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Analysis of an asymptotic preserving scheme for linear kinetic equations in the

diffusion limit

Jian-Guo Liu1, Luc Mieussens2

Abstract. We present a mathematical analysis of the asymptotic preserving scheme
proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31, pp. 334–368, 2008]
for linear transport equations in kinetic and diffusive regimes. We prove that the scheme
is uniformly stable and accurate with respect to the mean free path of the particles. This
property is satisfied under an explicitly given CFL condition. This condition tends to a
parabolic CFL condition for small mean free paths, and is close to a convection CFL condition
for large mean free paths. Our analysis is based on very simple energy estimates.
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1 Introduction

Particle systems are often described at the microscopic level by kinetic models (neutron
transport, radiative transfer, electrons in semi-conductors, or rarefied gas dynamics). Sim-
ulating such systems by using kinetic models can be computationally very expensive, but
modern super computers now enable realistic simulations. When the mean free path of the
particles is very small as compared to the (macroscopic) size of the computational domain,
the kinetic model can be very well approximated by a much simpler macroscopic model (dif-
fusion equation, Rosseland approximation, Euler and Navier-Stokes equations), that can be
numerically solved much faster.

However, there are many cases where the ratio mean free path/macroscopic size (the
so-called “Knudsen number” in rarefied gas dynamics, denoted by ε in this paper) is not
constant: depending on the geometry of the boundaries, or on the boundary conditions, this
ratio may vary in time, and in space. In such multiscale situations, usual kinetic solvers are
often useless: for stability and accuracy reasons, they must resolve the microscopic scales,
which is computationally to expensive in “fluid” zones (where ε is small). By contrast,
macroscopic solvers are faster but may be inaccurate in “kinetic” zones (where ε is large).
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This is why many people have been working for more than 20 years on a kind of multiscale
kinetic schemes: the asymptotic-preserving (AP) schemes. Such schemes are uniformly
stable with respect to ε (thus their computational complexity does not depend on ε), and
are consistent with the macroscopic model when ε goes to 0 (the limit of the scheme is a
scheme for the macroscopic model).

Up to our knowledge, AP schemes have first been studied (for steady problems) in neutron
transport by Larsen, Morel and Miller [22], Larsen and Morel [21], and then by Jin and
Levermore [10, 11]. For unstationary problems, the difficulty is the time stiffness due to
the collision operator. To avoid the use of expensive fully implicit schemes, two classes of
semi-implicit time discretizations have been proposed by Klar [16] and Jin, Pareschi and
Toscani [15] (see preliminary works in [14, 9] and extensions in [13, 12, 25, 17, 18]. Similar
ideas have also been used by Buet et al. in [4].

In [23], Lemou and Mieussens have proposed a new AP scheme based on the micro-macro
decomposition of the distribution function into microscopic and macroscopic components
(similar schemes have also been proposed by Klar and Schmeiser [19], and more recently
by Carrillo et al. [5, 6]). A coupled system of equations is obtained for these two compo-
nents without any linearity assumption. The decomposition only uses basic properties of
the collision operator that are common to most of kinetic equations (namely conservation
and equilibrium properties). Then this system is solved with a suitable time semi-implicit
discretization and space finite differences on staggered grids. While almost all the schemes
mentioned before are based on very similar ideas, the approach proposed in [23] has been
shown to be very general, since it applies to kinetic equations for both diffusion and hy-
drodynamic regimes (for the diffusion regime, see [23] for linear transport equations and [3]
for the non-linear Kac equation, for the hydrodynamic regime, see [2] for the Boltzmann
equation). We also mention the work of Degond, Liu and Mieussens [7] who proposed a
similar approach (micro-macro decomposition) to design macroscopic diffusion models with
kinetic upscalings: this approach also leads to AP schemes, at least for a semi-discrete time
discretization (no AP space discretization was studied in this paper).

