/(2−p)

√∫
(f − 1)2 dμβ.
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So it remains to consider the term∫
1[̃u− ,̃u+](x)

(
Ty,su

[
f ′](x)

)21[0,1](u)μβ(dx)dy du

(4.9)

= 1

2π

∫
1[̃u− ,̃u+](x)Ty,su

[(
f ′)2]

(x)μβ(x)1[0,1](u) dy du

(where as a function, μβ stands for the density of the measure μβ with respect to λ). Re-
member that for any measurable function h, we have Ty,su[h](x) := h(x + sudp−1(x, y)×
γ̇ (x, y,0)). For x ∈ [̃u−, ũ+], we have d(x, y) ≤ (su)1/(2−p) and it follows that d(x, x +
sudp−1(x, y)γ̇ (x, y,0)) ≤ (su)(3−p)/(2−p). Taking into account that ‖U ′

p‖∞ ≤ πp−1, we can
then a universal constant k > 0 such that for 0 ≤ sβ ≤ σ̃ (p) (for an appropriate constant
σ̃ (p) ∈ (0,1/2)) and x ∈ T, we have μβ(x)/μβ(x + sudp−1(x, y)γ̇ (x, y,0)) ≤ k. This leads
us to consider the function h defined by

∀x ∈ T, h(x) := (
f ′(x)

)2
μβ(x), (4.10)

since up to a universal constant, we have to find an upper bound of∫
1[̃u− ,̃u+](x)Ty,su[h](x)1[0,1](u) dx dydu

≤
∫ π

−π

dx

∫ x+s1/(2−p)

x−s1/(2−p)

dy

∫ x+sdp−1(x,y)

x−sdp−1(x,y)

h(v)
dv

sdp−1(x, y)

=
∫
T

H(v)h(v) dv,

where for any fixed v ∈ T,

H(v) := 1

s

∫
T2

1{d(x,y)≤s1/(2−p),d(v,x)≤sdp−1(x,y)}
dx dy

dp−1(x, y)
.

Let us furthermore fix x ∈ T,

1

s

∫
T

1{(d(v,x)/s)1/(p−1)≤d(x,y)≤s1/(2−p)}
dy

dp−1(x, y)
= 2

(2 − p)s

(
s −

(
d(v, x)

s

)(2−p)/(p−1))
+
.

The integration of the last right-hand side with respect to dx is bounded above by

2

2 − p

∫ (s1/(2−p))p−1s

0
dx = 2

2 − p
s1/(2−p).

Thus, we have found a constant k(p) > 0 depending on p ∈ [1,2) such that (4.9) is bounded
above by k(p)s1/(2−p) under our conditions on s > 0 and β ≥ 1. In conjunction with (4.8) and
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definition (4.10), it enables to conclude to the existence of a constant k(p,A) > 0, depending on
p ∈ [1,2) and A > 0, such that∫ ∣∣I3(y,u)

∣∣1[0,1](u)ν(y) du ≤ k(p,A)s1/(2−p)

√∫
(f − 1)2 dμβ

√∫ (
f ′)2

dμβ.

Putting together all these estimates and taking into account that β ≥ 1, 0 < sβ ≤ σ̃ (p) and
s2(p−1) ≥ s1/(2−p), it appears that∣∣∣∣∫

T×[0,1]
Ĩ1(y,u) + I2(y,u) + I3(y,u)ν(dy)du

∣∣∣∣
≤ k′(p,A)

{
βs, if p = 1 or p ≥ 2,

βs + s2(p−1), if p ∈ (1,2)

≤ 2k′(p,A)

{
βs, if p = 1 or p ≥ 3/2,

βs + s2(p−1), if p ∈ (1,3/2),

for another constant k′(p,A) > 0, depending on p ∈ [1,2) and A > 0. This finishes the proof
of (4.3). �

To conclude the proof of Proposition 4.1, we must be able to compare, for any β ≥ 0 and
any f ∈ C1(T), the energy μβ [(∂f )2] and the variance Var(f,μβ). This task was already done
by [14], let us recall their result.

