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Abstract

We prove the convergence of a conservative and entropic discrete-velocity
model for the Bathnagar-Gross-Krook (BGK) equation. In this model, the
approximation of the Maxwellian is based on a discrete entropy minimization
principle. The main difficulty, due to its implicit definition, is to prove that this
approximation is consistent. We also demonstrate the existence and uniqueness
of a solution to the discrete-velocity model, by using a fixed point theorem.
Finally, the model is written in a continuous equation form, and we prove the
convergence of its solution toward a solution of the BGK equation.

keywords: kinetic theory – discrete-velocity models – Boltzmann equation –
BGK model – convergence of numerical schemes

1. Introduction

In rarefied gas dynamics, the Boltzmann equation is commonly used to describe
rarefied flows. However, this equation is very complex and the simplified model
introduced by Bathnagar, Gross, and Krook (BGK) has been used in numerous
qualitative and quantitative studies (see for instance [1, 2]). The BGK model de-
scribes the evolution of the distribution f(t, x, v) of molecules, which at time t ≥ 0
are at the position x ∈ RD with the velocity v ∈ RD:

∂tf + v · ∇xf =
1
τ

(M [f ]− f)

f(0, x, v) = f0(x, v)
(1.1)

The collisions of the molecules in the gas are modeled by the relaxation of f to the
local Maxwellian equilibrium state M [f ] (see [3]). This distribution is an isotropic
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Gaussian function of v, which depends only on the density ρ, the macroscopic ve-
locity u = (u(1), . . . , u(D)), and the temperature θ of the gas

M [f ] =
ρ

(2πθ)D/2
exp
(

−|v − u|
2

2θ

)

. (1.2)

These fluid quantities ρ, u, θ are defined through the first D + 2 moments of f :

ρ = 〈f〉, ρu = 〈vf〉, E = 〈12 |v|
2f〉 = 1

2ρ|u|
2 + D

2 ρθ, (1.3)

where we denote by 〈g〉 the integral of any function g on RDv , i.e.

〈g〉 =
∫

g(v) dv. (1.4)

These moments are called density, momentum, and total energy of the gas. We de-
note by m(v) = (1, v, 1

2 |v|
2)T the vector of microscopic quantities mass, momentum

and kinetic energy (normalized by the mass). Similarly we denote by ρ = (ρ, ρu,E)T

the vector of D + 2 first moments of f . These notations yield a more compact defi-
nition of the moments

ρ = 〈mf〉. (1.5)

Note that throughout this paper, bold symbols are only used for vectors of RD+2

such as, for example, ρ and m(v).
A fundamental property of the Maxwellian state M [f ] = M [ρ] is that it is the

unique solution of the entropy minimization problem

(P) H(M [ρ]) = min
{

H(g) = 〈g log g〉, g ≥ 0, 〈mg〉 = ρ
}

. (1.6)

This means that M [ρ] minimizes the entropy of all the possible states leading to the
same macroscopic properties. The problem (P) may be solved by a Lagrange mul-
tiplier method (if ρ, θ > 0). This yields the following expression, which is equivalent
to (1.2)

M [ρ] = exp(α ·m(v)), (1.7)

where α is defined through the invertible relation

α =
(

log
(

ρ

(2πθ)D/2

)

− |u|
2

2θ
,
u

θ
,−1

θ

)T

. (1.8)

Hence, it may be seen that the BGK model possesses the main properties of the
Boltzmann equation: positive solutions, conservation of moments, and dissipation
of entropy:

∂t〈mf〉+∇x · 〈vmf〉 = 0, (1.9)
∂t〈f log f〉+∇x · 〈vf log f〉 ≤ 0. (1.10)
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Some important mathematical results about the BGK equation have been ob-
tained in the past decade. For instance Perthame has proved in [4] an existence and
stability result of a distribution solution in the whole space. This result has been ex-
tended to bounded domain with various boundary conditions by Ringeisen [5]. More
recently, Perthame and Pulvirenti have proved in [6] the existence and uniqueness
of a mild solution in the case of the flat torus with weighted L∞ estimates. This
result has been generalized to RD by Mischler in [7]. We also mention the result
of Issautier [8] who has proved that the mild solution of Perthame and Pulvirenti
is in fact a strong one if some regularity assumptions on the initial condition are
made. However, it is important to note that in all these results, the authors assume
a constant relaxation time (i.e. τ = 1). This is physically not very realistic because
τ is rather a function of ρ and θ. To our knowledge, no global existence result exists
for realistic relaxation time, and thus the usual assumption τ = 1 will be made in
this paper.