While many different schemes have been proposed in the past few years, it appears that
the rigorous proof of their AP property looks rather difficult and is seldom investigated. Up
to our knowledge, there are only two papers on this subject. Klar and Unterreiter [20] have
proved that a scheme similar to that of [16] and [15] for the linear transport equation is
uniformly stable. However, their proof is based on a von Neumann analysis, and hence is re-
stricted to a one dimensional equation with constant coefficients in a periodic domain. Gosse
and Toscani have proposed in [8] an AP scheme based on a rather different idea (discretiza-
tion of the collision term as a non-conservative product and use of well-balanced Godunov
schemes): they have been able to prove a uniform stability property, still in the linear case,
but also a strong positivity property. However, their scheme is based on techniques (like
approximation of the steady solution) that are difficult to generalize to other equations.

In this paper, we propose a very simple stability proof for the AP scheme of [23] and we
exhibit an explicit CFL condition. This condition is uniform with respect to ε, and gives
a standard parabolic CFL condition ∆t = O(∆x2) when ε goes to 0. While a stability
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property was already proved in [23] for this scheme, this was only for a simple two-velocity
model (telegraph equation), by using von Neumann analysis. Here, our proof is based on
energy estimates that are more general than von Neumann analysis, and hence is valid for
one-dimensional linear equations with non-constant coefficients, continuous velocity variable,
in the whole space. By the same technique, we are also able to prove uniform error estimates.

Our paper is organized as follows. In section 2, we introduce a general linear equation,
we present its discretization by the AP scheme, and we give the main features of this scheme.
Then, in section 3, we give our main stability result and its proof. The error estimates are
given in section 4.

2 An AP scheme for the linear transport equation

Linear transport equation is a model for the evolution of particles in some medium (neutron
transport, linear radiative transfer, . . . ). Generally, this model reads, in scaled variables

ε∂tφ+ Ω · ∇rφ =
σ

ε
Lφ− εσAφ+ εS,

where φ(t, r,Ω) is the number density of particles in the position-direction phase space that
depends on time t, position r = (x, y, z) ∈ R

3, and angular direction of propagation of
particles Ω ∈ S2. Moreover, σ is the total cross section, σA is the absorption cross section,
and S is an internal source of particles, which is independent of Ω. The linear operator L
models the scattering of the particles by the medium and acts only on the angular dependence
of φ. This simple model does not allow for particles of possibly different energy (or frequency);
it is called “one-group” or “monoenergetic” equation. The parameter ε is a scale factor that
measures the ratio between a typical microscopic length (the mean free path of a particle,
for instance) to a typical macroscopic length (the size of the computational domain, for
instance). See [22] for details.

In this paper, we consider this one-group equation in the slab geometry: we assume that
φ depends only on the slab axis variable x ∈ R. Then it can be shown that the average
of φ with respect to the (y, z) cosine directions of Ω, denoted by f(t, x, v), satisfies the
one-dimensional equation

ε∂tf + v∂xf =
σ

ε
Lf − εσAf + εS, (1)

where v ∈ [−1, 1] is the x cosine direction of Ω. At t = 0, we have the initial data f(0, x, v) =
f 0(x, v). We assume that the cross sections satisfy the inequalities 0 < σm ≤ σ(x) ≤ σM

and 0 ≤ σA(x) ≤ σAM for every x. We do not consider boundary conditions in this paper,
and hence x ∈ R.

The linear operator L is given by

Lf(v) =

∫ 1

−1

s(v, v′)(f(v′) − f(v)) dv′, (2)
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where the kernel s is such that 0 < sm ≤ s(v, v′) ≤ sM for every v, v′ in [−1, 1]. We also

assume that s satisfies
∫ 1

−1
s(v, v′) dv′ = 1, and that it is symmetric: s(v, v′) = s(v, v′). For

the sequel, it is useful to define the operator [.] such that [φ] = 1
2

∫ 1

−1
φ(v) dv is the average

of every velocity dependent function φ. With these assumptions, it is standard [1] to state
the following properties of L:

