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Uniformly stable numerical schemes for the Boltzmann equation preserving the
compressible Navier-Stokes asymptotics

Mounir Bennoune, Mohammed Lemou, Luc Mieussens1

Abstract. In this paper we develop a numerical method to solve Boltzmann like
equations of kinetic theory which is able to capture the compressible Navier-Stokes dynam-
ics at small Knudsen numbers. Our approach is based on the micro/macro decomposition
technique, which applies to general collision operators. This decomposition is performed
in all the phase space and leads to an equivalent formulation of the Boltzmann (or BGK)
equation that couples a kinetic equation with macroscopic ones. This new formulation is
then discretized with a semi-implicit time scheme combined with a staggered grid space dis-
cretization. Finally, several numerical tests are presented in order to illustrate the efficiency
of our approach. Incidentally, we also introduce in this paper a modification of a standard
splitting method that allows to preserve the compressible Navier-Stokes asymptotics in the
case of the simplified BGK model. Up to our knowledge, this property is not known for
general collision operators.
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1 Introduction

The most known kinetic model for rarefied gases is the well known Boltzmann equation (see
[5] for instance). A dimensionless form of this equation is written as

∂tf + v · ∇xf =
1

ε
Q(f, f), t > 0, (x, v) ∈ Rd × Rd, (1)

where f(t, x, v) is the distribution function which depends on time t ≥ 0, on the position
of particles x ∈ Rd and on their velocity v ∈ Rd. The parameter ε is the Knudsen number
which measures the degree of rarefaction and is proportional to the mean free path. Finally,
Q is a nonlinear collision operator describing interactions between particles. It generally acts
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Narbonne, 31062 TOULOUSE cedex 9, France (bennoune@mip.ups-tlse.fr, lemou@mip.ups-tlse.fr,
mieussens@mip.ups-tlse.fr).

1



on the velocity dependence of f only. When the number of collisions becomes very large,
the mean free path (the distance travelled by a particle between two collisions) becomes
small as compared to a characteristic lenght of the physical domain under consideration. In
this regime a macroscopic description of the gas is more adapted. Fundamental examples
are compressible Euler and compressible Navier-Stokes (CNS) equations, which describe the
evolution of averaged quantities as the local density, momentum and energy of the gas. The
CNS model is more accurate than the Euler equations because it gives a correction of order
ε by involving terms such as viscosity and heat conductivity. However, physically, such
classical fluid models could be unsufficient to correctly describe the macroscopic evolution of
the gas, especially when it is far from equilibrium. Fluid models like the compressible Euler or
CNS type are classically derived using the moment method in combination with perturbation
methods such as Hilbert or Chapman-Enskog expansions [5], [6]. In particular, the derivation
of the CNS model from Boltzmann equation in fluid regime yields an approximation of
viscosity and heat fluxes in the gas up to terms of the order of ε2.

The general context of this paper is the development of numerical schemes for solving
the Boltzmann equation that are uniformly stable along the transition from kinetic regime
to the fluid regime. Indeed, this property plays an important role in practical applications:
plasma physics, aerospatial technology, semiconductors, neutron transport and many others.
The main difficulty is due to the term 1

ε
which becomes stiff when ε is close to zero (fluid

regime). In this case, solving the Boltzmann equation by a standard explicit numerical
scheme requires the use of a time step of the order of ε, which leads to very expensive
numerical computations for small ε. To avoid this difficulty, it is necessary to use an implicit
or semi-implicit time discretization for the collision part. However, due to the complicated
structure of the Boltzmann collision operator, the construction of suitable implicit schemes
is still a numerical challenge. In fact, such numerical schemes should also have a correct
asymptotic behaviour: for small parameter ε, the schemes should degenerate into a good
approximation of the fluid asymptotics (Euler or CNS equations) of the Boltzmann equation.
This property is often called asymptotic preserving property.

At the level of the Euler asymptotics, many authors have proposed asymptotic preserv-
ing numerical approximations for solving the Boltzmann equation. For example, numerical
schemes able to capture the correct Euler limit have been proposed in [8] in the case of the
BGK equation, and then for more general kinetic equations in [16, 14, 3, 27, 28]. The case of
the diffusion scaling has also been investigated in a series of works, see [18, 19, 21, 17, 15, 26].
In the same spirit, we also mention the work on the incompressible Navier-Stokes limit de-
velopped in [20].

Many numerical methods for kinetic equations are based on a splitting method which
consists in solving the collision and the transport part separately. For the BGK model,
it is known (see [8]) that an exact solving of the collision part allows to obtain a correct
Euler limit when ε goes to zero. Here, we propose in this paper a slight modification of this
method allowing to also capture the CNS asymptotics corresponding to the BGK model. In
the case of the quadratic Boltzmann operator, the Euler asymptotic preserving property can
be ensured using the so-called Wild sums [14, 27, 28]. However, it seems that this method
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is not able to capture the CNS asymptotics for small ε. In fact, up to our knowledge there
is no numerical work treating the CNS asymptotics of a kinetic model, even for simplified
models like the BGK equation.

We mention that another strategy to decrease the computational cost of a kinetic simu-
lation consists in coupling the Boltzmann equation with fluid models (Euler, Navier-Stokes,
or diffusion model) (see [23, 9, 10, 11]) for example). This strategy is based on a domain
decomposition aiming at solving kinetic and macroscopic equations simultaneously on dif-
ferent subdomains. However, the efficiency of such techniques can be improved by using
asymptotic preserving schemes, in particular near the interface (see [10]).

In this paper, we present a deterministic method based on a decomposition of the Boltz-
mann equation into a system coupling a kinetic equation with a fluid one. The fluid part
of this system degenerates, for small ε, into the CNS equations, up to O(ε2), while the
kinetic part remains uniformly stable with respect to ε. We emphasize that our approach
does not need any approximation and any domain decomposition method neither for space
variable nor for velocity. Our strategy is as follows. We decompose the distribution function
f = f(t, x, v) into the sum of its Maxwellian M(U) and g = f−M(U)

ε
:

f = M(U) + εg, (2)

where U is the vector of the first moments of f (density, momentum and energy):

U =

∫

Rd





1
v

1
2
|v|2



 f(v)dv =





ρ
ρu

1
2
ρ|u|2 + d

2
ρT



 , (3)

and M(U) is defined as

M(U)(v) =
ρ

(2πT )
d
2

exp
(

− |v − u|
2

2T

)

. (4)

Inserting the micro-macro decomposition (2) into equation (1), we show that g and U must
satisfy a coupled system of equations which is equivalent to the original Boltzmann equa-
tion (1). This system is composed of a kinetic equation on g and a macroscopic equation
on U . As we will show in this paper, using a time semi-implicit scheme on this formulation
naturally leads to an asymptotic preserving scheme at the level of the CNS asymptotics.
Note that a similar approach has been proposed in [13] to design fluid models with localized
kinetic upscaling effects. But the construction of asymptotic preserving schemes was not
studied there.