Proposition 4.2. Let Up be a C1 function on a compact Riemannian manifold M of dimension
m ≥ 1. Let b(Up) ≥ 0 be the associated constant as in (1.6). For any β ≥ 0, consider the Gibbs
measure μβ given in (2.2). Then there exists a constant CM > 0, depending only on M , such that
the following Poincaré inequalities are satisfied:

∀β ≥ 0,∀f ∈ C1(M), Var(f,μβ) ≤ CM

[
1 ∨ (

β
∥∥U ′

p

∥∥∞
)]5m−2 exp

(
b(Up)β

)
μβ

[|∇f |2].
We can now come back to the study of the evolution of the quantity It = Var(ft ,μβt ), for

t > 0. Indeed applying Lemma 4.2 and Proposition 4.2 with α = αt , β = βt and f = ft , we get
at any time t > 0 such that βt ≥ 1 and αtβ

2
t ≤ ς(p),∫

Lαt ,βt [ft − 1](ft − 1) dμβt

≤ −c4β
−3
t exp

(−b(Up)βt

)(
1 − 2c3(p,A)α

ã(p)
t β3

t

)
It + c3(p,A)α

ã(p)
t β3

t It

≤ −(
c4β

−3
t exp

(−b(Up)βt

) − c5(p,A)α
ã(p)
t β3

t

)
It ,

where c4 := (16π3CT)−1 and c5(p,A) := c3(p,A)(1 + 2c4).
Taking into account Lemma 4.1, the computations preceding Lemma 4.2 and Proposition 3.5,

one can find constants c1(p,A), c2(p,A) > 0 and ς(p) ∈ (0,1/2) such that Proposition 4.1 is
satisfied.
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This result leads immediately to conditions insuring the convergence toward 0 of the quantity
It for large times t > 0.

Proposition 4.3. Let α : R+ → R
∗+ and β : R+ → R+ be schemes as at the beginning of this

section and assume

lim
t→+∞βt = +∞,∫ +∞

0
(1 ∨ βt )

−3 exp
(−b(Up)βt

)
dt = +∞

and that for large times t > 0,

max
{
α

a(p)
t β4

t , α
ã(p)
t β3

t ,
∣∣β ′

t

∣∣} � exp
(−b(Up)βt

)
(where a(p) > 0 and ã(p) > 0 are defined in Propositions 3.5 and 4.1). Then we are assured of

lim
t→+∞ It = 0.

Proof. The differential equation of Proposition 4.1 can be rewritten under the form

F ′
t ≤ −ηtFt + εt , (4.11)

where for any t > 0,

Ft := √
It ,

ηt := c1(p,A)
(
β−3

t exp
(−b(Up)βt

) − α
ã(p)
t β3

t − ∣∣β ′
t

∣∣)/2,

εt := c2(p,A)
(
α

a(p)
t β4

t + ∣∣β ′
t

∣∣)/2.

The assumptions of the above proposition imply that for t ≥ 0 large enough, βt ≥ 1 and αtβ
2
t ≤

ς(p), where ς(p) ∈ (0,1/2) is as in Proposition 4.1. This ensures that there exists T > 0 such
that (4.11) is satisfied for any t ≥ T (and also FT < +∞). We deduce that for any t ≥ T ,

Ft ≤ FT exp

(
−

∫ t

T

ηs ds

)
+

∫ t

T

εs exp

(
−

∫ t

s

ηu du

)
ds. (4.12)

It appears that limt→+∞ Ft = 0 as soon as∫ +∞

T

ηs ds = +∞,

lim
t→+∞ εt /ηt = 0.

The above assumptions were chosen to ensure these properties. �
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In particular, remarking that a(p) ≤ ã(p) for any p ≥ 1, the schemes given in (1.3) satisfy the
hypotheses of the previous proposition, so that under the conditions of Theorem 1.1, we get

lim
t→+∞ It = 0.

