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Abstract

While the standard BGK model leads to the wrong Prandtl number, the BGK-model with velocity
dependent collision frequency as well as the Ellipsoidal Statistical BGK model can be adjusted
to give its proper value of 2/3. In this paper, the BGK model with velocity dependent collision
frequency is considered in some detail. The corresponding thermal conductivity and viscosity are
computed from the Chapman-Enskog method, and several velocity-dependent collision frequencies
are introduced which all give the proper Prandtl number. The models are tested for Couette flow,
and the results are compared to solutions obtained with the ES-BGK model, and the Direct Simu-
lation Monte Carlo method. The simulations rely on a numerical scheme that ensures positivity of
solutions, conservation of moments, and dissipation of entropy. The advantages and disadvantages

of the various BGK models are discussed.



I. INTRODUCTION

Because of its simplicity compared to the Boltzmann equation the BGK equation is widely
used in the kinetic theory of gases!?. While the BGK equation gives qualitatively good
results, it fails when one is interested in quantitatively correct results. This fact manifests
itself most prominently in the computation of the Prandtl number, i.e. the dimensionless
ratio of viscosity and thermal conductivity. While measurements and the theory of the full
Boltzmann equation give Pr ~ %, one obtains Pr = 1 from the standard BGK model®.

There are two main approaches to modify the BGK model in order to obtain the
proper Prandtl number: the Gaussian BGK-model, or ellipsoidal statistical model (ES-BGK

)45, and the BGK-model with velocity dependent collision frequency®7.

model
In all three approaches, standard BGK, ES-BGK, and BGK with velocity-dependent
collision frequency, the Boltzmann collision term is replaced by a relaxation type term of

the form
Spex=—v(f — fg)

where v is the collision frequency, f is the actual distribution function of the microscopic ve-
locities of the gas, and fg is a suitable equilibrium phase density. In standard and ES-BGK
models the collision frequency is independent of the microscopic velocity, and its value is ob-
tained from fitting to viscosity data. These two approaches differ in the equilibrium function
fe: in the standard BGK model fg is the local Maxwell distribution f,;, i.e. an isotropic
Gaussian, while in the ES-BGK model f% is a local anisotropic Gaussian. In the BGK model
with velocity-dependent collision frequency, v is a function of the microscopic velocity C' of
the particles and fg is a local isotropic Gaussian, albeit not the local Maxwellian.

The BGK model with velocity-dependent collision frequency is briefly discussed in the
book of Cercignani®, and Bouchut and Perthame discussed it thoroughly from a mathemat-
ical viewpoint®. In both references, however, the form of the collision frequency was not
discussed. To our best knowledge, the first attempt to consider an explicit expression for

v (C) can be found in a paper by Struchtrup’ who considered the simplest possible ansatz,



namely v (C) ~ C™. The proper Prandtl number is obtained for n ~ 1.79. In the present
paper, we present some alternative functions for the collision frequency, which lead to the
proper Prandtl number, but, however, do not agree with realistic collision frequency of par-
ticles. We also show that the combination of BGK model with realistic collision frequencies
cannot give the proper value of Pr.

The BGK equations for the different models are solved for Couette flow at various Knud-
sen numbers. The results will be compared with solutions obtained from the standard and
the ES-BGK models, and with Direct Simulation Monte Carlo computations (DSMC).

The numerical method used for solving the various BGK equations considered here is the
method of Mieussens® . The great advantage of this method compared to others is that it
guarantees the conservation of mass, momentum, and energy.

The main goal of this paper is to study whether BGK models can be used to model flows
over a wider range of Knudsen numbers. The BGK models with proper Prandtl number are
constructed such that they give accurate results for small Knudsen numbers, that is in the
hydrodynamic regime, where the laws of Navier-Stokes and Fourier are applicable. It is not
clear a priori, whether the BGK models can give accurate results in the transition regime,
where the Navier-Stokes-Fourier theory fails. The results presented below indicate that
BGK models can give qualitatively good results, but have some problems to quantitatively
describe flows at larger Knudsen numbers, where the details of the collision frequency become
important. Of course, models with proper Prandtl number can cover a wider range of
Knudsen numbers than the standard BGK model, and must be preferred over the latter.

However, only further improvement of the models, that would allow the use of the real
collision frequencies, can render the BGK models into a tool that gives accurate results over
a wide range of Knudsen numbers. Here it must be mentioned that the use of BGK models
allows to obtain deterministic results, rather than statistical results that suffer from noise as
in the DSMC method. Also, numerical solutions of BGK models can be obtained faster than
solutions for the full Boltzmann equation, which is nonlinear. Note also that the numerical

scheme of this paper guarantees conservation of mass, momentum and energy irrespective



of the numerical accuracy.

The remainder of the paper is organized as follows: In Section 2 we introduce various
BGK models. In particular, we show that the BGK models with velocity dependent collision
frequency have the same characteristics as the full Boltzmann collision term, we discuss how
to obtain viscosity and heat conductivity by means of the Chapman-Enskog method, and
we introduce several models for the collision frequency. In Section 3 we discuss details of
the numerical method, and in Section 4 we give and discuss numerical results for Couette

flow at Knudsen numbers between 0.012 and 1.2. The paper ends with our conclusions.