For the purpose of numerical simulations of aerodynamical flows, we have in-
troduced in previous papers [9, 10] a discrete-velocity approximation of the BGK
equation. Like the discrete-velocity models of Rogier and Schneider [11], Buet [12],
and Heintz and Panferov [13] for the Boltzmann equation, our approximation has the
same conservation and entropy properties as the continuous BGK model. This model
allows efficient computations of complex flows [10]. In such an approximation, which
may be viewed as a simplification of the physical description of the gas, the molecules
are assumed to move with a finite number of velocities vk, k ∈ K = {1, ..., N}. The
gas is described by a discrete distribution function fK(t, x) = (fk(t, x))k∈K which
solves the system of discrete kinetic equations

∂tfk + vk · ∇xfk = Ek − fk, ∀k ∈ K,
fk(0, x) = f0

k (x).
(1.11)

The approximation EK = (Ek)k∈K of the Maxwellian distribution is the essential
point for the definition of the model. In our approach, EK is defined as the discrete
equilibrium function, i.e. it solves the discrete version of the entropy minimization
problem (P)

(PK) HK(EK) = min
{

HK(g) = 〈g log g〉K, g ≥ 0 ∈ RN , 〈mg〉K = ρK

}

. (1.12)

The notations introduced in (1.12) follow logically from (1.4) and (1.5)

〈g〉K =
∑

k∈K
gk λk, ρK = 〈mfK〉K =

∑

k∈K
m(vk)fk λk, (1.13)

where λk is the measure of a cell around vk. An existence and uniqueness result for
the problem (PK) has been proved in [9, 10] and is recalled in the next section.
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It is now mathematically interesting to investigate the convergence of such an
approximation to the continuous BGK equation. The procedure for this kind of
result is quite general. See for instance the proof of Mischler for the convergence
of a discrete-velocity model for the Boltzmann equation [14]. There are essentially
three distinct points to be proved:

• convergence of the approximation of the source term, which is local in t, x.

• existence and uniqueness of a solution to the discrete-velocity model.

• convergence of the discrete kinetic equation to the continuous one.

The first point is strongly dependent on the problem. It has been proved by Schnei-
der et al. [15] for their quadrature of the Boltzmann collision operator (see also [13]),
but it is completely different in our case. For our model, the difficulty is that the
discrete equilibrium is implicitly defined by fK. Then, we define some derived min-
imization problems to obtain uniform coercivity.

For the second point, as noted by Mischler, such a result is not known in gen-
eral for discrete-velocity models of the Boltzmann equation. However, due to both
the particular structure of the BGK collision term and the bounded and discrete-
velocity set, we are able to prove existence and uniqueness of a global solution for our
model (1.11). We only use the assumption of Perthame [4] for the initial condition.

For the last point, Mischler has proposed a quite elegant approach for the Boltz-
mann equation. He has defined a continuous formulation of its discrete-velocity
model, and he has proved the convergence as N → ∞ using the stability result of
DiPerna-Lions [16]. The main difficulty of this method is the validity of the averag-
ing lemma in the context of discrete velocities, but it has been proved by Mischler.
We follow a similar approach by defining a continuous form of our discrete velocity
BGK model, and we use the stability proof of Perthame [4] for the BGK equation.

It is also important to note the recent result of Issautier [8] who has proved a
convergence result for a particular method for the BGK equation in which both
time, space and velocity are discretized. The advantage of his approach is the ex-
plicit approximation of the Maxwellian (he takes Ek = M [ρK](vk)) which allows to
derive error estimates. But as opposed to our model, the discretization of Issautier
neither is conservative nor entropic. For our method, the price to be paid for these
properties is the implicit definition of EK, that makes the derivation of error esti-
mates difficult.

The remainder of this paper is organized as follows. In Section 2, our discrete-
velocity model is rigorously derived from the continuous BGK equation. The exis-
tence result of a discrete equilibrium is recalled, and we give all the results proved in
the following sections. Section 3 is devoted to the convergence of the approximation
of the Maxwellian. In Section 4, an existence and uniqueness result for the discrete-
velocity model is proved. In Section 5, we prove the convergence of this solution
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to a solution of the BGK equation. Most of the results presented here have been
announced in a previous paper [17].

2. Notations and main results

Let ∆vn and Bn be two sequences of real numbers such that

∆vn −→
n→∞

0, ∆vnBn −→
n→∞

+∞. (2.14)

Let Vn be a grid of Nn velocities defined by

Vn = {vnk = k∆vn, k ∈ Kn}, (2.15)

where Kn is the set of multi-indexes Kn = {k ∈ ZD, |k| ≤ Bn}. We also define the
velocity cells Λnk by

Λnk = [vnk,1 − 1
2∆vn, vnk,1 + 1

2∆vn[× . . .× [vnk,D − 1
2∆vn, vnk,D + 1

2∆vn[. (2.16)

A discrete distribution function g = (gk)k∈Kn on Vn is a vector of RNn . By analogy
with (1.4) and (1.5), we set

〈g〉n =
∑

k∈Kn
gk ∆vDn , 〈mg〉n =

∑

k∈Kn
m(vnk )gk ∆vDn . (2.17)

The Maxwellian M [ρ] associated to a given vector of moments ρ is approximated
on Vn by EnK = (Enk )k∈Kn . This approximation is defined by the discrete version of
the entropy minimization problem

(Pn) Hn(EnK) = min
Xρn

{

Hn(g) = 〈g log g〉n
}

,

with Xρn =
{

g ≥ 0 ∈ RNn , 〈mg〉n = ρn
}

,

(2.18)

where ρn is some approximation of ρ. It may easily be proved that (Pn) has a unique
solution, provided that Xρn 6= ∅. Moreover, the following result (proved in [9, 10])
shows that EnK has an exponential form, provided that a necessary and sufficient
condition on ρn is fulfilled.

