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Summary. We prove that the derivative of a di�erentiable family Xt�a� of
continuousmartingales in amanifoldM is amartingale in the tangent space for
the complete lift of the connection in M , provided that the derivative is bi-
continuous in t and a.We consider a ®ltered probability space �X; �Ft�0�t�1;P�
such that all the real martingales have a continuous version, and a manifoldM
endowed with an analytic connection and such that the complexi®cation of M
has strong convex geometry. We prove that, given an analytic family a 7! L�a�
of random variable with values in M and such that L�0� � x0 2 M , there exists
an analytic family a 7!X �a� of continuous martingales such that X1�a� � L�a�.
For this, we investigate the convexity of the tangent spaces T �n�M , andwe prove
that any continuous martingale in any manifold can be uniformly approxi-
mated by a discrete martingale up to a stopping time T such that P�T < 1� is
arbitrarily small.Weuse this constructionof families ofmartingales in complex
analytic manifolds to prove that everyF1-measurable random variable with
values in a compact convex set V with convex geometry in amanifold with aC1

connection is reachable by a V -valued martingale.

Mathematics Subject Classi®cation (1991): 60G44

1. Motivations, preliminaries, main results

Let �X; �Ft�0�t�1;P� be a ®ltered probability space.
The main motivation of this paper is, given a manifold M of dimension d

with a connection r, and aF1-measurable random variable L with values in
a small compact subset of M , to prove the existence of ar-martingale X with
respect to the ®ltration �Ft�, such that X1 � L. If such a martingale exists, we
will say that L is reachable.
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This problem has been solved in convex geometry (see section 2 for the
di�erent notions of convexity) in [K1] and [P1] with Brownian ®ltrations and
in [P2] with more general ®ltrations like ®ltrations generated by independent
Brownian motions and Poisson processes (here the solutions are cadlag
martingales). In both cases, the method used is a discretisation of the ®l-
tration and the convergence of discrete martingales into solutions of the
problem is established. In [D2], a solution is given using backward stochastic
di�erential equations, in the context of convex geometry and Brownian ®l-
trations, and in [D3] the author shows how to deduce existence on a manifold
M with convex geometry which is an increasing union of compact sets with
convex geometry (and with additional geometric assumptions) from the ex-
istence on each compact set.

The solution given here is valid with the assumptions that all the real
�Ft�0�t�1-martingales have a continuous version and L takes its values in a
compact convex set with convex geometry (with the help of [D3] we can then
deduce existence results in the non compact case).

This result is a consequence of a construction which will be done with
much stronger assumptions on the manifold. Indeed we assume ®rst that the
manifold is endowed with an analytic connection and that its complexi®-
cation has strong convex geometry (see sections 2 and 4). The terminal value
L is replaced by an analytic family a 7! L�a�; a 2 �0; 1�, of F1-measurable
random variables with values in M , such that L�1� � L and L�0� � x0 2 M .
An analytic family of martingales a 7!X �a� with terminal value L�a� will be
constructed (theorem 6.17).

In a ®rst approach, assume that the real analytic family a 7!X �a� of M-
valued martingales such that X1�a� � L�a� exists. Then the derivative
W n � @nX �a�

@an ja�0 take its values in the spaces Mn
S � T �n�M of n-th order de-

rivatives at time 0 of paths c such that c�0� � x0. As theorem 3.3 below will
show, a consequence is that the process W n is a martingale with respect to the
n-th complete liftr�n� of the connectionr, with terminal value L�n��0�. If one
knows W n for all n, then one knows a 7!X �a�. But it will be shown in section
6 that constructing Mn

S -valued r�n�-martingales with prescribed terminal
value can be performed with an easy induction. To give an idea of this
induction, assume that M is an open subset of Rd . Then if the coordinates of
the martingales W n are �W1; . . . ;Wn�, one can write

Xt�a� � x0 �
X1
n�1

an

n!
Wn�t� : �0�

If Y is a semimartingale in Rd , let eY denote its ®nite variation part �eY0 � 0�.
Since X �a� is a martingale we have

d eX �a� � ÿ 1
2

Cjk�X �a��dhX j�a�;X k�a�i �1�

where Ci
jk are the Christo�el symbols. Assume here that expansions in a

power series are allowed in both sides of (1) and commute with bracket and
®nite variation part, one obtains for the ®rst order term
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d eW1�t� � 0; W1�t� � E�L0�0�jFt� �2�
and for the second order term

1

2
d eW2�t� � ÿ 1

2
Cjk�x0�dhW j

1 ;W
k
1 it ;

W2�t� � E L00�0� � Cjk�x0� hW j
1 ;W

k
1 i1 ÿ hW j

1 ;W
k
1 it

ÿ �jFt
� � �3�

(if one assumes that C�x0� � 0, like in an exponential chart centered at x0,
then W2 is a martingale). More generally, if W1;W2; . . . ;Wnÿ1 are known, then
it is possible to compute Wn, since Wn�1� is the last coordinate of L�n��0� and
the expression of d eWn�t� given by (0) and (1) does not involve Wn. Indeed, if
Wn appears in one term, then the process X �0� � x0 must appear in the
bracket, and hence the bracket is 0.

This formal computation leads to the following approach of the problem.
Now a 7! L�a� is a given analytic family with L�0� � x0 and one constructs a
family of semimartingales W n with values respectively in Mn

S , with terminal
value L�n��0� and which are r�n�-martingales, i.e. such that in local coordi-
nates,

1

n!
d eWn � ÿ 1

2

X
r�0; p;q>0

a1�...�ar�p�q�n
1�i1 ;...;ir�d

Ca;p;q;iDiCjk�x0�W i1
a1 . . . W ir

ar
dhW j

p ;W
k

q i �4�

where a � �a; . . . ; ar�; i � �i1; . . . ; ir� and Ca;p;q;i are constants de®ned in (18).
The question of the existence of X �a� boils down to establishing the con-
vergence of the series with n-th order derivative W n at a � 0, i.e. the con-
vergence of (0) in local coordinates, and proving that the sum is a martingale.
This will be done in section 6.

We give now a brief description of the content of the paper.
In section 2, one de®nes di�erent notions of convexity in a manifold.
Section 3 is devoted to the di�erentiability of families of martingales. It is

not supposed there that M or r are analytic. One shows that if a 7!X �a� is a
di�erentiable family of r-martingales such that almost surely �t; a� 7! @Xt�a�

@a is
continuous, then

@X �a�
@a is a martingale in TM for the complete lift r0 of r

(theorem 3.3). This is proved via an approximation of r0 by a family of
connections on a neighbourhood of the diagonal in the product manifold
(proposition 3.1). Then it is shown that under convexity assumptions, if
X1�a� is di�erentiable @X1�a�

@a is the terminal value of ar0-martingale Y �a�, then
Xt�a� is di�erentiable and @Xt�a�

@a � Yt�a� (proposition 3.7).
The end of section 3 is devoted to a discrete analogue to theorem 3.3.

Proposition 3.8 shows that exponential expectation commutes with di�er-
entiation if the derivative random variable takes its values in a small subset
of the tangent bundle.

Going back to the problem of convergence of (0), one needs to complexify
the real manifold and the real connection, and to transform a into a complex
parameter. This is made possible in section 4. It is shown that under the
hypothesis of proposition 3.7, if a 7!X1�a� is holomorphic, then a 7!Xt�a� is
holomorphic (corollary 4.5). Under convexity conditions, the discrete
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equivalent of the problem of convergence of (0) is solved, and one shows that
the solution in holomorphic in a (corollary 4.3). This gives upper bounds of
kÿ�W discr

1 ; . . . ;W discr
n ��k independent of the discrete ®ltration (corollary 4.4).

The aim of section 5 is to prove that the martingales W n described above
can be approximated by discrete martingales W n discr. This is done in a larger
context. Therorem 5.1 shows that any continuous martingale �Xt�0�t�1 in any
manifold can be uniformly approximated up to a stopping time T such that
P�T < 1� is as small as we want, by a discrete martingale.

The result of theorem 5.1 is used only in theorem 6.4, which shows that if
(0) converges absolutely, then the sum is a r-martingale. Here the co-
mmutativity of a�ne mappings with exponential barycenters (proposition
2.10), and complexi®cation are used.

In section 6, the convergence of the series de®ned by the sequence
�W n�n2N (the convergence of (0) in local coordinates) is investigated. For this,
it is useful to study the geometry of T �n�M and its symmetrized space Mn

S (see
propositions 6.3, 6.5, 6.6). It is shown that the martingales W n live in com-
pact convex subsets of Mn

S with convex geometry (corollary 6.12). For this,
one constructs convex functions (proposition 6.6) with a Hessian bounded
below by a scalar product and uses the fact that convex geometry is implied
by uniqueness of martingales with prescribed terminal value (see [K3] and
[K4]). Complexi®cation is used again to give sharper bounds for
kÿ�W1; . . . ;Wn�

�k via the construction of a convex function on Mn
S (propo-

sition 6.13). This leads to the main result (theorem 6.17) which asserts that
(0) converges a.s. absolutely and uniformly in t;x and that the sum is a
martingale X �a� with terminal value L�a�, provided that the complexi®cation
of the manifold M has strong convex geometry.

Section 7 is devoted to the existence of martingales with prescribed ter-
minal value in a compact convex set V with convex geometry. It is ®rst
proven in lemma 7.1 that it is su�cient to solve the problem replacing V by a
neighbourhood Vx of x for every point x 2 V . This is done with an argument
of connexity of the set of reachable random variables for the topology of
almost sure uniform convergence. Then local existence of martingales with
prescribed terminal value is established by approximating a C1 connection by
analytic connections, and this gives reachability of every V -valued random
variable (theorem 7.3).

From now on, we assume that all the real martingales with respect to
�X; �Ft�0�t�1; P� have a continuous version. All the manifolds considered are
smooth.

By a connection on a manifold, we will mean a smooth torsion-free con-
nection.

2. Convexity on manifolds

De®nition 2.1. ± Let M be a manifold endowed with a Cp connection
r�p 2 Nnf0g or p � 1�. A subset V of M will be called a convex set if for all
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x; y 2 V , there exists a unique geodesic �0; 1� 3 t 7! cx;y�t� with values in V, such
that cx;y�0� � x and cx;y�1� � y, and if _cx;y�0� depends in a Cp way on x and y.
This vector will be denoted by xy!.

De®nition 2.2. ± Let M be a manifold endowed with a connection r, and V a
compact subset of M. We shall denote by C�V � the set of functions f on V such
that there exists an open neighbourhood U of V such that f is de®ned and
convex on U.

Recall that a function f is convex on an open subset U of a manifold M
with connection, if for every geodesic c with values in U , the function f � c is
convex.

De®nition 2.3. ± We shall say that a manifold M endowed with a connection r
has convex geometry if there exists a convex function w : M �M ! R� such
that wÿ1�f0g� � f�x; x�; x 2 Mg.

We shall say that a compact subset K of M has convex geometry if there
exists an open neighbourhood of K which has convex geometry.

De®nition 2.4. ± 1) We shall say that a manifold M endowed with a connection
r has strong convex geometry if the following conditions are ful®lled

(i) there exists a convex function w : M �M ! R� such that wÿ1�f0g� is
exactly the diagonal D � f�x; x�; x 2 Mg, the function w is smooth outside
D and its Hessian rdf is de®nite positive outside D,

(ii) there exists an open neighbourhood U of the null section in TM such that
the application

U ! M �M ; u 7! �p�u�; expp�u� u�

(where p stands for the canonical projection TM ! M) is a smooth dif-
feomorphism. Its inverse mapping de®ned on M �M will be denoted by
�x; y� 7! xy!,

(iii) for any probability space �X;F;P� and any random variable x 7! L�x�
with values in M, there exists a unique point x in M such that E

�
xL
! � � 0.

This point will be denoted by E�L�, and will be called the exponential
expectation of L,

(iv) for any probability space �X;F;P� and any application �x; a� 7! L�a��x�
de®ned on X� I where I is an interval of R, such that almost surely the
map a 7! L�a��x� is di�erentiable on I, the map

M � I ! TM ; �x; a� 7! E

�
xL�a����!�

is di�erentiable and its di�erential with respect to x is everywhere inv-
ersible.

2) We shall say that a compact subset K of M has strong convex geometry
if K is convex and has an open neighbourhood with strong convex geometry.
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De®nition 2.5. ± Let p 2 �1;1�. We shall say that a manifold M endowed with
a connection r has p-convex geometry if M has convex geometry and there is a
Riemannian distance d on M and two constants 0 < a < A such that the
function w of de®nition 2.3 satis®es adp � w � Adp.

We shall say that a manifold M endowed with a connection r has strong
p-convex geometry if M has p-convex geometry and strong convex geometry.

If p � p0 and M has p-convex geometry, then M has p0-convex geometry.
Simply connected Riemannian manifolds with negative sectional curvatures
have 1-convex geometry. We know from [E] that any point x of any manifold
M with a connection r has a neighbourhood with strong 2-convex geometry,
and Kendall has shown in [K2] that regular geodesic balls in Riemannian
manifolds have p-convex geometry if p is su�ciently large.

Remark that the function w of de®nition 2.5 need not be the same as the
function w of de®nition 2.3.

Among the two notions of convexity of de®nition 2.1 and de®nition 2.3,
no one implies the other: every open subset of Rd has convex geometry, even
if it is not convex. It is much more di�cult to ®nd a compact convex subset of
a manifold which has not convex geometry. An example has been given in
[K5].