II. BGK MODELS
A Phase density and Boltzmann equation

The state of a monatomic ideal gas is completely described when the phase density
f (z4,t,¢;) is known?® which is defined such that fdc gives the number density of atoms with
velocity in (¢;, ¢; + de;) at place z; and time ¢.

The macroscopic quantities density o, velocity v;, density of internal energy pe, pressure

tensor p(;;), and heat flux vector g; of the gas are given by moments of the phase density,

g:m/fdc, gvi:m/cifdc, 95:§Q£T:@/02fdc
2™m 2

(1)

m
Dij) = m/C(iCj)de; G = E/C'QC’ifdc

where m is the mass of one particle, k is Boltzmann’s constant, and C; = ¢; — v; is the
peculiar velocity. T is the gas temperature, which is defined by Eqn. (1)3. The entropy of
the gas is given by

08 = —k:/flnfdc.
The phase density f (z;,t, c;) is governed by the Boltzmann equation®!!,

of  of _

S. (2)



where S is the collision term which has the following four properties®

i.) It guarantees the conservation of mass, momentum and energy, which may be written

as

/dec —0, /mciSdc — 0 ,/%&sczc —0. (3)

ii.) The production of entropy is always positive (H-Theorem),
—k:/lndec}O.

iii.) Due to the specific form of S the phase density in equilibrium is a Maxwellian, i.e.

3
m m
0 exp———C? .

S=0=1T=Iu= o7 T

iv.) The Prandtl number is close to % for all physically meaningful collision factors o, i.e.

pr_2kp 2
2mek 3

where 1 and k denote viscosity and thermal conductivity, respectively.

B The BGK equation

Because of its complex non-linearity, the Boltzmann collision term S is difficult to handle.
Therefore one is interested in model equations which are easier to handle than the Boltzmann
equation but which should also have the properties i.) through iv.). The most used model

is the BGK equation, see Refs. 12,7 for a motivation. The BGK collision term reads
Sy=-v(f-1) (4)

where f, is a Gaussian

fy =aexp (-I'C* +~,C;) , (5)

and v denotes the collision frequency which is given by

vz, t,C) = /fiag sin fdfdedc, . (6)



Here, g = |c — c!] is the relative velocity of colliding particles, o is the scattering factor, &
and 6 are the angles of collision. The collision frequency is a function of the microscopic
velocity C' (through o and ¢) which is evaluated for the case of hard spheres and equilibrium
in Ref. 13, we shall discuss it in Section 2.5 below.

The coefficients a,I',, for the distribution (5) follow from the conservation conditions
(3), where S must be replaced by S,. Note, that f, is only a Maxwellian if v does not
depend on the peculiar velocity C;.

It should be emphasized that — because of the conditions (3) — the BGK equation,
i.e. the Boltzmann equation with the collision term (4), is a non-linear integro-differential
equation, just like the Boltzmann equation. So one will not expect analytical solutions. But
as we will show, the standard procedures of the Chapman-Enskog expansion are much easier
to perform for the BGK equation than for the Boltzmann equation. It is straight forward
to show that the BGK equation shares the properties i.), ii.), iii.) with the Boltzmann
equation®’. The calculation of the Prandtl number (property iv.) will be performed in the
next sections of the paper. But one may conjecture easily that the extension of the ordinary
BGK model to the case where v is a function of C' offers an additional degree of freedom
which may be used to adjust both, viscosity and thermal conductivity, to their measured

values.

C ES-BGK model

In order to obtain the proper Prandtl number, Holway suggested the so-called ellipsoidal
statistical BGK model (ES-BGK model), where the Maxwellian of the standard BGK model

is replaced by an anisotropic Gaussian® so that the collision term reads

S=-v(f-fa)

where fs denotes the anisotropic Gaussian

1
fG = exp l—i)\;lC@CJ} 5

r____ -
m det [27’(’)\1]]



and the matrix );; is given by
\ij = RT6:; + <1 . i) Pag
Pr) »p
)\;jl denotes the inverse matrix. While it is relatively straightforward to show that this
model fulfills the conditions i.),iii.) and iv.) of Section 2.1, the proof of condition ii.) (H-
Theorem), is non-trivial, and was only recently presented by Andries et al.>. The ES-BGK

model assumes that the collision frequency is independent of the microscopic velocity.

D Chapman-Enskog method

The BGK equation follows from (2) after replacement of S by S, as

of ~of _
875 T &Ul

—v(f=1f)- (7)

We proceed by calculating the phase density f from Eqn. (7) by means of the Chapman-
Enskog method?®. The first order Chapman-Enskog expansion relies on the assumption that
the phase density is close to a Maxwellian, i.e. f ~ fi/ (1 + ¢), where ¢ < 1. In this case,
the equilibrium distribution f,, will be close to equilibrium as well, so that f, = fa (1 + ¢7)

with ¢, < 1. In fact, we can write

=2 2£T3(1—a)exp[—(%—r)c2+% Ci| = fu [1—a+TC? 44, .

where the coefficients a, v;, I’ measure the deviation from the Maxwellian and are assumed
to be small.