Proposition 1 ([9, 10]). If Xρn 6= ∅ then (Pn) has a unique solution EnK. Moreover,
if Bn ≥ 1, then there exists a unique αn ∈ RD+2 such that

Enk = exp(αn ·m(vnk )) ∀k ∈ Kn, (2.19)

if, and only if, ρn is strictly realizable on Vn, i.e.

∃g > 0 ∈ Xρn . (2.20)
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Consequently, note that αn is the unique solution of the set of D+ 2 non-linear
equations

〈m exp(αn ·m)〉n = ρn. (2.21)

This vector must be compared to the vector α defined by (1.8), which uniquely
solves the following set of D + 2 non-linear equations

〈m exp(α ·m)〉 = ρ. (2.22)

The first result of this paper, crucial for the convergence of our discrete-velocity
model, shows that the approximation of M [ρ] by EnK is consistent if ρn −→n→∞ ρ.

Theorem 1. Let {ρn}n≥0 be a sequence of RD+2 strictly realizable on Vn for all n
(in the sense of (2.20)). Let ρ ∈ RD+2 be such that ρ, θ > 0. If ρn −→n→∞ ρ, then the

vector αn, given by proposition 1, converges to α defined by (1.8).

We can now define our discrete-velocity approximation of the BGK equation.
Assume that the initial condition f0 is non-negative and satisfies the classical esti-
mates ∫

RD
〈(1 + |x|2 + |v|2 + | log f0|)f0〉 dx = Γ0 < +∞. (2.23)

Note that from the result of Perthame [4], these estimates guarantee the existence of
a distribution solution of (1.1). Then, we define the following approximation of f0

f0,n
k (x) = min

(

n,
1

∆vDn

∫

Λnk

(f0(x, v) +
1
n

exp(−|x|2 − |v|2)) dv
)

, (2.24)

so that f0,n
K = (f0,n

k )k∈K satisfies the estimates

δn0 φ(x) ≤ f0,n
k (x) ≤ n a.e in RDx , ∀k ∈ Kn, (2.25)

sup
n≥0

∫

RD
〈(1 + |x|2 + |v|2 + | log f0,n

K |)f
0,n
K 〉n dx = Γ1 < +∞, (2.26)

where δn0 = 1
n

1
∆vDn

mink(
∫

Λnk
exp(−|v|2) dv) and φ(x) = exp(−|x|2). The discrete-

velocity approximation of (1.1) is then

∂tf
n
k + vnk · ∇xfnk = Enk − fnk in D′(]0,+∞[×RDx ), ∀k ∈ Kn,

fnk (0, x) = f0,n
k (x),

(2.27)

where Enk is naturally defined by (Pn), with

ρn = 〈mfnK〉n = (ρn, ρnun, En)T . (2.28)

The second result proved in this paper shows an existence and uniqueness result
for the discrete model (2.27). Due to the definition of the discrete equilibrium, the
solution satisfies conservation and entropy properties.
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Theorem 2. Initial value problem (2.27) has a unique solution fnK = (fnk )k∈K in
L∞(]0, tmax[ ×RDx )Nn, for all tmax > 0. Moreover, the following conservation and
entropy relations hold in a distribution sense

∂t〈mfnK〉n +∇x · 〈vmfnK〉n = 0, (2.29)
∂t〈fnK log fnK〉n +∇x · 〈vfnK log fnK〉n ≤ 0, (2.30)

and fnK satisfies the estimates

sup
n

sup
[0,tmax]

∫

RD
〈(1 + |x|2 + |v|2 + | log fnK|)fnK(t, x)〉n dx ≤ Γ1(tmax), (2.31)

δn0φ(x− tvnk ) e−t ≤ fnk (t, x) ≤ n eNnt for a.e t, x. (2.32)

Finally, in order to prove the convergence of this solution, we define the constant
per velocity cell functions

fn(t, x, v) =
∑

k∈Kn
fnk (t, x)χnk(v) and En(t, x, v) =

∑

k∈Kn
Enk (t, x)χnk(v), (2.33)

where χnk is the indicator function of Λnk . Then (2.27) may be related to (1.1) by
the equation

∂tf
n + Cn(v) · ∇xfn = En − fn in D′(]0,+∞[×RDx × RDv ),

fn(0, x, v) = f0,n(x, v) =
∑

k∈Kn
f0,n
k (x)χnk(v), (2.34)

where
Cn(v) =

∑

k∈Kn
vnkχ

n
k(v). (2.35)

We can now state our convergence result:

Theorem 3. For all sequences ∆vn, Bn satisfying (2.14), the sequence {fn}n≥0 is
weakly convergent in L1(]0, tmax[×RDx × RDv ) ∀tmax > 0, up to the extraction of a
subsequence, to a distribution solution of BGK equation (1.1).