Proposition 2.1. • [Lφ] = 0 for every φ in L2([−1, 1])

• the null space of L is N (L) = {φ = [φ]} (constant functions)

• the rank of L is R(L) = N⊥(L) = {φ s.t [φ] = 0}

• L is non-positive self-adjoint in L2([−1, 1]) and we have

[φLφ] ≤ −2sm

[
φ2
]

(3)

for every φ ∈ N⊥(L)

• L admits a pseudo-inverse from N⊥(L) onto N⊥(L), denoted by L−1

• the orthogonal projection from L2([−1, 1]) onto N⊥(L) is [.]

When ε becomes small (the “diffusion” regime), it is well known that the solution f of (1)
tends to its own average density ρ = [f ], which is a solution of the asymptotic diffusion limit

∂tρ− ∂xκ∂xρ = −σAρ+ S, (4)

where the diffusion coefficient is κ(x) = −
[vL−1v]

σ(x)
. An asymptotic preserving scheme for the

linear kinetic equation (1) is a numerical scheme that discretizes (1) in such a way that it
leads to a correct discretization of the diffusion limit (4) when ε is small.

Now, we summarize the results obtained in [23]. By using the micro-macro decomposition
f = ρ + εg, where ρ = [f ] and g is such that [g] = 0, we derived the micro-macro model
for (1) that reads

∂tρ+ ∂x [vg] = −σAρ+ S, (5a)

∂tg +
1

ε
(I − [.])(v∂xg) = −

σ

ε2
Lg −

1

ε2
v∂xρ, (5b)

with initial data ρ0 = [f 0] and εg0 = f 0 − ρ0. This system if formally equivalent to (1).
Then, we proposed the following numerical scheme for this system. We choose a time

step ∆t and times tn = n∆t, and two staggered grids of step ∆x and nodes xi = i∆x and
xi+ 1

2

= (i+ 1
2
)∆x.We use the approximated values ρn

i ≈ ρ(tn, xi) and gn
i+ 1

2

(v) ≈ g(tn, xi+ 1

2

, v),
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and the scheme reads

ρn+1
i − ρn

i

∆t
+

[

v
gn+1

i+ 1

2

− gn+1
i− 1

2

∆x

]

= −σA,iρ
n+1
i + Si, (6a)

gn+1
i+ 1

2

− gn
i+ 1

2

∆t
+

1

ε∆x
(I − [.])

(

v+(gn
i+ 1

2

− gn
i− 1

2

) + v−(gn
i+ 3

2

− gn
i+ 1

2

)
)

(6b)

= −
σi+ 1

2

ε2
Lgn+1

i+ 1

2

−
1

ε2
v
ρn

i+1 − ρn
i

∆x
,

where v± = v±|v|
2

. Note that as in the continuous case, this scheme preserves the zero average
of g:

Proposition 2.2. If the initial data g0 satisfies
[

g0
i+ 1

2

]

= 0 for every i, then for every n and

i, we have [

gn
i+ 1

2

]

= 0. (7)

Proof. Apply the average operator [.] to (6b): since we have [I − [.]] = 0 (obvious), [L] = 0

(proposition 2.1), and [v] = 0 (obvious), this relation yields
[

gn+1
i+ 1

2

]

−
[

gn
i+ 1

2

]

= 0, which gives

the result.

In scheme (6), the upwind discretization of (I − [.])(v∂xg) is to insure stability in the
kinetic regime, while the centered approximations of ∂x [vg] and v∂xρ are to capture the
diffusion limit. Indeed, it is clear that when ε goes to 0, we have from (6b) gn+1

i+ 1

2

=

− 1
σ

i+ 1
2

L−1
(

v
ρn

i+1
−ρn

i

∆x

)

+O(ε). Consequently, the flux of gn+1
i+ 1

2

is

[

vgn+1
i+ 1

2

]