We insert the Maxwell phase density on the left hand side of (7) and eliminate all time
derivatives by means of the Euler equations for monatomic gases,

9 10pLT T3\"
0+ o Uk—O, U + — i =0, 22 —o.
oy, o Oz 0

After some rearrangement of the resulting equation we find for the phase density

B m v 10T (' m 5 5
f=h- fM{k:Ta CC“Taxi <2kTC _2>CZ}' ®)




It is remarkable that this approximate solution fulfills the conservation conditions (3) for any
distribution f,. Thus, the coefficients a, v;, [' cannot be determined from these conditions.
However, the phase density (8) must reproduce the first moments (1);_3 and it follows that

A

a=TI =0 and

402 5
v, = 8 10T /Me_"zdn :
3/ T Oz; v(n)

where n = /57=C. Pressure deviator p(; and heat flux vector ¢; follow from evaluating
their definitions (1) with the Chapman-Enskog phase density (8). This yields the laws of
Navier-Stokes and Fourier with explicit expressions for viscosity p and thermal conductivity

K,

32 Kk e Ov
ij) — — —T K d )
Pt 15\/7_rgm /1/ (77)6 naxj>

~~

21

8 K3 , oT
Qz— 3\/7_'(' m2 17 .

As expected, the Prandtl number depends on the collision frequency

n® —n?
PI‘ = §£H — f V(n)e ! dn (10)
_5)?2 ’
2mn fn4(nl,—2(7,)2> e="dn

E Collision frequencies

Now we discuss the collision frequency as function of the microscopic velocity. Due to
the severe simplifications in the derivation of the BGK equation, we cannot expect that the
collision frequency (6) will give us the proper Prandtl number. While we shall adopt ad
hoc models for the collision frequency later, it is instructive to study the original collision
frequency (6) first. We consider close to equilibrium situations, where we can replace fwl by

the Maxwellian fj; so that

v(C) = /fjaag sin Odfdedc; .



(n—1)

For power interaction potentials between particles ¢ ~ r~ , one can show!! that

ogsinfdf = gz_j S0dso

where sy = s (0) and n gives the order of the potential. n = 5 represents the so-called
Maxwell molecules while n — oo describes hard spheres.

The above integral can be reduced to

n—1 © 56752 [ 3n—7 3n

v (1) = 276 (E+m)™T — |6 —n|"T | de. (11)

3n—17 £=0

n—>5
[2kT "
where vy = Lgﬂ — /sodsode ;
mm m

& =Cl/ /2L n, = C;//2L are dimensionless velocities. For Maxwell molecules (n = 5)
the collision frequency is independent of the particle velocity,
VMazwell = 47”/0/ 6_£2€2d€ = 7T3/2l/0 )
£=0

and for hard spheres (n = c0) one finds'?

2 1
vys (C) = 7y {e" + g (; + 277) erfn} )

For other values of n, the collision frequency must be integrated numerically, and Fig. 1

shows the normalized dimensionless collision frequency as function of the dimensionless

2kT

=~ for a variety of values of n. It can be seen that v is a monotonous

velocity n = C/
increasing function of speed. This indeed meets the expectations: fast particles should collide
more often and should therefore have a larger collision frequency. The constant collision
frequency of Maxwell molecules corresponds to the standard BGK model with constant v.

The Prandtl number (10) for various power potentials can be obtained from further
analytical or numerical integration. For Maxwell molecules (constant v) we find the usual
result of the BGK model Pry,.wen = 1. For increasing values of n, the Prandtl number

increases slightly to a maximum of 1.01615 at n ~ 13 and is then decreasing to 1.0126 for

hard spheres. Since the proper Prandtl number is 2/3, it follows that the collision frequencies
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FIG. 1: The dimensionless and normalized collision frequency v as a function of dimension-

less microscopic velocity n for a variety of power potentials with exponent n.

for power potentials give the wrong Prandtl number and therefore do not improve the BGK
model.

There is an infinite number of possible functions v (1) which give the proper Prandtl
number. Since the true collision frequency is an increasing function in 7, we consider only

increasing functions. We introduce the following notation

k 6

Q—TA . 16 n 2

m—p(n) with —/A eTdn=1, 12
N T .

see the definition of viscosity (9). In 7 we presented the simple power law

v(n) =

1 (n) = 0.431587 n701288

which yields Pr = 2/3. While v4 (n) is the flattest polynomial we could find, it is unphysical
as it states that a particle at rest (n = 0) would not undergo collisions and stay at rest
forever. However, these particles will collide with particles of non-zero velocity, and therefore

v (n = 0) should be non-zero. Three simple functions which fulfill this requirement and give
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Pr =2/3 are

Dy (n) = 0.0268351 (1 + 14.27247%)
U3 (17) = 0.0365643 (1 + 109>05174)

D4 (n) = 0.1503991 (1 + 0.92897n") .

A simple discontinuous function which gives the proper Prandtl number is

0.2590894 |, n<1.2
U5 (n) =

0.8288236n n > 1.2
For hard sphere molecules, we find gg(0) = 0.557608 for molecules at rest and
vps (n>1) = 0.4941673n for fast particles. Thus, in comparison to hard sphere mole-
cules, all of our models underestimate the collision frequency for slower particles (n < 1.5)

and overestimate that of faster particles (n 2 1.5).

F Viscosity, mean free path, and Knudsen number

As can be seen from Eqn. (12), data for the viscosity p is required to completely define
the collision frequency v. For ideal gases the viscosity is a function of temperature alone,

and for our calculation we assume that

w0 = (1) (13

where 1 is the viscosity at the reference temperature 7j and w is a positive number of order
unity. For details, see the book by Bird'*, where values for y, and w are tabulated.