3. Convergence of αn (proof of theorem 1)

Note that relations (2.21) and (2.22) can be viewed as the extremum relations
J ′n(αn) = 0 and J ′(α) = 0 for the following minimization problems

Jn(αn) = min
RD+2

{

Jn(β) = 〈exp(β ·m)〉n − β · ρn
}

, (3.36)

J(α) = min
D

{

J(β) = 〈exp(β ·m)〉 − β · ρ
}

, (3.37)
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where D = RD+2 ∩ {β, β(D+1) < 0}. Here, we denote by (β(0), . . . , β(D+1)) the
components of β. The idea of the proof is to note that αn and α are in fact the
unique solutions of problems (3.36) and (3.37). Then, we shall prove the convergence
by studying the properties of Jn and J .

First, we need the following proposition:

Proposition 2. (P1) Jn is strictly convex and coercive on RD+2

(P2) J is strictly convex and coercive on D
(P3) Jn is locally uniformly convergent to J on D
(P4) we have supn Jn(αn) < +∞

Proof of proposition 2. Property (P1) is proved in [9, 10], and we do not write it.
Note that this property implies the uniqueness of a solution to problem (3.36).

For (P2), note that J is twice continuously differentiable, and that J ′′ = 〈m ⊗
m exp(β ·m)〉 is clearly positive definite. Thus J ′′ is strictly convex in D. The
coercivity property means that J(βp) −→

p→+∞
+∞ for every sequence {βp} ⊂ D

getting close to the boundary of D, i.e. such that

(i) β(D+1)
p −→

p→+∞
0− or (ii) |βp| −→

p→+∞
+∞.

For the case (i), we consider an analytic expression of J

J(β) = exp
(

1
2

D
∑

i=1

|β(i)|2/|β(D+1)|
)

exp
(

β(0)
)

(

2π
|β(D+1)|

)D/2

− β(0)ρ−
D
∑

i=1

β(i)ρu(i) − β(D+1)E,

(3.38)

where u = (u(1), . . . , u(D)) is defined by (1.5). Then, we investigate all the limits
of β(0)

p and β
(i=1..D)
p , and it appears that J(βp) tends to +∞ in any case. We

summarize here the laborious study of all the possible cases. If β(0)
p is bounded

below, then the exponentials of the inverse power of β(D+1)
p tend towards +∞ faster

than the linear part of J . If β(0)
p → −∞, then two different cases must be considered.

If −β(0)
p ρ−

∑D
i=1 β

(i)
p ρu(i) → +∞, then J(βp)→ +∞, whatever the limit of β(i=1..D)

p

is. In the other case, −β(0)
p ρ−

∑D
i=1 β

(i)
p ρu(i) is bounded above, which implies that

β
(i=1..D)
p is not bounded; thus the first exponential grows fast enough to +∞ so that

we obtain J(βp)→ +∞.

For the case (ii), we can assume that β(D+1)
p ≤ c < 0 ∀p. Let R > 0 be

such that the ball B(α, R) ⊂ D. Then if p is large enough (i.e. p > p0), we have
βp 6∈ B̄(α, R). Define γp in the boundary ∂B of B(α, R) by γp = R

|βp−α|
(βp−α)+α.
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Then γp = θpα+(1−θp)βp with 0 < θp = 1− R
|βp−α|

< 1 if p > p0. Due to the strict

convexity of J , we have J(βp) >
1

1−θp (J(γp) − θpJ(α)) for p > p0. Moreover, α is
the unique minimum of J which is continuous, and ∂B is compact, thus we have
J(γp)− J(α) ≥ m > 0 for all p > p0. Therefore J(βp) ≥ m

1−θp + J(α), which tends
to +∞ because θp → 1− as p → ∞. The proof of property (P2) is then complete.
Note that this property implies the uniqueness of a solution to problem (3.37).

For property (P3), we must prove that en = |〈exp(β ·m)〉n − 〈exp(β ·m)〉| → 0
locally uniformly on D, which is a problem of quadrature on RD. We split en into
two parts

en ≤
∣

∣

∣

∫

RD
exp(β ·m(v)) dv −∆vDn

∑

k∈ZD
exp(β ·m(vnk ))

∣

∣

∣+
∑

vnk 6∈Vn
exp(β ·m(vnk ))∆vDn

= E1 + E2.