De®nition 2.6. ± If G is a r-®eld included in F and if X is a random variable
taking its values in a compact convex subset V (possibly random and G-mea-
surable) of a manifold M, one de®nes the conditional expectation of X with
respect to G as the set of G-measurable random variables Y taking their values
in V and such that f � Y � E� f � X jG� for every convex function f belonging to
C�V � (possibly depending in a G-measurable way on x). This set (possibly
empty) will be denoted by E�X jG�:

By [E,M] and [A2], we know that exponential conditional expectations
are a particular case of conditional expectations.

De®nition 2.7. ± A conditional expectation Y with respect to G of a random
variable X taking its values in a (G-measurable random) convex set will be
called an exponential conditional expectation if it satis®es

E YX
�!jGh i

� 0 :

If it is unique up to a negligible set, it will be denoted by E�X jG�.
By [K1] theorem 7.3, we know that convex geometry implies uniqueness

for the exponential conditional expectation.

De®nition 2.8. ± Let M be a manifold endowed with a connection r, and let
s � �T0 � T1 � . . . � Tn� be an increasing sequence of stopping times.

(i) We shall say that a M-valued process X discr�s� indexed by �T0; Tn� is a
discrete convex martingale if for all k 2 f0; . . . ; nÿ 1g, the conditional law
L X discr�s�

Tk�1 jFTk

� �
is almost surely included in a (random) compact subset

of M with strong convex geometry, X discr�s� is constant on �Tk; Tk�1� and
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X discr�s�
Tk

2 E X discr�s�
Tk�1 jFTk

h i
:

(ii) We shall say that a M-valued process X discr�s� indexed by s is a discrete
exponential martingale if it is a discrete convex martingale and for all
k 2 f0; . . . ; nÿ 1},

X discr�s�
Tk

� E X discr�s�
Tk�1 jFTk

� �
where E is the exponential conditional exceptation.

The next proposition was proven in [A2].

Proposition 2.9. ± If �X;F1P� is such that conditional laws with respect to any
r-®eld included inF1 exist, if V (resp. V 0) is a compact subset of a manifold M
(resp. M 0) with strong convex geometry, if �L; L0� is a random variable with
values in V � V 0 and X discr�s� is a V-valued discrete convex martingale with
terminal value L, then there exists a V 0-valued discrete convex martingale
X 0 discr�s� with terminal value L0 such that X discr�s�;X 0 discr�s�ÿ �

is a discrete
convex martingale with terminal value �L; L0�.
Remark. ± If X discr�s� is a V -valued discrete exponential martingale, then we
can take for X 0 discr�s� the V 0-valued discrete exponential martingale with
terminal value L0.

To end this section, let us prove that exponential expectations commute
with a�ne mappings.

Proposition 2.10. ± Let w : �M ;rM� ! �N ;rN � be an a�ne mapping between
two manifolds, and let L be a random variable with values in a compact convex
subset V of M such that w�V � is included in a compact convex subset of N.
Suppose that x 2 V is an exponential expectation of L. Then w�x� is an ex-
ponential expectation w�L�. If both are unique, then

EN �w�L�� � w�EM �L�� :
Proof. ± Let x be an exponential expectation of L. Then E� xL

�!� � 0 and

w�
ÿ
E� xL
�!�� � E

�
w�� xL
�!�� � 0. We have to show that E�w�x�w�L�������!� � 0. Be-

cause of the equality above, it will be true if for each y; z 2 M , we have

w��yz!� � w�y�w�z������!
. Let us establish this equality: since w is a�ne, the map

t 7!w�exp tyz!� is a geodesic with derivative w��yz!� at the origin. Hence for all
t 2 �0; 1�, we have exp�tw��yz!�� � w�exp tyz!�, which for t � 1 gives

exp�w��yz!�� � w�z�. Hence w��yz!� � w�y�w�z������!
. This proves the proposi-

tion. h

3. Di�erentiable families of martingales

Let M be a manifold endowed with a connection r. In this section, we will
show that under continuity conditions, the derivative of a family of mar-
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tingales is a martingale in the tangent space TM endowed with the completed
lift r0 of r. This complete lift is described in [Y,I]. In local coordinates
�x1; . . . ; xd ; x�1; . . . ; x�d� (if x has coordinates �x1; . . . ; xd�, a vector u above x has
coordinates �x1; . . . ; xd ; x�1; . . . ; x�d� with u �P

i
x�i @
@xi

�
, if the Christo�el sym-

bols of r write Ci
jk, then the Christo�el symbols of r0 write

C0ijk � Ci
jk; C0ij�k � 0; C0i�|k � 0; C0i�|�k � 0;

C0�õjk � hdCi
jk; ui; C0�õ�|k � Ci

jk ; C0�õj�k � Ci
jk ; C0�õ�|�k � 0 :

The geodesics for r0 are the Jacobi ®elds for r (see [Y,I] proposition 9.1).
Since the r-martingales in M are the same as the martingales for the
symmetrized connection, we shall assume that r is torsion free, and there-
fore that r0 is torsion free. In this case, the geodesics determine the con-
nection.

Let us ®rst give a natural approximation of r0.
De®ne for a 2 �0; 1�

la : Ua ! M �M

u 7! �p�u�; expp�u� au�

where Ua � 1
a U1 is a neighbourhood of 0 in TM such that la : Ua ! la�Ua� is

a di�eomorphism. De®ne D1 � la�Ua� � l1�U1� and
ua : D1 ! Ua

�x; y� 7! 1

a
xy!� lÿ1a ��x; y��

where xy! :� expÿ1x y.
The set D1 is a neighbourhood of the diagonal D in M �M , and the

di�eomorphism ua induces a connection ra on Ua, image of the product
connection in D1.

Proposition 3.1. ± Let f 2 C1�TM�. If V is a relatively compact open subset of
TTM, then uniformly in A 2 V ;radf �A;A� converges to r0df �A;A� as a tends
to 0.

Proof. ± Possibly by replacing V by eV ; e > 0, one can assume that for all
A 2 V , the r0-geodesic t 7! JA�t� in TM such that J 0A�0� � A exists for all
t 2 �0; 1�. Let A 2 V and JA be such a geodesic. De®ne cA � c0A � p�JA� and
t 7! ca

A�t� geodesic in M such that � _c0A�0�; _ca
A�0�� � la��A�. This de®nition is

valid if a is small enough. We want ®rst to show that @
@a ja�0ca

A�t� � JA�t� for
all t 2 �0; 1�. Since both are Jacobi ®elds, it is su�cient to show that
@
@a ja�0ca

A�0� � JA�0� and r
@t jt�0 @

@a ja�0ca
A�t� � r@t jt�0JA�t� where r@: denotes the

covariant derivative. We have ca
A�0� � expcA�0��aJA�0�� which gives

@
@a ja�0ca

A�0� � JA�0�; on the other hand,
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r
@t
jt�0

@

@a
ja�0ca

A�t� �
r
@a
ja�0

@

@t
jt�0ca

A�t� �
r
@a
ja�0 exp��aA�

� r
@a
ja�0

@

@t
jt�0 exp aJA�t� � r

@t
jt�0

@

@a
ja�0 exp aJA�t�

� r
@t
jt�0JA�t�:

The ®rst and the fourth equalities come from the fact that r is torsion-free.
The de®nition of ra implies that t 7!w�a;A��t� de®ned by w�a;A��t�

� 1
a cA�t�ca

A�t�
������! � ua�cA�t�; ca

A�t�� is a ra-geodesic in Ua if a is small enough
and a 6� 0. Let us de®ne w�0;A� � JA.

Lemma 3.2. ± There exists a0 > 0 such that the map �a;A; t� 7!w�a;A��t� is
smooth on �0; a0� � V � �0; 1�.

Let us for the moment assume that the lemma is true. In particular, for all
r 2 N,

@ rJA

@tr �t� � lim
a!0

@ r

@tr w�a;A��t�
uniformly in A 2 V . Hence �f � w�a;A��00�t� converges to �f � JA�00�t� as a
tends to 0, uniformly in A 2 V and t 2 �0; 1�. Using the fact that

�f � w�a;A��00�0� � radf �w�a;A�0�0�;w�a;A�0�0��;
�f � JA�00�0� � r0df �A;A�;

and that w�a;A�0�0� � ua�la��A� � A, this convergence gives

lim
a!0
radf �A;A� � r0df �A;A�

uniformly in A 2 V . h

Proof of the lemma. ± In local coordinates, 1a xy! writes �xi; 1a Ck
j �x; y��yj ÿ xj��

where Ck
j is a smooth function such that u � x expx u����! has coordinates ��xi�;

�Cj
k�x; x�uk�� since T0 expx � Id. Hence 1

a cAca
A

��!
writes �ci

A;
1
a Ck

j �cA; c
a
A��caj

A ÿ c j
A��.

But the function which maps �a;A; t� to 1
a �caj

A �t� ÿ c j
A�t�� if a 6� 0 and to Jj

A�t�
if a � 0 is equal to

R 1
0 ds @

@b jb�as�cb
A�j�t�; it is therefore a smooth function.

Hence the coordinates of 1a cAca
A

��!
converge to �ci

A;C
k
j �cA; cA�Jj

A�t�� as a tends to
0, and the last coordinates are those of JA�t�. This proves the lemma. h

Remark. ± In the de®nition of ua, instead of �x; y� 7! xy!, one could have
chosen any smooth mapping �x; y� 7! ex�y� 2 TxM de®ned in a neighbour-
hood of the diagonal of M �M , such that ex�x� � 0 and Txex � Id.

Let us state the main result of this section.

Theorem 3.3. Let I be an open interval in R and let Xt�a��a2I ;t2�0;1� be a family
of continuous martingales in M , such that x as., 8t 2 �0; 1�, the map
a 7!Xt�a� is C1 in a 2 I ; and x a.s., the map �t; a� 7! @Xt�a�

@�a� is continuous on
�0; 1� � I.
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Then @X �a�
@a

� �
a2I

is a family of r0- martingales in TM.

Proof. ± One can assume that 0 2 I . De®ne Y � @X �a�
@a ja�0. It is su�cient to

show that Y is a r0-martingale. For this, it is su�cient to show that each
point u of TM has a relatively compact neighbourhood Vu such that Y is a
martingale during the time it spends in Vu (use [E] lemma (3.5)). But each
point u of TM has a neighbourhood V 0u such that every continuous process Z
with values in V 0u is a martingale if and only if 8f : V 0u ! R smooth, satisfying
r0df > 0; f �Z� is a real submartingale (see [D1] [E] [A1]). Let U be such a
neighbourhood. Possibly by reducing U , we can assume that there are three
relatively compact open subsets U 1;U 2 and U 3 such that �U � U1 � �U 1

� U2 � �U2 � U 3, and that U3 has the same property. Let g be any Riem-
annian metric on TM and d be the associated Riemannian distance, and let
f : U3 ! R be a smooth convex function such that r0df > 0. Then there
exists e > 0 such that r0df > eg on �U 2.

Suppose that T and T 0 are stopping times such that T � T 0; T 0 is bounded
and Y take its values in U on �T ; T 0�. If a > 0, de®ne Da � la�U1� with the
notations before proposition 3.1. For a > 0, de®ne

T a � T 0 ^ inf t > T ; 8a0 2 �0; a�; �Xt�0�;Xt�a0�� 2 �D1
3
;
1

a0
Xt�0�Xt�a0�
�������! 2 �U1

� �
and

T 0 a � T 0 ^ inf t > T a; 9a0 2 �0; a�; �Xt�0�;Xt�a0�� =2D2
3
or

1

a0
Xt�0�Xt�a0�
�������!

=2U 2

� �
:

Then T � T a � T 0 a � T 0 and the times T a and T 0 a are stopping times. Since
x a.s. 1

a0 X �0�X �a0�
������!

converges uniformly in t to Y as a0 tends to 0 �@X �a�
@a is

jointly continuous) and �U 2 is compact, we have that almost surely T a de-
creases stationarily to T as a tends to 0 and for a small enough so that
T a � T ; T 0 a increases stationarily to T 0.

Hence it is su�cient to show that there exists a0 > 0 such that for all
a 2 �0; a0�; f �Y � is a submartingale on �T a; T 0 a�.

Choose a0 such that for all a 2 �o; a0�;U 3 � ua�D1� and f isra-convex on
U 2. This is possible because �U2 is compact, r0df > eg on �U2, using propo-
sition 3.1 with V � fA 2 TTM ; p2�A� 2 U2; g�A;A� � 1g�p2 is the canonical
projection TTM ! TM).