= −
1

σi+ 1

2

[
vL−1v

] ρn
i+1 − ρn

i

∆x
+O(ε),

where we have used the facts that ρn
i does not depend on v and that L—and hence L−1

too—only applies to functions of v. Then, using this relation in (6a), we get

ρn+1
i − ρn

i

∆t
−

1

∆x

(

κi+ 1

2

ρn
i+1 − ρn

i

∆x
− κi− 1

2

ρn
i − ρn

i−1

∆x

)

= −σA,iρ
n
i + Si, (8)

with κi+ 1

2

= −
[vL−1v]

σ
i+ 1

2

, which is the usual 3-points stencil explicit scheme for the diffusion

equation (4).
Of course, this property is true only if ∆t can be chosen independently of ε, or in other

words, if the scheme is uniformly stable with respect to ε. In [23], we have proved that
this scheme is indeed uniformly stable under some CFL condition, in the simpler case of the
telegraph equation (in which we have only two discrete velocities v = ±1, and s ≡ 1, σ ≡ 1,
σA = S ≡ 0). In the following section, we extend this result to the general equation (1) for
scheme (6).
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3 Uniform stability

We give our main result of stability for scheme (6). Without lost of generality, we assume
S = 0 (source free case).

Theorem 3.1. If ∆t satisfies the following CFL condition

∆t ≤
1

3

(
σ̃∆x2 + 2ε∆x

)
, (9)

with σ̃ = 2smσm, then the sequences ρn and gn defined by scheme (6) satisfy the energy
estimate

∑

i∈Z

(ρn
i )2 ∆x+ ε2

∑

i∈Z

[(

gn
i+ 1

2

)2
]

∆x ≤
∑

i∈Z

(
ρ0

i

)2
∆x+ ε2

∑

i∈Z

[(

g0
i+ 1

2

)2
]

∆x

for every n, and hence the scheme (6) is stable.

Note that CFL condition (9) can be viewed as an average of a diffusive CFL condition
∆t ≤ σ̃∆x2 (needed for the diffusion scheme (8)) and of a convection CFL ∆t ≤ ε∆x. It
shows that the scheme is stable uniformly in ε, that is to say a diffusive CFL condition
∆t ≤ C∆x2 is sufficient for stability for small ε, while a convection CFL is sufficient for
ε = O(1).

Moreover, while our CFL condition (9) is valid for every ε, we point out that it is not
optimal for each ε. This might be the price to be paid for getting a uniform condition. For
instance, in the simpler case of constant cross sections (σ ≡ σm) and kernel (s = sm ≡ 1

2
), the

diffusion coefficient of the diffusion equation (8) is κ = 1
3σ

, and the optimal CFL condition

for scheme (8) is ∆t ≤ ∆x2

2κ
. However, CFL condition (9) for our AP scheme reads (for ε = 0)

∆t ≤ 2
9

∆x2

2κ
, which is 0.2 as small as the optimal CFL.

Remark 3.1. If we have a source term S 6= 0, then the same CFL condition naturally gives
a linear growth of the energy. Since this is standard and does not lead to any additional
difficulty, we do not consider this case here.

Remark 3.2. In the case of a time explicit discretization of the absorption term (that is
to say when −σA,iρ

n+1
i is replaced by −σA,iρ

n
i in (6), we have the same result with a CFL

condition which is a bit more complicated. Namely, the scheme is stable if

∆t ≤ min

(
2

1 + σA,M

,
3

3 + σA,M

∆tS

)

, (10)

where ∆tS is the maximum time step allowed by CFL condition (9) for the scheme with
implicit (or zero) absorption term.