The mean free path of a particle with velocity c is given by

and accordingly the mean free path of all particles is

N = f)\(c)fdc‘

[ fdc
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Evaluating in equilibrium where f is a Maxwellian, we find

/2krT 4

The Knudsen number Kn is defined as the ratio between the mean free path A of a particle,

*’72dn . (14)

and a characteristic macroscopic length L of the problem under consideration, that is Kn =
A\/L. With the mean free path as above, the Knudsen number depends on microscopic details
of the particle interaction, in particular the collision frequency. However, it is customary in
kinetic theory to define a Knudsen number that depends only on macroscopic parameters
by?

s k:T

Kn = pL 3 (15)

This definition allows to compare results obtained with different microscopic models (in our
case different functions (7)), but with the same macroscopic properties, p, T’ u.

From the definition of the mean free path (14) follows the Knudsen number Kn as

3 3
n== xKn  where x= %/ ﬁ?n)e_nzdn . (16)

The values of the number x for the different models are given below

VDSMC| VBGK |VES—BGK " V2 v3 Vg Vs

Xo|0.77177]1.27324| 1.90986 |2.80147|2.78725|2.79262|3.00385(2.64

The value for xpgyc Was obtained from Ref. 14 - the Knudsen number given there corre-
sponds to our Kn. The value for the ES-BGK model follows since in the ES-BGK model
viscosity and constant collision frequency are related as v = %%

It follows that gases with the same macroscopic properties, and therefore the same Knud-
sen number Kn, have different values of the mean free path based Knudsen number Kn. From
the table we see that that the Knudsen numbers Kn for the ad-hoc models v to vy are more

than twice the Knudsen number Kn for DSMC calculations.
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IIT. NUMERICAL METHOD

Many works have been devoted to numerical solutions of BGK models (e.g. see Ref. 15
and the references therein). However, in our new BGK models, the collision frequency can
reach very large values and this can lead to numerical difficulties (lack of robustness, slow
convergence). We believe that an alternate method proposed by one of the authors in Ref.
10 is better adapted to such problems. We briefly recall the main ideas of this method in

this section.

A Explicit scheme

For the sake of simplicity, our numerical method is presented in one spatial dimension,
but three dimensions in microscopic velocity; see Refs. 9 and 10 for a complete description.

The equation to be approximated is

0 0
T e o s, 0<es<L (17)

The space variable z is discretized on a uniform grid defined by nodes z; = iAx with

9 = 0 and x; = L. The velocity c, is discretized by nodes I = Comin + J1ACz, with
c&o) = Cgmin and c&‘h) = Czmaz- The velocities ¢, and c, are discretized accordingly; a

discrete velocity (cggjl),cg(/m,cgj?’)) of the grid will be denoted by c¢;, where j = (j1, 2, Js)-
Finally, we also choose a time discretization with ¢, = nAt.

Eqn. (17) is classically approximated by a finite volume scheme,

n+l _ prn At

i Jig E(f:_ﬁ_%y] - f;n_%J) — At VZj(fz?:Lj - ;L,i,j)v

where the above quantities are defined as follows:
e f7; is an approximation of f (z;,ty,, c;).
e numerical fluxes are defined by

1 j n n j n n
Firti =3 (Cgl)( Foag T ) — 1eNAS - CI)H%J)) ’
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with the notation A fl" 1 = i1, — Jiy- The flux limiter function <I>”+27. allows
to obtain a second order scheme, e.g. @7 ,. = 0 for first order, and @7 , i =
2’ 27

mlnmod(Af” 1 ,A WA i

HEE Y ) for second order;

e the collision frequency is defined by (see Eqn. (12))

p’.lﬁT," ((C;jl) . Uln>2 + (Cg(/jz))2 + (ngg))2> 2
V= Bl gpy with g = ;
w(T?) Y

e macroscopic quantities are defined as in Eqn. (1) where now continuous integrals are

replaced by discrete sums on the velocity grid

(J1,J2,J3)
n n,n nkmon) — n
<pi » PV 2'0 T ) o Z ( C(Jl7]27]3)) b Ac,

=(0,0,0)

with C7; .y = ((c;(pjl) —u)? + (c?(f'z))2 + (%) > and Ac = Ac,Ac,Ac,.

(41.72,33 ?

e the approximation of f,(z;,t,,c;) is defined by

n n n 2 n j n
vig — G €XP [T Clirangs) T Vi CR )]

where the three coefficients a;, I'l", 77" are solutions of the discrete version of Eqn. (3),

Z ’/ijgi?j %w> Ac = 0
J
Zl/”mc fi = f1i;)Ac=0,

ZV,JQ j %ﬁACIO'

These equations are solved by a Newton algorithm. This approximation has already
been used by Frezzotti in Ref. 16, and has been mathematically investigated by one

of the authors in'.