As in [15], we use the following lemma (see [18])

Lemma 1. There exists c > 0 independent of ∆v such that for all g ∈ Wm,1(RD),
m > D

∣

∣

∣

∫

RD
g(v) dv −∆vD

∑

k∈ZD
g(vk)

∣

∣

∣ ≤ c∆vm|g|m,1, (3.39)

where |g|m,1 =
∑

|l|=m ‖∂lg‖L1.

Setting gβ(v) = exp(β ·m(v)), which is in Wm,1 ∀m ≥ 0, we deduce from this
lemma that

E1 ≤ c∆vmn |gβ|m,1.

It may be seen that since |gβ|m,1 ≤
∫

|p(β, v)| exp(β ·m(v)) dv, where p is a polyno-
mial, then |gβ|m,1 is bounded on every compact subset K of D. Then there exists a
constant cK depending only on K, such that E1 ≤ cK∆vmn . For the term E2, note
that vnk 6∈ Vn means |vnk | ≥ Dn (where Dn is the radius of Vn). Thus

E2 ≤
1
D2
n

∑

k∈ZD
|vnk |2 exp(β ·m(vnk ))∆vDn .

Applying lemma 1 to gβ(v) = |v|2 exp(β ·m(v)) yields E2 ≤ 1
D2
n
cK for every compact

K of D. Therefore the bounds on E1 and E2 show that en → 0, uniformly on every
compact set K of D, which completes the proof of (P3).

For the last property (P4), note that, by definition, Jn(αn) ≤ Jn(β) for any
β ∈ D. Due to (P3), we have Jn(β) → J(β), thus Jn(β) is bounded, and there
exists c > 0 such that Jn(αn) ≤ Jn(β) ≤ c for all n. This proves (P4), and the proof
of proposition 2 is now complete.
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The proof of theorem 1 consists now in proving that Jn is in fact coercive uni-
formly in n. Therefore, (P4) insures that αn is bounded, and (P3) implies that
αn → α.

First, let S be a real number such that S ≥ J(α). The coercivity of J implies
that there exists a compact K ⊂ D, such that

J(β) ≥ S + 1 ∀β ∈ D −
◦
K, (3.40)

and we may assume that α ∈
◦
K (which denotes the interior of K). Property (P3)

implies that there exists n0(K) depending only on the compact set K, such that

|Jn(β)− J(β)| ≤ 1
4

∀β ∈ K, ∀n ≥ n0(K). (3.41)

Therefore (3.40) and (3.41) yields

Jn(β) ≥ S +
3
4

∀β ∈ ∂K, ∀n ≥ n0(K). (3.42)

Furthermore, the fact that α ∈
◦
K and the definition of S imply

Jn(α) ≤ |Jn(α)− J(α)|+ J(α) ≤ S +
1
4
< S +

3
4

∀n ≥ n0(K). (3.43)

We now use the following lemma:

Lemma 2. Let ψ be a convex function on a convex open set Ω of RD. If there exists
a convex compact subset K ⊂ Ω and a constant c such that

ψ(x) ≥ c in ∂K and ∃x0 ∈
◦
K,ψ(x0) < c, (3.44)

then ψ(x) > c in Ω−K.

Proof of lemma 2. Let x 6∈ K and let y be the intersection point of ∂K and [x0, x].
Then there exists 0 < σ < 1 such that y = σx0 + (1 − σ)x. The convexity of ψ
implies

ψ(x) ≥ 1
1− σ

(ψ(y)− σψ(x0)),

and hence assumption (3.44) leads to ψ(x) > c, which proves the lemma.

Relations (3.43) and (3.42) show that Jn satisfies the conditions of lemma 2 for
all n ≥ n0(K), and thus Jn(β) ≥ S + 3

4 , ∀n ≥ n0(K), ∀β ∈ RD+2 −K. Therefore,
for all S ≥ J(α), there exists a compact set K and an integer n0 such that

Jn(β) ≥ S +
3
4

∀n ≥ n0, ∀β ∈ RD+2 −K.
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Thus, the functionals Jn are coercive uniformly in n. Owing to (P4), this proves
that αn ∈ K for all n ≥ n0(K). Therefore, since K is compact, αn is convergent,
up to the extraction of a subsequence, to ᾱ ∈ D. Property (P3) and the uniqueness
of α imply that ᾱ = α, and thus, the whole sequence αn converges to α. The proof
of the theorem is now complete.

4. Existence of discrete solution (proof of theorem 2)

Since this theorem is independent of n, the sub/superscript n is omitted in this
section, when there is no ambiguity. In this proof, we simply use a fixed point
method for the operator Φ, defined by the nonlinear problem

F
def
= Φ(G) ⇐⇒

{

∂tFk + vk · ∇xFk + Fk = Ek[ρG]

Fk(0, x) = f0
k (x),

(4.45)

where ρG = 〈mG〉n, and EK[ρG] is the minimum of entropy on XρG (see (2.18)). This
operator is well defined if G is strictly positive in L∞([0, tmax[×RDx )N , ∀tmax > 0.