This theorem is proved in the following sections: section 3.1 contains compact notations
and useful lemma, and section 3.2 contains the derivation of our energy estimate.
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3.1 Notations and useful lemma

We give some useful notations for norms and inner products that are used in our analysis.
For every grid function µ = (µi)i∈Z we define:

‖µ‖2 =
∑

i∈Z

µ2
i ∆x. (11)

For every velocity dependent grid function v ∈ [−1, 1] 7→ φ(v) = (φi+ 1

2

(v))i∈Z, we define:

‖|φ‖| =
∑

i∈Z

[

φ2
i+ 1

2

]

∆x. (12)

If φ and ψ are two velocity dependent grid functions, we define their inner product:

〈φ , ψ〉 =
∑

i∈Z

[

φi+ 1

2

ψi+ 1

2

]

∆x. (13)

Now we give some notations for the finite difference operators that are used in scheme (6).
For every grid function φ = (φi+ 1

2

)i∈Z, we define the following one-sided operators:

D−φi+ 1

2

=
φi+ 1

2

− φi− 1

2

∆x
and D+φi+ 1

2

=
φi+ 3

2

− φi+ 1

2

∆x
(14)

We also define the following centered operators:

Dcφi+ 1

2

=
φi+ 3

2

− φi− 1

2

2∆x
and D0φi =

φi+ 1

2

− φi− 1

2

∆x
(= D−φi+ 1

2

). (15)

Finally, for every grid function µ = (µi)i∈Z, we define the following centered operator:

δ0µi+ 1

2

=
µi+1 − µi

∆x
. (16)

Lemma 3.1 (Centered form of the upwind operator). For every grid function φ = (φi+ 1

2

)i∈Z,
we have:

(
v+D− + v−D+

)
φi+ 1

2

= vDcφi+ 1

2

−
∆x

2
|v|D−D+φi+ 1

2

.

Proof. This result is easily obtained by using the relations v± = v±|v|
2

and the identity
D− +D+ = 2Dc.

Lemma 3.2. For every grid function φ = (φi+ 1

2

)i∈Z, we have:

∑

i∈Z

(

D+φi+ 1

2

)2

∆x ≤
4

∆x2

∑

i

φ2
i+ 1

2

∆x.
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Proof. Expand the left-hand side, use the inequality (a+ b)2 ≤ 2(a2 + b2), and then use the
change of index i+ 3

2
→ i+ 1

2
.

Lemma 3.3 (Estimate for the adjoint upwind operator). For every positive real number α
and for every velocity dependent grid functions φ and ψ, we have:

∣
∣
〈(
v+D+ + v−D−

)
ψ , φ

〉∣
∣ ≤ α‖|φ‖|2 +

1

4α
‖||v|D+ψ‖|2.

Proof. From Young’s inequality, we obtain for any positive real number α:

∣
∣
〈(
v+D+ + v−D−

)
ψ , φ

〉∣
∣ ≤ α‖|φ‖|2 +

1

4α
‖|
(
v+D+ + v−D−

)
ψ‖|2. (17)

Now, the second term of the right-hand side of this inequality can be written:

1

4α
‖|
(
v+D+ + v−D−

)
ψ‖|2 =

1

4α

∑

i∈Z

1

2

(∫ 0

−1

v2(D−ψi+ 1

2

)2 dv +

∫ 1

0

v2(D+ψi+ 1

2

)2 dv

)

∆x.

Then, with a simple changing of index, D− can be replaced by D+ in the first integral, which
gives:

1

4α
‖|
(
v+D+ + v−D−

)
ψ‖|2 =

1

4α

∑

i∈Z

1

2

∫ 1

−1

v2(D+ψi+ 1

2

)2 dv∆x

=
1

4α
‖||v|D+ψ‖|2.

Finally, using this inequality in (17) gives the result.

Lemma 3.4 (Discrete integration by parts). For every grid functions φ = (φi+ 1

2

)i∈Z, ψ =

(ψi+ 1

2

)i∈Z, and µ = (µi)i∈Z, we have:

∑

i∈Z

µiD
0φi∆x = −

∑

i∈Z

(
δ0µi+ 1

2

)
φi+ 1

2

∆x,

∑

i∈Z

ψi+ 1

2

D−φi+ 1

2

∆x = −
∑

i∈Z

(
D+ψi+ 1

2

)
φi+ 1

2

∆x,

∑

i∈Z

φi+ 1

2

Dcφi+ 1

2

∆x = 0.

