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766 M. ARNAUDON ET AL.

RÉSUMÉ. – On étudie la régularité par changement de probabilité
éventuellement singulier, du point de départ d’une martingale continue
à valeurs dans une variété et de valeur terminale donnée. On prouve en
particulier que si la martingale est à valeurs dans un petit voisinage d’un
point et si le logarithme stochastiqueM du changement de probabilité
est dans un espace de HardyHr pourr < 2 suffisamment grand, alors le
point de départ est différentiable enM = 0. On donne en application
une nouvelle preuve du résultat suivant obtenu par Kendall (1994)
avec des méthodes de couplage : les applications continues et finement
harmoniques entre variétés sontC∞. On donne une expression de leur
différentielle qui ne fait pas intervenir de dérivée. Elsevier, Paris

1. INTRODUCTION

Throughout this article(Ω, (Ft )t>0,F,P) is a filtered probability
space satisfying the usual conditions, such that all real-valued martingales
have a continuous version. Examples of such filtrations include Brownian
filtrations, Walsh filtrations, or filtrations(Ft )t>0 such that there exists
a continuous martingale which has the(Ft )-predictable representation
property. For simplicity we assume that the probability of elements inF0

is 0 or 1.
Let W be a smooth manifold and∇ a torsion-free connection onW .

For the sake of calculations we choose occasionally a Riemannian metric
g = 〈·|·〉 onW with corresponding Riemannian distanceδ. However, in
general we do not assume that∇ is a metric connection to this or any
other Riemannian metric. Only when we refer explicitly to Riemannian
manifolds we always work with the Levi-Civita connection and the given
metricg.

Recall that aW -valued continuous semimartingale(Yt)t>0 is a martin-
gale, if for each real-valuedC2 functionf onW ,

f (Y )− f (Y0)−
∫
0

∇ df (Y ) dY ⊗ dY

is a real-valued local martingale.
If Y is a semimartingale taking values inW , we denote byd∇Y its

Itô differential (see [7]). There is a canonical decompositiond∇Y =
Annales de l’Institut Henri Poincaré- Probabilités et Statistiques



MANIFOLD-VALUED MARTINGALES 767

dmY + d̃∇Y into a martingale partdmY and a finite variation part̃d∇Y .
The latter is also called the drift. Denote byΓ i

jk the Christoffel symbols
of the connection. In local coordinates and in terms of the decomposition
dY i = dNi + dAi , whereNi is a local martingale andAi a process of
finite variation, we have:

d∇Y =
(
dY i + 1

2
Γ i
jk(Y ) d〈Y j, Y k〉

)
∂

∂xi
,

and so

dmY = dNi ∂

∂xi
and d̃∇Y =

(
dAi + 1

2
Γ i
jk(Y ) d〈Y j, Y k〉

)
∂

∂xi
. (1.1)

Formally,d∇Y•, dmY• andd̃∇Y• are tangent vectors at the pointY•.
For a real-valued local martingaleM let Y•(M), if it exists, be aW -

valued semimartingale with drift−dM dY (M) converging almost surely
as t tends to infinity to a fixedW -valued random variableL. Here
dM dY (M) is the “vector”d〈M,Y (M)i〉 ∂

∂xi
. The principal objective of

this article is to find conditions onW under which the mapM 7→ Y0(M)

is Hölder continuous or differentiable. The main results (Proposition 3.3
and Theorem 3.5) show that if the processes take their values in a
compact convex subsetV of W with p-convex geometry, then the
distance betweenY0(0) and Y0(M) is less thanC‖〈M,M〉1/2∞ ‖1/pr for
some constantC depending only onV and r > 1. Moreover, ifW
is sufficiently small andM varies in some Hardy spaceHr for r < 2
sufficiently large, thenM 7→ Y0(M) is differentiable atM ≡ 0 and a
formula for its derivative can be given in terms of the geodesic transport
aboveY•(0).

Note that ifM is a real-valued martingale, there exist stopping timesT

arbitrarily large in probability such thatE(M)T is a uniformly integrable
martingale. The semimartingaleY (M) stopped atT is aPM,T -martingale
wherePM,T = E(M)T ·P. Hence, Proposition 3.3 and Theorem 3.5 cover
regularity results for starting points of martingales under an equivalent
change of probability.

The notion of p-convexity plays a fundamental role. We prove
(Proposition 2.4) that for everyp > 1 and everyx ∈ W there exist a
neighbourhood ofx with p-convex geometry.

In order to establish the differentiability of the mapM 7→ Y0(M), we
also need (Proposition 2.7) that for everyλ > 0 and everyx ∈W there
exist a neighbourhoodV of x such thatLλ-norms of the inverse of the
geodesic transport along anyV -valued martingale are finite.
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768 M. ARNAUDON ET AL.

In Section 4 the results and estimates from Section 3 are applied to give
an alternative proof of Kendall’s result that continuous finely harmonic
maps from a Riemannian manifold to a manifold with a connection, i.e.,
maps which send Brownian motions to local martingales, are smooth.

2. PRELIMINARIES

Let V be a subset ofW . A V -valued martingaleY is said to have
exponential moments of orderλg (or simply of orderλwhen∇ is a metric
connection tog) if

E
[
exp

(
λ

∞∫
0

〈dY | dY 〉
)]

<∞. (2.1)

We use the notation〈Y | Y 〉 for
∫ •

0 〈dY | dY 〉. By Proposition 2.1.2 of [11]
and the observation that there exists locally a function with negative
Hessian, we have:

LEMMA 2.1. –Letλ > 0 andx ∈W . There exists a neighbourhoodV
of x such that everyV -valued martingaleY has exponential moment of
orderλg.

Remark2.2. – Another consequence of [11], Proposition 2.1.2, is that
if a compact subsetV ofW has a neighbourhood which carries a function
with positive Hessian, then there existsλ > 0 such that allV -valued
martingales have exponential moments of orderλg. In particular, the
quadratic variation ofV -valued martingales has moments of any order,
which are bounded by a constant depending only on the order and onV .

DEFINITION 2.3. – (1) Let p > 1. We say thatW has p-convex
geometry if there exist aC2 function onW with positive Hessian, a
convex functionψ :W × W → R+, smooth outside the diagonal and
vanishing precisely on the diagonal, i.e.,ψ−1({0}) = {(x, x), x ∈ W },
and a Riemannian distanceδ on W such thatcδp 6 ψ 6 Cδp with
constants0< c < C.

A subset ofW is said to havep-convex geometry if there exists an open
neighbourhood ofW with p-convex geometry.

(2) A subsetV ofW is called convex if it has an open neighbourhood
V ′ such that any two pointsx, y in V ′ are connected by one and only
one geodesic inV ′, which depends smoothly onx andy, and entirely lies
in V if x andy are inV .
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Note p-convex geometry impliesp′-convex geometry forp′ > p: if
ψ satisfies the conditions in the definition forp-convex geometry, then
ψp′/p satisfies the conditions forp′-convex geometry.

Simply connected Riemannian manifolds with nonpositive curvature
have 1-convex geometry. In general, a manifold does not havep-convex
geometry. However, we have the following local result.

PROPOSITION 2.4. –For every x ∈ W and p > 1 there exists a
neighbourhood ofx with p-convex geometry.

Proposition 2.4 is a direct corollary of a more general result on totally
geodesic submanifolds (compare with [7] 4.59):

PROPOSITION 2.5. –Let W̃ be a totally geodesic submanifold ofW .
For every pointa ∈ W̃ andp > 1, there exist a neighbourhoodU of a
in W , a convex functionf onU such thatf 2/p is smooth and constants
0< c < C such thatcδp(·, W̃ )6 f 6 Cδp(·, W̃ ) onU .