For all a 2 �0; a0�, for all a0 2 �0; a�; f 1
a0 X �0�X �a0�
������!� �

is a bounded sub-

martingale on �T a; T 0a�. But a.s. f 1
a0 X �0�X �a0�
������!� �

converges to f �Y � uniformly
in t, which implies that f �Y � is a submartingale. This proves the theorem. h

In local coordinates, the martingales X �a� satisfy
d eX i�a� � ÿ 1

2
Ci

jk�X �a��dhX j�a�;X k�a�i �5�
where eX i stands for the ®nite variation part of X i. The formal di�erentiation
with respect to the parameter a at a � 0 of the right hand side of this equality
gives
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ÿ 1
2
hdCi

jk�X �0��; Y idhX j�0�;X k�0�i

ÿ 1

2
Ci

jk�X �0��
ÿ
dhY j;X k�0�i � dhX j�0�; Y ki�

and theorem 3.3 says that these formal derivatives are in fact exactly the
coordinates of the drift of Y :

Corollary 3.4. ± Let I be an open interval in R containing 0 and let �X �a��a2I be
a family of martingales satisfying the same hypothesis as in theorem 3.3. De®ne
Y � @X �a�

@a ja�0. Then in a chart �x1; . . . ; xd ; y1; . . . ; yd�, the ®nite variation parteY i of the i-th component Y i satis®es the relation

deY i � ÿ 1
2
hdCi

jk�X �0��; Y idhX j�0�;X k�0�i

ÿ 1

2
Ci

jk�X �0���dhY j;X k�0�i � dhX j�0�; Y ki�

Proof. ± The expression of the Christo�el symbols of the connectionr0 in the
chart chosen, the fact that Y is a r0-martingale and p�Y � � X �0� give the
formula. h

The proof of theorem 3.3 was nothing but saying that formal di�eren-
tiation of equation (1) is rigorous.

Lemma 3.5. ± Let p 2 2N� and �M ;r� be a manifold with strong p-convex
geometry, such that the functions w of de®nition 2.3 and de®nition 2.5 coincide
and w is smooth on M �M . Let us de®ne the function T
pw : TM ! R� by

T
pw�u� � T �p�2 w�p�u�; p�u���u
 � � � 
 u�
(T
pw is the p-th derivative of w with respect to the second variable, on the
diagonal; it is p-linear since the derivatives of order less than p vanish, and it is
positive if u 6� 0 since the pth derivative does not vanish).

Then T
pw is convex for the connection r0.
Proof. ± Let J be a Jacobi ®eld on M , let I be an open interval of R containing
0 and �ca�a2I a family of geodesics such that J � @ca

@a ja�0. For all a 2 Inf0g,
the function t 7! p!

ap w�c0�t�; ca�t�� is convex, and converges to t 7! T
pw�J�t��
as a tends to 0. It implies that the latter function is convex and T
pw is
convex. h

Corollary 3.6. ± Let V be a compact subset of TM, where M is a manifold
which satis®es the same hypothesis as in lemma 3.5. Then if P is a F1-me-
surable random variable with values in V, then there is at most one V-valuedr0-
martingale with terminal value P.

Proof. ± If Y and Y 0 are two V -valued r0-martingales with terminal value P ,
then p�Y � and p�Y 0� are two M-valued r-martingale with terminal value
p�P �, hence p�Y � � p�Y 0� since M has strong convex geometry. It implies that
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the process Y ÿ Y 0 is well de®ned and is a r0-martingale with values in a
compact of TM , and with terminal value 0. Hence T
pw�Y ÿ Y 0� is a bounded
non-negative submartingale with terminal value 0. It implies that
T
pw�Y ÿ Y 0� � 0 and Y � Y 0. h

Now we investigate the case where we only know that the terminal value
of a family of martingales is di�erentiable.

Proposition 3.7. ± Let p � 1 and let M be a manifold with a connection r. Let
I be an open interval containing 0, and for all a 2 I , let X(a) be a M-valued r-
martingale such that almost surely a 7!X1�a� is di�erentiable; de®ne
L�a� � X1�a� and let Y be a TM-valued r0-martingale with Y1 � L0�0�.

Assume that

(i) for all a 2 I , almost surely, X(a) takes its values in a compact subset K of
M with p-convex geometry

(ii) for all a 2 I , almost surely, L0�a� and Y take their values in a compact
subset V of TM,

(iii) every compact subset of TM has an open neighbourhood with strong
convex geometry.
Then almost surely, for all t 2 �0; 1�, the map a 7!Xt�a� is di�erentiable at
a � 0, with derivative Yt.

Remark. ± By [K4] corollary 3.4, uniqueness of martingales with prescribed
terminal value on a compact subset W of a manifold implie convex geometry
for W . From this and corollary 3.6, one can think that assumption (iii) on TM
is not too restrictive.

Proof of proposition 3.7. ± Let u be a function de®ning p-convex geometry on
M 0, with cdp � u � Cdp where d is a Riemannian distance on M . Then
u�X �0�;X �a�� is a bounded non-negative submartingale, and therefore, for
all t 2 �0; 1�,

u�Xt�0�;Xt�a�� � E�u�X1�0�;X1�a��jFt� :
It gives

dp�Xt�0�;Xt�a�� � C
c

E�dp�X1�0�;X1�a��jFt�

and since @X1�a�
@a is bounded, there exists a non-negative constant C0 such that

dp�Xt�0�;Xt�a�� � C
c C0pap. This gives d�Xt�0�;Xt�a�� � C

c

ÿ �1
pC0a, and it implies

that there exists a relatively compact open subset V 0 of TM and a0 > 0 such
that for all a 2 �0; a0�;X �0�X �a�

������!
exists, 1a X �0�X �a�������! 2 V 0; Y 2 V 0 and V 0 � Ua

(see de®nition of Ua before proposition 3.1). Let U be an open neighbour-
hood of V 0 with strong convex geometry. Since the function w de®ning strong
convex geometry on U has a strictly positive Hessian outside the diagonal,
for any metric g on U � U , for any e > 0, there exists a1 2 �0; a0� such that if
0 < a0 < a1, then w is convex for the connection ra0 
 r0 on
V 0 � V 0nwÿ1��0; e�� (this is a consequence of proposition 3.1). It implies that
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for this connection, we � sup�w; e� is convex on V 0 � V 0, and that
we

1
a0 X �0�X �a0�
������!

; Y
� �

is a submartingale. But we
1
a0 X1�0�X1�a0�
�������!

; Y1
� �

is bounded
and tends almost surely stationarily to e as a0 tends to 0. Hence almost surely,
for all t 2 �0; 1�;we

ÿ
1
a0 Xt�0�Xt�a0�
�������!

; Yt
�
tends to e as a0 tends to 0. Since this is

true for all e > 0, we have that almost surely, for all t 2 �0; 1�; 1a Xt�0�Xt�a�
������!

tends to Yt as a tends to 0 (see [K1] lemma 4.5). Therefore almost surely, for
all t 2 �0; 1�, the map a 7!Xt�a� is di�erentiable at a � 0 with derivative Y .

To end this section, let us prove that exponential expectations commute
with di�erentiation. This can be seen as a discrete analogue to theorem 3.3.

Proposition 3.8. ± Let �M ;r� be a manifold endowed with a torsion-free
connection, and let W be a random variable with values in an open subset V of
TM such that �V ;r0� has strong convex geometry. Denote by L the projection
p�W �. Assume that the di�erential of the exponential expectation E at point L
in the direction W, denoted by hTE�L�;W i, belongs to V.

Then hTE�L�;W i is the exponential expectation E0�W � of W with respect to
the connection r0.
Remark. ± If W takes its values in a small set, then hTE�L�;W i is very close to
this set and it is possible to ®nd an open set V with strong convex geometry
such that the assumptions are ful®lled.

Proof of proposition 3.8. ± Let a 7! L�a� be a smooth family of random
variables with values in M , such that almost surely L0�0� � W . De®ne
x�a� � E�L�a�� and U�a� � x�a�L�a������!

. Then x0�0� is equal to hTE�L�;W i.
If a 7! u�a� is a di�erentiable path in TM with projection p1�u�a�� � x�a�,

one gives the two following equivalent de®nitions of the complete lip uc�a� of u:

(i) uc�a� is the vector in TTM with projection p2�uc�a�� � x0�a� in TM , and
with coordinates �ui�a�; �ui�0�a��;

(ii) uc�a� is the vector in TTM with projection p2�uc�a�� � x0�a� in TM , with
horizontal part the horizontal lift of u�a� in Tx0�a�TM and with vertical
part the vector ru�a�

da , where rd denotes the covariant derivative.

Since the ®rst de®nition does not require the connection and the second
one does not require a chart, uc�a� depends on none of them.

We have E�U�a�� � 0 by de®nition of the exponential expectation (de®-
nition 2.4), and this implies by derivation and by the de®nition (i) of Uc�a�,
that E�Uc�0�� � 0. To show that x0�0� is the exponential expectation of L0�0�,
it remains to verify that if exp0 denotes the exponential map with respect to
r0, then exp0x0�0� U c�0� � L0�0�. This is exactly what the following lemma
says. h

Lemma 3.9. ± Let a 7! x�a� and a 7! l�a� be two di�erentiable curves de®ned on
an interval I of R containing 0 and with values in V. Denote by u�a� the vector
x�a�l�a������! 2 Tx�a�M .

Then exp��u0�0�� � exp0 uc�0�, where exp0 denotes the exponential map
de®ned with r0 and exp� denotes the tangent map to exp.
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Proof. ± Let �t; a� 7! c�t; a� be the V -valued map de®ned on �0; 1� � I , such
that for each a 2 I , the path t 7! c�t; a� is a geodesic with c�0; a� � x�a� and
c�1; a� � l�a� . Then we have for all a 2 I ; u�a� � @c�t;a�

@t jt�0. Denote by J the
Jacobi ®eld @c

@a ja�0. It is su�cient to show that J 0�0� � uc�0�. For this, we are
going to use the de®nition (ii) of uc�0� and show that the projections, and the
horizontal and vertical parts of the two vectors coincide.

It is clear that they have the same projection x0�0� 2 V . Since
p1 � J�t� � c�t; 0�, we have p1��J 0�0� � u�0�, and we deduce that they have
the same horizontal part. As for the vertical part, we have

r
@t
jt�0 J�t� � r

@t
jt�0

@

@a
ja�0c�t; a�

r
@a
ja�0

@

@t
jt�0c�t; a� �

r
@a
ja�0u�a� :

This proves the lemma. h

4. Complexi®cation of a manifold with connection

In this section, the manifold MR is real analytic, and endowed with a real
analytic torsion-free connection rR. According to [W,B], there exists a
complexi®cation M of MR which is a complex analytic manifold. For every
point x in MR and every analytic function /R de®ned on a neighbourhood V R

of x in MR, there exists a neighbourhood V of x in M and a unique holo-
morphic extension / of /R to V . We shall show, possibly by reducing the
neighbourhood M of MR, that this fact allows us to extend rR to an holo-
morphic connection in M such that MR is a totally geodesic submanifold.

Proposition 4.1. ± Possibly by reducing the complexi®cation M of MR, there
exists a connection r on M such that the equation of geodesics in an holo-
morphic chart is

�cl � ÿCl
jk�c� _c j _c k �6�

where the coordinates are taken in C and the Cl
jk are holomorphic functions.

For this connection, the set MR, is a totally geodesic submanifold and the
inclusion �MR;rR� ! �M ;r� is a�ne. The equation of continuous martingales
in an holomorphic chart is

deZ � ÿ 1
2

Cjk�Z�dhZj; Zki ; �7�

where the coordinates are taken in C and eZ denotes the ®nite variation part in
these coordinates.

Proof. ± Consider an analytic exponential chart in MR with image an open
ball BR�0;R� in Rd , such that the Christo�el symbols

Cl
jk�x� �

X
d

cl
jkdxd
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converge on this domain, where summation is taken over multiindexes
d 2 Nd . We have C�0� � 0. Considering Rd as a subset of Cd and denoting by
B(0, R) the open ball of center 0 and radius R in Cd , we can assume that
B�0;R� is the image of the complexi®cation of the real chart in MR. We can
de®ne holomorphic functions on B�0;R� by

Cl
jk�z� �

X
d

cl
jkdzd : �8�

The uniqueness of the holomorphic extension of the Christo�el symbols
together with the existence of a locally ®nite covering of MR with charts as
above allow us to say that it is su�cient to consider only one chart and to
show that the functions given by (8) de®ne a connection r on B�0;R� which
extends the connection rR on BR�0;R�, and for which this subset is a totally
geodesic submanifold of B�0;R�.

Denote by za � xa � ixa� and zb � xb � ixb; zc � xc � ixc� the coordinates
in Cd , and by Ca

bc�z� � Car
bc�z� � iCai

bc�z� the decomposition into real and
imaginary part of the function Ca

bc. Considering B�0;R� as a real manifold
with the system of coordinates �xa; xa�, one veri®es that equation (6) is
equivalent to the equation of geodesics for the real connection whose
Christo�el symbols D are

Da
bc � Car

bc; Da
bc � ÿCai

bc; Da
bc � ÿCai

bc; Da
bc � ÿCar

bc ;

Da
bc � Cai

bc; Da
bc � Car

bc; Da
bc � Car

bc; Da
bc � ÿCai

bc :

In the same way, one veri®es that equation (8) is the same as the equation for
martingales in the real manifold B�0;R� endowed with the connection with
Christo�el symbols D in the canonical coordinates.

The fact that the coe�cients cc
abd are real implies that the equation of

geodesics in �BR�0;R�;rR� is the same as the equation in B�0;R� with real
initial conditions. Hence the inclusion �BR�0;R�;rR� ! �B�0;R�;r� is a�ne
and BR�0;R� is totally geodesic in B�0;R�. h

Let M be as in proposition 4.1. Since the connection in M is holomorphic,
we have the following results:

Lemma 4.2. ± Let I : TM ! TM be the complex structure on TM, i.e. the
multiplication by i of the complex coordinates of vectors in TM.

Then I is an a�ne di�eomorphism.