Let us deduce (1.4) for any neighborhood N of the set Mp of the global minima of Up . From
Cauchy–Schwarz inequality we have for any t > 0,

‖mt − μβt ‖tv =
∫

|ft − 1|μβt

≤ √
It .

An equivalent definition of the total variation norm states that

‖mt − μβt ‖tv = 2 max
A∈T

∣∣mt(A) − μβt (A)
∣∣,

where T is the Borelian σ -algebra of T. It follows that (1.4) reduces to

lim
β→+∞μβ(N ) = 1,

for any neighborhood N of Mp , property which is immediate from the definition (2.2) of the
Gibbs measures μβ for β ≥ 0. This finishes the proof of Theorem 1.1.

Remark 4.1. Under mild conditions, the results of [17] enable to go further, because he identifies
the weak limit μ∞ of the Gibbs measures μβ as β goes to +∞. Thus, if one knows, as above,
that

lim
t→+∞‖mt − μβt ‖tv = 0,

then one gets that mt also weakly converges toward μ∞ for large times t > 0. The weight

given by μ∞ to a point x ∈ Mp is inversely related to the value of
√

U ′′
p(x) and in this respect

Lemma 3.1 is useful (still assuming that ν admits a continuous density).
First note that for any x ∈ Mp , we have U ′′

p(x) ≥ 0, since x is a global minima of Up , and by
consequence ν(x′) ≤ 1. Next, assume that we have for any x ∈ Mp , ν(x′) < 1. It follows that
Mp is discrete and by consequence finite, since T is compact. This property was already noted
by [15], among other features of intrinsic means on the circle. Then we deduce from [17] that

μ∞ = 1

Z

∑
x∈Mp

1√
1 − ν(x′)

δx,

where Z := ∑
x∈Mp

(1 − ν(x′))−1/2 is the normalizing factor.
In this situation, L(Xt ) concentrates for large times t > 0 on all the p-means of ν. Thus, to find

all of them with an important probability, one should sample independently several trajectories
of X, for example, starting from a fixed point X0 ∈ T.
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Remark 4.2. Similarly to the approach presented, for instance, in [22,25], we could have studied
the evolution of (Et )t>0, which are the relative entropies of the time marginal laws with respect
to the corresponding instantaneous Gibbs measures, namely

∀t > 0, Et :=
∫

ln

(
mt

μβt

)
dmt .

To get a differential inequality satisfied by these functionals, the spectral gap estimate of [14]
recalled in Proposition 4.2 must be replaced by the corresponding logarithmic Sobolev constant
estimate, which is proven in the same article of [14].

5. Extension to all probability measures ν

Our main task here is to adapt the computations of the two previous sections in order to prove
Theorem 1.2. As in the statement of this result, it is better for simplicity of the exposition to
restrict ourselves to the important and illustrative case p = 2; the general situation will be alluded
to in the last remark of this section.

We begin by remarking that the algorithm Z described in the Introduction evolves similarly to
the process X, if we allow the probability measure ν to depend on time. More precisely, for any
κ > 0, consider the probability measure νκ given by

∀z ∈ M, νκ(dz) :=
∫

ν(dy)Ky,κ (dz), (5.1)

where the kernel on M , (y, dz) �→ Ky,κ(dz) was defined before the statement of Theorem 1.2.
For α > 0, β ≥ 0 and κ > 0, let us denote by Lα,β,κ the generator defined in (2.4), where ν is
replaced by νκ . Then the law of Z is solution of the time-inhomogeneous martingale problem
associated to the family of generators (Lαt ,βt ,κt )t≥0. This observation leads us to introduce the
potentials

∀κ > 0,∀x ∈ M, U2,κ (x) :=
∫

d2(x, y)νκ(dy),

as well as the associated Gibbs measures:

∀β ≥ 0,∀κ > 0, μβ,κ (dx) := Z−1
β,κ exp

(−βU2,κ (x)
)
λ(dx),

where Zβ,κ is the renormalization constant.
Denote by mt the law of Zt for any t ≥ 0. The proof of Theorem 1.2 is then similar to that of

Theorem 1.1 and relies on the investigation of the evolution of

∀t > 0, It :=
∫ (

mt

μβt ,κt

− 1

)2

dμβt ,κt , (5.2)

which play the role of the quantities defined in (4.1).
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While the above program was presented for a general compact Riemannian manifold M , we
again restrict ourselves to the situation M = T.