Proof. –Forp > 2 the result is proved in [7, 4.59]. Let us assume 1<

p < 2. As in [7, 4.59], we choose coordinates(x1, . . . , xq, yq+1, . . . , yn)

vanishing together with the Christoffel symbols ata such that the
equation forW̃ is {x1 = · · · = xq = 0}. We use Latin letters for indices
ranging from 1 toq and Greek letters for indices ranging fromq+1 ton.
Definef = hp/2 where

h
(
x1, . . . , xq, yq+1, . . . , yn

)= 1

2

(
ε2+‖y‖2)‖x‖2.

Clearlyf vanishes precisely oñW and possibly by reducingU it satisfies

cδp
(·, W̃ )6 f 6Cδp(·, W̃ )

for some 0< c < C.
It is shown in [7] thath is convex forU small andε > 0 close to 0. It

suffices to prove thatf is convex, and sincep > 1, it is enough to check
this on{h > 0}. But on{h > 0},

∇ df = p
2
hp/2−1

(
∇ dh− 2− p

2h
dh⊗ dh

)
.

Hence, forf to be convex, it is sufficient to verify that on{h > 0} the
bilinear formb defined by
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b=∇ dh− 2− p
2h

dh⊗ dh

is positive. As in [7] it suffices to check the matrix

H =


1

ε2
bij

1

ε‖x‖ biα
1

ε‖x‖ bαi
1

‖x‖2 bαβ


to be positive on{h > 0}. But a Taylor expansion of the entries reveals

H =


δij − (2− p) x

ixj

‖x‖2 + o(1) o(1)

o(1) δαβ −
ε2∑

i Γ
i
αβx

i

‖x‖2 + o(1)

 .
It is easy to see that the 0-order term of the matrix with Latin index entries
is greater than(p − 1) Id. Regards the matrix with Greek index entries,
sinceW̃ is totally geodesic theΓ i

αβ vanish onW̃ , hence|Γ i
αβ | 6 C‖x‖,

and for ε sufficiently small, the 0-order term of this matrix is greater
thanε′ Id with ε′ > 0. This implies thatf is convex in a neighbourhood
of a. 2

In the case of Riemannian manifolds, Picard establishes a relation
betweenp, the radius of small geodesic balls and an upper bound for
the sectional curvatures ([12], proof of Proposition 3.6): if all sectional
curvatures are bounded above byK > 0, then a regular geodesic ball with
radius smaller than π

2
√
Kq

, q > 1, hasp-convex geometry wherep is the
conjugate exponent toq, and martingales with values in this geodesic ball
have exponential moments of orderKq/2.

The torsion-free connection∇ onW induces a torsion-free connection
∇c onTW called the complete lift of∇ and characterized by the fact that
its geodesics are the Jacobi fields for∇ (see [15]), or by the fact that the
∇c-martingales inTW are exactly the derivatives of∇-martingales inW
depending differentiably on a parameter (see [2]).

The connection∇ induces another connection∇h on TW , called the
horizontal lift of ∇, which in general has nonvanishing torsion and is
characterized by the fact that ifJ is aTW -valued semimartingale with
projectionX = π(J ) ∈ W , then the parallel transport//t0,tw along J
(with respect to∇h) of a vectorw=wvert⊕whor in TJ0TW = VJ0 ⊕HJ0

is given by
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//h0,tw= vJ (t) ◦ //0,t ◦ (vJ0)
−1(wvert)⊕ h∇J (t) ◦ //0,t ◦

(
h∇J0

)−1(
whor),

where v :π∗TW → V and h∇ :π∗TW → H are, respectively, the
vertical and horizontal lift,//0,• the parallel transport alongX with
respect to∇.

DEFINITION 2.6. –Let Y be a semimartingale taking values inW .
The geodesic transportΘ0,s, 0 6 s (also called deformed parallel
transport or Dohrn–Guerra parallel translation) is the linear map from
TY0W to TYsW such that

(i) Θ0,0 is the identity map onTY0W ,
(ii) for w ∈ TY0W the Itô differentiald∇cΘ0,•(w) is the horizontal lift

of d∇Y aboveΘ0,•(w).
We defineΘs,t =Θ0,tΘ

−1
0,s for 06 s 6 t .

Let J be aTW -valued semimartingale which projects to a semimartin-
galeY onW . By [2] we have

d
(
Θ−1

0,•J
)=Θ−1

0,•
(
//0,•d

(
//−1

0,•J
)+ 1

2R(J, dY ) dY
)

=Θ−1
0,•
(
v−1
J

(
d∇

h

J
)vert+ 1

2R(J, dY ) dY
)
,

whereR is the curvature tensor associated to∇. Using the relation
betweend∇c andd∇h in Lemma 4.1 of [2], we get

d
(
Θ−1

0,•J
)=Θ−1

0,•
(
v−1
J

(
d∇

c

J
)vert)

. (2.2)

In local coordinates, adopting the summation convention, Eq. (2.2) can
be written as

d
(
Θ−1

0,•
)
i
= (Θ−1

0,•
)
j

(
Γ
j
im(Y ) dY

m

+ 1
2

(
DiΓ

j
k`(Y )+ Γ j

im(Y )Γ
m
k`(Y )

)
d〈Y k, Y `〉). (2.3)

In the case whenY is a martingale, we are able to establish the
existence of moments for the norm ofΘ−1•,• alongY :

PROPOSITION 2.7. –Let x ∈W andλ > 0. There exists a neighbour-
hoodV of x such that for everyV -valued martingaleY , the geodesic
transport aboveY satisfies

E
[

sup
06s6t<∞

∥∥Θ−1
s,t

∥∥λ]<∞, (2.4)

where the norm‖Θ−1
s,t ‖ is defined via the metricg.
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Proof. –TakeV included in the domain of a local chart. SinceY is a
martingale, we have

dYm = dMm − 1
2 Γ

m
k` (Y ) d

〈
Y k, Y `

〉
in local coordinates, whereMm is a local martingale. Hence by (2.3),

d
(
Θ−1

0,•
)
i
= (Θ−1

0,•
)
j

(
Γ
j
im(Y ) dM

m + 1
2DiΓ

j
k`(Y ) d

〈
Y k, Y `

〉)
. (2.5)

This equation, together with Lemma 2.1 and [10], Theorem 3.4.6, gives
the result for an appropriately chosenV depending onλ. 2

In the case of the Levi-Civita connection on a Riemannian manifold,
the situation is simpler because‖Θs,t(w)‖2, 06 s 6 t , is a process of
finite variation, and one can give a more quantitative result.

PROPOSITION 2.8. –LetW be a Riemannian manifold and fory ∈W
let K(y) = sup(K ′(y),0) (respectively−k(y) = inf(−k′(y),0)) where
K ′(y) (respectively−k′(y)) is the supremum(respectively the infimum)
of the sectional curvatures aty. Then, for anyW -valued semimartingale
Y , the geodesic transportΘ along Y can be estimated in terms of the
quadratic variation〈Y | Y 〉 of Y as follows:

‖Θs,t‖6 exp

(
1

2

t∫
s

k(Y )〈dY | dY 〉
)
, 06 s 6 t, (2.6)

and

∥∥Θ−1
s,t

∥∥6 exp

(
1

2

t∫
s

K(Y )〈dY | dY 〉
)
, 06 s 6 t. (2.7)

Proof. –By means of [2], see (4.30), we have for anyFs-measurable
random variablew in TYsW

d‖Θs,•w‖2=−〈Θs,•w,R(Θs,•w,dY ) dY
〉
.