We point out that our method extends to more general collision operators of Boltzmann
type and that it can be simply generalized to get asymptotic preserving schemes at higher
orders in ε (Burnett like approximations). Also note that our approach also applies to
diffusion limits of kinetic equations as shown in [24]. Finally, we mention that some ideas
presented in this paper have already been proposed in [22] for the construction of asymptotic
preserving schemes for the radiative heat transfer equation.
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The outline of this paper is the following: in the next section, we present a brief review
of the Boltzmann and BGK equations, and their Euler and Navier-Stokes asymptotics. In
section 3, using the micro-macro decomposition, we construct the equivalent system to the
Boltzmann equation and prove formally that it gives the CNS equations up to O(ε2). Section
4 is concerned with the numerical approximation of such constructed system, where the time
and space discretizations are separately detailed. In section 5, we review some other standard
numerical schemes used for solving the Boltzmann-BGK equation and discuss their properties
regarding the CNS asymptotics. Finally, we give in section 6 several classical numerical tests
in order to illustrate the efficiency of our method in a one dimensional setting.

2 The Boltzmann equation and its fluid approxima-

tions

2.1 The Boltzmann equation

We consider the usual Boltzmann equation (see [4] for details) in the dimensionless form,
with an initial data

∂tf + v · ∇xf =
1

ε
Q(f, f), t > 0, (x, v) ∈ Rd × Rd, (5)

f(t = 0, x, v) = f0(x, v), (6)

where the collision operator Q is a bilinear functional and acts only on the velocity depen-
dance of the distribution function f . In all what follows, we use the notations

m(v) = (1, v,
|v|2

2
)T , and 〈g〉 =

∫

Rd
g(v) dv (7)

for any scalar or vector function g = g(v). The Boltzmann operator Q(f, f) has important
physical properties as:

1. local conservation of mass, momentum and energy

〈mQ(f, f)〉 = 0, ∀f ≥ 0. (8)

2. The entropy inequality
〈Q(f, f) log(f)〉 ≤ 0, ∀f ≥ 0.

3. The non-negative equilibrium functions f , i.e., such thatQ(f, f) = 0, are the Maxwellian
distributions given by

M(U)(v) =
ρ

(2πT )
d
2

exp
(

− |v − u|
2

2T

)

, (9)
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where ρ, u and T are density, mean velocity and temperature associated to U by the
relation

〈mM(U)〉 = U = (ρ, ρu,
1

2
ρ|u|2 +

d

2
ρT ). (10)

Usually, to avoid the complexity of the Boltzmann collision operator, the simpler BGK
model is considered (see [5] for instance)

∂tf + v · ∇xf =
1

ετ
(M(U)− f), (11)

where U is the vector whose components are the first moments of f according to expres-
sion (3), and τ is a relaxation time that may depend on ρ and T . Conservation of mass,
momentum and energy as well as the entropy inequality are readily satisfied by the BGK
model. The Maxwellians are clearly the equilibrium functions associated to the BGK collision
operator.

2.2 Conservation laws and asymptotic fluid models

The physical conservation laws of mass, momentum and energy can be expressed from (5) by
using the moment method. For this, we multiply the Boltzmann equation (5) by the vector
of locally conserved quantities, i.e., by m(v) given by (7), and then integrate with respect to
v. Using the conservation property of Q, this gives:

∂t 〈mf〉+∇x · 〈vmf〉 = 0.

This is equivalent to the following non closed system of conservation laws

∂t





ρ
ρu
E



+∇x ·





ρu
ρu⊗ u+ P
Eu+ Pu+Q



 = 0, (12)

where E = 1
2
ρ|u|2 + d

2
ρT is the energy, P = 〈(v − u)⊗ (v − u)f〉 is the pressure tensor, and

Q = 1
2
〈(v − u)|v − u|2f〉 is the heat flux vector. When ε goes to 0 in (5), the distribution

function f tends to a local Maxwellian M(U). Therefore, system (12) can be approximated
by a closed system on U by using expression (9). Within this approximation, the pressure
tensor P and the heat flux vector Q are given by

P = pI, Q = 0,

where p = ρT is the pressure, and I is the identity matrix. Then (12) reduces to the usual
compressible Euler equations

∂t





ρ
ρu
E



+∇x ·





ρu
ρu⊗ u+ pI

(E + p)u



 = 0. (13)
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It is well known that a first order correction (in ε) to the Euler equations can be derived
by using the classical Chapman-Enskog expansion. This correction is nothing but the CNS
system

∂t





ρ
ρu
E



+∇x ·





ρu
ρu⊗ u+ pI

(E + p)u



 = −ε





0
∇x · σ

∇x · (σu+ q)



 . (14)

In these equations, the pressure tensor is P = pI+σ where σ = −µ
(

∇xu+(∇xu)T− 2
d
∇x ·uI

)

is the stress tensor, while the heat flux is Q = εq = −εκ∇xT . In these relations, µ and κ are
functions of U and are the so-called viscosity and heat conductivity coefficients, see [1] and
the references therein for details. In the following section, we perform the Chapman-Enskog
procedure in the context of our micro-macro decomposition.

3 A kinetic/fluid formulation of the Boltzmann equa-

tion

In this section we show that the Boltzmann equation can be equivalently written as a sys-
tem coupling a hydrodynamic part with a kinetic part of the distribution function. This
formulation is the basis of our numerical method (see section 4).

3.1 Micro-Macro decomposition

Assume that f satisfies the Boltzmann equation (5). We decompose f as follows

f = M(U) + εg, (15)

where U is linked to f by (3) and M(U) is the associated Maxwellian according to (4). When
no confusion is possible, we set M(U) = M . Inserting decomposition (15) into (5), we obtain

∂tM + v · ∇xM + ε(∂tg + v · ∇xg) =
1

ε
Q(M + εg,M + εg).

Since Q is a bilinear and Q(M,M) = 0, we have

Q(M + εg,M + εg) = Q(M,M) + 2εQ(M, g) + ε2Q(g, g) = εLMg + ε2Q(g, g),

where LM is the linearized collision operator given by

LMg = 2Q(M, g).