Proof. ± It is su�cient to prove that the image by I of a geodesic is a
geodesic. One veri®es that the equation of a geodesic in TM is in complex
coordinates

�Jl � ÿhTCl
jk�c�; Ji _cj _ck ÿ Cl

jk�c�� _Jj _ck � _cj _Jk� :
Since the Cl

jk are holomorphic, we have hT Cl
jk�c�;IJi � i�hT Cl

jk�c�; Ji�. If we
replace J ; _Jj; _Jk; �Jl by IJ ; i _Jj; i _Jk; i �Jl, the above equation is still satis®ed.
Hence IJ is a geodesic and I is a�ne. h
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Corollary 4.3. ± Assume that M has strong convex geometry. Then the fol-
lowing assertions are true:

1) Denote by U an open neighbourhood of the null section in TM such that
the application U ! M �M ; u 7! �p�u�; expp�u� u� is a di�eomorphism.
Then exp : U ! M is holomorphic.

2) If a 7! L�a� is a holomorphic family of M-valued random variables, then
the application a 7!E�L�a�� is holomorphic.

3) Let a 7! L�a� be a holomorphic family of M-valued random variables, and
for each a, let X discr�a� be a discrete exponential martingale with terminal
value L(a). Then almost surely, for each t 2 �0; 1�, the map a 7!X discr

t �a�
is holomorphic.

Corollary 4.4. ±With the hypothesis of 3) of corollary 4.3, if the map a 7! L�a�
is de®ned on some closed disc �D�0;A�, if M � B�0;R� and if we write

X discr�a� � X discr�0� �
X1
n�1

an

n!
W discr

n ;

then for each n 2 N, we have

kW discr
n k � n!

R
An :

Remark. ± The upper bounds obtained for the discrete process W discr
n are

independent of the ®ltration. The question arises whether this result gener-
alizes for non-discrete ®ltrations, and a positive answer will be given at the
end of section 6.

Proof of corollary 4.3. ± 1) Consider two holomorphic maps a 7!K�a� 2 M
and a 7! L�a� 2 M de®ned on the same open subset of C, and consider for
each a the geodesic t 7! c�a; t� which satis®es c�a; 0� � K�a� and
c�a; 1� � L�a�. It is su�cient to show that for each t, the map a 7! c�a; t� is
holomorphic and then to di�erentiate at time t � 0.

For each t, the map a 7! c�a; t� is di�erentiable since M has strong convex
geometry, and if T1c�a; t� denotes the di�erential with respect to a and u 2 C,
we have that t 7! hT1c�a; t�; ui is ar0-geodesic in TM , t 7! hT1c�a; t�; iui is ar0-
geodesic in TM . But since I is a�ne, t 7!I�hT1c�a; t�; ui� is a r0-geodesic in
TM with the same end points as those of t 7! hT1c�a; t�; iui. The consequence
is that hT c�a; t�; iui � I�hT c�a; t�; ui� and 1) is proved.

2) is a consequence of 1) and of the implicit function theorem applied to
�x; a� 7! E xL�a����!h i

, using (iv) of de®nition 2.4.

3) is a direct consequence of 2). h

Proof of corollary 4.4. ± It is a consequence of the formula

W discr
n �t� � n!

1

2pi

Z
C�0;A�

X discr
t �a�
an�1 da
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where C�0;A� denotes the circle in C of center 0 and of radius A.

Corollary 4.5. ± Let A > 0 and for each a 2 D�0;A�; let X(a) be an M-valued
continuous martingale with terminal value L(a), such that a.s. for all
t 2 �0; 1�; a 7!Xt�a� is di�erentiable on D�0;A�, and a 7! L�a� is holomorphic on
D�0;A�.

Assume that

a� the manifold M has strong p-convex geometry with p 2 2N�, the function
w of de®nition 2.3 is the same as the function w of de®nition 2.5 and is
smooth on M �M ,

b� almost surely, the map �t; a� 7! T2Xt�a� is continuous and bounded on
�0; 1� � D�0;A��T2Xt�a� denotes the di�erential with respect to a).

Then almost surely, for all t 2 �0; 1�; a 7!Xt�a� is holomorphic on D�0;A�.
Proof. ± It is su�cient to check that the Cauchy-Riemann equations are
satis®ed at a � 0. For u 2 C, set Y u � hT2X �a�; uija�0. The processes Y u and
Y iu are r0-martingales in TM by theorem 3.3. The process IY u is a r0-
martingale by lemma 4.2. Hence the process Y iu ÿIY u is a bounded mar-
tingale above X �0�, with terminal value 0. It implies by lemma 3.5 that
T
pw�Y iu ÿIY u� is a bounded non-negative real submartingale with termi-
nal value 0. Hence T
pw�Y iu ÿIY u� � 0 and Y iu � IY u. h

5. Approximations of martingales in a manifold

In this section, we give general results of approximations of a continuous
martingale in a manifold by discrete exponential martingales. They extend
the results obtained in [A2] in convex geometry.

Theorem 5.1. ± Let �Xt�0�t�1 be a continuous martingale in a manifold M
endowed with a connection r.

Then for all e > 0, for all stopping times S, T such that S � T , for any
Riemannian distance on M, there exists a stopping time Te such that
S � Te � T ;P�Te 6� T � < e and such that X Te can be a.s. uniformly approxi-
mated between S and T by a discrete exponential martingale at a distance less
than e.

Proof of theorem 5.1. ± For the sake of simplicity, one can take S � 0; T � 1
and assume that X0 is a constant. Since we are interested in the martingale X
up to a stopping time equal to 1 with probability less than 1, we can assume
that X lives in a compact subset K of M . It makes sense to de®ne square
integrable martingales living in a compact set: take any Riemannian metric
on the manifold and say that X is square integrable if its Riemannian qua-
dratic variation with respect to this metric has ®nite expectation. By using a
stopping time equal to 1 with probability as close to 1 as we want, we can
suppose that X is square integrable.
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Let g be a Riemannian metric on M , and d the associated Riemannian
distance. In the following, the Levi-Civita connection of g will not be used.
Let a 2 1

3 ;
1
2

ÿ �
; de®ne for m 2 N�T m

0 � 0 and for i 2 f0; . . . ;mÿ 1g

T m
i�1 � inf t > T m

i ; d�XT m
i
;Xt� � 1

ma

� �
(by convention, these stopping times are equal to 1 when the sets are empty).

Lemma 5.2. ± The probability P�T m
m 6� 1� tends to 0 as m tends to 1.

Remark. ± The proof will only use a < 1
2.

Proof of lemma 5.2. ± Let g : M �M ! R be a smooth function with com-
pact support, which coincides with d2 in a neighbourhood of the diagonal of
the compact set K. There exists a constant c > 0 such that for all
x 2 M ;rdg�x; �� � cg. In the following, rdg�x; �� will be denoted by
Hess2g�x; ��; and dg�x; �� by d2g�x; ��: If S; T are two stopping times such that
S � T , then the ItoÃ formula gives

g�XS ;XT � �
Z T

S
hd2g�XS ;Xt�; dXti � 1

2

Z T

S
Hess2 g�XS ;Xt��dX 
 dX �t

where the ®rst term in the right hand side is an ItoÃ integral. This yields

E�g�XS ;XT �� � 1

2
E

Z T

S
Hess2g �XS ;Xt��dX 
 dX �t

� �
� c
2

E�hX jX iT ÿ hX jX iS �

where hX jX i stands for the Riemannian quadratic variation of X . Applying
this inequality to S � T m

i and T � T m
i�1, summing over i, and taking m suf-

®ciently large, we can replace g by d2 and write

E
Xmÿ1
iÿ0

d2 XT m
i
;XT m

i�1

� �" #
� c
2

E�hX jX i1� :

On fT m
m < 1g, we have for all i; d XT m

i
;XT m

i�1

� �
� 1

ma. Hence we have

m
m2a

P�fT m
m < 1g� � c

2
E�hX jX i1� ;

which yields

P�fT m
m < 1g� � m2aÿ1 c

2
E�hX jX i1�

and the right hand side tends to 0 as m tends to 1 since 2aÿ 1 < 0. This
proves the lemma. h

Fix m big enough for any ball of radius 2
ma centered in K to be included in

a manifold with strong 2-convex geometry, and for T m
m to be di�erent of 1

with probability less than e
2. This is possible thanks to lemma 5.2. Then X

takes its values in a manifold with strong 2-convex geometry between times
T m

i and T m
i�1.
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Let n 2 N (n will be much greater than m). The idea of the proof of
theorem 5.1 is to approximate X uniformly on intervals of the form
�T m;n

i;0 ; T
m;n
i;n ��with T m;n

i;n � T m;n
i�1;0�;P�T m;n

i;0 6� T m
i � and P�T m;n

i;n 6� T m
i�1� being very

small. This will be performed using subdivisions of the form T m;n
i;0 �

T m;n
i;1 � . . . � T m;n

i;n .
First de®ne by induction the stopping times Sm;n

i:j ; 0 � i � mÿ 1;
0 � j � nÿ 1 by

Sm;n
0;0 � 0; Sm;n

0;j�1 � T m
1 ^ inf t > Sm;n

0;j ; d�XSm;n
0;j
;Xt� � 1

na

� �
:

The induction relation is: for 0 � i � mÿ 2, de®ne

Sm;n
i�1;0 � Sm;n

i;n

and for 0 � j � nÿ 1,

Sm;n
i�1;j�1 � T m

i�2 ^ inf t > Sm;n
i�1;j; d�XSm;n

i�1;j
;Xt� � 1

na

� �
:

Then de®ne the stopping time Rm;n by

Rm;n � T m
m ^ inf

0�i�mÿ1
fSm;n

i;n such that Sm;n
i;n < T m

i�1g

where by convention, the in®mum is equal to 1 if the set is empty (in fact we
expect this set to be empty with a large probability).

Now de®ne for 0 � i � mÿ 1 and 0 � j � nÿ 1 the stopping times

T m;n
i;j � Sm;n

i;j ^ Rm;n

(the discrete martingale is stopped at the ®rst time Sm;n
i;n which is strictly less

than T m
i�1). A consequence of lemma 5.2 is that there exists a constant C > 0

such that almost surely, for all i 2 f0; . . . ;mÿ 1g,

P
\

0�i0�iÿ1
fSm;n

i0;n � T m
i0�1g \ fSm;n

i;n < T m
i�1gjFT m

i

 !
� C

n1ÿ2a
;

which yields

P�Rm;n < T m
m � �

Xmÿ1
i�0

P
\

0�i0�iÿ1
fSm;n

i0;n � T m
i0�1g \ fSm;n

i;n < T m
i�1g

 !
� Cm

n1ÿ2a
:

We shall show that the stopping time Rm;n is, for n large enough, the answer
to our question.

We have constructed an increasing sequence of m�n� 1� stopping times
0 � T m;n

0;0 � T m;n
0;1 � . . . � T m;n

0;n � T m;n
1;0 � T m;n

1;1 � . . . � T m;n
mÿ1;n � Rm;n

such that if S and T belong to this sequence and are consecutive, then
d�XS ;XT � � 1

na. Moreover, between T m;n
i;0 and T m;n

i�1;0, the law of X conditionned
by FT m;n

i;0
is carried by a (random) manifold with strong 2-convex geometry.

This increasing sequence of stopping times will be denoted by sm;n.
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Lemma 5.3. ± Let p � 1 and let N be a manifold with strong p-convex geom-
etry.

Then there exists a constant C0 > 0, such that for any martingale Y with
values in N and for any sequence of stopping times

s � s�q� � fS0 � 0 � S1 � . . . � Sqg
which satis®es

sup
Si�t�Si�1

d�YSi ; Yt� � 1

qa
;

if Y discr�s� is the exponential discrete martingale with terminal value YSq , then
almost surely,

sup
t2�0;Sq�

d�Yt; Y
discr�s�
t � � C0

q3aÿ1
:

Proof. ± The proof goes as in [A2] proposition 3.3, following the construction
of Picard ([P2], proof of theÂ oreÁ me 6.3). Since d�YSqÿ1 ; YSq� � 1

qa, we have by
[A2] proposition 2.15, d�YSqÿ1 ; Y

discr�s�
Sqÿ1 � � C

q3a where C is a constant depending
only on the manifold. De®ne s�qÿ 1� � fS0 � 0 � S1 � . . . � Sqÿ1g and
Y discr�s�qÿ1�� the discrete exponential martingale with terminal value YSqÿ1 .
Then �Y discr�s�q��; Y discr�s�qÿ1��� is a discrete exponential martingale up to time
Sqÿ1, and since N has strong p-convex geometry, for any Riemannian dis-
tance d, there exists a constant C00 depending only on N and d, such that

dp Y discr�s�qÿ1��
0 ; Y discr�s�q��

0

� �
� C00E dp Y discr�s�qÿ1��

Sqÿ1 ; Y discr�s�q��
Sqÿ1

� �h i
� C00 C

1

q3a

� �p

;

which yields

d Y discr�s�qÿ1��
0 ; Y discr�s�q��

0

� �
� C00

1
p C

1

q3a

� �
:

Replacing Sq by Sqÿ1, and then Sqÿ1 by Sqÿ2 and so on, we obtain q similar
inequalities, and we add them, It yields

d Y0; Y
discr�s�1��
0

� �
� � � � � d Y discr�s�qÿ1��

0 ; Y discr�s�q��
0

� �
� qC00

1
p C

1

q3a

� �
and hence

d Y0; Y
discr�s�
0

� �
� C00

1
p C

1

q3aÿ1

� �
This proves the inequality of the lemma at time 0 and similarly, at time
Sj; 0 � j � q: It is not di�cult to extend this inequality for all times since q3aÿ1

qa

tends to 0 as q tends to 1.