Owing to this last approximation, our scheme is perfectly conservative for density, momen-

tum, and total energy. Moreover, the total (physical) entropy is increasing. The positivity
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of the phase density is preserved if at each iteration the time step follows the condition

e
At max v+ max — <1. (18)

B Implicit scheme

The condition (18) poses a problem for computing dense or rapid regimes with the above
numerical scheme, since for these At must be small and the convergence is very slow.
A classical way to overcome this difficulty is to use a linearized implicit scheme that can

be viewed as relaxed-Newton algorithm for the steady equation,

At
finJrl + A—I,(FTHFI _ fin:rl )+ At sz(f."frl _ n+1) = [

7j Z+%7j %7] ,J ’Yvivj 7j :

Since f;"”jjl is a non linear function of l”;L ', it is linearized as follows

i~ Ly DR =

Y563 V5bd
where D7 is the Jacobian of the mapping g — f,[g] evaluated at f]’. For the second order
scheme, the flux limiters (non differentiable) are kept explicit. The following ¢ matrix-form

of the scheme is more adapted to computations

1
—— +T+R")6f" = RHS" 1
(At+ +R>5f RHS", (19)
where § f" = "1 — f I is the unit matrix, T is a matrix such that (7'f"); ; = ﬁ(}'ﬁrl =
2’
F j) with only the first order fluxes, R” is defined such that (R" f"); ; = v7;(f7;,—[DF f'l;),
2’
and
n 1 n n n n
RHS}; = _A_$(f;+%7j = Fi ) = vig(fiy = Fag) (20)

which contains the limiters for the second order scheme.

The scheme now reads as a linear system to be solved at each iteration. This can be done
efficiently, and this method has been proved to be very fast for computing steady flows.

A similar scheme has been proposed by Frezzotti'®, but the main difference is that in his
method, the equilibrium distribution is not implicit. It has been shown in Ref. 10 that the

convergence of such a scheme is slower than ours.
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C Remark on the velocity grid

The velocity grid is appropriately chosen for each case. Since the same grid is used in each
space point, it should be large and precise enough to correctly describe the flow (i.e. the
distributions everywhere in the space domain). Then the bounds are given by a combination
=),

m

between the maximum macroscopic velocity and temperature of the flow (max, (v, +a
where we take a = 4). The step of the grid is given by the smallest temperature (i.e.
Ac = min, %T ). These quantities can be estimated by the data, e.g. velocity and
temperature at infinity and wall temperature (see Ref. 9 for other estimates). In the
numerical tests of this article, the bounds of the grid are chosen as explained above, but the
step of the grid is computed differently. In order to obtain very accurate comparisons between
the models, the difference due to velocity discretization had to be eliminated. Consequently,

the number of discrete velocities is taken so that an increase of this number by 10 points in

each direction does not affect the results to a magnitude greater than 1%.

IV. NUMERICAL RESULTS

The linearized implicit scheme of second order is used in most of the subsequent compu-
tations, with a CFL number of 10000 (i.e. At is 10000 times the explicit time step). The
criterion used to determine whether the flow has reached steady state is the reduction of
the quadratic global residual 7 (>, i |[RH S{ij)% by a factor of 10°. In all results of this
section gas-surface interactions are Maxwellian reflections with total accommodation, i.e.
incident molecules are supposed to be re-emitted by the wall with a Maxwellian distribution
PuwMI1, Uy, Ty] ;where u,, is the wall velocity, and T, is the wall temperature. The coefficient
P 18 determined to ensure a zero mass flux normal to the wall. In our numerical scheme,
the Maxwellian is naturally replaced by the discrete Maxwellian associated to u,, and T,,.
Numerically, the boundary conditions (gas-surface, symmetry axes, etc.) are treated by a

classical ghost cell technique.
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A Couette flow at Kn = 0.01199

We consider one-dimensional plane Couette flow and use the same data as Bird in Ref.
14. The gas, argon, lies between two plates maintained at a temperature of T, = Ty = 273
K. One plate is at rest while the other is moving with the velocity w, = 300 m/s in y
direction, the distance between the plates is L = 1m. Initially the gas is at Tp, and its
density is py = 9.28 x 107% kg/m3, corresponding to a pressure py = poiTg = 0.528 Pa. The
viscosity of the gas is given by Eqn. (13) with p, = 2.117 * 10_5% and w = 0.81. For this
data Bird obtains the Knudsen number for his variable hard sphere model as 0.00925, while
one obtains Kn = 0.01199 from Eqn. (15).

For our calculations we use a grid of 200 cells in = direction and 40 x 46 x 40 discrete
velocities with bounds [—980, 980] x [—952, 1252] x [—980,980] (in m/s). With this velocity
grid, a further increase of the number of grid points does not improve the results by a
magnitude larger than 0.05%, except at the left boundary for the velocity that cannot be
improved by more than 1%. Consequently, this discrete velocity grid can be considered as
optimal.

For the given problem the total mass is physically conserved in time. Consequently, a
conservative numerical method is essential in order to converge towards the correct steady
state. As explained in the previous section, the choice of an appropriate iterative solver is
crucial. For instance a classical Gauss-Seidel method is non-conservative, and this leads to
a steady-state which is correct for temperature and velocities, but not for the density. In
this paper, we use a simple correction of the distribution function at each time step by a
factor equal to the initial total mass divided by the current total mass. This is sufficient to
recover the correct steady state conditions.

Figures 3-7 show profiles for the following models : DSMC with variable hard sphere
model (we use the code and data provided with the floppy disk of Ref. 14, also available on
the web at http://www.gab.com.au/), the standard BGK model, the ES-BGK model, and

the velocity-dependent collision frequency BGK models 4 (), (n) , 73 () introduced in
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Section IIE (from now on referred to as v (C')-BGK models). The collision frequency 4 (1)
is not considered, since its maximum value is so large that the matrix of the linear system
(19) is very ill-conditioned. Our linear solver is then not efficient enough to solve the linear
system and our method breaks down.