Thus, we get
∂tM + v · ∇xM + ε(∂tg + v · ∇xg) = LMg + εQ(g, g). (16)
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Now, we use a projection technique to separate the macroscopic and microscopic quan-
tities M and g. Consider the Hilbert space L2

M = {ϕ such that ϕM− 1
2 ∈ L2(Rd)} endowed

with the weighted scalar product

(ϕ, ψ)M =
〈

ϕψM−1
〉

.

It is well known that LM is a non-positive self-adjoint operator on L2
M and that its null

space is N (LM) = Span{M, vM, |v|2M}. Let ΠM be the orthogonal projection in L2
M onto

N (LM). After easy computations in the orthogonal basis

B =

{

1

ρ
M,

(v − u)√
T

1

ρ
M,

(

|v − u|2

2T
− d

2

)

1

ρ
M

}

(17)

of the space N (LM), one finds for any function ϕ ∈ L2
M the following expression of ΠM(ϕ):

ΠM(ϕ) =
1

ρ

[

〈ϕ〉+
(v − u) · 〈(v − u)ϕ〉

T
+

(

|v − u|2

2T
− d

2

)

2

d

〈(

|v − u|2

2T
− d

2

)

ϕ

〉]

M.

Now, we prove the following elementary properties of ΠM :

Lemma 3.1. If M and g are defined as in (15) then we have

(I − ΠM)(∂tM) = ΠM(g) = ΠM(∂tg) = ΠM(Q(g, g)) = ΠM(LMg) = 0.

Proof. Since

∂tM =

[

∂tρ

ρ
+
v − u
T
· ∂tu+

(

|v − u|2

2T 2
− d

2T

)

∂tT

]

M

clearly belongs to N (LM) (see (17)), then ΠM(∂tM) = ∂tM .
Moreover, thanks to (15) we have 〈mg〉 = 1

ε
〈m(f −M)〉 = 0 and hence 〈m(∂tg)〉 =

∂t 〈mg〉 = 0. This implies ΠM(g) = 0 and ΠM(∂tg) = 0. Finally, the conservation proper-
ties (8) of Q imply that ΠM(Q(g, g)) = 0. It is classical to deduce that LM satisfies the same
properties 〈mLMg〉 = 0 and hence ΠM(LMg) = 0.

We now apply the orthogonal projection I − ΠM to (16) to obtain

(I −ΠM)(∂tM + v · ∇xM) + ε(I −ΠM)(∂tg + v · ∇xg) = (I −ΠM)LMg + ε(I −ΠM)Q(g, g).

Then using lemma 3.1, we get the following equation on g

∂tg + (I − ΠM)(v · ∇xg)−Q(g, g) =
1

ε

[

LMg − (I − ΠM)(v · ∇xM)
]

. (18)

Now, taking the moments of equation (16) and using again lemma 3.1, we get

∂t 〈mM〉+∇x · 〈vmM〉+ ε∇x · 〈vmg〉 = 0.
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Let F (U) = 〈vmM〉 be the flux vector of U = 〈mM〉, then the previous equation reads

∂tU +∇x · F (U) + ε∇x · 〈vmg〉 = 0. (19)

Therefore, the coupled system (18)-(19) provides a kinetic/fluid formulation of the Boltz-
mann equation. This last formulation is in fact equivalent to the Boltzmann equation (5) as
stated in the following proposition.

Proposition 3.1. (i) Let f be a solution of the Boltzmann equation (5) with initial data (6),
and M = M(U) its associated Maxwellian according to (3)–(4). Then the pair (U, g), where
U = 〈mf〉 and g = 1

ε
(f−M), is a solution to the coupled system (18)-(19) with the associated

initial data

U(t = 0) = U0 = 〈mf0〉 and g(t = 0) =
1

ε
(f0 −M(U0)). (20)

(ii) Conversely, if (U, g) satisfies system (18)-(19) with initial data (U0, g0) such that
〈mg0〉 = 0, then f = M(U) + εg is a solution to the Boltzmann equation (5) with initial
data f0 = M(U0) + εg0 and we have U = 〈mf〉 and 〈mg〉 = 0.

Proof. The proof of (i) is nothing but the construction of the coupled system (18)-(19)
detailed above. For (ii), consider (U, g) a solution of (18)-(19). We set f = M+εg, where M
is the Maxwellian asociated to U , and show that f satisfies the Boltzmann equation. From
(18), we have

ε∂tg + v · ∇xf = LMg + εQ(g, g) + ΠM(v · ∇xf),

and consequently

∂tf + v · ∇xf =
1

ε
Q(f, f) + ΠM(v · ∇xf) + ∂tM. (21)

The term ΠM(v ·∇xf)+∂tM belongs to N (LM) as a sum of two elements of N (LM). On the
other hand, since equation (19) is equivalent to 〈m(ΠM(v · ∇xf) + ∂tM)〉 = 0, this implies
that ΠM(v ·∇xf)+∂tM is orthogonal to N (LM). Consequently, ΠM(v ·∇xf)+∂tM = 0, and
f satisfies the Boltzmann equation from (21). The property 〈mg〉 = 0 is simply obtained by
applying ΠM to (18) and then by using the property of the initial data.

The following proposition gives a similar result in the case of the one-dimensional (d = 1)
BGK model.

Proposition 3.2. With the previous notations, f = M(U) + εg is a solution of the BGK
equation (11) with initial data (6) if and only if (U, g) satisfies the system

∂tg + (I − ΠM)(v∂xg) = −1

ε

[1

τ
g + (I − ΠM)(v∂xM)

]

, (22)

∂tU + ∂xF (U) + ε∂x 〈vmg〉 = 0. (23)

with initial data (20).
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Note that in case of a boundary value problem, using the micro-macro decomposition (15)
may induce some difficulties. In particular, at boundary points, f is generally known only
for incoming velocities, and hence it may be difficult to define the macroscopic moments U
in (15). In this article, we do not consider this problem and defer the treatment of boundary
conditions to a future work. We refer to [24] for such a study in the case of the linear
transport model.

3.2 Chapman-Enskog expansion and compressible Navier-Stokes
equations

For a sake of clarity, we just show in this section how the classical Chapman-Enskog procedure
applies to system (18)-(19). More precisely, we simply give the results of standard calcula-
tions as in [1], adpated to the context of our coupled kinetic/fluid formulation (18)-(19), and
derive the corresponding CNS equations. This derivation is similar to the projection method
used in [12].

With the previous notations and from the kinetic equation of our coupled system (18),
we can write

LMg = (I − ΠM)(v · ∇xM) +O(ε).