Now with the bounds for the sectional curvatures we obtain

k(Y )‖Θs,•w‖2〈dY | dY 〉> d‖Θs,•w‖2>−K(Y )‖Θs,•w‖2〈dY | dY 〉.

Hence

Annales de l’Institut Henri Poincaré- Probabilités et Statistiques
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‖w‖2 exp

( t∫
s

k(Y )〈dY | dY 〉
)
> ‖Θs,tw‖2

> ‖w‖2 exp

(
−

t∫
s

K(Y )〈dY | dY 〉
)

which gives the claim. 2
WhenY is Brownian motion the bounds in (2.6) and (2.7) can be given

in terms of Ricci curvature as well known.

COROLLARY 2.9. –LetW be a Riemannian manifold andV a regular
geodesic ball inW with radius smaller thanπ/(2

√
Kq), q > 1, where

K > 0 is an upper bound for the sectional curvatures. Then, with respect
to the Levi-Civita connection, the geodesic transport along anyV -valued
martingale satisfies

sup
06s6t<∞

∥∥Θ−1
s,t

∥∥ ∈Lq. (2.8)

Proof. –Just note that aV -valued martingale has exponential moments
of orderKq/2 by [12], and use (2.7).2

3. VARIATIONS OF MARTINGALES WITH PRESCRIBED
TERMINAL VALUE BY A CHANGE OF PROBABILITY

In the sequel we will say that a process has a random variableL

as terminal valueif it convergesP-a.s. toL as t tends to infinity. The
aim of this section is to establish regularity results for initial values
of martingales with prescribed terminal value when the probability is
allowed to vary. To formulate the main result of this article we first give
some definitions and lemmas.

LEMMA AND DEFINITION 3.1. –LetM be a real-valued local mar-
tingale andZ aW -valued semimartingale. The following two conditions
are equivalent:

(i) The semimartingaleZ has drift −dM dZ where dM dZ is
the “vector” with the componentsd〈M,Zi〉 in a system of
coordinates.

(ii) The stopped semimartingaleZT is aQT -martingale whereQT =
E(MT ) · P for every stopping timeT such that the stochastic
exponentialE(MT ) is a uniformly integrable martingale.
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If one of these conditions is satisfied we say thatZ is aQ-martingale
with Q = E(M) · P even if there is no probability equivalent toP such
that Z is a martingale, and the notionQ = E(M) · P will mean that
a probability Q is defined on the subalgebrasFT where it coincides
withQT .

Proof. –Since there exists a sequence(Tn)n∈N converging almost
surely to infinity such that for everyn ∈ N, E(MTn) is a uniformly in-
tegrable martingale, one can assume thatE(M) is a uniformly integrable
martingale and hence thatQ= E(M) · P defines a probability equivalent
to P. Now, as a consequence of Girsanov’s theorem, we have that the re-
lation between the drift ofZ with respect toP (denoted byd̃∇P Z) and with
respect toQ (denoted byd̃∇QZ) is

d̃∇QZ = d̃∇P Z+ dM dZ.

This gives the equivalence of (i) and (ii).2
LEMMA 3.2. –LetM be a real-valued martingale such that〈M,M〉∞

6 1 a.s. Assume thatW has convex geometry and letZ be a semimartin-
gale with values in a compact subsetV of W and with drift−dZ dM .
Then, for everyr > 0, there exists a constantC(V, r) > 0 such that∥∥〈Z|Z〉1/2∞ ∥∥r 6 C(V, r). (3.1)

Proof. –SetG= E(M). Then

∥∥〈Z | Z〉1/2∞ ∥∥r 6 E[ 1

G∞

]1/(2r)

E
[
G∞〈Z | Z〉r∞

]1/(2r)
.

Now by Lemma 3.1,Z is aG ·P-martingale. SinceW has convex geom-
etry one can construct a function with positive Hessian on a neighbour-
hood ofV . Hence according to Remark 2.2, quadratic variations of mar-
tingales inV have uniformly boundedLs norms fors > 0. This reveals
the last term to be bounded. The second term is obviously bounded (e.g.,
[13, Proposition 1.15, p. 318]).2

For r > 1 let Hr be the set of real valued martingalesM such that
M0= 0 and

‖M‖Hr :=
∥∥〈M,M〉1/2∞ ∥∥r

is finite. Then(Hr,‖ · ‖Hr ) is a Banach space.
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In the sequel, ifS is a real valued process andτ a stopping time, we
write S∗τ for sups6τ Ss .

PROPOSITION 3.3. –LetV be a compact convex subset ofW with p-
convex geometry for somep > 1. Let r ∈ ]1,2[ and r ′ ∈ ]1, r[. There
exists a constantC > 0 depending only onδ, V , r and r ′ such that for
everyM ∈Hr , if Y is theV -valued martingale with terminal valueL and
Z a V -valued semimartingale with drift−dZ dM and terminal valueL,
then ∥∥δ(Y,Z)∗∞∥∥r ′p 6 C‖M‖1/pHr . (3.2)

Proof. –Let ψ :V × V → R+ be the convex function appearing in
the definition ofp-convex geometry. Thenaδp 6 ψ 6 Aδp on V with
constants 0< a <A. The required estimate (3.2) is equivalent to∥∥ψ(Y,Z)∗∞∥∥r ′ 6C‖M‖Hr . (3.3)

Let τ = inf{t > 0, 〈M,M〉t > 1} (with inf ∅ =∞). We have∥∥ψ(Y,Z)∗∞∥∥r ′ 6 ∥∥ψ(Y,Z)∗τ1{τ=∞} +ψ(Y,Z)∗∞1{τ<∞}
∥∥
r ′

6
∥∥ψ(Y,Z)∗τ∥∥r ′ + sup

V×V
ψ
∥∥1{〈M,M〉∞>1}

∥∥
r ′

6
∥∥ψ(Y,Z)∗τ∥∥r ′ + sup

V×V
ψ
∥∥M∥∥

Hr′
.

Hence we are left to bound the first term on the right. First, Itô’s formula
for convex functions yields

ψ(Yτ ,Zτ )

> ψ(Ys∧τ ,Zs∧τ )+
τ∫

s∧τ
1{ψ(Y,Z) 6=0}

〈
dψ,d∇⊗∇(Y,Z)

〉

+ 1

2

τ∫
s∧τ

1{ψ(Y,Z) 6=0}(∇ ⊗∇) dψ d(Y,Z)⊗ d(Y,Z). (3.4)

Sinceψ is convex and the drift of(Y,Z)with respect toP is (0,−dM dZ),
we have

ψ(Ys∧τ ,Zs∧τ )6E
[
ψ(Yτ ,Zτ )

∣∣Fs∧τ ]
+E

[ τ∫
s∧τ

∣∣〈dψ, (0, dM dZ
)〉∣∣ ∣∣∣Fs∧τ

]
. (3.5)
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We get for the first term on the right-hand side of (3.5)∥∥E[ψ(Yτ ,Zτ ) ∣∣F•∧τ ]∗∥∥r ′ 6 supψ
∥∥P[〈M,M〉∞ > 1

∣∣F•∧τ ]∗∥∥r ′
6 r ′

r ′ − 1
supψP

[〈M,M〉∞ > 1
]1/r ′

6 r ′

r ′ − 1
supψE

[〈M,M〉r ′/2∞ ]1/r ′
6C ′‖M‖Hr

by using successively Doob’s inequality and Bienaymé–Tchebichev
inequality. To deal with the second term in (3.5), let

Dr ′ =
∥∥∥∥∥E
[ τ∫
•∧τ

〈
dψ, (0, dM dZ)

〉 ∣∣∣F•∧τ
]∗∥∥∥∥∥

r ′
.