Remarks. ± 1) Since a > 1
3 we have 3aÿ 1 > 0 and the upper bound tends to 0

as q tends to 1.
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2) In general, a subdivision s�q� does not exist up to time 1. It exists up to a
time which is strictly less than 1 with a probability tending to 0 as q tends to1.

We are now able to ®nish the proof of theorem 5.1.
Let C00 be a constant such that for each x 2 K, for each ball of radius 2

ma

and of center x, the function w de®ning the 2-convexity of this ball satis®es
ad2 � w � Ad2 with A

a � C00. De®ne b�n� � C0 1
n3aÿ1 where C0 is as in lemma 5.3

(here C0 depends on all the balls of radius 2
ma centered in K). Suppose that n is

big enough so that the inequality

m
������
C00
p m

b�n� < 1

ma
�9�

is satis®ed. Then it will be shown that the discrete exponential sm;n-martin-
gale Zm;n with terminal value XRm;n exists (where sm;n is the subdivision con-
structed before lemma 5.3). It exists clearly from time T m;n

mÿ1;0 to time Rm;n, and
by lemma 5.3, we have

d XT m;n
mÿ1;0

; Zm;n
T m;n

mÿ1;0

� �
� C0

1

n3aÿ1
� b�n� : �10��m�

Using condition (9), inequality (10)(m) and the fact that balls of radius 2
ma

have strong 2-convex geometry, the construction of Zm;n can be performed on
�T m;n

mÿ2;0; T
m;n
mÿ1;0� since the conditional law L

�
Zm;n

T m;n
mÿ1;0
jFT m;n

mÿ2;0

�
is almost surely

included in a ball of radius 2
ma and centered at XT m;n

mÿ2;0
.

Denote by smÿ1;n the subdivision sm;n stopped at time T m;n
mÿ1;0�� T m;n

mÿ2;n�. In
the same way, the discrete exponential smÿ1;n-martingale Zmÿ1;n with terminal
value XT m;n

mÿ1;0
exists from time T m;n

mÿ2;0 to time T m;n
mÿ1;0 and from the strong 2-

convex geometry of balls centered in XT m;n
mÿ2;0

and of radius 2
ma we obtain that

�Zmÿ1;n; Zm;n� is an exponential discrete martingale on �T m;n
mÿ2;n; T

m;n
mÿ1;n�. It yields

d Zmÿ1;n
T m;n

mÿ2;0
; Zm;n

T m;n
mÿ2;0

� �
�

������
C00
p

b�n� : �11�

Like �10��m�, the following inequality �10��mÿ 1� is valid:

d XT m;n
mÿ2;0

; Zmÿ1;n
T m;n

mÿ2;0

� �
� C0

1

n3aÿ1
; �10��mÿ 1�

and inequalities �10��mÿ 1� and (11) yield

d X m;n
T m;n

mÿ2;0
; Zm;n

T m;n
mÿ2;0

� �
� b�n��1�

������
C00
p
� � m

������
C00
p m

b�n� < 1

ma
:

It implies that the conditional law L Zm;n
T m;n

mÿ2;0
jFT m;n

mÿ3;0

� �
is almost surely in-

cluded in a ball of radius 2
ma and centered in XT m;n

mÿ3;0
.

By the same method, de®ning Zmÿ2;n, discrete martingales can be con-
structed from time T m;n

mÿ3;0 to time T m;n
mÿ2;0 and one obtains
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d

�
XT m;n

mÿ3;0
; Zm;n

T m;n
mÿ3;0

�
� d XT m;n

mÿ3;0
; Zmÿ2;n

T m;n
mÿ3;0

� �
� d Zmÿ2;n

T m;n
mÿ3;0

; Zmÿ1;n
T m;n

mÿ3;0

� �
� d Zmÿ1;n

T m;n
mÿ3;0

; Zm;n
T m;n

mÿ3;0

� �
� b�n� 1�

������
C00
p

�
������
C00
p 2

� �
:

By iteration, one can construct Zm;n on the whole subdivision sm;n and one
has

d�X0; Z
m;n
0 � � b�n� 1�

������
C00
p

�
������
C00
p 2 � . . .�

������
C00
p m

� �
� m

������
C00
p m

b�n� < 1

ma

�12�
using (9). It is obvious that in (12) the time 0 can be replaced by any element
of sm;n.

Let e > 0. Choose m such that every ball of radius 2
ma is included in a

manifold with strong 2-convex geometry, P�T m
m 6� 1� < e

2 and
1

ma <
e
2, choose

n0 such that m
������
C00
p m

b�n0� < e
2 ; n > n0 such that 1

na <
e
2 and P�Rm;n < T m

m � < e
2.

De®ne Te � Rm;n. We have

k sup
t�Te

d�Zm;n
t ;Xt�k1 �

sup
T2sm;n

d�Zm;n
T ;XT �

 
1
� sup

Ti2sm;n; t2�Ti;Ti�1�
d�XTi ;Xt�



1
< e :

�13�

This proves the theorem. h

Remarks. ± 1) Although Te is strictly less than 1 with probability less than e,
we can not expect to obtain a uniform convergence of the discrete martin-
gales almost surely for 0 � t � 1. We can not even de®ne discrete martingales
up to time 1.
2) If �X;F1;P� is such that conditional laws with respect to any r-®eld
included in F1 exist, then the conclusion of theorem 5.1 and inequality (13)
are still valid if we replace Zm;n by a convex discrete martingale with terminal
value XTe . Proposition 2.9 is then required at di�erent steps of the proof.

6. Construction of holomorphic families of continuous martingales
with prescribed terminal value

Let M be a manifold. Set T �0�M � M and for n � 1, de®ne by induction
T �n�M � TT �nÿ1�M . If r is a connection on M , set r�0� � r, and for n � 1,
denote by r�n� the complete lift in T �n�M of the connection r�nÿ1� in T �nÿ1�M .

For n 2 N�, de®ne pn : T �n�M ! T �nÿ1�M the canonical projection. De®ne
for x0 2 M ,
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Mn � Mn�x0� � fw 2 T �n�M ; p1 � p2 � . . . � pn�w� � x0g
and by induction T �0�S M � M ; T �1�S M � TM and for n � 2

T �n�S M � fw 2 TT �nÿ1�S M ; pn�w� � pnÿ1� �w�g :
De®ne for n � 1,

Mn
S � Mn \ T �n�S M :

Note that the dimension of Mn
S is nd and that T �n�S M is the set of n-th de-

rivatives of smooth paths with values in M . A point of T �n�S M can also be seen
as an equivalence class of smooth curves in M , for the equivalence relation
given by n-th order tangency at one point of M .

Lemma 6.1. ± If w : �V ;rV � ! �W ;rW � is an a�ne mapping between two
manifolds endowed with torsion-free connections, then w� : �TV ;rV 0 � !
�TW ;rW 0 � is a�ne.

Proof. ± It is su�cient to show that the images by w� of geodesics in TV are
geodesics in TW .

Let t 7! J�t� be a geodesic in TV de®ned on �0; e�. If e > 0 is small enough,
then there exists a smooth map �a; t� 7! c�a; t� de®ned on �0; e0� � �0; e� such
that for every a 2 �0; e0�; t 7! c�a; t� is a geodesic in V and @

@a ja�0c�a; t� � J�t�.
Since w is a�ne, for every a 2 �0; e0�; t 7!w�c�a; t�� is a geodesic in W and

therefore t 7! @
@a ja�0w�c�a; t�� � w��J�t�� is a rW 0-geodesic in TW . h

Lemma 6.2. ± If V and W are two manifolds with a connection, w : V ! W is
an a�ne submersion and if W 0 is a totally geodesic submanifold of W , then
wÿ1�W 0� is a totally geodesic submanifold of V.

Proof. ± The set V 0 � wÿ1�W 0� is a submanifold of V since w is a submersion.
Let x 2 V 0; u 2 TxV 0 and denote by c the geodesic in V which satis®es
_c�0� � u. Then since w is a�ne, w � c is a geodesic in W with initial condition
�w � c�0�0� � Txw�u� and this vector belongs to Tw�x�W 0. It implies that w � c is
a geodesic in W 0 and c is a geodesic in V 0. This proves that V 0 is totally
geodesic. h

Lemma 6.1 and lemma 6.2 yield:

Proposition 6.3. ± Assume that the manifold M is endowed with a connectionr.
Then the submanifolds �Mn;r�n��; �T �n�S M ;r�n�� �Mn

S ;r�n�� are totally geodesic
in T �n�M .

The manifolds Mn
S are the ones we are interested in, because the n-th

derivatives at a � 0 of families of martingales de®ned by an equation like (0)
live in Mn

S . Assume that M is the domain of a chart centered in x0. An element
wn 2 Mn

S (resp. wn 2 T �n�S M� will be denoted by �w1; . . . ;wn� (resp. �x;
w1; . . . ;wn�� in canonical coordinates, forgetting the repetitions of coordi-
nates.
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So as to show that equations (0) and (1) in section 1 de®ne a martingale
X �a�, we have to show that the series (0) converges, and that if it converges,
the sum is a r-martingale. First we give an answer to the second point.

Assume M � B�0;R� is an holomorphic manifold endowed with an ho-
lomorphic connection and that we are given a holomorphic family

X �a� � X �0� �
X1
n�1

an

n!
Wn��� �14�

of processes such that the series converges, X �0� is a r-martingale, and for
each n � 1, the process W n 2 T �n�S M with coordinates �X �0�;W1; . . . ;Wn� is a
r�n�-martingale. The question arises whether X �a� is a r-martingale, and
with the help of corollary 4.4 and theorem 5.1, it is possible to give the
following answer:

Theorem 6.4. ± Assume that M � B�0;R� � Cd is a complex manifold endowed
with an holomorphic connection r, such that the holomorphic Christo�el
symbols are de®ned on M (see section 4 for details). Assume that almost surely
the series (14) converges absolutely and uniformly in t;x on the closed disc
�D�0;A� � C of center 0 and radius A and that there exists a compact subset V
of M with strong convex geometry such that almost surely, for all
�t; a� 2 �0; 1� � �D�0;A�;Xt�a� takes its values in V.

Then for every a belonging to the closed disc �D�0;A�;X �a� is a r-martin-
gale.

Proof. ± It is su�cient to obtain the result for every a belonging to the open
disc D�0;A�, since we can then obtain it in the closed disc using the uniform
convergence. According to [A2] proposition 2.12 (one veri®es that the strong
convex geometry assumption of de®nition 2.4 is su�cient to apply this result)
and [A1] proposition 3.4, it is su�cient to show that for any function
f 2 C�V �, for all a 2 D�0;A�; f �X �a�� is a real submartingale. Let f be such a
function and s; t 2 �0; 1� such that s � t. We are going to show that for all
a 2 D�0;A�; f �Xs�a�� � E� f �Xt�a��jFs�.

Let e > 0;A0 2 �0;A� and N 2 N such that almost surely, for all
a 2 �D�0;A�, for all u,

Xu�a� ÿ Xu�0� ÿ
XN

n�1

an

n!
Wn�u�


 < e �15�

and such that for every increasing sequence of stopping times
s � fT0 � T1 � . . . � Tkg and every holomorphic family L�a� of random
variables de®ned on �D�0;A�, with values in V , such that L�a� � Y discr�s�

Tk
�a�

where Y discr�s��a� � Y discr�s��0� � P1
n�1

an

n! W discr�s�
n ��� is an exponential discrete

martingale, we have for a 2 �D�0;A0�

Y discr�s��a� ÿ Y discr�s��0� ÿ
XN

n�1

an

n!
W discr�s�

n ���


 < e : �16�
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Note that this is possible because of the majoration of corollary 4.4, which
gives

X1
n�N�1

an

n!
W discr�s�

n


 � R

A0
A

ÿ �N�1

1ÿ A0
A

as soon as jaj � A0.
By theorem 5.1, there exists a stopping time T with s � T � t and

P�T 6� t� < e and a subdivision s of �s; T � such that the discrete exponential
martingale W N ;discr�s� with values in T �n�S M and with terminal value
W N ;discr�s�

T � W N
T , with coordinates �X discr�s��0�;W discr�s�

1 ; . . . ;W discr�s�
N � exists

and satis®es:

8n 2 f0; 1; . . . ;Ng; W discr�s�
n ÿ Wn

  � n!
e

�N � 1�An �17�

where one de®nes W discr�s�
0 � �W 0�discr�s� � X discr�s��0�. Since the canonical

projections T �n�S M ! T �nÿ1�S M are a�ne, a consequence of proposition 2.10 is
that pn

ÿ�W n�discr�s�� � �W nÿ1�discr�s� for all n 2 f1; . . . ;Ng. We can assume
that for all n 2 f1; . . . ;Ng, if Tk and Tk�1 are two times of the discretisation,
then the random variable W n;discr�s�

Tk�1 takes its values in a random FTk -mea-
surable set V �n; k;x� with strong convex geometry and that
hTEÿW nÿ1;discr�s�

Tk�1 jFTk

�
;W n;discr�s�

Tk�1 i belongs to V �n; k;x�. The assumptions of
proposition 3.8 are ful®lled and we deduced that

W n;discr�s�
Tk

�
D

TE W nÿ1;discr�s�
Tk�1 jFTk

� �
;W n;discr�s�

Tk�1

E
:

By induction on the indexes of the subdivision s (going from the upper index
to the lower index) and by induction on the derivatives, we deduce that for
n 2 f1; . . . ;Ng, the process �W n�discr�s� is the n-th derivative of X discr�s��a� at
time a � 0. Hence, since the family of discrete exponential martingales
X discr�s��a� with terminal values XT �a� is holomorphic in a, there exist Cd-
valued discrete processes W 0discr�s�

n ���; n > N such that the processes X discr�s��a�
write

X discr�s��a� � X discr�s��0� �
XN

n�1

an

n!
W discr�s�

n ��� �
X1

n�N�1

an

n!
W 0discr�s�

n ��� :

Putting together (15), (16) and (17), we obtain that on �s; T �, for all
a 2 D�0;A0�, the distance between X T �a� and X discr�s��a� is less than 3e. But
X discr�s��a� is a discrete martingale with values in K and hence f X discr�s��a�ÿ �

is
a bounded discrete submartingale on �s; T �, which yields f

ÿ
X discr�s�

s �a�� �
E
�
f
ÿ
X discr�s�

T �a��jFs
�
. By letting e tend to 0, and using the fact that f is

bounded on V , we deduce that f �Xs�a�� � E�f �Xt�a��jFs�. h

We are going to investigate the convergence of the series (0) of section 1.
It will be shown that the martingales W n live in compacts of manifolds with
strong convex geometry, and this will give us the appropriate bounds.
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The following result is immediate:

Proposition 6.5. ± Let M be a manifold with connection and x0 2 M . Then for
each n � 1, given two points in Mn

S � Mn
S �x0�, there exists one and only one

geodesic living in Mn
S and joining these two points.