Now, after calculations, we obtain

(I − ΠM)(v · ∇xM) =
(

B : (∇xu+ (∇xu)T − 2

d
(∇x · u)I) + A · ∇xT√

T

)

M +O(ε),

where

A =

(

|v − u|2

2T
− d+ 2

2

)

v − u√
T

and B =
1

2

(

(v − u)⊗ (v − u)

2T
− |v − u|

2

dT
I

)

.

It is known that LM is invertible on the orthogonal of its null-space. Then, we have

g = L−1
M (BM) : (∇xu+ (∇xu)T − 2

d
(∇x · u)I) + L−1

M (AM) · ∇xT√
T

+O(ε).

Inserting this expression into the macroscopic equation (19) and using classical symmetry
properties of LM , we get

∂tU +∇x · F (U) = −ε





0
∇x · σ

∇x · (σu+ q)



+O(ε2), (24)

which is nothing but the CNS system of equations (14), up to O(ε2). The rescaled viscosity
tensor and heat flux are given by

σ = −µ
(

∇xu+ (∇xu)T − 2

d
∇x · uI

)

, (25)

q = −κ∇xT. (26)
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The coefficients µ and κ are the viscosity and heat conductivity coefficients that only depend
on the temperature, and whose general expressions can be found in [1].

In the case of the BGK model (11) for one dimensional space and velocity variables
(d = 1), the computations are much simpler, and we obtain the corresponding CNS equations

∂t





ρ
ρu
E



+ ∂x





ρu
ρu2 + ρT
Eu+ ρTu



 = ε∂x





0
0

κ∂xT



 , (27)

where the heat conductivity coefficient is

κ = τ
3

2
ρT.

Note that in this case, there is no diffusion term in the momentum equation.

4 Numerical approximation

Starting from the approach presented above, we are going in this section to construct a nu-
merical approximation of system (18)-(19) for the Boltzmann equation, as well as of sytem
(22)-(23) in the case of the BGK model. Our goal is to provide numerical approximations
to these systems that give, for fixed time and space grid steps and up to O(ε2), a numeri-
cal scheme for the corresponding CNS equations. In that sense, the so obtained numerical
schemes for Boltzmann or BGK equations are “Asymptotic Preserving” for the CNS asymp-
totics.

4.1 Implicit time discretization

In this first step, we present a time discretization of our coupled system (18)-(19). Space and
velocity discretizations are studied in the next section. To that purpose, we denote by ∆t a
fixed time step, and by tn a discrete time such that tn = n∆t, n ∈ N. We first develop the
strategy in the case of the Boltzmann equation (5). Let (Un)n and (gn)n be two sequences
that approximate U and g respectively, that is: Un(x) ≈ U(tn, x), gn(x, v) ≈ g(tn, x, v).
The idea of our time discretization is the following. In equation (18), the only term which
presents a stiffness in the collision part, for small ε, is ε−1LMg. Hence, we take an implicit
discretization for this term, while the term (I − ΠM)(v · ∇xM) is still explicit. Thus, we
obtain the following discretization:

gn+1 − gn

∆t
+ (I −ΠMn)(v · ∇xg

n)−Q(gn, gn) =
1

ε

[

LMngn+1 − (I −ΠMn)(v · ∇xM
n)
]

, (28)

where Mn = M(Un) is the Maxwellian associated with the vector moment Un according to
(9)-(10). Note that gn+1 is uniquely determined from (28) since the operator (I − (∆t/ε)LMn)
is clearly invertible (see the properties of LM mentioned in section 3.1). In the case of the
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Boltzmann equation, the calculation of this inverse will be treated in a future work. In the
present paper, all the numerical tests are done with the BGK model for which LM is diagonal
and hence easily invertible.

Now, we look for the time approximation of the fluid part (19) in our system. The flux
F (U) at time tn is naturally approximated by F (Un) = 〈vmMn〉. On the other hand, in
order to have diffusive terms that are evaluated at time tn, the term ∇x · 〈vmg〉 is discretized
by ∇x · 〈vmgn+1〉. Then we have

Un+1 − Un

∆t
+∇x · F (Un) + ε∇x ·

〈

vmgn+1
〉

= 0. (29)

Proposition 4.1. (i) The time discretization (28)-(29) of the Boltzmann equation (5) gives
at the limit ε→ 0 a scheme which is consistent with the Euler equations (13).

(ii) Moreover, for small ε, scheme (28)-(29) is asymptotically equivalent, up to O(ε2), to
an explicit time discretization of the CNS equations (14).

Proof. The asymptotic behavior of scheme (28)-(29) is obtained similary as in subsection
3.2. Indeed, from (29), we see that when ε→ 0, we obtain

Un+1 − Un

∆t
+∇x · F (Un) = 0,

which is a time explicit discretization of the Euler system (13). Now, we note that from the
properties of LM mentionned above, the operator (I − (∆t/ε)LM) is also invertible for all
ε ≥ 0 and ∆t ≥ 0. Hence, (28) yields

gn+1 =
(

I−∆t

ε
LMn

)−1[

gn−∆t

ε
(I−ΠMn)(v·∇xM

n)−∆t(I−ΠMn)(v·∇xg
n)+∆t Q(gn, gn)

]

.

Observing that
(

I − ∆t
ε
LMn

)−1
= − ε

∆t
L−1
Mn +O(ε2), we get

gn+1 = L−1
Mn

[

(I − ΠMn)(v · ∇xM
n)
]

+O(ε).

It follows that (29) can be written as

Un+1 − Un

∆t
+∇x · F (Un) + ε∇x ·

〈

vmL−1
Mn

[

(I − ΠMn)(v · ∇xM
n)
]〉

= O(ε2). (30)

If we neglect the O(ε2) terms, then the same computations as in section 3.2 show that (30)
is indeed a time-explicit discretization of the CNS equations (14). Indeed, the O(ε) term is

∇x ·
〈

vmL−1
Mn

[

(I − ΠMn)(v · ∇xM
n)
]〉

= ∆t





0
∇x · σn

∇x · (σnun + qn)



 ,

where σn and qn are related to Un according to (25)-(26).
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Now, applying the same time discretization to the one dimensional (d = 1) BGK model,
we obtain a similar result:

Proposition 4.2. The following time discretization of the BGK equation (11)

gn+1 − gn

∆t
+ (I − ΠMn)(v · ∂xgn) = −1

ε

[ 1

τn
gn+1 + (I − ΠMn)(v · ∂xMn)

]

, (31)

Un+1 − Un

∆t
+ ∂x · F (Un) + ε∂x ·

〈

vmgn+1
〉

= 0, (32)

gives at the limit ε → 0 a scheme which is consistent with Euler equations (13). Moreover,
it also gives up to O(ε2) a scheme which is consistent with the CNS equations (27).