Moreover, we do not show any results obtained with the discontinuous model 75 (7).
While this model gives good results at low Knudsen numbers, tests that we ran at larger
Knudsen numbers revealed unphysical steps in the curves and we decided to not further
study this particular model.

For Knudsen numbers below ~0.01 we are in the continuum regime where the flow is
expected to be well described by the Navier-Stokes-Fourier equations. Here it must be
noted that all BGK models considered, but not the standard BGK, are constructed such
that they have the same viscosity and heat conductivity in the continuum regime. Thus, in
the simulation of this problem, we expect only small differences between the improved BGK
models, but marked differences to the results from standard BGK.

Indeed, for density and temperature profiles, Figs. 3 and 4, we observe that the results
obtained with the standard BGK model are quite different from the others. All modified
BGK models are very close to each other, and very close to the DSMC results. The strong
differences between standard BGK and the improved ones are related to the Prandtl number
while the smaller differences between DSMC, ES-BGK, and v (C)-BGK, are due to Knudsen
number effects and nonlinearities. However, the velocity is independent of the Prandtl
number, and all models give the expected straight line, see Fig. 5. For heat flux and shear
stress curves, there is a significant statistical scatter in the DSMC results, and we can just
note that the all models are quite close (Figs. 6, 7).

Following Bird!* further, we next consider the same case with a higher wall velocity of
1000 m/s. The results are plotted in Figures 8-12. Now the statistical scatter of the DSMC
results is very small. Again we note that the standard BGK model does not agree with the
DSMC calculations due to the wrong Prandtl number, while the results obtained with the
ES-BGK and v (C)-BGK models are very close to DSMC. Indeed, no marked differences
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between the results can be observed. The DSMC results for heat flux and shear stress are
more affected by statistical noise, and the results from ES-BGK and v (C')-BGK models lie
within the error margin.

At this small Knudsen number, the BGK results should agree well with solutions of the
Navier-Stokes-Fourier equations, and this allows us to compute viscosity, heat conductivity
and the Prandtl number from our results. Viscosity and heat conductivity are computed
from Egs. (9) as the ratio between viscous stress and velocity gradient, and heat flux and
temperature gradient, respectively. The results for the various BGK models are shown
in Figs. 12 and 13; the DSMC results exhibit too much noise that no meaningful data
is obtained for the velocity gradient. From the pictures, it becomes clear that all BGK
models with correct Prandtl number yield identical results, while the original BGK model
exhibits different results. The curves are best understood by recalling Eqn. (13), which
gives the temperature difference of the viscosity. The spatial variation of the viscosity is due
to the variation in temperature, and the higher viscosity values for the BGK model reflect
the higher temperatures for that model. These, in fact, are observed since the standard
BGK model underestimates the heat conductivity (= larger Prandtl number), so that the
heat of friction is not removed as efficient as for a gas with proper Prandtl number. The
low value of heat conductivity can also be seen in Fig. 13, where all BGK models with
correct Prandtl number give the same values. The computation of the Prandtl number from
viscosity and heat conductivity yields only marginal variation over the space variable, and
the following mean values were found: BGK: Pr = 1.02811, ES-BGK: Pr = 0.67641, BGK-
v1: Pr=0.67960 , BGK-vy: Pr = 0.67538, BGK-v3: Pr = 0.67535 . The Prandtl number is
sufficiently close to its proper value of 2/3 for all but the standard BGK model. The small
deviations from the proper value are likely due to Knudsen number effects, which also are
reflected in the boundary layers and jumps at the boundaries (in order to exclude Knudsen

layer effects, we averaged only over the inner 80% of the curves).
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B Couette flow at Kn =0.1199

Next we consider slow and fast Couette flow with a density of 9.28 x 1077 kg/m3, corre-
sponding to a Knudsen number of Kn = 0.1199, so that the Knudsen number is ten times
larger as for the first test. For the calculation we use 50 x 56 x 50 discrete velocities with
bounds [—990, 990] x [—950, 1267] x [—990, 990] for the low-speed case, and 50 x 59 x 50 dis-
crete velocities with bounds [—1300, 1300] x [—1040, 2028] x [—1300, 1300] for the high-speed
case. For the same reasons as above, these grids can be considered to be optimal.

The results are plotted in Figures 13-18 for the wall velocity u,, = 300 m/s and in figures
19-24 for the wall velocity u,, = 1000 m/s.

For Knudsen numbers between 10 and 0.01 we are in the transition regime, where Knudsen
number effects are expected to be clearly visible. These include, but are not limited to, jumps
in temperature and velocity at the walls, and Knudsen boundary layers.

For the low-speed flow, Figs. 13-18, it appears that the standard BGK model gives
marked deviations again, while the ES-BGK model gives results very close to the DSMC
calculations. The v (C)-BGK models exhibit visible deviations in the profiles for density,
and temperature. In particular, the temperature jumps at the boundaries are met best by
the standard BGK, and the ES-BGK model. The same behavior is observed for velocity
slip, see Fig. 16 for a close-up.

While all models agree on the heat flux (Fig. 17), some differences can be seen in the
shear stress (Fig. 18), where the two last v (C')-BGK models give the best agreement with
DSMC.