Proof. These results are simply obtained by using obvious changing of indexes and the
definitions of the finite difference operators given in (14–16).

Lemma 3.5. If g ∈ L2([−1, 1]) then

[vg]2 ≤
1

2

[
|v|g2

]
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Proof. We just note that

[vg]2 =
1

4

(∫ 1

−1

vg dv

)2

=
1

4

(∫ 1

−1

sign(v)
√

|v|
√

|v|g dv

)2

≤
1

4

∫ 1

−1

(

sign(v)
√

|v|
)2

dv

∫ 1

−1

(√

|v|g
)2

dv by Cauchy-Schwarz inequality

=
1

2

[
|v|g2

]
.

3.2 Energy estimates

Since the time discretization of absorption term −σAρ is implicit, it plays no role in the
energy estimate. Consequently, to simplify the proof, we consider the case where there is no
absorption (see remark 3.3 at the end of this section). We proceed in five short steps.
Step 1.
Here we derive a first energy relation. With the finite difference operators defined in (14)–
(16), the scheme can be written in the following compact form:

ρn+1
i − ρn

i

∆t
+D0

[
vgn+1

i

]
= 0 (18a)

gn+1
i+ 1

2

− gn
i+ 1

2

∆t
+

1

ε
(I − [.])

(
v+D− + v−D+

)
gn

i+ 1

2

=
σi+ 1

2

ε2
Lgn+1

i+ 1

2

−
1

ε2
v δ0ρn

i+ 1

2

. (18b)

We define the energy of system (5) as
∫

R
ρ2 dx+ ε2

∫
[g2] dx. It is clear that the scheme

can be proved to be stable if the energy at time n + 1 can be controlled by the energy at
time n. Consequently, we first multiply (18a) by ρn+1

i , then we take the sum over i ∈ Z, and
finally, we use the standard equality a(a− b) = 1

2
(a2 − b2 + |a− b|2) to get:

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2 + ‖ρn+1 − ρn‖2

)
+
∑

i∈Z

ρn+1
i D0

[
vgn+1

i

]
∆x = 0. (19a)

Second, we multiply (18b) by gn+1
i+ 1

2

, we take the velocity average, we sum over i ∈ Z, and we

get:

1

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2 + ‖|gn+1 − gn‖|2

)
+

1

ε

〈
gn+1 , (I − [.])

(
v+D− + v−D+

)
gn
〉

=
1

ε2

〈
gn+1 , σLgn+1

〉
−

1

ε2

∑

i∈Z

[

vgn+1
i+ 1

2

]

δ0ρn
i+ 1

2

∆x.
(19b)

Now we use relation (7): since
[

gn+1
i+ 1

2

]

= 0 for every i, a simple expansion of the inner product
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of the left-hand side of (19b) shows that it can be reduced to:

〈
gn+1 , (I − [.])

(
v+D− + v−D+

)
gn
〉

=
〈
gn+1 ,

(
v+D− + v−D+

)
gn
〉
−
∑

i∈Z

[

gn+1
i+ 1

2

] [(
v+D− + v−D+

)
gn

i+ 1

2

]

∆x

=
〈
gn+1 ,

(
v+D− + v−D+

)
gn
〉
.

(20)

Moreover, we can use relation (3) and the assumptions of the cross section and the kernel to
estimate the inner product of the right-hand side of (19b) as follows:

〈
gn+1 , σLgn+1

〉
=
∑

i∈Z

σi+ 1

2

[

gn+1
i+ 1

2

Lgn+1
i+ 1

2

]

∆x

≤ − 2smσm
︸ ︷︷ ︸

σ̃

‖|gn+1‖|2.
(21)

Consequently, we add up (19a) and ε2 times (19b), then we use (20), (21), and the discrete
integration by parts of lemma 3.4 to get our preliminary energy estimate:

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2 + ‖ρn+1 − ρn‖2

)
+
∑

i∈Z

ρn+1
i D0

[
vgn+1

i

]
∆x

+
ε2

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2 + ‖|gn+1 − gn‖|2

)
+ ε

〈
gn+1 ,

(
v+D− + v−D+

)
gn
〉

≤ −σ̃‖|gn+1‖|2 +
∑

i∈Z

[
vD0gn+1

i

]
ρn

i ∆x.