In all the following, we restrict ourselves to the space discretization of (31)-(32).

4.2 Space discretization

In this section, we construct a suitable space discretization of system (31)-(32) which is
asymptotically equivalent to an approximation of the one dimensional CNS equations (27)
up to O(ε2). There are two main difficulties. The first one is related to the discretization
of the transport term in the left-hand side of (31) in the kinetic regime (ε ≈ 1). Indeed, to
guarantee the stability of the scheme in this regime, one has to use an upwind discretization
for this term. The second one is the accuracy of the approximation of the diffusion terms
obtained in the asymptotic regime (ε� 1). Observing that such diffusive terms are due to
ε 〈vmgn+1〉 via (32), and (I − ΠMn)(v∂xM

n) via (31), we propose to discretize these terms
by using central differences defined on two staggered grids. In the following, we develop this
strategy in more details.

We consider spatial grid points xi+ 1
2
, denote by xi the center of the cell [xi− 1

2
, xi+ 1

2
],

and consider a uniform space step ∆x = xi+ 1
2
− xi− 1

2
= xi − xi−1. Let Un

i and gn
i+ 1

2

be

approximations of U(tn, xi) and g(tn, xi+ 1
2
), respectively. Equation (31) is approximated at

grid point xi+ 1
2
: to avoid the oscillations for transport dominated flows, the transport term

(I − ΠMn)(v∂xg
n) is approximated by a first order upwind scheme

(I − ΠMn)(v∂xg
n)|x

i+ 1
2

≈ (I − Πn
i+ 1

2
)
[Φi+ 1

2
(gn)− Φi− 1

2
(gn)

∆x

]

,

where
Φi+ 1

2
(g) = v+gi+ 1

2
+ v−gi+ 3

2
. (33)

However, the transport term (I −ΠMn)(v∂xM
n) is considered as a source term and approx-

imated by central differences

(I − ΠMn)(v∂xM
n)|x

i+ 1
2

≈ (I − Πn
i+ 1

2
)
(

v
Mn

i+1 −Mn
i

∆x

)

,

12



where Mn
i = M(Un

i ) and Πn
i+ 1

2

is an approximation of ΠM(U(tn,xi+ 1
2

)) that will be given below.

This leads to the following approximation of (31)

gn+1
i+ 1

2

− gn
i+ 1

2

∆t
+ (I − Πn

i+ 1
2
)
[

v+
gn
i+ 1

2

− gn
i− 1

2

∆x
+ v−

gn
i+ 3

2

− gn
i+ 1

2

∆x

]

= −1

ε

[

gn+1
i+ 1

2

+ (I − Πn
i+ 1

2
)(v

Mn
i+1 −Mn

i

∆x
)
]

. (34)

Now, the fluid equation (32) is approximated at points xi. First, the discretization of the
flux ∂xF (Un) can be done by any classical scheme:

∂xF (Un)|xi ≈
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x
.

For instance, in the kinetic context, a natural scheme could be the first order kinetic flux
vector splitting of Deshpande-Pullin [25]:

Fi+ 1
2
(Un) =

〈

m(v+Mn
i + v−Mn

i+1)
〉

. (35)

The non-equilibrium flux ∂x 〈vmgn+1〉 is approximated by central differences as

∂x
〈

vmgn+1
〉

≈ 1

∆x

〈

vm
(

gn+1
i+ 1

2

− gn+1
i− 1

2

)〉

.

Thus, we obtain the following approximation of (32):

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x
= −ε

〈

vm
gn+1
i+ 1

2

− gn+1
i− 1

2

∆x

〉

. (36)

Now, we investigate the formal asymptotics of the numerical scheme given by (34) and
(36) when ε→ 0. First, from (34) we have

gn+1
i+ 1

2

= −(I − Πn
i+ 1

2
)(v

Mn
i+1 −Mn

i

∆x
) +O(ε),

and then from (36)

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x

=
ε

∆x

〈

vm
[

(I − Πn
i+ 1

2
)(v

Mn
i+1 −Mn

i

∆x
)− (I − Πn

i− 1
2
)(v

Mn
i −Mn

i−1

∆x
)
]

〉

+O(ε2).(37)

In order to get from (37) a scheme which is consistent with the CNS equations up to O(ε2),
a simple calculation shows that suitable choices of Πn

i+ 1
2

are

Πi+ 1
2

=
Πi + Πi+1

2
=

Π(Ui) + Π(Ui+1)

2
, or Πi+ 1

2
= Π(

Ui + Ui+1

2
).

We summarize the above result in the following proposition.
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Proposition 4.3. Consider the following time and space approximation of the BGK equa-
tion (11)

gn+1
i+ 1

2

− gn
i+ 1

2

∆t
+ (I − Πn

i+ 1
2
)
[

v+
gn
i+ 1

2

− gn
i− 1

2

∆x
+ v−

gn
i+ 3

2

− gn
i+ 1

2

∆x

]

= −1

ε

[

gn+1
i+ 1

2

+ (I − Πn
i+ 1

2
)(v

Mn
i+1 −Mn

i

∆x
)
]

, (38)

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x
+ ε

〈

vm
gn+1
i+ 1

2

− gn+1
i− 1

2

∆x

〉

= 0, (39)

with Mn = M(Un) and Πi+ 1
2

= Π(Ui)+Π(Ui+1)
2

. Then

(i) in the limit ε goes to zero, the moments Un satisfy the following discretization of Euler
equations

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x
= 0, (40)

(ii) scheme (38)–(39) is asymptotically equivalent, up to O(ε2), to the following scheme

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x

=
ε

∆x

〈

vm
[

(I − Πn
i+ 1

2
)(v

Mn
i+1 −Mn

i

∆x
)− (I − Πn

i− 1
2
)(v

Mn
i −Mn

i−1

∆x
)
]

〉

, (41)

which is a consistent approximation of the CNS equations (27). Moreover, the approximation
of the diffusion term in the right-hand side of (41) is second order in space.

Proof. First part (i) is obvious. For (ii), the asymptotical equivalence between the two
schemes up to O(ε2) is formally given by the above analysis. The fact that scheme (41)
is consistent with the one dimensional CNS equations is just the result of a simple Taylor
expansion for small ∆t and ∆x. The second order approximation of the diffusion term in (41)
is due to the central differences and the symmetric discretization of ΠM(xi+ 1

2
).