Proof. ± The equation of geodesics in a coordinates system of Mn
S gives the

same induction relation as in section 1 with martingales and it is possible to
give explicit solutions. One obtains

wn�t� � wn�0� � t wn�1� ÿ wn�0� ÿ
Z 1

0

ds
Z s

0

du�wn�u�
� �

�
Z t

0

ds
Z s

0

du�wn�u� ;

and as equation (18) below shows it, �wn is a polynomial in t if for all
i � nÿ 1;wi and _wi are polynomials in t.

Proposition 6.6. ± Let M be a manifold with connection, x0 2 M , and for n � 1,
denote by �w1; . . . ;wn� the coordinates in Mn

S inherited from a chart in a
neighbourhood of x0. Then for each n � 1, there exists a convex function
hn : Mn

S ! R� such that

(i) h2n is a polynomial in kwik; i 2 f1; . . . ; ng, without any monomial of order 0
or 1.

(ii) hn � kwnk,
(iii) there exists a polynomial Pn�X1; . . . ;Xn� such that for any geodesic

wn�t� in Mn
S ,�ÿ�hn � wn�2�0��t��2 � Pn�kw1�t�k; . . . ; kwn�t�k��k _w1�t�k2 � . . .� k _wn�t�k2� ;

(iv) for any geodesic wn�t� in Mn
S , for all p 2 N; p � 2, the measure �hp

n � wn�00
is greater than the measure in R with density pkwnkpÿ2k _wnk2.

Remark. ± Let n; p 2 N�. If hn : Mn
S ! R� is de®ned, then it extends to a

convex function on Mn�p
S by composition by the a�ne mapping

pn�1 � . . . pn�p : Mn�p
S ! Mn

S . It will be still denoted by hn.

Proof of proposition 6.6. ± Let us prove this proposition by induction.
For n � 1, take h1�w1� � kw1k.
Let n 2 N�, and suppose that h1; . . . ; hnÿ1 exist. Let wn�t� be a geodesic in

Mn
S . A dimension argument together with the de®nition of r�n� show that

wn�t� is the n-th order derivative at a � 0 of a family (indexed by a) of
geodesics c�t; a� such that for all t; c�t; 0� � x0. Di�erentiating n times the
equation �c � ÿCjk�c� _cj _ck yields the equation for wn�t�

1

n!
�Wn � ÿ

X
r�0; p;q>0

a1�...�ar�p�q�n
1�i1 ;...;ir�d

Ca;p;q;iDiCjk�x0�wi1
a1 . . . wir

ar
_wj

p _wk
q �18�

where a � �a1; . . . ; ar�; i � �i1; . . . ; ir� and Ca;p;q;i are constants uniquely de-
termined. Note that the right hand side involves only indexes less than nÿ 1.

244 M. Arnaudon



From the inequality

ja1a2 . . . anÿ1anj � 1� a41 � a82 � . . .� a2n
nÿ1 � a2

n

n

which comes from the iteration of jabj � a2 � b2 (and using a0 � 1), we
obtain that each term jCa;p;q;iDiCjkwi1

a1 . . . wir
ar

_wj
p _wk

qj is bounded above by a sum
of terms of the form Ckwikmk _wjk2 with m 2 2N; i; j;2 f1; . . . ; nÿ 1g. But
kwikmk _wjk2 is bounded above by the second derivative of 12 �hm

i � h2j �2 � wn�t�.
Indeed, this second derivative is equal to�

�hm
i � wi�0��t�

� �
�
�
�h2j � wj�0��t�

��2
� ÿhm

i �wi� � h2j �wj�� �hm
j � wi�00 � �h2j � wj�00

� �
(where ���0� denotes a right derivative) and the term in the right is greater
than 2kwikmk _wjk2 by the induction relation. The second derivative to
t 7! kwn�t�k is

1

kwnk3
kwnk2k _wnk2 ÿ hwn; _wni2
� �

� wn

kwnk ; �wn

� �
added to a non-negative Dirac mass at kwnk � 0; the ®rst term is non-neg-

ative and wn
kwnk ; �wn

D E
is greater than

ÿ
X

r�0; p;q>0
a1�...�ar�p�q�n

1�i1 ;...;ir�d

jCa;p;q;iDiCjkwi1
a1 . . . wir

ar
_wj

p _wk
qj :

This means that there exists a sum fn�wnÿ1� of terms C�hm
i � h2j �2;

m 2 2N; i; j 2 f1; . . . ; nÿ 1g;C > 0, such that

fn�wnÿ1�00 �
X

r�0; p;q>0
a1�...�ar�p�q�n

1�i1 ;...;ir�d

jCa;p;q;iDiCjkwi1
a1 . . . wir

ar
_wj

p _wk
qj

and wn 7! kwnk � fn�wnÿ1� is convex. This is not exactly the function we are
looking for, because the second derivative of its square is not big enough: let

us denote by _wt
n the tangential part

wn
kwnk ; _wn

D E
of _wn and by _w�n � _wn ÿ _wt

n
wn
kwnk

its normal part. The right derivative of t 7! kwn�t�k � fn�wnÿ1�t��ÿ �2
is

2 kwn�t�k � fn�wnÿ1�t��ÿ � wn

kwnk ; _wn

� �
� �fn � wnÿ1�0�

� �
�19�

if kwn�t�k 6� 0. The second derivative of t 7! 1
2 kwn�t�k � fn�wnÿ1�t��ÿ �2

is

_wt
n��fn � wnÿ1�0�

ÿ �2� kwnk � fn�wnÿ1�ÿ � k _w�nk2
kwnk �

wn

kwnk ; �wn

� �
��fn � wnÿ1�00

 !
added to a non-negative Dirac mass at kwnk � 0, and it is greater than

_wt
n � �fn � wnÿ1�0ÿ �2�k _w�nk2 :
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Applying the inequality �a� b�2 � 3
4 a2 ÿ 3b2 to the ®rst term, one obtains

that the second derivative of t 7! kwn�t�k � fn�wnÿ1�t��ÿ �2
is greater than

k _wnk2 ÿ 6�fn � wnÿ1�02� :

The right derivative of �hm
i � h2j �2 � wnÿ1 is

2�hm
i � h2j �

m
2

hmÿ2
i �hi � wi�2
� �0

�
� �hj � wj�2
� �0

�

� �
: �20�

Hence using (iii) and (i) of the induction relation at the order nÿ 1, it is
possible to bound �fn � wnÿ1�02 by a sum of terms Ckwikmk _wjk2 with

m 2 2N; i; j 2 f1; . . . ; nÿ 1g. Adding to kwnk � fn�wnÿ1�ÿ �2
a sum Sn�wnÿ1�

of terms of the form C�hm
i � h2j �2;m 2 2N; i; j 2 f1; . . . ; nÿ 1g;C > 0, one

obtains a convex function with second derivative greater than k _wnk2. De®ne

hn�wn� �
��������������������������������������������������������������
�kwnk � fn�wnÿ1��2 � Sn�wnÿ1�

q
and let us show that it is convex and satis®es (i) to (iv):

Lemma 6.7. ± Let f ; g : �0; 1� ! R be two convex non-negative functions. Then���������������
f 2 � g2

p
is convex.

Proof. ± Let h �
���������������
f 2 � g2

p
. Since f and g are convex, we have for

t 2 �0; 1�; a; b 2 �0; 1�;

h��1ÿ t�a� tb� �
���������������������������������������������������������������������������������������������
��1ÿ t�f �a� � tf �b��2 � ��1ÿ t�g�a� � tg�b��2

q
;

the right hand side term is�����������������������������������������������������������������������������������������������������������������
�1ÿ t�2h2�a� � t2h2�b� � 2t�1ÿ t��f �a�f �b� � g�a�g�b��

q
and this is less than��������������������������������������������������������������������������������������

�1ÿ t�2h2�a� � t2h2�b� � 2t�1ÿ t�h�a�h�b�
q

� �1ÿ t�h�a� � th�b�: (

From lemma 6.7 and the shape of Sn�wnÿ1�, we deduce that hn is convex.
Conditions (i), (ii) and (iv) are ful®lled by construction (remark that if (iv)

is ful®lled at order 2, it is ful®lled at order p � 2). As for condition (iii), using
the induction relation and (20), it is su�cient to bound the square of the
derivative (19). But one can bound

wn

kwnk ; _wn

� �
� �fn � wnÿ1�0�

� �2

by 2 k _wnk2 � �fn � wnÿ1�0�
ÿ �2� �

and it yields (iii). h

De®nition 6.8. ± Let n 2 N�. On Mn
S , de®ne

fn � h21 � h22 � . . .� h2n :

Then fn is non-negative, convex, greater than kwnk2 and its Hessian is
greater than the scalar product on TMn

S .
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As a consequence, one can give a stochastic version of proposition 6.5:

Proposition 6.9. ± Let M be a manifold endowed with a connection and x0 2 M .
Then for each n � 1, given a bounded random variable Ln with values in
Mn

S � Mn
S �x0�, there exists one and only one bounded martingale W n with ter-

minal value Ln. Furthermore, if in a chart �W1; . . . ;Wn� are the coordinates of
W n, and the decomposition of Wk for 1 � k � n into martingale and ®nite
variation part is Mk � eWk, then for all p � 1, the random variables Mk�1� andR 1
0 jd eWk�t�j belong to Lp.

Proof. ± Let n � 1 and Ln be a bounded random variable with values in Mn
S .

For 1 � m � n, denote by Lm the random variable pm�1 � . . . pn�Ln�, with
coordinates �L1; . . . ; Lm�. One can construct Wk�1 � k � n� by induction. At
rank 1, W1 is only the bounded martingale with terminal value L1. One
assumes that up to rank m, the processes Wk are bounded and the random
variables Mk�1� and

R 1
0 jd eWk�t�j belong to Lp for all p � 1. With equation (4)

at rank m� 1, using the fact that all the coe�cients in the right are less than
m, using the induction assumptions and the Burkholder-Davis-Gundy in-

equalities, one obtains that
R 1
0 jd eWm�1�t�j belongs to Lp for all p � 1. Then

using the relation Wm�1�1� � Lm�1 and the fact that the latter is bounded, we
obtain that Mm�1�1� belongs to Lp for all p � 1. Finally, using the fact that
fm�1�W m�1� is a bounded submartingale, one obtains that W m�1 is bound-
ed. h

Proposition 6.6 gives a sequence of convex functions hn such that if
t 7!wn�t� is a geodesic, the second derivative of t 7! h2n � wn�t� is greater than
k _wnk2. It will be useful to have a stochastic application of this result.

Proposition 6.10. ± Let M be a manifold endowed with a connection r, let b be
a continuous non-negative section of the symmetric tensor product T �M � T �M
and let f : M ! R be a function such that for any geodesic c in M, the second
derivative �f � c�00 is a measure and is greater than b� _c; _c�dt.

Then for any r-martingale X, for any stopping times S,T with S � T , we
have

E�f �XT �jFS � ÿ f �XS� � 1

2
E

Z T

S
b�dXt; dXt�jFS

� �
:

Proof. ± We will follow the proof of [E,Z] theorem 2 where the case b � 0 is
considered.