We use successively the fact thatψ is Lipschitz, Doob’s inequality and
Hölder inequality. Chooser1 > 1 such thatr ′r1 6 r and let r ′1 be its
conjugate number. Then

Dr ′ 6 sup|dψ |∥∥E[〈M,M〉1/2τ 〈Z |Z〉1/2τ

∣∣F•∧τ ]∗∥∥r ′
6 r ′

r ′ − 1
sup|dψ |∥∥〈M,M〉1/2τ 〈Z | Z〉1/2τ

∥∥
r ′

6 r ′

r ′ − 1
sup|dψ |∥∥〈M,M〉1/2τ

∥∥
r ′r1
∥∥〈Z | Z〉1/2τ

∥∥
r ′r ′1
.

According to Lemma 3.2 the last term is bounded. Thus, finally we get∥∥ψ(Y,Z)∗τ∥∥r ′ 6 C‖M‖Hr . 2
Let M ∈ Hr . By Y (M) we always mean a semimartingale with drift
−dM dY and terminal valueL. In the rest of this section we want to prove
differentiability of the mapM 7→ Y0(M) atM ≡ 0 in Hr . The processes
we consider live in a convex setV , and since convex sets are included in
the domain of an exponential chart, we will identifyV and its image in
such a chart.

First we need some lemmas.

LEMMA 3.4. –LetV be a compact convex subset ofW withp-convex
geometry for somep ∈ ]1,2[.

(1) Letr ∈]p+1
p
,2[. There exists a constantC > 0 depending only onV

and r such that for everyM ∈Hr , if Y andZ are as in Proposition3.3,
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then ∥∥〈Z − Y,Z− Y 〉τ∥∥16 C‖M‖
1
p
+1

Hr
(3.6)

whereτ = inf{t > 0, 〈M,M〉t > 1} (with inf ∅ =∞).
(2) Let r ′ ∈ ]1, 4p

3+p [. For all r ∈]sup(2r ′
p
, r
′(3−p)
(2−r ′)p ),2[ there exists a

constantC > 0 depending only onV , r and r ′ such that for every
M ∈Hr , ∥∥〈Z − Y,Z− Y 〉τ∥∥r ′ 6 C‖M‖2/pHr (3.7)

for all Y , Z andτ as in(1).

Proof. –In the calculations below, the elimination of the brackets ofY

andZ by taking smaller Hölder norms is done in the same way as in the
proof of Proposition 3.3 and will not again be carried out in detail. Set
α = 1/p.

(1) Using the facts thatφ = δ2 is convex and

(∇ ⊗∇) dφ((A,B), (A,B))> c ‖B −A‖2,
we obtain by Itô’s formula (3.4)∥∥〈Z − Y,Z− Y 〉τ∥∥1

6 CE
[ τ∫

0

δ(Y,Z)
∣∣dM dZ

∣∣]+CE[φ(Yτ ,Zτ )]
6 CE

[
sup
s6τ

δ(Ys,Zs)〈M,M〉1/2τ 〈Z | Z〉1/2τ

]
+CE[〈M,M〉(1+α)/2∞

]
6 C

∥∥δ(Y,Z)∗τ∥∥r ′ ∥∥〈M,M〉1/2τ

∥∥
r ′′ +C‖M‖1+αH1+α ,

with r ′ < 2p, r ′′ < 2 satisfying 1
r ′ + 1

r ′′ < 1. This gives by (3.2)

∥∥〈Z − Y,Z− Y 〉τ∥∥16 C‖M‖α+1
Hr

if sup( 1
p
+ 1, 2p

2p−1) < r < 2. This proves the first assertion of the lemma.
(2) By Itô’s formula (3.4) we have

〈Z − Y,Z− Y 〉τ 6 C
(
φ(Yτ ,Zτ )−

τ∫
0

〈
dφ,

(
d∇Y, d∇Z

)〉)
. (3.8)
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To obtain the next estimate it is useful to note that

φ(y, z)= φij (y, z)(zi − yi)(zj − yj )
where the functionsφij are smooth. Splitting the second term on the
right-hand side of (3.8) into its martingale and finite variation part and
estimating theLr norms using BDG inequalities gives∥∥〈Z − Y,Z− Y 〉τ∥∥r ′ 6C(∥∥φ(Yτ ,Zτ )∥∥r ′

+
∥∥∥sup
s6τ

δ2(Ys,Zs)
(〈Y | Y 〉1/2τ + 〈Z | Z〉1/2τ

)∥∥∥
r ′

+
∥∥∥sup
s6τ

δ(Ys,Zs)〈Z− Y,Z− Y 〉1/2τ

∥∥
r ′

+
∥∥∥sup
s6τ

δ(Ys,Zs)〈M,M〉1/2τ 〈Z | Z〉1/2τ

∥∥∥
r ′

)
,

where the single terms may be estimated with the same method as above,
using (3.2) and (3.6). Forr ′ < p and 2r ′

p
< r < 2, the first term on the

right is seen to be less thanC‖M‖2αHr (the difference here with the bound
on the first term on the right-hand side of (3.5) is that we use theLr norm
of the bracket to the power 2α). By means of (3.2) the second term is
dominated byC‖M‖2αHr for r ′ < p and 2r ′

p
< r < 2, the third term can be

estimated byC‖M‖2αHr for

r ′ <
4p

3+ p and r > sup
(

2r ′

p
,

r ′

2− r ′
3− p
p

)

(here we use (3.6), and (3.2) withp′ = 2p
3−p , together with the observation

that p-convex impliesp′-convex). Finally, the fourth term is less than
C‖M‖2αHr if

r ′ < p and r > sup
(

2pr ′

(2+ r ′)p− 2r ′
,

2r ′(2− p)
(2− r ′)p

)
(again by (3.2) now withp′ = p

2−p ). Thus, for allr, r ′ such that 1< r ′ <
4p

3+p and

sup
(

2r ′

p
,
r ′(3− p)
(2− r ′)p ,

2pr ′

(2+ r ′)p− 2r ′
,

2r ′(2− p)
(2− r ′)p

)
< r < 2,
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we have ∥∥〈Z − Y,Z− Y 〉τ∥∥r ′ 6C‖M‖2αHr . (3.9)

We conclude with the remark that if2r ′
p
< 2 then

sup
(

2pr ′

(2+ r ′)p− 2r ′
,

2r ′(2− p)
(2− r ′)p

)
<

2r ′

p
.

Note that (3.9) also holds true ifp is replaced byp′ ∈ [p,2[ andα by
α′ = 1/p′. 2

For r > 1, a subsetV in W and anF∞-measurable random variable
L taking values inV , letDL ≡DL(V, r) be the set ofM ∈Hr such that
there exists aV -valued semimartingaleY (M) with drift −dM dY (M)

and terminal valueL. Note that for compact convexV with convex
geometry,DL includes allM in Hr such thatE(M) is uniformly
integrable (see [1, Theorem 7.3]).

We are now able to prove the main result.