Remark 4.1. In the case of coarse discretizations such that ε < ∆x, the upwind approxima-
tion of the equilibrium flux ∂xF (U) gives a numerical viscosity (of order ∆x) which is larger
than the order ε physical viscosity. This is a classical issue for convection-diffusion problems
with upwind approximation of the convection part. For not too small ε, it is often sufficient
to use a second order approximation of ∂xF (U). In this paper, we use a simple reconstruction
of the upwind flux Fi+ 1

2
(Un) based on a flux splitting F = F+ + F− as sum of a positive

and a negative part, following the idea in [7]. A standard second order approximation of
Fi+ 1

2
(Un) is then given by a linear piecewise polynomial:

F+(x) = F+(xi) + si(x− xi), ∀x ∈ [xi− 1
2
, xi+ 1

2
],
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where a slope limiter is introduced to suppress possible spurious oscillations near disconti-
nuities. For example, one can use the classical minmod slope limiter:

si =
1

∆x
minmod

(

F+(Ui+1)− F+(Ui), F
+(Ui)− F+(Ui−1)

)

.

Finally, the numerical flux Fi+ 1
2
(U) is given as

Fi+ 1
2
(U) = F+

i (xi+ 1
2
)− F−i+1(xi+ 1

2
),

and Fi− 1
2
(U) is reconstructed following the same way. Of course, here, the splitting form of

the flux is naturally derived from its kinetic interpretation:

F (U) =
〈

v+mM(U)
〉

+
〈

v−mM(U)
〉

.

5 Some standard numerical methods for solving the

BGK equation

In this section, we compare our approach with some already known schemes to solve the BGK
equation, regarding stability and asymptotic preserving properties. Following the notations
given in section 4, we denote by fni (v) an approximation of f(tn, xi, v), and by Mn

i the
Maxwellian associated with fni according to (9)-(10).

5.1 Explicit and semi-implicit schemes

The simplest time explicit scheme for the one dimensional BGK equation is written as

fn+1
i = fni −

∆t

∆x

[

v+(fni − fni−1) + v−(fni+1 − fni )
]

+
∆t

ε
(Mn

i − fni ). (42)

Because of the stiff term ε−1(Mn
i −fni ), the stability of this scheme requires a CFL constraint

of type ∆t = O(ε). Under this constraint, this scheme satisfies the standard physical proper-
ties: conservation of mass, momentum and energy, entropy dissipation, and preservation of
positivity. However, it is clear that this scheme cannot be used for small ε, since it induces
prohibitevely small time steps. In particular, this means that scheme (42) is not asymptotic
preserving, neither for Euler, nor for CNS asymptotics.

In order to get a numerical scheme with a time step independent of ε, it is necessary to
find a suitable time implicit discretization of the collision operator.

The simplest way is to make implicit the loss term −ε−1f only. Hence, we obtain the
following discretization

fn+1
i =

ε

ε+ ∆t
fni −

∆t

∆x

ε

ε+ ∆t

[

v+(fni − fni−1) + v−(fni+1 − fni )
]

+
∆t

ε+ ∆t
Mn

i . (43)

Unlike the explicit scheme (42), scheme (43) does not has any ε dependent CFL condition,
and satisfies the main physical properties of conservation and entropy.

However the limit scheme when ε goes to 0 is not consistent with the Euler equations.
Indeed, when ε→ 0, (43) gives fn+1

i = Mn
i and hence fni = M0

i for any time tn.
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5.2 The splitting method and its implicit version

The splitting method is the most frequently used procedure for solving kinetic equations
both by deterministic and stochastic methods. It consists in using a time splitting between
the transport and collision parts of the equation. The transport part is solved with the initial
data fn

∂tf̃ + v ∂xf̃ = 0 t ∈ [tn, tn+1],

f̃(t = tn, x, v) = fn(x, v),
(44)

and then the relaxation part is solved by using f̃(tn+1) as the initial data

∂tf̄ =
1

ε
(M(Ū)− f̄), t ∈ [tn, tn+1],

f̄(t = tn, x, v) = f̃(tn+1, x, v),
(45)

and we set fn+1 = f̄(tn+1, x, v). The convection phase (44) is approximated by an explicit
scheme based on a finite difference method :

f
n+ 1

2
i − fni

∆t
+

Φi+ 1
2
(fn)− Φi− 1

2
(fn)

∆x
= 0, (46)

where the numerical flux is given by (33) and fn+ 1
2 approximates f̃(tn+1). For the collision

phase, it is proposed in [8] to solve it exactly:

fn+1
i = e−

∆t
ε f

n+ 1
2

i + (1− e−
∆t
ε )M

n+ 1
2

i . (47)

This scheme preserves the Euler limit since it gives for ε = 0 the following relation

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x
= 0,

where Fi+ 1
2
(Un) =

〈

mΦi+ 1
2
(Mn)

〉

. This scheme is nothing but a kinetic scheme for the Euler

equations. However, the CNS asymptotics cannot be preserved by this approach. Indeed,

we note that since relation (47) is conservative, then M
n+ 1

2
i = Mn+1

i , and hence

fn+1
i −Mn+1

i = e−
∆t
ε (f

n+ 1
2

i −Mn+1
i ).

Therefore, the difference between f and its associated Maxwellian is smaller than any power
of ε. In particular, this implies that there is no correction of order ε in the conservation
laws. This means that the CNS asymptotics cannot be obtained with this scheme.

In order to obtain a CNS preserving splitting scheme, we propose the following modi-
fication. Instead of solving the collision step exactly, we discretize it by a simple forward
difference:

fn+1
i − fn+ 1

2
i

∆t
=

1

ε
(M

n+ 1
2

i − fn+1
i ). (48)
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In other words, this modification is equivalent to replace the coefficient e−
∆t
ε by 1

1+∆t/ε
in (47).

As stated in the following proposition, scheme (46) and (48) is now able to recover the CNS
asymptotics.

Proposition 5.1. The numerical approximation of the one-dimensional BGK equation given
by (46) and (48) is, up to O(ε2), equivalent to the following scheme

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x

+
ε

∆x

(〈

m

(

Φi+ 1
2
(
Mn−1 −Mn

∆t
)− Φi− 1

2
(
Mn−1 −Mn

∆t
)

)〉

− 1

∆x

〈

m
(

Φi+ 1
2
(D)− Φi− 1

2
(D)

)〉

)

.

(49)

The fluxes Fi+ 1
2

and Φi+ 1
2

are given by (35) and (33). The sequence D is defined as Di =

Φi+ 1
2
(Mn−1)− Φi− 1

2
(Mn−1).

This scheme is a consistent approximation of the CNS equations (27). Furthermore, the
order ε term in (49) is an approximation of the diffusion term in (27) which is of the first
order in ∆x.