Let g be a Riemannian metric on M and d the associated Riemannian
metric. We can assume that S � 0; T is bounded, X lives in a compact set and
the Riemannian quadratic variation hX jX iT is bounded. The fact that b is
non-negative implies that f is convex. We can assume that on �0; T �, the
martingale X lives in a small (and relatively compact) ball V of center X0 and
with strong convex geometry. Following [E,Z], we can assume that every
point of V is the center of a normal chart �ei�a; b��1�i�d , where ei�a; b� is the
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i-th coordinate of expÿ1a �b�. We will denote by Ci
jk�a; �� the Christo�el sym-

bols in the chart ei�a; ��. One can write

f �XT � ÿ f �X0� � df ;X0XT
���!D E

�
Z 1

0

dt
Z t

0

ds b exp� sX0XT
���!� �

X0XT
���!� �

; exp� sX0XT
���!� �

X0XT
���!� �� �� � �21�

where df ;X0XT
���!D E

denotes a GaÃ teaux di�erential. Let e > 0 and replace 0 and
T by Rn and Rn�1 where �Rn�n2N in such that R0 � 0, and Rn�1 is equal to

T ^ �Rn � e� ^ inf t > Rn; sup
i;j;k
jCi

jk�XRn ;Xt�j � e

( )
:

Then following the proof of [E,Z] theorem 2, one can write

E�f �XT � ÿ f �X0�� �
X
n2N

E�f �XRn�1� ÿ f �XRn�� :

Using (21) and summing over n, we know from [E,Z] that the ®rst term in the
right hand side is greater than ÿeCE�hX jX iT � where C is a constant de-
pending only on the manifold. As for the second term, we are going to show
that its expectation converges to 1

2 E
R T
0 b�dXt; dXt�

h i
. Indeed, the absolute

value of the di�erence betweenZ 1

0

dt
Z t

0

ds b exp� sXRn XRn�1
�����!� �

XRn XRn�1
�����!� �

; exp� sXRn XRn�1
�����!� �

XRn XRn�1
�����!� �� �

and 1
2 b XRn XRn�1

�����!
;XRn XRn�1
�����!� �

is less than h1�e�d2�XRn ;XRn�1� where
h1�e� � sup

kvk�e;p�v�2V ;kuk�1
jb�exp��v��u�; exp��v��u�� ÿ b�u; u�j

which tends to 0 as e tends to 0. There exists a constant C0 > 0 (see the proof
of lemma 5.2) such that

E�d2�XRn ;XRn�1�� � C0E hX jX iRn�1 ÿ hX jX iRn

h i
:

Summing over n, one can bound the term obtained by C0h1�e�E�hX jX iT �.
Hence it su�ces to show that the expectation of

1

2

X
n2N

b XRn XRn�1
�����!

;XRn XRn�1
�����!� �

converges to 1
2 E
R T
0 b�dXt; dXt�

h i
as e tends to 0.

Let bij denote the coordinates of b inherited from the chart e�XRn ; ��. The
di�erence

E

Z Rn�1

Rn

b�dXt; dXt�
� �

ÿ E b XRn XRn�1
�����!

;XRn XRn�1
�����!� �h i���� ����

is bounded by
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E

Z Rn�1

Rn

jbij�Xs� ÿ bij�XRn�jdhei�XRn ;X �; ej�XRn ;X �is
� ����� ����
� E

Z Rn�1

Rn

bij�XRn�dhei�XRn ;X �; ej�XRn ;X �
����� i

ÿbij�XRn�ei�XRn ;XRn�1�ej�XRn ;XRn�1�
�����

and since b is uniformly continuous (V is relatively compact), there exists a
function h2�e� tending to 0 as e goes to 0 such that the ®rst term is less than
h2�e�E

�hX jX iRn�1 ÿ hX jX iRn

�
. As for the second term, since X is a martingale,

it is bounded by

E

Z Rn�1

Rn

bij�XRn�
����� �

Ci
kl�XRn ;X �ej�XRn ;X �

�Cj
kl�XRn ;X �ei�XRn ;X �

�
dhek�XRn ;X �; el�XRn ;X �i

�����
and since the Christo�el symbols are bounded by e in absolute value,
ei�XRn ; ��; ej�XRn ; ��; bij are bounded on V , there is a constant C00 such that this
is bounded by C00eE

�hX jX iRn�1 ÿ hX jX iRn

�
. Adding the majorations and

summing over n, one obtains that there is a non-negative function h3�e�
tending to 0 as e goes to 0, such that

E
X
n2N

b XRn XRn�1
�����!

;XRn XRn�1
�����!� �" #

ÿ E

Z T

0

b�dXt; dXt�
� ������

����� � h3�e�E�< X jX >T � :

This proves the proposition. h

From proposition 6.10 and proposition 6.9 and [K3], one obtains

Corollary 6.11. ± For every n � 1, if Mn0 is a compact subset of Mn
S , then Mn0

has convex geometry.

Proof. ± The hypothesis are not exactly the same as those of Kendall [K3]
theorem 4.2, because the convex function on Mn0 we are going to use is not
smooth. But Kendall's proof works in this case, because we only need that
the expectation of the quadratic variation of Mn0-valued martingales is
bounded by a constant depending only on Mn0, and here by proposition 6.10,
we know that 2sup

Mn0
fn is a bound for these quadratic variations. In fact, with

[K4] corollary 3.4 which says that in a compact set, uniqueness of martingale
with prescribed value implies convex geometry, one can avoid using prop-
osition 6.10 and the strict convexity of Mn0. h

For the rest of this section, the manifold M is a ball B�0;R� � Cd endowed
with an holomorphic connection such that the complex Christo�el symbols
converge on M and vanish at 0 (see section 4). We furthermore assume that M
has strong convex geometry. We are given an almost surely holomorphic map
a 7! L�a��x� with values in M and de®ned on �D�0; 1�, and such that
L�0��x� � 0 2 M .
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As a consequence of proposition 6.9, we have

Corollary 6.12. ±With the assumptions above, for every n � 1, there exists one
and only one process W n�t� with values in Mn

S de®ned by the formal equations
(0) and (1) (i.e. W n is a r�n�-martingale) and by W n�1� � L�n��0�, living in a
compact set.

Proof. ± The random variable L�n��0� is bounded because a 7! L�a� is almost
surely holomorphic and bounded. Hence we can apply proposition 6.9. h

It is not su�cient to show that Wn�t� is a bounded process. We have to
show that the series (0) converges. Convex functions inherited from the
complex structure will be useful.

Assume that there exists a convex function f :M � B�0;R� ! R� of the
form z 7! h�kzk� with h : �0;R� ! R� continuous, satisfying h�0� � 0, strictly
increasing. Note that since C�0� � 0, this condition is not too restrictive.

For each n � 1 and for each wn 2 Mn
S with coordinates �w1; . . . ;wn�, de-

®ne the set En�wn� of sequences �wn�1; . . .� of elements of Cd such that for all

a 2 D�0; 1�;P1
k�1

ak

k! wk converges and the sum belongs to M ; if En�wn� is not
empty, de®ne gn�wn� by

gn�wn� � inf
�wn�1;...�2En

sup
a2D�0;1�

f
X1
k�1

ak

k!
wk

 !
:

Proposition 6.13. ± For every n � 1, the function gn is convex on

Mn0
S � fwn 2 Mn

S ; En�wn� is not emptyg :
Proof. ± Let vn and wn be two points of Mn0

S with coordinates respectively
�v1; . . . ; vn� and �w1; . . . ;wn�, and v1 � �v1; . . . ; vn; vn�1; . . .�;w1 � �w1; . . . ;

wn;wn�1; . . .� two sequences such that 8a 2 D�0; 1�; f P1
k�1

ak

k! vk

� �
< h�R� and

f
P1

k�1
ak

k! wk

� �
< h�R�: De®ne

x�a� �
X1
k�1

ak

k!
vk; y�a� �

X1
k�1

ak

k!
wk; x�t; a� � exp tx�a�y�a������!

:

Since t 7! x�t; a� is a geodesic and x�t; 0� � 0, we have by corollary 4.31)

exp tx�a�y�a������! �X1
k�1

ak

k!
wk�t�

where wk�t� is the geodesic in Mk
S such that wk�0� � vk and wk�1� � wk.

We have to show that for all t 2 �0; 1�,
gn�wn�t�� � �1ÿ t�gn�vn� � tgn�wn� :

But since f is convex, we have

f �x�t; a�� � �1ÿ t�f �x�a�� � tf �y�a��
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and hence

f �x�t; a�� � �1ÿ t� sup
a2D�0;1�

f �x�a�� � t sup
a2D�0;1�

f �y�a��

and

sup
a2D�0;1�

f �x�t; a�� � �1ÿ t� sup
a2D�0;1�

f �x�a�� � t sup
a2D�0;1�

f �y�a��

which gives

gn�wn�t�� � �1ÿ t� sup
a2D�0;1�

f �x�a�� � t sup
a2D�0;1�

f �y�a�� :

This inequality is true for all sequences v1, w1 which extend vn, wn and
therefore

gn�wn�t�� � �1ÿ t�gn�vn� � tgn�wn� :
The function gn is convex. h

Proposition 6.14. ± For r0 2 �0;R�, denote by Mn0
S �r0� the set of elements

wn 2 Mn0
S such that gn�wn� � h�r0�. Let w1 � �w1;w2; . . .� be a sequence such

that for all n � 1, the element wn in Mn
S with � �w1; . . . ;wn� belongs to

Mn0
S �r0�.
Then

P1
k�1

ak

k! wk converges on D(0,1) and

f
X1
k�1

ak

k!
wk

 !
� h�r0� :

Proof. ± Let n � 1. Since wn belongs to Mn0
S �r0�, for all a > 0, there exists a

sequence w10 � �w1; . . . ;wn;w0n�1; . . .� such that for all a 2 D�0; 1�,Xn

k�1

ak

k!
wk �

X1
k�n�1

ak

k!
w0k


 � r0 � a :

It implies that for all n � 1; kwnk � n!r0 and for all k � 1; kw0kk � k!�r0 � a�.
Hence for all n � 1, for all a 2 D�0; 1ÿ e�, we haveX1

k�n�1

ak

k!
wk


 � r0

�1ÿ e�n�1
e

;
X1

k�n�1

ak

k!
w0k


 � �r0 � a� �1ÿ e�n�1

e

andX1
k�1

ak

k!
wk


 � Xn

k�1

ak

k!
wk �

X1
k�n�1

ak

k!
w0k


� X1

k�n�1

ak

k!
wk


� X1

k�n�1

ak

k!
w0k




� r0 1� 2� a
r0

� � �1ÿ e�n�1
e

 !
� a :

This is valid for all n � 1 and all a > 0, hence for all a 2 D�0; 1ÿ e�,

Di�erentiable and analytic families of continuous martingales 251



X1
k�1

ak

k!
wk


 � r0 :

This is true for all e > 0, hence this is true for all a 2 D�0; 1� : h

Convex geometry is, as next lemma shows it, a useful tool to construct,
given a convex set, convex non-negative functions which vanish only on this
set:

Lemma 6.15. Let N be a manifold with convex geometry and let A be a
relatively compact convex subset of N.

Then there exists a convex non-negative function wA on N such that
wÿ1A �f0g� � �A.

Proof. ± Let w : N � N ! R be a non-negative convex function which van-
ishes exactly on the diagonal of N � N . De®ne

wA : N ! R; x 7! inf
y2A

w�y; x� :

Since �A is compact in N , it is clear that wÿ1A �f0g� � �A. Let us show that wA is
convex:

Let t 7! c�t� be a geodesic in N de®ned on [0,1]. We have to show that for
all t 2 �0; 1�,

wA�c�t�� � �1ÿ t�wA�c�0�� � twA�c�1�� : �22�
Let e > 0 and y; z;2 A such that wA�c�0�� > w�y; c�0�� ÿ e and
wA�c�1�� > w�z; c�1�� ÿ e. Since A is convex, there exists a geodesic u which
takes its values in A and such that u�0� � y and u�1� � z. Since w is convex,
we have that for all t 2 �0; 1�,

w�u�t�; c�t�� � �1ÿ t�w�u�0�; c�0�� � tw�u�1�; c�1�� :
The left hand side term is greater than wA�c�t�� since u�t� 2 A and the right
hand side term is less than �1ÿ t�wA�c�0�� � twA�c�1�� � e by de®nition of y
and z. It yields

wA�c�t�� � �1ÿ t�wA�c�0�� � twA�c�1�� � e

for all e > 0. This establishes inequality (22). h

Corollary 6.16. ± Let N be a manifold with convex geometry and let K be a
compact convex subset of N.

If W is a N-valued martingale such that almost surely W1 2 K and W lives in
a compact subset N 0 of N, then almost surely, for all t 2 �0; 1�;Wt belongs to K.

Proof. ± By lemma 6.15, there exists a convex non-negative function wK on N
which vanishes exactly on K. Furthermore, wK�W � is a bounded non-nega-
tive submartingale since wK�N 0�, is compact, and it satis®es wK�W1� � 0. It
implies that wK�W � � 0 and W lives in K. (

We are now able to prove the convergence of (0).
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Theorem 6.17. ± Let M � B�0;R� be a complex manifold with a holomorphic
connectionr such that the holomorphic Christo�el symbols C are de®ned on M
and satisfy C�0� � 0 (see section 4 for details). Assume furthermore that M has
strong convex geometry and there exists a convex function f : M ! R� of the
form z 7! h�kzk� with h : �0;R� ! R� continuous, satisfying h�0� � 0, strictly
increasing.

Let a 7! L�a��x� be an almost surely holomorphic map with values in a
closed ball �B�0; r� � M�r < R� and de®ned for a 2 D�0; 1�, and such that a.s.
L�0��x� � 0 2 M .

Then the bounded Mn
S -valued r�n�-martingales W n with terminal values

L�n��0� de®ne a family a 7!X �a� of r-martingales for a 2 D�0; 1�, such that
for all a X1�a� � L�a�, almost surely, for all t 2 �0; 1�, the map a 7!Xt�a��x� is
holomorphic on D(0,1) and @na

@an X �a�ja�0 � W n. In coordinates, this writes

X �a� �
X1
n�1

an

n!
Wn��� �00�

and the series converges absolutely in D(0,1).