THEOREM 3.5. –Let x ∈ W . There existsr0 < 2 such that for every
r ∈]r0,2[ there is a compact convex neighbourhoodV of x with the
following property:

For anyF∞-measurableV -valued random variableL, the mapM 7→
Y0(M) from (DL,‖ · ‖Hr ) to V is differentiable atM ≡ 0, and the
derivative is given by

J0(M)= E
[ ∞∫

0

Θ−1
0,s dMs dYs(0)

]
,

whereΘ0,• is the geodesic transport alongY•(0).

Remark3.6. – Since a simply connected Riemannian manifold with
nonpositive sectional curvatures has 1-convex geometry, any compact
convex subsetV of it has also 1-convex geometry and hence satisfies
the conditions of Theorem 3.5.

If W is a Riemannian manifold, then we can takeV to be any regular
geodesic ball with radius smaller than a constant depending only onr

and an upper bound for the sectional curvatures. Moreover it is possible,
using Corollary 2.9, to find an explicit expression forr0.

If W is a manifold with connection, since we used Proposition 2.7 in
the proof, we cannot give an explicit expression forr0.
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Proof of Theorem 3.5. –Setα = 1/p. Letx ∈W , r ∈]1,2[ and letV be
a compact convex neighbourhood ofx with p-convex geometry for some
p > 1. We will use Propositions 2.7 and 2.4, and determine conditions
onV via the numberp and the integrability of the inverse of the geodesic
transport. The conditions onr will be determined in the proof. We
identify againV with its image in an exponential chart.

Let L be anF∞-measurableV -valued random variable andM ∈
DL\{0}. For simplicity we denote byY• = Y•(0) the continuousV -
valued martingale with terminal valueL, by Z• ≡ Y•(M) theV -valued
semimartingale with terminal valueL and drift−dM dY (M). Let J ′ be
the semimartingale given by

J ′t =
1

‖M‖Hr
exp−1

Yt
Zt ≡ 1

‖M‖Hr
exp−1

Yt
Yt (M). (3.10)

For r ′ ∈ ]1, r[, if V is sufficiently small then with the help of
Proposition 2.7 and Lemma 3.2 we can define

Jt = Jt
(

M

‖M‖Hr
)
= 1

‖M‖Hr
E
[ ∞∫
t

Θ−1
t,s dMs dYs

∣∣Ft
]

(3.11)

and |Jt | has aLr
′

norm bounded by a finite constant depending only
on V , r and r ′. The processJ is also the semimartingale inTW with
projectionY andJ∞ = 0. Its drift d̃∇cJ with respect to∇c is identical to
the vertical lift of− 1

‖M‖Hr dM dY :

d̃∇
c

J = vY•
(
− 1

‖M‖Hr
dM dY

)
. (3.12)

The latter is a consequence of [2] Theorem 4.12, which says that aTW -
valued semimartingaleJ is a ∇c-martingale if and only ifπ(J ) is a
∇-martingale andΘ−1

0,•J• is a local martingale. To prove the statement of
the theorem it is sufficient to prove thatJ ′0− J0 converges to 0 as‖M‖Hr
tends to 0.

Let T pψ denote the functionTW →R+ defined by

T pψ(w)= lim
a→0, a>0

1

ap
ψ
(
π(w),expaw

)
,
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whereψ is the convex function appearing in the definition ofp-convex
geometry. ThenT pψ is a convex function with respect to∇c and

C|w|p > ∣∣T pψ(w)∣∣> c|w|p (3.13)

for some constants 0< c < C. Hence to show thatJ ′0−J0 converges to 0
is equivalent to show thatT pψ(J ′0−J0) converges to 0. The idea is to use
the fact thatJ andJ ′ are two semimartingales with the same projection
and the same terminal value, and that they have approximatively the same
drift with respect to approximatively the same connection. Under certain
conditions we shall be able to show that their initial values are close.

Let τ = inf{t > 0, 〈M,M〉t > 1} (with inf ∅ = ∞) as before. Itô’s
formula and the convexity ofT pψ yield

T pψ(J ′0− J0)6 T pψ
(
J ′S − JS

)− S∫
0

〈
dT pψ(J ′ − J ), d∇c (J ′ − J )〉

for every stopping timeS. If p > 1 is sufficiently small, then with (3.13)
and again with the help of Proposition 2.7 we obtain that the random
variablesT pψ(J ′S − JS) are uniformly integrable. This gives, using an
increasing sequence of stopping times converging toτ ,

T pψ(J ′0− J0)6E
[
T pψ(J ′τ − Jτ )

]
+E

[ τ∫
0

∣∣〈dT pψ(J ′ − J ), d̃∇c (J ′ − J )〉∣∣], (3.14)

where d̃∇c (J ′ − J ) denotes the drift ofJ ′ − J with respect to∇c, as
defined by (1.1).

Forr ′ ∈ ]1, r[, if 1< p < r/r ′, we have by Proposition 3.3‖|J ′|∗τ‖r ′p 6
C‖M‖α−1

Hr
and as before‖ |J |∗τ‖r ′p 6 C. We get for the first term on the

right of (3.14), under the conditionp < (r+1)/2, taking the conjugater ′′
of r ′ andr ′′′ ∈ ]p− 1, r/r ′′[,

E
[
T pψ(J ′τ − Jτ )

]
6CE

[(|J ′τ |p + |Jτ |p)1{τ<∞}]
6C

∥∥∣∣J ′τ ∣∣p + |Jτ |p∥∥r ′∥∥1{τ<∞}∥∥r ′′
6C

∥∥∣∣J ′τ ∣∣p + |Jτ |p∥∥r ′E[〈M,M〉r ′′r ′′′/2∞
]1/r ′′

6C‖M‖1−p+r ′′′Hr

which goes to 0 as‖M‖Hr tends to 0.
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We are left to find a bound for the second term on the right-hand
side of (3.14). For this purpose we need to introduce a connection∇ε
approximating∇c, for which the drift ofJ ′ has a nice expression, and
the canonical involution:s : TTW→ TTW, given by s(∂1∂2α) = ∂2∂1α

for two-parameter curves(t1, t2) 7→ α(t1, t2) in W .
For ε > 0, let∇ε be the connection inTW induced from the product

connection∇ ⊗∇ in W ×W by the map

ϕε : (z, y) 7→ 1

ε
exp−1

z (y).

The drift d̃∇εJ ′ of J ′ with respect to the connection∇ε is the vertical lift
of

1

ε

(
exp−1

Y

)
∗(Z)(−dM dZ).

Takeε = ‖M‖Hr . Note that the canonical projectionπ1 : (TW,∇ε)→
(W,∇) is affine. We deduce thats(d̃∇c (J ′ − J )), s(d̃∇c J ), s(d̃∇cJ ′), and
s(d̃∇

‖M‖Hr
J ′) areTd̃∇Y TW -valued vectors, wherẽd∇cJ denotes the drift

of the Itô differential ofJ with respect to∇c. This and the equality

s
(
d̃∇

c

(J ′ − J ))= s(d̃∇cJ ′)− s(d̃∇cJ )
yield

d̃∇
c

(J ′ − J )= s
(
s
(
d̃∇

c

J ′
)− s(d̃∇cJ ))

= s
(
s
(
d̃∇
‖M‖Hr

J ′
)− s(d̃∇cJ )+ s(d̃∇cJ ′)− s(d̃∇‖M‖Hr J ′))

= s
(
s
(
d̃∇
‖M‖Hr

J ′
)− s(d̃∇cJ ))+ (d̃∇c − d̃∇‖M‖Hr )J ′, (3.15)

where the last vector has to be considered as a vertical vector above
J ′ − J .