Proof. The consistency result is simply obtained by standard Taylor expansion at fixed ε.

Now we discuss the differences between the AP scheme (38)–(39) obtained by the micro-
macro decomposition and scheme (46)–(48) based on the splitting method. First, we note
that the corresponding CNS numerical asymptotics (41) and (49) are not the same. Indeed,
scheme (49) is a two-steps approximation (ie it uses Un+1, Un, and Un−1). Moreover, the
diffusion is discretized by a second order approximation in space in (41), while it is of first
order only in (49). Note also that the approximation of the diffusion term in (49) induces
an error of the order of ∆t. No such error appears for scheme (41).

6 Numerical results

In this section, we present several numerical tests in the case of the one-dimensional BGK
model. Our aim is to illustrate the efficiency of scheme (38)–(39) and to show its asymptotic
equivalence up to O(ε2) to scheme (41). We also check the consistency of (41) with a
standard approximation of the one-dimensional CNS equations (27). Finally, the behaviour
of our schemes in the CNS regime is analyzed by comparing them with the following standard
approximation of the CNS equations:

Un+1
i − Un

i

∆t
+
Fi+ 1

2
(Un)− Fi− 1

2
(Un)

∆x

=
3ε

2∆x2





0
0

pi+pi+1

2
(Ti+1 − Ti)− pi−1+pi

2
(Ti − Ti−1)



 . (50)
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For clarity, we now fix some notations. We refer to scheme (38)–(39) obtained by the
micro-macro decomposition as (AP ), to the semi-implicit time splitting scheme given by (46)
and (48) as (Si), and to the time splitting scheme with exact collision phase given by (46)–
(47) as (Se). The CNS asymptotics (41) of scheme (AP ) is refered to as (AP1). The
numerical scheme (40) for Euler equations is refered to as (E). We recall that this scheme
is also the limit of the scheme (AP ) when ε goes to 0. For these two schemes, the numerical
convective fluxes ∂xF (U) are approximated by using the kinetic flux vector splitting (35).
Finally, the standard scheme (50) for the CNS equations is refered to as (NS).

For all the schemes used in this section, the integrals with respect to the velocity are
discretized by simple rectangle quadratures.

6.1 Stationary shock problem

We study in this section the one-dimensional stationary shock wave problem. The initial
data is given by f(0, x, v) = M [ρ, u, T ] where the macroscopic quantities are left and right
data connected by the classical Rankine-Hugoniot relations:

ρ = 1, u = 1.2, T = 0.1 for x < 0,

ρ = 1.65, u = 0.72, T = 0.4 for x > 0.

This corresponds to a shock Mach number of 2.2. The computational domain in space is
[−7.5, 7.5] discretized with 200 cells, while the velocity space is truncated with the interval
[vmin, vmax] = [−3, 4] with 100 discrete points.

Our first purpose is to illustrate the behavior of scheme (AP ) at different regimes. For
different values of ε (ε = 3−n, n ≥ 0), we first plot the distribution function within the shock
(x = 0) in figure 1. We also plot the density, the mean velocity, and the temperature as
functions of x ∈ [−7.5, 7.5] in figures (2)–(4). In each figure, we add the correspondig results
obtained with the Euler limit scheme (E). These figures show that scheme (AP ) is stable in
the limit ε = 0 and converges to the correct Euler limit.

To check the behaviour of scheme (AP ) in the kinetic regime, we compare in figure 5
the density obtained for ε = 1 with scheme (AP ) and that obtained with the simple explicit
discretization (42) of the BGK equation (denoted by (BGKexp) in the figure). As expected,
both schemes give the same results.

Now we illustrate the fact that the CNS asymptotics (AP1) of scheme (AP ) is indeed
an approximation of the CNS equations (see the second assertion of proposition (4.3). The
density obtained with scheme (AP1) is compared for ε = 1 (kinetic regime), and ε =
1.7 × 10−5 (fluid regime) to the result obtained with the standard approximation (NS) of
the CNS equations. In figure 6 we observe, as expected, that schemes (AP1) and (NS) give
the same density profiles.

Then for schemes (AP ) and (Si), we numerically investigate the difference between their
results and the Euler limit. We show that it is of the order of ε. We plot in figure 7 the
relative differences between the densities, the velocities, and the temperatures, obtained with
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schemes (AP ) and (E), and with (Si) and (E). As expected we observe that these profiles
are lines with a slope equal to 1.

Finally, we numerically check that (AP ) is asymptotically equivalent, up to O(ε2), to
scheme (AP1) for CNS equations at small ε. In figure 8 we plot the relative difference
between the densities, the velocities, and the temperatures, obtained with schemes (AP )
and (AP1). As expected, we obtain a line with a slope equal to 2. This is in very good
agreement with the formal analysis given in the previous sections: it confirms that scheme
(AP ) accurately preserves the compressible Navier-Stokes asymptotics up to O(ε2).

6.2 Sod problem

In this section we consider the classical Sod problem with the following initial data for the
density, mean velocity and temperature

(ρ, u, T ) =







(1, 0, 1), 0 ≤ x ≤ 0.5,

(0.125, 0, 0.1), 0.5 < x ≤ 1.

The distribution function is initialized with the Maxwellian states corresponding to this
data. The space domain [0, 1] is discretized using 100 grid points, and the velocity domain
[−4.5, 4.5] is discretized with 100 points.

First, we consider scheme (AP ). For different values of ε, we plot at time t = 0.14 and
position x = 0.5 the distribution function in figure 9. We also plot in figures 10–12, at the
same time and the same values of ε, the density, the velocity and the temperature. Again,
these figures show that scheme (AP ) is stable in the limit ε = 0 and converges to the correct
Euler limit.

Finally, the differences between schemes that preserve the CNS asymptotics (i.e., (AP )
and (Si)) and a scheme that does not (ie (Se)) are shown by plotting in figure 13 the rescaled

heat flux q = 1
ε

〈

|v−u|2
2

(v − u)f
〉

. This quantity is obtained by scheme (AP ), (Si), and (Se)

and is compared to its theoretical asymptotic value −κ∂xT obtained in scheme (NS), for
ε = 2× 10−3, ε = 10−3 and ε = 2× 10−4, at time t = 0.16. The time step is ∆t = 2× 10−3.
According to the theory given in section 4 and 5, q should be of order 1 for (NS) and for
the asymptotic preserving schemes (AP ) and (Si), while it should be of order e−∆t/ε/ε for
(Se). Indeed, we observe in figure 13 that the heat flux given by (Se) is smaller than the one
given by the other schemes, and even much smaller for ε = 10−4. Comparatively, scheme
(AP ) gives a heat flux which becomes close to that given by the CNS discretization (NS)
when ε decreases. Finally, our modified splitting scheme (Si) is also close to (NS), but it
shows some oscillations that are probably due to the complex discretization of the diffusion
term in (49).
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7 Conclusion

In this paper, we have presented a numerical method for kinetic Boltzmann equations which
preserves the CNS asymptotics at small Knudsen numbers. The key ingredient in this method
is to use an equivalent micro-macro formulation of the kinetic equation. This formulation
has been discretized with a numerical scheme which is uniformly stable with respect to the
Knudsen number and turns out to be efficient in both kinetic and fluid regimes. This has
been illustrated by several numerical tests for the one-dimensional BGK model.