We first need some estimates on the probability measures νκ , for κ > 0.

Lemma 5.1. For any κ > 0, νκ admits a density with respect to λ, still denoted νκ . Furthermore
we have, for any κ > 1/π ,

‖νκ‖∞ ≤ 2πκ,

‖∂νκ‖∞ ≤ 2πκ2,

where ∂νκ stands for the weak derivative (so that the last norm ‖ · ‖∞ is the essential supremum
norm with respect to λ).

Proof. When M = T, for any κ > 0, the kernel K·,κ (·) corresponds to the rolling around T of
the kernel defined on R by (y, dz) �→ κ(1 − κ|z− y|)+ dz. In particular for any y ∈ T, Ky,κ(·) is
absolutely continuous with respect to λ and (5.1) shows that the same is true for νκ . If furthermore
κ > 1/π , from this definition we can write for any z ∈ T,

νκ(dz) = κ

(∫ z+1/κ

z−1/κ

(
1 − κd(y, z)

)
+ν(dy)

)
dz,

namely, almost everywhere with respect to λ(dz),

νκ(z) = 2πκ

∫ z+1/κ

z−1/κ

(
1 − κd(y, z)

)
+ν(dy)

≤ 2πκ

∫ z+1/κ

z−1/κ

ν(dy)

≤ 2πκ.

Next, for almost every x, y ∈ T, we have

∣∣νκ(x) − νκ(y)
∣∣ ≤ 2πκ

∫
T

∣∣(1 − κd(x, z)
)
+ − (

1 − κd(y, z)
)
+
∣∣ν(dz)

≤ 2πκ

∫
T

∣∣1 − κd(x, z) − 1 + κd(y, z)
∣∣ν(dz)

≤ 2πκ2
∫
T

∣∣d(x, z) − d(y, z)
∣∣ν(dz)

≤ 2πκ2d(x, y).

This proves the second bound. �
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An immediate consequence of the last bound is that for any x ∈ T, the map (1/π,+∞) � κ �→
U2,κ (x) is weakly differentiable and for almost every κ > 1/π , |∂κU2,κ (x)| ≤ 2π4κ2; but one
can do better.

Lemma 5.2. For any x ∈ T and any κ > 1/π , we have

∣∣∂κU2,κ (x)
∣∣ ≤ 3π3

κ
.

Proof. It is better to come back to the definition of νκ , to get, for x ∈ T and κ > 1/π (where ∂κ

stands for weak derivative):

∂κU2,κ (x) = ∂κ

(
2πκ

∫
λ(dy)d2(x, y)

∫
T

(
1 − κd(y, z)

)
+ν(dz)

)
= 2π

∫
λ(dy)d2(x, y)

∫
T

ν(dz)
(
1 − κd(y, z)

)
+

− 2πκ

∫
λ(dy)d2(x, y)

∫ y−1/κ

y−1/κ

ν(dz)d(y, z).

The first term of the right-hand side is equal to U2,κ (x)/κ and is bounded by ‖U2,κ‖∞/κ ≤ π2/κ .
In absolute value, the second term can be written under the form

2πκ

∫
ν(dz)

∫ z−1/κ

z−1/κ

λ(dy)d2(x, y)d(y, z) ≤ 2π3κ

∫
ν(dz)

∫ z−1/κ

z−1/κ

λ(dy)|y − z|

= 2π3

κ
. �

The improvement of the estimate of the previous lemma with respect to the one given before
its statement is important for us, since it enables to obtain that if (βt )t≥0 and (κt )t≥0 are C1

schemes, then we have

∀t ≥ 0,
∥∥∂t ln(μβt ,κt )

∥∥∞ ≤ π2
∣∣β ′

t

∣∣ + 3π3βt

∣∣(ln(κt )
)′∣∣. (5.3)

This bound replaces that of Lemma 4.1 in the present context. Note that for the schemes we
have in mind and up to mild logarithmic corrections, we recover a bound of order 1/(1 + t) for
‖∂t ln(μβt ,κt )‖∞, which is compatible with our purposes.