First, we give an invariant zone for Φ. In order to be local in space and time,
we consider two positive real numbers R and tmax and we define the domain of
dependence of Φ(G)(tmax, x) on the ball B(0, R) by

ΩR(tmax) =
{

(t, x); t ≤ tmax and |x| ≤ R+ (tmax − t) max
k
|vk|
}

. (4.46)

Note that since the propagation speeds of the model are bounded by maxk |vk|, this
set is compact. An invariant zone is given in the following proposition:

Proposition 3. The set

FR =
{

G ∈ L∞(ΩR(tmax))N , δ0e
−tφ(x− tvk) ≤ Gk(t, x) ≤ n eNt, a.e. (t, x)

}

(4.47)
is stable under Φ.

Proof of proposition 3. First, we verify that for G ∈ FR, the function F = Φ(G) is
well defined on ΩR(tmax) and depends only on the values of G on this compact set,
and also on the values of f0. Using the integral representation

Fk(t, x) = e−tf0
k (x− tvk) +

∫ t

0
es−tEk[ρG(s, x− (t− s)vk)] ds,

we obtain the expected result due to the following lemma:

Lemma 3. Let be (t, x) ∈ ΩR(tmax). For all 0 ≤ s ≤ t and for all k ∈ K, we have

(s, x− (t− s)vk) ∈ ΩR(tmax).
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Proof of lemma 3. This lemma is based on the fact that, the velocities vk being
bounded, one cannot go out of ΩR(tmax) by following the characteristics. From
definition (4.46), we have

t ≤ tmax and |x| ≤ R+ (tmax − t) max
k
|vk|,

and we must prove

s ≤ tmax and |x− (t− s)vk| ≤ R+ (tmax − s) max
k
|vk|.

From the definition of s, it is obvious that s ≤ tmax. Furthermore, the triangle
inequality yields

|x− (t− s)vk| ≤ |x|+ (t− s)|vk|
≤ R+ (tmax − t) max

k
|vk|+ (t− s) max

k
|vk|

= R+ (tmax − s) max
k
|vk|,

and the proof of the lemma is now complete.

In order to conclude the proof of proposition 3, we now prove that F = Φ(G)
satisfies the same estimates as G. Due to the fact that V is bounded and discrete,
and with the definition of EK[ρG], we have the following estimate on the discrete
equilibrium

Ek[ρG(s, y)] ≤
∑

k′

Ek′ [ρG(s, y)] =
∑

k′

Gk′(s, y) ≤ NneNs. (4.48)

Then an integral representation of F = Φ(G) gives the upper bound of (4.47):

Fk(t, x) = f0
k (x− tvk) +

∫ t

0
(Ek[ρG(s, x− (t− s)vk)]− Fk(s, x− (t− s)vk)) ds

≤ n+
∫ t

0
NneNs ds = neNt,

and the lower bound is easily obtained by integrating along the characteristics

Fk(t, x) = e−tf0
k (x− tvk) +

∫ t

0
es−tEk[ρG(s, x− (t− s)vk)] ds

≥ e−tf0
k (x− tvk) ≥ e−tδ0φ(x− tvk).
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The idea of the proof consists now in applying a fixed point theorem in the
invariant zone given by proposition 3. We first prove that G 7→ EK[ρG] is Lipschitz
continuous on the set FR. For that purpose, note that due to proposition 1, we
have EK[ρG] = exp(αG ·m(vk)) for all G ∈ FR. Therefore the mapping ρG 7→
αG ∈ RD+2 - defined on the set {ρG ∈ RD strictly realizable in V} - is continuously
differentiable. In fact, the Jacobian matrix of the inverse mapping is 〈m⊗m exp(αG·
m)〉n which, due to the definition of V, is positive definite, and hence invertible
(see [10]). Moreover, the elements of FR are uniformly bounded and uniformly far
away from 0, since

δ0e
−tφ(x− tvk) ≥ δ0e

−tmax min
ΩR(tmax)

φ(x− tvk) = C(tmax, R) > 0.

Therefore the operator G 7→ EK[ρG] is Lipschitz continuous on FR, i.e. there exists
a positive constant L(R, tmax) that depends only on R and tmax, such that

∣

∣

∣Ek[ρF ]− Ek[ρG]
∣

∣

∣(t, x) ≤ L(R, tmax) max
k

∣

∣

∣Fk −Gk
∣

∣

∣(t, x)

for all (t, x) ∈ ΩR(tmax) and for all F and G in FR. A classical technique in ordinary
differential equation theory then allows to prove that an iterate of Φ is a contraction
mapping in FR. Namely, it can be deduced from the previous estimate that for any
iterate Φp = Φ ◦ Φ . . . ◦ Φ, we have