We have also presented a simple modification of a classical splitting approach for the BGK
equation which leads to the same asymptotic preserving property (for the CNS asymptotics).
We mention that, at least for a particular class of quadratic Boltzmann operators, a similar
modification on the so-called Wild sums [14] could be made to obtain CNS asymptotic
preserving schemes using splitting techniques. This work is currently under consideration [2].

However, the method based on the micro-macro decomposition seems to be more natural
and should more easily extend to other collision operators (Boltzmann, Landau, etc.). This
is the subject of a future work. The treatment of boundary conditions in the micro-macro
decomposition is also under consideration. Moreover, we mention that this approach has
already been applied to obtain asymptotic preserving schemes in the diffusion limit for linear
kinetic equations [24].
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Figure 1: Stationary shock: distribution function f within the shock (x = 0) as a function of
the velocity v ∈ [−3, 4] given by scheme (AP ). Profiles of f for different values of εn = 3−n

for rarefied regime (ε0 = 1, ε1 = 0.333, ε2 = 0.11), intermediate regime (ε3 = 3.7× 10−2) and
fluid regime (ε8 = 1.52× 10−4) where f becomes close to a Maxwellian.
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Figure 2: Stationary shock: mass density as a function of the position x ∈ [−7.5, 7.5]
given by scheme (AP ). Profiles of ρ for different values of εn = 3−n for rarefied regime
(ε0 = 1, ε1 = 0.333, ε2 = 0.11), intermediate regime (ε3 = 3.7 × 10−2) and fluid regime
(ε8 = 1.52× 10−4). The result of scheme (E) is also shown.
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Figure 3: Stationary shock: mean velocity as a function of the position x ∈ [−7.5, 7.5]
given by scheme (AP ). Profiles of u for different values of εn = 3−n for rarefied regime
(ε0 = 1, ε1 = 0.333, ε2 = 0.11), intermediate regime (ε3 = 3.7 × 10−2) and fluid regime
(ε8 = 1.52× 10−4). The result of scheme (E) is also shown.
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Figure 4: Stationary shock: temperature as a function of the position x ∈ [−7.5, 7.5] given by
scheme (AP ). Profiles of T for different values of εn = 3−n for rarefied regime (ε0 = 1, ε1 =
0.333, ε2 = 0.11), intermediate regime (ε3 = 3.7× 10−2) and fluid regime (ε8 = 1.52× 10−4).
The result of scheme (E) is also shown.
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Figure 5: Stationary shock: mass density as a function of the position x ∈ [−7.5, 7.5] for
ε = 1 (rarefied regime) obtained by schemes (BGKexp), and (AP ).
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Figure 6: Stationary shock: mass density as a function of the position x ∈ [−7.5, 7.5] for
ε = 1 (rarefied regime, top) and for ε = 2.32 × 10−8 (fluid regime, bottom) obtained by
schemes (AP1) and (NS).
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Figure 7: Stationary shock: relative differences (in log scale) between the densities (top left),
the velocities (top right), and the temperatures (bottom), obtained with schemes (AP ) and
(E), and with (Si) and (E). Different values are considered: εn = 3−n, n = 0, 1, · · · 28.
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Figure 8: Stationary shock: relative differences (in log scale) between the densities (top left),
the velocities (top right), and the temperatures (bottom), obtained with schemes (AP ) and
(AP1). Different values are considered: εn = 3−n, n ≥ 0.
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Figure 9: Sod problem: distribution function f at point x = 0.5 as a function of the velocity
v ∈ [−4.5, 4.5] given by scheme (AP ) at time t = 0.14. Profiles of f for different values of
εn = 2−n in rarefied regime (ε0 = 1, ε5 = 3.125× 10−2), transition regime (ε8 = 3.90× 10−3)
and fluid regime (ε10 = 9.7×10−4, ε14 = 6.10×10−5) where f becomes close to a Maxwellian.

31



0 0,2 0,4 0,6 0,8 1
position x

0

0,2

0,4

0,6

0,8

1

m
as

s 
de

ns
ity

n = 0
n = 5
n = 7
n = 8
n = 10
n = 14
E

Figure 10: Sod problem: mass density as a function of x ∈ [0, 1] at time t = 0.14, given
by scheme (AP ). Profiles for different values of εn = 2−n for rarefied regime (ε0 = 1, ε5 =
3.125× 10−2), transition regime (ε8 = 3.90× 10−3) and fluid regime (ε10 = 9.7× 10−4, ε14 =
6.10× 10−5). The result of scheme (E) is also shown.
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Figure 11: Sod problem: mean velocity as a function of x ∈ [0, 1] at time t = 0.14, given
by scheme (AP ). Profiles for different values of εn = 2−n for rarefied regime (ε0 = 1, ε5 =
3.125× 10−2), transition regime (ε8 = 3.90× 10−3) and fluid regime (ε10 = 9.7× 10−4, ε14 =
6.10× 10−5). The result of scheme (E) is also shown.
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Figure 12: Sod problem: temperature as a function of x ∈ [0, 1] at time t = 0.14, given
by scheme (AP ). Profiles for different values of εn = 2−n for rarefied regime (ε0 = 1, ε5 =
3.125× 10−2), transition regime (ε8 = 3.90× 10−3) and fluid regime (ε10 = 9.7× 10−4, ε14 =
6.10× 10−5). The result of scheme (E) is also shown.
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Figure 13: Sod problem: heat flux scaled by ε as a function of x ∈ [0, 1] for schemes (AP ),
(Si) (that preserve CNS asymptotics), for scheme (NS) and for scheme (Se). Time t = 0.16,
and ε = 2−9 ≈ 2× 10−3 (top), ε = 2−10 ≈ 10−3 (middle) and ε = 2−12 ≈ 2× 10−4 (bottom).
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