For the high-speed flow, Figs. 19-24, we observe just the same: The ES-BGK model
yields results in close agreement to the DSMC calculations, while the v (C)-BGK models
show marked deviations, which are, in some cases (e.g. density) of the same order as the

deviations of the standard BGK model.
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C Couette flow at Kn =1.199

We now consider fast and slow Couette flow at an even higher Knudsen number of Kn =
1.199 (density of 9.28 x 1078 kg/m?), so that the Knudsen number is hundred times larger
as for the first test. Now, we use 50 x 54 x 50 discrete velocities with bounds [—1009, 1009] x
[—928,1251] x [—1009, 1009] for the low-speed case, and 60 x 67 x 60 discrete velocities with
bounds [—1463, 1463 x [—1121,2145] x [—1463, 1463] for the high-speed case. Again, these
grids can be considered to be optimal. Note that the large number of points is necessary
due to the rarefied regime: The collisions are not numerous enough to prevent the half-space
Maxwellians at the walls from propagating into the domain. Consequently, the distribution
has very strong gradients that must be captured by the grid. If this is not taken into account,
macroscopic quantities can be seriously affected, see Ref. 17.

The results are plotted in Figs. 25-27 for u,, = 300 m/s and in Figs. 28-31 for u,, = 1000
m/s. For both cases, we present only the profiles for density, temperature, and velocity.

It is obvious that all models fail to match the DSMC simulations at this large Knudsen
number. Still the best agreement can be found from the ES-BGK model, but also here the
deviations are obvious. The curves obtained with the v (C')-BGK models are very flat,and
the density profiles are even inverted for the fast flow case, see Figs. 28-29.

Also we observe that the standard BGK model can compete with the other models at this
flow conditions. Indeed, the standard BGK matches the DSMC temperature and velocity

curves best of all models.

D A remark on Knudsen numbers

We believe that the above results can be understood as follows: Under the given flow
conditions the mean free path is of the order of the wall distance. Hence, Knudsen number
effects become important, if not dominant. Since the Knudsen number of the standard BGK

model agrees well with the Knudsen number of the DSMC calculations, the approximate
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FIG. 30: Couette flow. Density profiles for u,, = 1000 m/s and Kn = 1.199. New scale for
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agreement between both should not be a surprise. A similar argument holds for the ES-
BGK model. Note that all models were constructed such that they have the same Knudsen
number Kn as defined in Eqn. (15). However, their mean free paths A and the corresponding
Knudsen numbers Kn as given in Eqn. (16) differ. Thus the Knudsen number Kn of
the standard BGK and the ES-BGK model are by a factors xpax/Xpsyc = 1.65 and
Xes—pak/Xpsue = 2.475 larger than that of the DSMC simulations. Thus, it needs to
be checked, whether this difference accounts for some of the disagreement observed in the
curves..

One might also guess, that the marked deviation of the v (C)-BGK models could be
explained through the differences in the Knudsen numbers as well. Indeed, the Knudsen
number Kn of these models is by a factor x;/Xpsyc = 3.63 larger than the Knudsen
number of the DSMC calculations. Larger Knudsen numbers correspond to flatter profiles,
and this explains why the v (C)-BGK models give the flattest profiles, while BGK and
ES-BGK models give profiles that are less flat than the DSMC calculations.

In order to learn more about the influence of the Knudsen number, we run a test where

we used the same Knudsen numbers Kn for all models in the low velocity case. For this, we
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chose the Knudsen numbers as
1 —
Kn, = —Kn = MKHDSMC
Xa Xao
where Knpgsyc = 1.199 is the Knudsen number for the DSMC calculations, and the values

for x, can be found in the table below Eqn. (16). Thus, for this test, all models have the

same mean free path based Knudsen number Kn = 0.925, corresponding to

KnBGK =0.72677 y KnES,BGK = 0.48451

Kn,, =0.330309 , Kn,, =0.331995 , Kn,, = 0.331356

Figs. 33 - 35 show the corresponding profiles for density and temperature. Here, we see
the interesting result that the shape of the profiles is quite similar for all models, while
the jumps in temperature and velocity (slip) are differ notably between DSMC, standard
BGK, ES-BGK, and the v (C)-BGK models. This stands in contrast to the results shown
in Figs. 26-28, where all models exhibit jumps of similar size, but quite different shapes of
the profiles.

These findings indicate that neither of the two Knudsen numbers - Egs. (15) and (16)
- is sufficient to characterize the flow. Indeed, the mean free path of an individual particle
depends on the velocity, and it should not be surprising that this dependence cannot be
captured by one mean value alone. As a direct conclusion follows that the simulation of gas
flows at high Knudsen number with a kinetic model, e.g. variants of the BGK model, will
be in better agreement with solutions of the Boltzmann equation (e.g. DSMC) when the
collision frequency used in the kinetic models mimics the velocity dependence of the actual

collision frequency.