Proof. ± By proposition 6.14, to show that the series converges, it is su�cient
to show that for all n 2 N�; g�W n� � h�r�.

By corollary 6.12, W n lives in a convex compact set Kn since W n�1� is
bounded.

By corollary 6.11, the compact set Kn has convex geometry.
By proposition 6.13, the set Mn0

S �r� � �gn�ÿ1��0; h�r��� is a convex compact
set.

By corollary 6.16, since Mn0
S �r� is convex and Kn has convex geometry and

is compact, W n lives in Mn0
S �r�, and hence g�W n� � h�r�. Using proposition

6.14, this proves the convergence of (0¢).
By theorem 6.4, using the fact that the series converges absolutely on

D�0; 1ÿ e� for all e > 0 and takes its values in �B�0; r�, the sum of this series is
a martingale. (

Corollary 6.18. ± The assumptions on M are the same as in theorem 6.17. Let
r 2 �0;R�. Given a random variable L with values in B�0; r� � M , there exists a
r-martingale X with terminal value L.

If M is the complexi®cation of the real ball MR � BR�0;R� (see section 4 )
and if L takes it values in MR, then X takes it values in MR, and
is a rR-martingale:

Proof. ± De®ne for a 2 �D�0; 1�; L�a� � aL and apply theorem 6.17. The so-
lution to our problem is the martingale X �1�.

If L takes its value in MR, then since K � MR \ �B�0; r� is a compact
convex subset of M , by corollary 6.16, the martingale X �1� takes its values in
K and hence in MR. h
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One knows that any point of any real analytic manifold has an open
neighbourhood MR such that there is a complexi®cation M of MR which
satis®es the assumptions of theorem 6.17. This together with corollary 6.18
yield the following result.

Corollary 6.19. ± Let N be a real analytic manifold endowed with a real
analytic connection rR. Every point x of N has a neighbourhood Vx such that if
L is a F1-measurable random variable with values in Vx, then there exists a
unique Vx-valued rR-martingale X such that X1 � L.

It would be interesting to know in which domain of C the holomorphic
family of martingales a 7!X �a� of theorem 6.17 extends, and on which ho-
lomorphic extension of M the extension of X takes its values. In the case
when MR is an open hemisphere, if L�a� � aL and L takes its values in a
compact subset of MR, then for all x 2 R; L�ix� takes its values in a hyper-
bolic space and one would expect that the family of martingales x 7!X �ix�
with terminal values x 7! L�ix� is analytic.

7. Existence of martingales with prescribed terminal value in compact convex
sets with convex geometry

This section is devoted to quantitative results on existence of martingales
with prescribed terminal value, and to the case where it is not supposed any
more that M and r are analytic.

Lemma 7.1. ± Let N be a manifold endowed with a C1 connection r, and let V
be a compact convex subset of N with convex geometry. Assume that every
point x of V has a neighbourhood Vx such that for everyF1-measurable random
variable L with values in Vx, there exists a Vx-valued r-martingale X such that
X1 � L. Then for every F1-measurable random variable L with values in V,
there exists a V-valued r-martingale X such that X1 � L.

Proof. ± Let w be a function on U � U de®ning the convex geometry of V,
where U is an open neighbourhood of V . Since w is convex on U � U and
equal to 0 on the diagonal and V is compact, one can ®nd a Riemannian
distance d on V which satis®es w � d. Conversely, with the same arguments
as in [K1] lemma 4.3, one shows that there exists a nonnegative increasing
function h : R� ! R� continuous at 0, which satis®es h�0� � 0 and such that
d � h � w on V � V . Let R�V � be the set of reachable random variables, i.e.
the set of V -valuedF1-measurable random variables L such that there exists
a r-martingale X which satis®es X1 � L. Since R�V � is not empty and the set
of V -valued F1-measurable random variables is connected for the topology
of a.s. uniform convergence (with respect to d), it is su�cient to show that
R�V � is both open and closed for this topology.

Let us show that R�V � is closed. Let �Ln�n2N be a sequence of elements of
R�V � converging to L, and let �X n�n2N be the sequence of martingales such
that X n

1 � Ln for all n 2 N. Let n;m 2 N. Since �X n;X m� is a martingale, we
have
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w�X n
t ;X

m
t � � E�w�Ln; Lm�jFt� � kw�Ln; Lm�k1 � kd�Ln; Lm�k1

for all t 2 �0; 1�. But this implies that as n;m tends to in®nity,
k sup0�t�1 d�X n

t ;X
m
t �k1 converges to 0 (here we use the fact that d � h � w).

Hence �X n�n2N is a Cauchy sequence for the topology of a.s. uniform con-
vergence. It converges to a r-martingale X with terminal value L, since the
set of r-martingales is closed for the topology of uniform convergence in
probability ([E 4.43]).

Let us now show that R�V � is open. For x 2 V and a > 0, let
B�x; a� � fy 2 V ;w�x; y� � ag. Let a > 0 be small enough so that for every
x 2 V ,

Vx � B�B�x; a�; a� � fz 2 V ;9y 2 B�x; a�; z 2 B�y; a�g
satis®es the assumption of the lemma (in particular one easily veri®es that Vx

is convex). Let L be an element of R�V �. Since w � d, it is su�cient to show
that every random variable L0 satisfying almost surely w�L;L0� � a is inR�V �.
There exists an increasing sequence of stopping times

0 � T 0 � T 1 � . . . � T n

such that �T n�n2N converges stationarily to 1 and between two consecutive
stopping times S and T of this discretization, the martingale X with terminal
value L lives in the set B�XS ; a�. For n 2 N, let Ln be the random variable
de®ned by Ln � L0 on fT n � 1g and Ln � XT n on fT n < 1g. We have almost
surely w�XTn ; L

n� � a and Ln 2 VXT nÿ1 . Hence, conditioning byFT nÿ1 , we have
that between the times T nÿ1 and T n there exists a martingale X n with terminal
value Ln. Since �X ;X n� is a martingale, it satis®es

w�XT nÿ1 ;X n
T nÿ1� � E�w�XT n ; Ln�jFT nÿ1 � � a :

Let k � nÿ 1 and assume that we have constructed the martingale X n be-
tween the times T k�1 and T n and that almost surely w�XT k�1 ;X n

T k�1� � a. By
the same method, conditionning byFT k gives the construction of X n between
the times T k and T k�1. Hence we have a martingale X n with terminal value
Ln. Using [D3 proposition 4.4] (note that convex geometry is su�cient to
apply this result), we deduce that as n tends to in®nity, X n converges uni-
formly in probability to a V -valued martingale X 0 with terminal value L0. h

A direct consequence of lemma 7.1 and lemma 6.19 is the following result.

Corollary 7.2. ± Let M be a real analytic manifold with an analytic connection
r. Let V be a compact convex subset of M with convex geometry. Then for
every random variable L with values in V, there exists a V-valued r-martingale
X with terminal value L.

We can now state the main result of this section.

Theorem 7.3. ± Let M be a manifold with a C1 connection r. Let V be a
compact convex subset of M with convex geometry. Then for every random
variable L with values in V, there exists a V-valued r-martingale X with
terminal value L.
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Proof. ± By lemma 7.1, it is su�cient to prove that every point of V has a
neighbourhood Vx with the desired property. Hence one can assume that V
is contained in the domain of an exponential chart. We will identify this
domain with a ball in Rd containing 0, such that the Christo�el symbols
satis®e Ck

i;j�0� � 0. Possibly by reducing V , we can assume that the func-
tions Ck

i;j are the restrictions to V of C1 functions Rd ! R with compact
support. We can also assume that the map w : V � V ! R� de®ned by
w�x; x0� � 1

2 �e2 � kx �x0k2�kx0 ÿ xk2 is convex for the product connection (see
[E4 4.59]). By convolution with the analytic functions /n�z� � nd����

2p
p� �d eÿ

n2kzk2
2 ,

one can approximate the functions Ck
ij uniformly in V by analytic functions

nCk
ij
0
, with the further property that the derivatives of nCk

ij
0
converge uni-

formly to those of Ck
ij. Setting

nCk
ij�x� � nCk

ij
0�x� ÿ nCk

ij
0�0�; we have the same

properties with nCk
ij�0� � 0 as additional one. These functions de®ne analytic

connections rn on V which converge uniformly to r. The assumptions on
the derivatives of the Christo�el symbols together with the proof of [E4 4.59]
allow us to say that for n su�ciently large, w is convex for the product
connection rn �rn. Let L be a random variable with values in V . By cor-
ollary 7.2, there exists a rn-martingale X n with terminal value L. We are left
to show that �X n�n2N converges to a r-martingale X as n tends to in®nity.
But since �r �r�dw is strictly positive outside the diagonal, for every e > 0,
there exists n�e� such that if m; n � n�e�, the function we � sup�w; e� is
�rn �rm�-convex. This implies that we�X n;X m� is the constant submartin-
gale equal to e. Hence X n converges a.s. uniformly to a continuous adapted
process X . Now let f be a function on V such that rdf > 0. Then rndf > 0
for n su�ciently large, and this implies that f �X � is a submartingale. This is
true for all f with rdf > 0, hence by [A1] proposition 3.4 and [A2] propo-
sition 2.12, X is a r-martingale and X1 � L. (

Remark. ± From Theorem 7.3 together with theorem 5.2 of [D3] we deduce
the existence of martingales with prescribed terminal value in a convex
manifold M with convex geometry (with some additional assumptions on the
function which de®nes the convex geometry and an integrability condition on
the terminal value) if M is an increasing union of compact sets with convex
geometry.

Acknowledgements. Thanks are due to K.D. Elworthy for an invitation to Warwick, during
which part of this work was done. Thanks are also due to W.S. Kendall and A. Thalmaier for
helpful discussions and to the referees for their suggestions for improvements of this paper.

References

[A1] Arnaudon, M.: EspeÂ rances conditionnelles et C-martingales dans les varieÂ teÂ s, SeÂ minaire
de ProbabiliteÂ s XXVIII, Lecture Notes in Mathematics, Vol. 1583, Springer, 1994

[A2] Arnaudon, M.: Barycentres convexes et approximations des martingales continues dans
les varieÂ teÂ s, SeÂ minaire de ProbabiliteÂ s XXIX, Lecture Notes in Mathematics, Vol. 1613,
Springer, 1995, p. 70±85

256 M. Arnaudon



[D1] Darling, R.W.R.: Martingales in manifolds ± De®nition, examples, and behaviour under
maps, SeÂ minaire de ProbabiliteÂ s XVI (suppleÂ ment: GeÂ omeÂ trie Di�eÂ rentielle stochastique),
Lecture Notes in Mathematics, Vol 921, Springer, 1982

[D2] Darling R.W.R.: Constructing gamma-martingales with prescribed limit, using backwards
sde, The Annals of Probability, t. 23, 1995, p. 1234±1261

[D3] Darling R.W.R.: Martingales on noncompact manifolds: maximal inequalities and
prescribed limits, Annales de I'Institut Henri PoincareÂ , t. 32, n.4, 1996, p. 431±454

[E] Emery M.: Stochastic calculus in manifolds. Springer, 1989
[E,M] Emery M., Mokobodzki G.: Sur le barycentre d'une probabiliteÂ dans une varieÂ teÂ ,

SeÂ minaire de ProbabiliteÂ s XXV, Lecture Notes in Mathematics, Vol 1485, Springer, 1991
[E,Z] Emery M., Zheng W.: Fonctions convexes et semi-martingales dans une varieÂ teÂ , SeÂ minaire

de ProbabiliteÂ s XVIII, Lecture Notes in Mathematics, Vol 1059, Springer, 1984
[K1] Kendall W.S.: Probability, convexity and harmonic maps with small image I: uniqueness

and ®ne existence, Proc. London Math. Soc. (3), t. 61, 1990, p. 371±406
[K2] Kendall W.S.: Convexity and the hemisphere, J. London Math. Soc. (2), t. 43, 1991, p.

567±576
[K3] Kendall W.S.: Convex geometry and Noncon¯uent C-martingales I: Tightness and Strict

Convexity, The proceedings of LMS Durham Symposium on Stochastic Analysis, 11th-
21st July 1990, edited by M. Barlow and N.H. Bingham

[K4] Kendall W.S.: Convex geometry and Noncon¯uent C-martingales II: well-posedness and
C-martingale convergence, Stochastics, t. 38, 1992, p. 135±147

[K5] Kendall W.S.: The propeller: a counterexample to a conjectured criterion for the existence
of certain convex functions, to appear in J. London Math. Soc..

[P1] Picard J.: Martingales on Riemannian manifolds with prescribed limit, J. Functional
Anal. 99, t. 2, 1991, p. 223±261

[P2] Picard J.: Barycentres et martingales sur une varieÂ teÂ , Annales del'Institut Henri PoincareÂ ,
t. 30, 1994, p. 647±702

[Y,I] Yano K., Ishihara S.: Tangent and cotangent bundles. Marcel Dekker, Inc., New York,
1973

[W,B] Whitney H., Bruhat F.: Quelques proprieÂ teÂ s fondamentales des ensembles analytiques,
Comment. Math. Helv., t. 33, 1959, p. 132±160

Di�erentiable and analytic families of continuous martingales 257