In the same spirit, even if this cannot be deduced directly from Lemma 5.2, we have the
following.

Lemma 5.3. As κ goes to infinity, U2,κ converges uniformly toward U2. In particular, if b(·) is
the functional defined in (1.6), then we have

lim
κ→+∞b(U2,κ ) = b(U2).
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Proof. Since ‖∂U2,κ‖∞ ≤ 2π , for any κ > 0, it appears that (U2,κ )κ>0 is an equicontinuous
family of mappings. It is besides clear that νκ weakly converges toward ν as κ goes to infinity,
so that U2,κ (x) converges toward U2(x) for any fixed x ∈ T. Compactness of T and the Arzelà–
Ascoli theorem then enable to conclude to the uniform of U2,κ toward U2 as κ goes to infinity.
The second assertion of the lemma is an immediate consequence of this convergence. �

Consider for the evolution of the inverse temperature the scheme

∀t ≥ 0, βt := b−1 ln(1 + t),

where b > b(U2) and denote ρ := (1 + b(U2)/b)/2 < 1. Assume that the scheme (κt )t≥0 is
such that limt→+∞ κt = +∞. Then from the above lemma and Proposition 4.2 (recall that
‖∂U2,κ‖∞ ≤ 2π , for any κ > 0), there exists a time T > 0 such that for any t ≥ T ,

∀f ∈ C1(T),
2

(1 + t)ρ
Var(f,μβt ,κt ) ≤ μβt ,κt

[
(∂f )2]. (5.4)

Like (5.3), this crucial estimate for the investigation of the evolution of the quantities (5.2) still
does not explain the requirement that k ∈ (0,1/2) in Theorem 1.2. Its justification comes from
the next result, which replaces Proposition 3.1 in the present situation.

Proposition 5.1. For α > 0, β ≥ 0 and κ > 0, let L∗
α,β,κ be the adjoint operator of Lα,β,κ in

L
2(μβ,κ ). There exists a constant C1 > 0 such that for any β ≥ 1, κ ≥ 1 and α ∈ (0, (2β)−1 ∧

(β3(β + κ))−1/2), we have ∥∥L∗
α,β,κ1

∥∥∞ ≤ C1αβ2(β2 + κ2).
Proof. It is sufficient to replace U2 by U2,κ in the proofs of Section 3, in particular note that
(3.4) still holds. From Lemma 3.1 and the first part of Lemma 5.1, it appears that (3.6) has to be
replaced by

∀κ ≥ 1,
∥∥U ′′

2,κ

∥∥∞ ≤ 4πκ.

Instead of (3.7), we deduce that for any x, y ∈ T and α, β and κ as in the statement of the
proposition,

exp

(
β

[
U2,κ (x) − U2,κ

(
x − αβ

1 − αβ
(y − x)

)])
= 1 + αβ2

1 − αβ
U ′

2,κ (x)(y − x) +O
(
α2β3(β + κ)

)
.

Keeping following the computations of the same proof, we end up with

L∗
α,β,κ1(x) = β

1 − αβ

1

2παβ

∫ x′+αβπ

x′−αβπ

νκ

(
x′) − νκ(y) dy +O

(
αβ3(β + κ)

)
.
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To estimate the last integral, we resort to the second part of Lemma 5.1: we get∣∣∣∣∫ x′+αβπ

x′−αβπ

νκ

(
x′) − νκ(y) dy

∣∣∣∣ ≤ 2πκ2
∫ x′+αβπ

x′−αβπ

∣∣x′ − y
∣∣dy = 2πκ2(αβπ)2.

This leads to the announced bound. �

Similar arguments transform Lemma 4.2 into the following.