‖Φp(F )− Φp(G)‖L∞([0,tmax]×RDx )N ≤
(L(R, tmax)tmax)p

p !
‖F −G‖L∞ ,

for all F and G in FR. The constant (L(R,tmax)tmax)p

p ! is less than 1 if p is large
enough (i.e. p ≥ p(R, tmax)). Consequently, Φp is a contraction mapping in FR if p ≥
p(R, tmax). Then, from a classical fixed point theorem, there exists a unique function
fR in L∞(ΩR(tmax))N such that Φ(fR) = fR almost everywhere in ΩR(tmax). Using
a increasing sequence of R, we can thus construct a function f in L∞([0, tmax]×RDx )N

such that Φ(f) = f almost everywhere. From the uniqueness of its restriction
to ΩR(tmax) for all R > 0, this function is unique. The proof of existence and
uniqueness part of the theorem is now complete. Moreover, since the bounds (2.25)
are satisfied by any fR in ΩR(tmax), it is clear that f satisfies these bounds.

Remark 1. We feel that it is necessary to explain why we have used a fixed point
method locally in space. Since the lower bound of (4.47) tends to 0 as |x| → +∞,
we cannot easily obtain a global Lipschitz continuity property of the operator G 7→
EK[ρG]. In fact, the function G might be too close to the boundary of the set of
strictly realizable moments, and thus it seems difficult to bound uniformly in x the
derivative of this operator.

To obtain conservation laws (2.29), it is sufficient to multiply (2.27) by m(vk),
then to sum over K. For local entropy dissipation relation (2.30), note that if η is a
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Lipschitz continuous function, then (see [16])

∂tη(fk) + vk · ∇xη(fk) = (Ek − fk)η′(fk) in D′(]0, tmax[×RDx )N . (4.49)

But η(s) = s log s is not Lipschitz continuous, therefore, following Perthame [4], we
bound its derivative by defining

ηR(0) = 0, η′R(s) = max(−R,min(R, 1 + log s))

on [0,+∞[. This function is Lipschitz continuous and ηR(s) −→
R→+∞

η(s). From (4.49),

it comes

ηR(f ]k)− ηR(f0
k ) =

∫ t

0
η′R(f ]k)(E

]
k − f

]
k) ds (4.50)

where f ]k(t, x) = fk(t, x+ tvk). The left-hand side of this equation converges a.e to
η(f ]k)−η(f0

k ) as R→ +∞. We can also pass to the limit in the right-hand side, since
|η′R(f ]k)| is bounded above by 1 + | log f ]k|, which is in turn bounded due to (2.25).
We can therefore pass to the limit in (4.50), and this gives a formulation equivalent
to (4.49). Finally, we sum (4.49) over k ∈ K and it is now classical to note that

〈(EK − fK)η′(fK)〉n = 〈(EK − fK)(log fK − log EK)〉n + 〈(1 + log EK)(EK − fK)〉n.

Due to the definition of EK, the last term vanishes. The second one is non positive
because s 7→ log s is non decreasing. Thus, we obtain the entropy inequality (2.30).

Estimate (2.31) is now easily derived from (2.29) and (2.30), and the proof of
theorem 2 is then complete.

5. Convergence of the discrete-velocity model (proof of theorem 3)

Following Perthame [4], we divide the proof into four steps.

step 1: weak convergence of fn and 〈mfn〉
From (2.31), it is clear that fn satisfies the uniform estimate

sup
n

sup
[0,tmax]

∫

R2D

(1 + |x|2 + |v|2 + | log fn|)fn(t, x, v) dxdv ≤ Γ2(tmax) (5.51)

for all tmax > 0. We classically deduce that there exists a subsequence still denoted
by {fn}n such that

fn ⇀
n→∞

f weakly in L1([0, tmax]× RDx × RDv ) ∀tmax > 0. (5.52)

Moreover, it is clear that Cn(v) converges pointwise to v and is locally uniformly
bounded. This is sufficient with (5.52) to obtain the convergence of the left-hand
side of (2.34) to ∂tf + v · ∇xf in D′(]0,+∞[×RDx × RDv ).
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For the convergence of the nonlinear right-hand side, we first obtain weak con-
vergence of 〈mfn〉. Estimate (5.51) yields

〈(1, v)T fn(t, x, v)〉 ⇀
n→∞

(ρ, ρu)T = 〈(1, v)T f(t, x, v)〉 ∀tmax > 0 (5.53)

weakly in L1([0, tmax]× RDx ).
However, due to the lack of estimate of fn for large velocities, estimate (5.51)

is not sufficient to obtain weak convergence of 〈12 |v|
2fn〉 . We then use a lemma of

Perthame [4] to control |v|3fn. This lemma is based on the dispersive effect of the
inversion of ∂t + v · ∇x, which also exists in the discrete-velocity case.