We now estimate the last term of (3.14) using (3.15). First a calculation
in local coordinates shows that for vertical vectorsA,∣∣dT pψ(B)(A)∣∣6 C|B|p−1|A|.
Hence from Hölder’s inequality, estimate (3.2), we conclude that forr ′ >

r
r+1−p (its conjugater ′′ has to be smaller thanr

p−1 so that|J ′ − J |(p−1)r ′′

is integrable),

E
[ τ∫

0

∣∣∣∣〈dT pψ(J ′ − J ), s(s(d̃∇‖M‖Hr J ′)− s(d̃∇cJ ))〉∣∣∣∣
]
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is bounded by

C‖M‖(α−1)(p−1)
Hr

×
∥∥∥∥∥

τ∫
0

∣∣∣∣ 1

‖M‖Hr
((

exp−1
Y

)
∗(Z)(−dM dZ)− (−dM dY )

)∣∣∣∣
∥∥∥∥∥
r ′
. (3.16)

TheLr
′
norm in the last expression is less than

1

‖M‖Hr

∥∥∥∥∥
τ∫

0

∣∣(exp−1
Y

)
∗(Z)

(−dM d(Z − Y ))∣∣∥∥∥∥∥
r ′

+ 1

‖M‖Hr

∥∥∥∥∥
τ∫

0

∣∣∣((exp−1
Y

)
∗(Z)− Id

)
(−dM dY )

∣∣∣∥∥∥∥∥
r ′
.

Now, as a consequence of (3.7) (withp′ close to 2) the first term is
bounded byC‖M‖1/2

Hr
for r ′ < 16

13, and by (3.2) (withp replaced by
p

2(p−1)2 ) the second term is dominated byC‖M‖2(1−α)2/α
Hr

if r ′ < rp

2p2−3p+2.
Hence, when

r

r + 1− p < r
′ <

rp

2p2− 3p+ 2
,

(3.16) can be estimated byC‖M‖ (1−α)2/αHr
for r < 2 sufficiently large and

p > 1 sufficiently small, which goes to 0 as‖M‖Hr tends to 0.
Finally to estimate the term

E
[ τ∫

0

∣∣∣〈dT pψ(J ′ − J ), (d̃∇c − d̃∇‖M‖Hr )J ′〉∣∣∣],
we need a bound for(d̃∇c − d̃∇ε )J ′. With (1.1), we observe that(

d̃∇
c − d̃∇ε)J ′ = (d∇c − d∇ε)J ′ = bε(J ′)(dJ ′, dJ ′),

wherebε is a smooth section ofT ∗W ⊗ T ∗W . Sinceπ1 is affine for both
∇c and∇ε, bε(J ′)(dJ ′, dJ ′) is vertical. Now the relations

ϕ−1
λε (u/λ)=

(
π(u),exp(εu)

)= ϕ−1
ε (u)

and

d∇
c

λJ ′ = s λs d∇cJ ′, for λ > 0,
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yield

bε(J
′)(dJ ′, dJ ′)= sλsbλε(λ−1J ′)

(
sλ−1s(dJ ′), sλ−1s(dJ ′)

)
= λbλε(λ−1J ′)

(
sλ−1s(dJ ′), sλ−1s(dJ ′)

)
.

Moreover, on compact sets we have|bε| 6 Cε ([1], proof of Proposi-
tion 3.1). Takeλ= |J ′| andε = ‖M‖Hr . Then we get∣∣bε(J ′)(dJ ′, dJ ′)∣∣

6Cε
(
ε−2〈d(Z − Y ) | d(Z− Y )〉 + |J ′|2〈dY | dY 〉). (3.17)

With (3.2), (3.17) gives, forr ′ > r
r+1−p ,∣∣∣∣∣E

[ τ∫
0

〈
dT pψ(J ′ − J ), (d∇c − d∇‖M‖Hr )J ′〉]∣∣∣∣∣

6 C‖M‖(α−1)(p−1)+1
Hr

∥∥‖M‖−2
Hr
〈(Z − Y ) | (Z− Y )〉τ

+ (|J ′|2)∗
τ
〈Y | Y 〉τ

∥∥
r ′ .

Taking r
r+1−p < r

′ < 4p
3+p (note that r

r+1−p <
4p

3+p if and only if p < 3r
4 ),

the above quantity is, by formula (3.7), less than

C‖M‖ (α−1)(p−1)+2α−1
Hr

= C‖M‖ (α2+α−1)/α
Hr

which goes to 0 as‖M‖Hr tends to 0 forp close to 1. Together with the
convergence to 0 of (3.16), we conclude that forr < 2 sufficiently large
andp > 1 sufficiently small,M 7→ Y0(M) is differentiable atM = 0 in
Hr with derivative

J0(M)= E
[ ∞∫

0

Θ−1
0,s dMs dYs

]
. 2

4. SMOOTHNESS OF CONTINUOUS FINELY HARMONIC
MAPS

Let U andW be two manifolds with torsion-free connections∇U and
∇W , and letL be a smooth second order elliptic operator onU without
zero order term. We denote byg or 〈·|·〉 the metric generated byL and
by 2b the drift ofL with respect to∇U . In coordinates,L can be written
asgijDij + (2bk − gijΓ k

ij )Dk where(gij ) is the inverse of the metric and
Γ k
ij are the Christoffel symbols of the connection∇U .
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Recall that a smooth mapu :U → W is L-harmonic if in local
coordinates

Luγ + gijΓ γ
αβ

∂uα

∂xi

∂uβ

∂xj
= 0,

where we use Latin index inU and Greek index inW (see [4]). Smooth
L-harmonic maps are particular instances of finely harmonic maps which
are defined as follows:

DEFINITION 4.1. –A mapu :U→W is said to be finelyL-harmonic
if u(X) is a W -valued continuous martingale for everyU -valued
diffusionX with generator1

2L.

Note that if u is finely L-harmonic andϕ is a C2 positive function
onU thenu is also finelyϕ2L-harmonic. This can be proved with a time
change as in [14] Section 4.

In [8] it was shown how to construct continuous finely harmonic maps
as solutions to small image Dirichlet problems, and in [9] the author
proved via coupling techniques that continuous finely harmonic maps are
in fact smooth andL-harmonic. The aim of this section is to derive the
last result, as well as an explicit formula for the derivative, via changes
of probability from the methods of this paper.

First we need some constructions. Letu :U → W be a continuous
finely L-harmonic map. Fix a small open geodesic ballV ′ in U such
that u(V ′) ⊂ V whereV satisfies the conclusions of Theorem 3.5 for
somer < 2 and hasp-convex geometry for some 2> p > 1. Let d be
the dimension ofU . Via an exponential chart we can identifyV ′ with
the open ballB(0, π/2) about 0 of radiusπ/2 in Rd (note thatπ/2 is
not assumed to be the radius ofV ′ as a Riemannian geodesic ball). For
x ∈ Rd , let

r(x)=
√√√√ d∑

i=1

(xi)2

and define

η :B(0, π/2)→Rd, x 7→ tanr(x)

r(x)
x,

with the conventionη(0) = 0. The mapη is a smooth diffeomorphism.
Forx ∈ V ′, setϕ(x)= cosr(x).
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We consider a family(X(x))x∈V ′ of diffusions onV ′ with generator
1
2ϕ

2L andX0(x)= x for x ∈ V ′, constructed as solutions of the Itô SDE

d∇
U

X = ϕ(X)A(X)dB + ϕ2(X)b(X)dt, (4.1)

whereA ∈ Γ (Rd ⊗ TU) is such thatA(x) :Rd→ TxU is invertible and
A(x)A∗(x)= g−1(x) for eachx (here we identifyRd and its dual space),
andB is anRd -valued Brownian motion.