E Stationary shock wave

As a second test case we consider the shock structure for a one-dimensional steady shock

with upstream Mach numbers 1.4, 3 and 8 in argon, another of the reference problems
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in'*. The details of the shock structure depend strongly on the details of the microscopic

interaction, which are reflected in the velocity dependence of the collision frequency.
Because there is no fixed coordinate label for the shock profile inherent to the problem,
it is possible that each computation yields a different shock position. In order to make a fair
comparison, we therefore choose a new coordinate label 2’ such that ' = 0 corresponds to
the “equal area point” z* for density. It is defined by the following relation between total

mass and densities p;, pp at left and right boundaries =, xr of the computational domain

*

| o@=pydo= [ (on-p(a)) iz

zL z*
We use a grid of 300 cells in x-direction, while the numbers of discrete velocity as well as

the velocity bounds vary with the chosen Mach number. In particular we chose:

Mach 1.4 : 10x10x10 velocities, bounds [-871,1457]x[-1160,1160]x[-1160,1160]

Mach 3 : 16x16x16 velocities, bounds [-1571,2325]x[-1892,1892]x[-1892,1892]

Mach 5 : 24x24x24 velocities, bounds [-2463,3161]x[-2914,2914]x[-2914,2914]

Mach 8 : 38x36x36 velocities, bounds [-3844,5646]x[-4531,4531]x[-4531,4531]
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These velocity grids are optimal in the sense explained in Section IV A.
The following figures show, for the various models, and Mach numbers, the profiles of

relative density p and relative temperature 7', which are defined as

. . T-T
ﬁ:% R S ——

Pr — PL Tp— T
While all models give results of the same order of magnitude, the details of the shock profiles,
as the Mach number increases, become very different in detail. These differences are only
small at Mach number Ma = 1.4 (Figures 36 and 37), and one can say that all models agree
reasonably well with the DSMC calculations.

As the Mach number increases to Ma = 3 (Figures 38 and 39), and Ma = 8 (Figures 40
and 41), the different kinetic models behave quite differently. These differences can be seen
in both, density and temperature profiles, but are more marked in the temperature profile.
Note the small slope of BGK and ES-BGK model to the left, where the v (C')-BGK models
display almost a kink.

We believe that these differences can be well explained with the different velocity depen-
dence of the collision frequency v. For the standard BGK, and the ES-BGK models, the
collision frequency is a constant, while the VHS (hard sphere) model used in the DSMC sim-
ulations assumes a velocity dependent collision frequency (see Figure 1), where fast particles
collide more often. The v (C') —BGK models also have a velocity dependent collision fre-
quency, which considerably overestimates the actual collision frequency of the hard spheres,
as discussed in Section ILE.

Particles flying from the left into the shock are faster at higher Mach numbers, and the
more collisions they have, the sooner they are deaccelerated. Thus, a theory with a velocity
dependent collision frequency will lead to a steeper profile on the left, since fast particles
travelling into the shock collide more often than the average.

This matches well with the results depicted in Figs. 36-41: Profiles for the models with
constant collision frequency (BGK, ES-BGK), are flattest, while those for the models with

the strongest dependence on velocity (v (C) —BGK models) are steepest. The steepness of
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FIG. 36: Density profiles for shock at Mach number Ma = 1.4.

the DSMC curves, which are considered as our benchmark, lies in the middle between those
of the BGK, and v (C') —BGK models.

While none of the models can be considered best, one might argue that the ES-BGK
agrees best in some smaller features, including an overshoot in the temperature curve, that

is also observed in the DSMC curve.

V. CONCLUSIONS

From our results on Couette flow and shock structures, we can draw the following con-

clusions:

e In the continuum regime (Kn < 0.01) all BGK models with correct viscosity and heat
conductivity, that is v (C)-BGK and ES-BGK models, give identical results that stand
in good agreement with DSMC simulations and the Navier-Stokes-Fourier equations.
Here, the v (C')-BGK model is in disadvantage to the ES-BGK model, since it requires
a smaller time step. This can be seen from Eqn. (18) which relates the time step to the
maximum value of the collision frequency. The maximum value v (Ciax) of the v (C)-

BGK models are larger than the constant collision frequency of the ES-BGK model,
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FIG. 41: Temperature profiles for shock at Mach number Ma = 8.

so that the latter allows larger time steps, and therefore faster numerical calculations.
This is not a crucial issue for steady computations if implicit schemes are used, but this
can be prohibitive for unsteady computations in which explicit schemes are generally

used.

e When microscale effects become important, i.e. at Knudsen numbers above 0.01,
all BGK-type models considered in this paper lead to different results. None of the
models can be singled out as giving excellent results, since all differ from the DSMC
simulations. The ES-BGK model is numerically cheapest, and we can say that it gives

the best overall performance of the models considered.

e Altogether, our results show that improved BGK models are accurate in the contin-
uum regime, and can give qualitatively good results in the transition regime. However,
they are not capable of an accurate description of flows at large Knudsen numbers,
and of shock structures. We believe that the reason for this failure lies in the insuf-
ficient description of the microscopic interaction dynamics which are represented by

the collision frequency (or the mean free path).
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Nevertheless, our results indicate that considering the non-isotropic Gaussian in the ES-
BGK model, as well as considering velocity dependent collision frequencies in the v (¢)-BGK
models lead to considerable improvement over the standard BGK model. We expect that
the combination of an anisotropic Gaussian with a velocity dependent collision frequency
in a v (C)-ES-BGK model might give the best results. In such a model, one could use the
physical collision frequency, e.g. Eqn. (11), so that the gas behavior is better described on
the microscopic level. The v (C)-ES-BGK model will be considered in a future paper.
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