Lemma 4. Let F ∈ L1(R+ × RDx )Nn solve

∂tFk + vk · ∇xFk = gk, Fk(0, x) = 0 ∀k ∈ Kn,

where g ≥ 0 satisfies
∫ tmax

0

∫

RDx
〈|v|2g(t, x)〉n dxdt ≤ c. (5.54)

Then, for any bounded subset K of RDx , we have
∫ tmax

0

∫

K
〈|v|3F (t, x)〉n dxdt ≤ c diam(K).

The proof of this lemma is exactly the same as the one given in [4] and we do
not write it here. Note that the discrete equilibrium EnK has the same energy as fnK,
thus it satisfies estimate (5.54) of lemma 4. Therefore from this lemma, we have

sup
n

∫ tmax

0

∫

K

∑

|vnk |>R

|vnk |2fnk (t, x)∆vDn dtdx ≤
c(K)
R

, (5.55)

for any compact set K of RDx . This yields

sup
n

∫ tmax

0

∫

K

∫

|v|≥2R
|v|2fn(t, x, v) dtdxdv ≤ c(K)

R
, (5.56)

and thus we have

|v|2fn ⇀ |v|2f weakly in L1([0, tmax]×K × RDv ), (5.57)

〈12 |v|
2fn〉⇀ E = 〈12 |v|

2f〉 weakly in L1([0, tmax]×K), (5.58)

for any compact subset K of RDx and tmax > 0. Therefore, we have proved that
〈mfn〉⇀ ρ = 〈mf〉 weakly in L1([0, tmax]×K) for any compact K.

step 2: Weak convergence of En
We need the following lemma.
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Lemma 5. For all tmax > 0 there exists a constant c(tmax) such that

sup
n

sup
[0,tmax]

∫

R2D

(1 + |x|2 + |v|2 + | log En|)En(t, x, v) dxdv ≤ c(tmax). (5.59)

Proof. The bounds on (1+ |x|2 + |v|2)En directly follow from the definition of En and
from estimate (5.51). For En| log En|, note that due to the definition of the discrete
equilibrium EnK, we have

∫

RD
En log En dv ≤

∫

RD
fn log fn dv.

Then a classical manipulation allows to pass from En log En to En| log En| (see [4])
and yields

∫

R2D

En| log En| dxdv ≤ c(tmax).

This lemma shows that En is weakly compact in L1([0, tmax] × R2D). Thus
there exists a function M such that En ⇀M weakly in L1([0, tmax] × RDx × RDv ).
Therefore, we can deduce from step 1 and step 2 that the weak limit f of fn satisfies
the equation

∂tf + v · ∇xf =M− f in D′. (5.60)

The following steps are devoted to the proof of M = M [ρ].

step 3: Strong convergence of ρn
The extension to discrete-velocity frame of the averaging lemma obtained by Mis-
chler [14] implies that velocity averages of fn on bounded sets are in fact strongly
compact. Consequently, up to the extraction of a subsequence, we have

∫

|v|<R
m(v)fn(t, x, v) dv →

∫

|v|<R
m(v)f(t, x, v) dv

strongly in L1([0, tmax] × RDx ) for any R > 0. From the uniform estimates (5.51)
and (5.56) we thus obtain

〈mfn〉 → ρ = 〈mf〉 strongly in L1([0, tmax]×K)

for every compact K. Furthermore, since 〈(1, v)T fn〉 = (ρn, ρnun)T and 〈12 |v|
2fn〉 =

En + ρn
D
24∆v2

n, then it is clear that ρn and 〈mfn〉 are asymptotically equivalent.
Therefore, we conclude that ρn → ρ strongly in L1([0, tmax]×K), for every compact
K.
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step 4: Passing to the limit
Extracting again a subsequence, we have ρn(t, x) → ρ(t, x) a.e in [0, tmax] × RDx .
Then theorem 1 implies that on the set Ω = {(t, x), ρ(t, x) and θ(t, x) > 0} we have

αn(t, x)→ α(t, x) a.e.

Therefore
En →M [ρ] a.e in Ω× RDv ,

and since
ρn(t, x) = ‖En(t, x, .)‖L1 → ρ(t, x) = 0 a.e in Ωc,

then
En(t, x)→ 0 = M [ρ](t, x) a.e in Ωc × RDv .

This proves that En converges pointwise to M [ρ]. Combining this result with that
of step 2 proves that M = M [ρ]. Therefore the right-hand side of (2.27) converges
toward (M [ρ] − f) weakly in L1, and we can conclude that f is solution of BGK
equation (1.1).

Remark 2. If we have sufficient regularity on the initial condition f0 (say BV ), so
that f0,n tends to f0 in L1, then the convergence in Theorem 3 is in fact strong in
L1. Namely one can prove by similar arguments as Lions [19] that log(1 +fn) tends
weakly towards log(1 + f).

Remark 3. If we assume the assumptions of Mischler [7] on the initial condition,
the solution of the BGK equation is unique. In that case, the whole sequence fn

converges to f .
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