Lemma 5.4. There exists a constant C2 > 0, such that for any α > 0, β ≥ 1 and κ ≥ 1 with
αβ2 ≤ 1/2, we have, for any f ∈ C2(T),∫

Lα,β,κ [f − 1](f − 1) dμβ ≤ −
(

1

2
− C2αβ2(β + κ)

)∫
(∂f )2 dμβ

+ C2αβ2(β + κ)

∫
(f − 1)2 dμβ.

Proof. The modifications with respect to the proof of Lemma 4.2 are very limited: one just needs
to take into account the bounds ‖U ′

p,κ‖∞ ≤ 2π and ‖νκ‖∞ ≤ 2πκ for κ ≥ 1. Indeed, there are
two main changes:

• in (4.2), where the remaining operator has to be defined by

Rα,β,κ := Lα,β,κ − 1
2

(
∂2 − βU ′

p,κ∂
)
,

• in (4.7), the factor 1 + Aπ must be replaced by 2πκ , by virtue of the first estimate of
Lemma 5.1. It leads to the supplementary term αβ2κ in the bound of the above lemma. �

All the ingredients are collected together to get a differential inequality satisfied by (It )≥0.
More precisely, under the requirement that (5.4) is true for t ≥ T > 0, as well as βt ≥ 1, κt ≥ 1
and αtβ

2
t

√
κt ≤ 1/2, we get that there exists a constant C3 > 0 such that

∀t ≥ T , I ′
t ≤ −ηtIt + εt

√
It ,

where for any t ≥ T ,

ηt := 1

(1 + t)ρ
− C3

(
αtβ

2
t (βt + κt ) + ∣∣β ′

t

∣∣ + βt

∣∣(ln(κt )
)′∣∣),

εt := C3
(
αtβ

2
t

(
β2

t + κ2
t

) + ∣∣β ′
t

∣∣ + βt

∣∣(ln(κt )
)′∣∣).

Under the assumptions of Theorem 1.2 (already partially used to ensure the validity of (5.4) for
some ρ ∈ (0,1)), it appears that as t goes to infinity,

ηt ∼ 1

(1 + t)ρ
,

εt = O
(

1

1 + t

)
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and this is sufficient to ensure that

lim
t→+∞It = 0.

The proof of Theorem 1.2 finishes by the arguments given at the end of Section 4.

Remark 5.1. As it was mentioned at the end of the Introduction, if one does not want to waste
rapidly the sample (Yn)n∈N (especially if it is not infinite. . .), one should take the exponent c the
smallest possible. From our assumptions, we necessarily have c > 1. But the limit case c = 1
can be attained: the above proof shows that the convergence of Theorem 1.2 is also valid for the
schemes:

∀t ≥ 0,

⎧⎪⎨⎪⎩
αt := (1 + t)−1,

βt := b−1 ln(1 + t),

κt := ln(2 + t).

The drawback is that ν is not rapidly approached by νκt as t goes to infinity and this may slow
down the convergence of the algorithm toward N . Indeed, from the previous computations, it
appears that the law of Zt is rather close to the set of global minima of U2,κt .

Remark 5.2. The cases p = 1 and p ≥ 2 can be treated in the same manner, but for p ∈ (1,2),
one must follow the dependence on A of the constants in the proof of Lemma 3.10. In the end
it only leads to supplementary factors of κ , so that Theorem 1.2 is satisfied with a sufficiently
large constant c, depending on p ≥ 1 and on the exponent k entering in the definition of the
scheme (κt )t≥0. But before going further in the direction of this generalization, it would be more
rewarding to first check if the dependence on p of ap in Theorem 1.1 is just technical or really
necessary.

Appendix: Regularity of temporal marginal laws

Our goal is to see that at positive times, the marginal laws of the considered algorithms are
absolutely continuous and that if furthermore ν � λ, then the corresponding densities belong to
C1(T). We will also check that this is sufficient to justify the computations made in Section 4.