In the coordinates of the exponential chart as defined above, (4.1) is
equivalent to

dXi = ϕ(X)Ai(X)dB + ϕ2(X)ci(X)dt, (4.2)

whereci(x) = bi(x) − Γ i
jk(x)A

j
α(x))A

k
α(x). The coefficientsAi , ci and

all their derivatives are bounded. According to [14], for allx ∈ V ′
the diffusion processX(x) has infinite lifetime and converges a.s.
to a random variableX∞(x) taking its values in∂V ′. Let Z(z) =
η(X(η−1(z))) for z ∈ Rd . This is a diffusion inRd with infinite lifetime
which solves

dZi =Ai(Z) dB + Ci(Z) dt, (4.3)

where in terms ofz= η(x),

Ai(z)= ϕ(x) ∂z
i

∂xj
Aj (x),

Ci(z)= ϕ2(x)

(
∂zi

∂xj
cj (x)+ 1

2

∂2zi

∂xj ∂xk
Ajα(x)A

k
α(x)

)
.

It is then a straightforward calculation to verify that there exists a constant
C > 0 such that for allα, i, z,∣∣Aiα(z)∣∣6 C(r(z)+ 1

)
,

∣∣Ciα(z)∣∣6 C(r(z)+ 1
)
,

all derivatives ofz 7→A(z), z 7→ C(z) andz 7→A−1(z) of order larger or
equal to 1 are bounded, and alsoz 7→ A−1(z) is bounded. Hence, using
[10, Corollary 4.6.7], we obtain that for every compact subsetK of Rd ,
p > 0, t > 0 and every multiindexβ,

sup
s6t
E
[
sup
z∈K

∣∣∣∣ ∂ |β|(∂z)β
Zs(z)

∣∣∣∣p
]
<∞. (4.4)
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Leth :R+→ [0,1] be a smooth decreasing function such thath(0)= 1
and h(t) = 0 for somet > 0. Fix x ∈ V ′ and v ∈ TxV ′. We define
Fs(v) = η(x) + h(s) dη(v) and Zvs = Zs(Fs(v)), Xv

s = η−1(Zvs ). The
processZv satisfies the equation

dZvs =A(Zvs ) dBs + C(Zvs ) ds + (TFs(v)Z)s
(
ḣ(s) dη(v)

)
ds.

As in [2] (see also [6]) we make a change of probability usingGv =
E(Mv) where

Mv =−
∫
0

〈
A−1(Zvs )(TFs(v)Z)s(ḣ(s) dη(v)) ∣∣dBs〉Rd . (4.5)

UnderPv =Gv·P (defined as in 3.1 on the subalgebrasFT whereT is a
stopping time such that(Gv)T is a uniformly integrable martingale),Zv

has the same generator asZ underP. Hence underPv, the processXv

has generator12ϕ
2L. We denote byN(v) the local martingale∂

∂ε

∣∣
ε=0M

εv.
Forπ(v)= x fixed, the mapv 7→N(v) is linear, and we have

N(v)=−
∫
0

〈
A−1(Zs(z))(TzZ)s(ḣ(s) dη(v)) ∣∣dBs〉Rd . (4.6)

Note that this also writes as

N(v)=−
∫
0

ḣ(s)

ϕ(Xs(x))

〈
(TxX)s(v)

∣∣A(Xs(x))dBs〉. (4.7)

LEMMA 4.2. –For every compact subsetK of V ′ and r > 1, there
existC > 0 such that for allv ∈ T U withπ(v) ∈K and norm less than1,
the following estimates hold:∥∥〈Mv,Mv

〉1/2
∞
∥∥
r
6 C‖v‖ (4.8)

and ∥∥∥∥(Mv

‖v‖ −N
(
v

‖v‖
))∗
∞

∥∥∥∥
r

6 C‖v‖. (4.9)

In particular, for everyr > 1 and x ∈ K fixed, the mapTxU → Hr ,
v 7→Mv is differentiable atv = 0.

Proof. –Let K be a compact subset ofV ′ and letK ′ be a compact
subset ofRd containing all theη(x) + h(s) dη(v) with x ∈ K , s > 0,
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v ∈ TxU satisfying‖v‖ 6 1. By the boundedness ofA−1 anddη onK ,
together with the fact thath(t)= 0, we get from (4.5)

〈
Mv,Mv

〉
∞ 6 const‖v‖2

t∫
0

sup
z∈K ′

∥∥TsZ(z)∥∥2
ds

which implies (4.8) by means of (4.4).
We are left to prove (4.9). With a similar calculation, using (4.6), the

boundedness ofA−1 and (4.4) with|β|6 2, we can bound theLr norm
of the bracket of(M

v

‖v‖ −N( v
‖v‖)) for r > 0. 2

THEOREM 4.3. –A continuous finelyL-harmonic mapu :U →W is
smooth.

Proof. –We proceed in three steps. First we show thatu is differen-
tiable, secondly we show thatu is C1 and at the end we show thatu is
smooth.

First step,u is differentiable.With the construction above, forx ∈
V ′ and v ∈ TxU , we haveXv

0 = η−1(η(x) + dη(v)), the process
Y v = u(Xv) is a Pv-martingale with values inV , starting atY v0 =
u(Xv

0) and terminating atu(Xv∞) which depends only onπ(v). Thus,
differentiability of u is a consequence of Theorem 3.5 and Lemma 4.2,
and we have

Txu(v)= J0(v)=E
[ ∞∫

0

Θ−1
0,s dNs(v) dYs

]
, (4.10)

whereΘ is the geodesic transport aboveY . This recovers a known
formula, see [5] and [2].

Second step,u is C1. We still identify V ′ with the open subset
B(0, π/2) of Rd . Possibly by reducingV ′, the imageu(V ′) is identified
via a chart with an open subset ofRd ′ whered ′ is the dimension of
W . Let m ∈ N∗ and r > 1. Recall that for anRm-valued continuous
semimartingaleZ = Z0 + M + A where M is a continuous local
martingale andA is a process with finite variation, theSr norm and the
Hr norm ofZ are defined as

‖Z‖Sr =
∥∥∥sup
t>0
|Zt |

∥∥∥
Lr

and
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‖Z‖Hr =
∥∥∥∥∥|Z0| +

∑
i

〈
Mi,Mi

〉1/2
∞ +

∞∫
0

|dAs |
∥∥∥∥∥
Lr

.

Fix x0 ∈ V ′. We have to show thatTxu converges toTx0u asx tends
to x0. Using local coordinates, we can compute the difference ofTxu to
Tx0u by means of (4.10). With (4.6) and (4.4) we see that theHr norms of
N converge and it is sufficient to prove that the stopped processesY t(x)

converge toY t(x0) in Hr for any r > 1, and that ifΘ0,•(x) denotes the
geodesic transport aboveY (x), then(Θ−1

0,•(x))t converges to(Θ−1
0,•(x0))

t

in Sr for r sufficiently large.
Convergence ofY t(x) to Y t(x0): From (4.8) of Lemma 4.2 and

Proposition 3.3, we conclude that ifV ′ is sufficiently small, then|u(x)−
u(y)|6 C(p)|x − y|1/p for somep > 1. But the stopped processXt(x)

converges toXt(x0) in Sr for every r > 1, henceY t(x) converges to
Y t(x0) in Sr for every r > 1. To transform convergence inSr into
convergence inHr , we use the fact thatV has 2-convex geometry, and
as in (3.8), we write withφ = δ2:〈

Y (x)− Y (x0), Y (x)− Y (x0)
〉
t

6 C
(
φ
(
Yt(x0), Yt(x)

)− t∫
0

〈
dφ,

(
d∇Y (x0), d

∇Y (x)
)〉)

.