(22)

Step 2.
In this step, we show how the ρn+1 − ρn term can be eliminated in (22). First, it is use-
ful to write ρn

i in the right-hand side of (22) as (ρn
i − ρn+1

i ) + ρn+1
i : indeed, the terms

∑

i∈Z
ρn+1

i D0
[
vgn+1

i

]
and

∑

i∈Z

[
vD0gn+1

i

]
ρn+1

i in the left and right-hand sides cancel out
and we obtain:

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2 + ‖ρn+1 − ρn‖2

)

+
ε2

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2 + ‖|gn+1 − gn‖|2

)
+ ε

〈
gn+1 ,

(
v+D− + v−D+

)
gn
〉

= −σ̃‖|gn+1‖|2 +
∑

i∈Z

[
vD0gn+1

i

]
(ρn

i − ρn+1
i )∆x.

(23)

Now, we use the following Young inequality:

∑

i∈Z

[
vD0gn+1

i

]
(ρn

i − ρn+1
i )∆x ≤ α‖ρn+1 − ρn‖2 +

1

4α

∑

i∈Z

[
vD0gn+1

i

]2
∆x. (24)
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Then the ρn+1 − ρn terms cancel out in (23) if α = 1
2∆t

and we get

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2

)
+

ε2

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2 + ‖|gn+1 − gn‖|2

)

+ ε
〈
gn+1 ,

(
v+D− + v−D+

)
gn
〉
≤ −σ̃‖|gn+1‖|2 +

∆t

2

∑

i∈Z

[

vD0gn+1
i+ 1

2

]2

∆x.
(25)

Step 3.
Here, we work on the inner product of (25) to show that the gn+1 − gn terms can also be
eliminated. First, we insert gn+1 in this inner product to get:

〈
gn+1 ,

(
v+D− + v−D+

)
gn
〉

=
〈
gn+1 ,

(
v+D− + v−D+

)
gn+1

〉
+
〈
gn+1 ,

(
v+D− + v−D+

)
(gn − gn+1)

〉

= A+B,

(26)

and we rewrite terms A and B as follows. For A, we use the centered form of the upwind
operator (lemma 3.1) and the discrete integration by parts of lemma 3.4 to get:

A =
〈
gn+1 , vDcgn+1

〉
−

∆x

2

〈
gn+1 , |v|D−D+gn+1

〉

=
∆x

2

〈
D+gn+1 , |v|D+gn+1

〉

=
∆x

2

∑

i∈Z

[

|v|
(

D+gn+1
i+ 1

2

)2
]

∆x.

(27)

For B, we also use the discrete integration by parts of lemma 3.4 to get:

B = −
〈(
v+D+ + v−D−

)
gn+1 , gn − gn+1

〉
. (28)

Then we apply the inequality of lemma 3.3 to B to get

|B| ≤ α‖|gn+1 − gn‖|2 +
1

4α
‖||v|D+gn+1‖|2. (29)

Therefore, using (25), (26), (27) and (29), we see that the gn+1 − gn terms cancel out in (25)
if α = ε

2∆t
, and we get

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2

)
+

ε2

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2

)

+ ε
∆x

2

∑

i∈Z

[

|v|
(

D+gn+1
i+ 1

2

)2
]

∆x−
∆t

2
‖||v|D+gn+1‖|2

≤ −σ̃‖|gn+1‖|2 +
∆t

2

∑

i∈Z

[

vD0gn+1
i+ 1

2

]2

∆x.