Let X be the process described in the Introduction, for simplicity on T, but the following
arguments could be extended to general connected and compact Riemannian manifolds. We are
going to use the probabilistic construction of X to obtain regularity results on mt , which as usual
stands for the law of Xt , for any t ≥ 0. So for fixed t > 0, let Tt be the largest jump time of N(α) in
the interval [0, t], with the convention that Tt = 0 if there is no jump time in this interval. Denote
by ξt the law of (Tt ,XTt ) on [0, t] × T. Furthermore, let Ps(x, dy) be the law at time s ≥ 0 of
the Brownian motion on T, starting at x ∈ T. From the construction given in the Introduction, we
have for any t > 0,

mt(dx) =
∫

[0,t]×T

ξt (ds, dz)Pt−s(z, dx). (A.1)



2296 M. Arnaudon and L. Miclo

An immediate consequence is the following.

Lemma A.1. Let t > 0 be fixed. About the measurable evolutions α : R+ → R
∗+ and β : R+ →

R+, only assume that infs∈[0,t] αs > 0. Then, whatever the probability measure ν entering in the
definition of X, we have that mt is absolutely continuous.

Proof. By the hypothesis on α, 0 is the unique atom of ξ(·,T), the distribution of Tt (its mass
is ξt ({0},T) = exp(− ∫ t

0 1/αs ds)) and ξ(·,T) admits a bounded density on (0, t]. Since further-
more for any s > 0 and z ∈ T, Ps(z, ·) is absolutely continuous, the same is true for mt due
to (A.1). �

To go further, we need to strengthen the assumption on ν.

Lemma A.2. In addition to the hypotheses of the previous lemma, assume that ν admits a
bounded density and that infs∈[0,t] βs > 0. Then for any t > 0, the density of mt belongs to C1(T).

Proof. We begin by recalling a few bounds on the heat kernels Ps(x, dy), for s > 0 and x ∈ T.
We have already mentioned they admit a density, namely they can be written under the form
ps(x, y) dy. Since the Brownian motion on T is just the rolling up of the usual Brownian motion
on R, we have for any x ∈ T,

∀y ∈ (x − π,x + π], ps(x, y) =
∑
n∈Z

exp(−(y − x + 2πn)2/(2s))√
2πs

. (A.2)

From a general bound due to [16], we deduce that there exists a constant C0 > 0 such that for
any s > 0 and y ∈ (x − π,x + π], we have

∣∣∂yps(x, y)
∣∣ ≤ C0

(
d(x, y)

s
+ 1√

s

)
ps(x, y).

To get an upper bound on ps(x, y) = ps(0, y − x), consider separately in (A.2) the sums of
n ∈ Zσ and n ∈ Z−σ \ {0}, where σ ∈ {−,+} is the sign of y − x. It appears that for s ∈ (0, t],

ps(x, y) ≤ 2
∑
n∈Zσ

exp(−(y − x + 2πn)2/(2s))√
2πs

≤ 2
exp(−(y − x)2/(2s))√

2πs

∑
n∈Z+

exp
(−(2πn)2/(2s)

)
≤ C1(t)

exp(−d2(x, y)/(2s))√
2πs

,
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where C1(t) := ∑
n∈Z+ exp(−2(πn)2/t). Taking into account (A.1) and Lemma A.1, if we were

allowed to differentiate under the sign integral, we would get for any x ∈ T,

∂xmt (x) =
∫

[0,t]×T

ξt (ds, dz)∂xpt−s(z, x) (A.3)

(where the left-hand side stands for the density of mt with respect to 2πλ). Unfortunately, the
usual conditions do not apply here, so it is better to consider the approximation of the density mt

by mε,t , where for ε ∈ (0, t),

∀x ∈ T, mt,ε(x) :=
∫

[0,t−ε]×T

ξt (ds, dz)pt−s(z, x).

There is no difficulty in differentiating this expression under the sign sum and in the end it
appears to be smooth in x. So to get the announced result, it is sufficient to see that ∂xmε,t (x)

converges to the right-hand side of (A.3), uniformly in x ∈ T as ε goes to 0+. Let us prove the
stronger convergence

lim
ε→0+

sup
x∈T

∫
[t−ε,t]×T

ξt (ds, dz)
∣∣∂xpt−s(z, x)

∣∣ = 0.