With the same calculation as in the proof of Lemma 3.4, but simpler here
sinceY (x0) andY (x) are martingales, we obtain by induction thatY t(x)

converges toY t(x0) in Hr for everyr > 1.
Convergence of(Θ−1

0,•(x))t to (Θ−1
0,•(x0))

t : With formula (2.5), denot-

ing byΘα
i (x) the coordinates of(Θ−1

0,•(x))
t

and

S
j
i (x)=

∫
0

Γ
j
im(Y ) dM

m(x)+ 1

2

∫
0

DiΓ
j
k`(Y (x)) d

〈
Y k(x), Y `(x)

〉
,

the differenceΘα
i (x)−Θα

i (x0) satisfies the equation

d
(
Θα
i (x)−Θα

i (x0)
)=Θα

j (x) d
(
S
j
i (x)− Sji (x0)

)
+ (Θα

j (x)−Θα
j (x0)

)
dS

j
i (x0). (4.11)

This equation inΘα
i (x)−Θα

i (x0) has an explicit solution in terms of the
stochastic exponential of(Sji ) (see [13], Chapter IX, Proposition 2.3, for
the one-dimensional case). By Lemma 2.1, for arbitrary larger , theSr
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norm ofΘα
j (x) is bounded by a finite constant which does not depend

onx, and the stopped process(Sji (x)− Sji (x0))
t converges to 0 inHr for

everyr > 1, hence the solution of (4.11) stopped at timet converges to 0
in Sr for r as large as we want (the size ofV ′ depends onr).

Third step,u is smooth.We proceed by iteration, i.e., by applying step
one and two toT u and exploiting the fact that on{v ∈ T U, v 6= 0} the
differential T u transforms again an elliptic diffusion into aTW -valued
(∇W)c-martingale, and so on. More precisely, we argue as follows: Let
X(x)x∈U , as above, be a family of12ϕ

2L-diffusions onU constructed as
solutions of the Itô SDE

d∇
U

X = ϕ(X)A(X)dB + ϕ2(X)b(X)dt. (4.12)

In terms of an independent copyB ′ of B let

d∇Xε = cos(ε)ϕ(Xε)A(Xε) dB + sin(ε)ϕ(Xε)A(Xε) dB ′

+ ϕ2(Xε)b(Xε) dt, ε ∈R,
be a variation of (4.12). Then, in particular,Xε(x) is also an1

2ϕ
2L-

diffusion for eachε which depends onε in a differentiable way and
Xε(x)|ε=0 = X(x). For v ∈ TxM , v 6= 0, letα be a curve inU such that
α̇(0)= v. Then

∂X := ∂

∂ε

∣∣∣
ε=0
Xε
(
α(ε)

)
is a nondegenerate diffusion onTU starting fromv, which is mapped un-
derT u to the(∇W)c-martingaleT u∂X= ∂

∂ε
|ε=0u(X

ε(α(ε))) onW . 2
Remark4.4. – In the particular setting of Riemannian manifoldsU,W

(equipped with the Levi-Civita connections) the fact that continuous
finely harmonic mapsu0 :U→W areC1 (and actually smooth) can also
be directly derived from PDE results (like the small-time existence of
solutions to the nonlinear heat equation). Finely harmonic here means
thatu0 maps Brownian motions onU to martingales onW . We proceed
as follows:

Let 1< p <∞. Let V ′ be a small open (relatively compact) geodesic
ball in U such thatV = u0(V

′) hasp-convex geometry, say given by
ψ = δp. We letu0 on V ′ develop under the heat equation, keeping the
boundary conditions fixed:

∂

∂t
u= 1

2 trace∇ du,
u|t=0= u0, ut |∂V ′ = u0|∂V ′.
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Fix t > 0 small such that there is a classical solution onV ′ up to time
t . In particular,u|]0, t] × V ′ is smooth andu|[0, t] × V ′ continuous. For
x ∈ V ′ consider the martingales

Y 1
s = ut−s

(
Xs(x)

)
, Y 2

s = u0
(
Xs(x)

)
, 06 s 6 t ∧ σ (x),

whereσ (x) is the first exit time ofX(x) from V ′. Then∆ := ψ(Y 1, Y 2)

is a nonnegative bounded submartingale with∆s = 0 for s = t ∧ σ (x).
Thus∆ ≡ 0, in particularY 1

0 = Y 2
0 . This showsu0 = ut on V ′, with the

consequence thatu0 is smooth onV ′.

REFERENCES

[1] M. A RNAUDON, Differentiable and analytic families of continuous martingales in
manifolds with connection,Probab. Theory Related Fields108 (1997) 219–257.

[2] M. A RNAUDON and A. THALMAIER , Complete lifts of connections and stochastic
Jacobi fields,J. Math. Pures Appl.77 (1998) 283–315.

[3] R.W.R. DARLING, Martingales on noncompact manifolds: maximal inequalities
and prescribed limits,Annales de l’Institut Henri Poincaré32 (4) (1996) 431–454.

[4] J. EELLS and L. LEMAIRE, Another report on harmonic maps,Bull. London Math.
Soc.20 (1988) 385–524.

[5] K.D. ELWORTHY, Harmonic maps and the non-linear heat equation, Unpublished
notes, Warwick, 1993.

[6] K.D. ELWORTHY and X.-M. LI, A class of integration by parts formulae in
stochastic analysis I, in: S. Watanabe, Ed.,Itô’s stochastic Calculus and Probability
Theory(dedicated to K. Itô on the occasion of his eightieth birthday), Springer,
1996, 15–30.

[7] M. ÉMERY, Stochastic Calculus in Manifolds, Springer, 1989.
[8] W. K ENDALL , Probability, convexity, and harmonic maps with small image I:

Uniqueness and fine existence,Proc. London Math. Soc. (3)61 (1990) 371–406.
[9] W. K ENDALL , Probability, convexity, and harmonic maps II: Smoothness via

probabilistic gradient inequalities,J. Funct. Anal.126 (1994) 228–257.
[10] H. KUNITA, Stochastic Flows and Stochastic Differential Equations, Cambridge

University Press, 1990.
[11] J. PICARD, Martingales on Riemannian manifolds with prescribed limits,J. Funct.

Anal.99 (1991) 223–261.
[12] J. PICARD, Barycentres et martingales sur une variété,Annales de l’Institut Henri

Poincaré30 (1994) 647–702.
[13] D. REVUZ and M. YOR, Continuous Martingales and Brownian Motion, 2nd ed.,

Springer, 1994.
[14] A. THALMAIER and F.-Y. WANG, Gradient estimates for harmonic functions on

regular domains in Riemannian manifolds,J. Funct. Anal.155 (1998) 109–124.
[15] K. YANO and S. ISHIHARA, Tangent and Cotangent Bundles, Marcel Dekker, New

York, 1973.

Vol. 35, n◦ 6-1999.