The assumptions that infs∈[0,t] αsβs > 0 and that ν admits a bounded density imply that the latter
is equally true for ξt (s, ·), the regular conditional law of XTt knowing that Tt = s, for any s > 0.
We can even find C2(t) > 0 such that ξt (s, dz) ≤ C2(t) dz, uniformly over s ∈ (0, t] (but a priori
C2(t) may depend on t > 0 through infs∈[0,t] αsβs ). In the proof of Lemma A.1, we have already
noticed that there exists C3(t) > 0 such that ξt (ds,T) ≤ C3(t) ds, for s �= 0. It follows that for
ε ∈ (0, t),∫

[t−ε,t]×T

ξt (ds, dz)
∣∣∂xpt−s(z, x)

∣∣
≤ C0C1(t)C2(t)C3(t)

∫
[t−ε,t]

ds

∫
T

dz

(
d(z, x)

(t − s)3/2
+ 1

t − s

)
exp(−d2(z, x)/(2(t − s)))√

2π

= 2C0C1(t)C2(t)C3(t)

∫ π

0
dz

∫ ε

0
ds

(
z

s3/2
+ 1

s

)
exp(−z2/(2s))√

2π
.

This bound no longer depends on x and to compute the latter integral, consider the change of
variable u = z2/s, z being fixed:∫ π

0
dz

∫ ε

0
ds

(
z

s3/2
+ 1

s

)
exp

(−z2/(2s)
) =

∫ π

0
dz

∫ +∞

z2/ε

du

(
1√
u

+ u

)
exp(−u/2).

We conclude by remarking that by the dominated convergence theorem, the latter term goes to
zero with ε. �
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Remark A.3. More generally, but still under the assumption that ν admits a bounded density,
the density mt is C1 at some time t > 0, if we can find ε ∈ (0, t) such that infs∈[t−ε,t] αs > 0 and
infs∈[t−ε,t] βs > 0. This comes from the above proof or can be deduced directly from Lemma A.2
and the Markov property of X.

The same arguments cannot be used to prove that for t > 0, the density of mt belongs to C2(T).
A priori, this is annoying, since in Section 4, to study the evolution of the quantity It defined
in (4.1), we had to differentiate it with respect to t > 0 and the computations were justified
only if the densities mt were C2. The classical way go around this apparent difficulty is to use a
mollifier.

Let ρ be a smooth non-negative function on R whose support is included in [−1,1] and satis-
fying

∫
R

ρ(y)dy = 1. For any δ ∈ (0,1), define

∀t ≥ 0,∀x ∈ T, m
(δ)
t (x) := 1

δ

∫
R

mt(x + y)ρ

(
y

δ

)
dy

(where functions on T are naturally identified with 2π -periodic functions on R). These functions
are smooth and what is even more important for Section 4, the mapping R∗+ × T � (t, x) �→
∂2
xm

(δ)
t (x) is continuous. Furthermore, the m

(δ)
t are densities of probability measures on T. More

precisely, for any t ≥ 0, m
(δ)
t is the density of L(Xt ) when L(X0) = m

(δ)
0 , as a consequence of

the linearity of the underlying evolution equation (i.e., ∀t ≥ 0, ∂tmt = mtLαt ,βt , in the sense of
distributions). Thus, the computations of Section 4 are justified if we replace there (mt )t>0 by
(m

(δ)
t )t>0, for any fixed δ ∈ (0,1). In particular, the inequality (4.12) is satisfied for (m

(δ)
t )t>0

instead of (mt )t>0. It remains to let δ go to 0+ to see that the same bound is true for the flow
(mt )t>0. This proves Theorem 1.1 for general initial distributions m0, for instance, Dirac masses.
In fact, one could pass to the limit δ → 0+ before (4.12), for instance, already in Proposition 4.1,
to see that it is also valid.
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