(30)
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Step 4.
Now, we show how all the D+gn+1 and the D0gn+1 terms can be controlled by ‖|gn+1‖|.
First, note that the term ∆t

2
‖||v|D+gn+1‖|2 of the left-hand side of (30) can be estimated as

follows:

∆t

2
‖||v|D+gn+1‖|2 =

∆t

2

∑

i∈Z

[

|v|2
(

D+gn+1
i+ 1

2

)2
]

∆x

≤
∆t

2

∑

i∈Z

[

|v|
(

D+gn+1
i+ 1

2

)2
]

∆x,

(31)

since |v| ≤ 1. Moreover, using lemma 3.5 and a change of indices shows that the last term
of the right-hand side of (30) satisfies

∆t

2

∑

i∈Z

[

vD0gn+1
i+ 1

2

]2

∆x ≤
∆t

4

∑

i∈Z

[

|v|
(

D+gn+1
i+ 1

2

)2
]

∆x. (32)

Finally, we use these two estimates in (30) to obtain:

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2

)
+

ε2

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2

)

≤ −σ̃‖|gn+1‖|2 +

(
3∆t

4
− ε

∆x

2

)
∑

i∈Z

[

|v|
(

D+gn+1
i+ 1

2

)2
]

∆x.
(33)

Now, taking the positive part of the factor (3∆t
4

− ε∆x
2

) of the right-hand side of (33), we
have the estimate

(
3∆t

4
− ε

∆x

2

)
∑

i∈Z

[

|v|
(

D+gn+1
i+ 1

2

)2
]

∆x ≤

(
3∆t

4
− ε

∆x

2

)+∑

i∈Z

[(

D+gn+1
i+ 1

2

)2
]

∆x

≤

(
3∆t

4
− ε

∆x

2

)+
4

∆x2
‖|gn+1‖|2,

(34)

where we have used |v| ≤ 1 and the estimate of lemma 3.2.

Step 5.
Finally, estimates (33) and (34) show that

1

2∆t

(
‖ρn+1‖2 − ‖ρn‖2

)
+
ε2

2∆t

(
‖|gn+1‖|2 − ‖|gn‖|2

)
≤

((
3∆t

4
− ε

∆x

2

)+
4

∆x2
− σ̃

)

‖|gn+1‖|2.

This means that we have the final energy estimate

‖ρn+1‖2 + ε2‖|gn+1‖|2 ≤ ‖ρn‖2 + ε2‖|gn‖|2

12



if ∆t is such that (
3∆t

4
− ε

∆x

2

)+
4

∆x2
≤ σ̃.

Since σ̃ ≥ 0, an equivalent condition is (3∆t
4

− ε∆x
2

) 4
∆x2 ≤ σ, which gives the sufficient

condition

∆t ≤
∆x2σ̃

3
+

2

3
ε∆x,

which proves the theorem.

Remark 3.3. As explained at the beginning of this section, when the absorption term is
non zero and is discretized implicitly, its contribution −

∑

i∈Z
σA,i(ρ

n+1
i )2∆x to the energy

estimate is non-positive and plays no role in the previous analysis. However, if we use instead
an explicit discretization, then our analysis has to be modified. The difference now is that
there is the additional term −

∑

i∈Z
σA,iρ

n+1
i ρn

i ∆x in the right-hand side of (22). The idea
of step 2 can be applied to this term (replace ρn by (ρn − ρn+1) + ρn+1 and use a Young
inequality) so that the ρn+1 − ρn terms cancel out, but now with α = 1

2∆t(1+σA,M )
. The other

steps are the same, except that some coefficients are different. In order to shorten the paper,
these details are left to the reader.

4 Error estimates

In this section, we simplify the presentation by taking constant total cross section σ and
kernel s ≡ 1

2
, no absorption (σA ≡ 0), and no source term (S ≡ 0). These assumptions are

not restrictive at all, and our analysis could be directly applied in the general case.
Let T > 0 be some finite time. For this study, we assume that the exact solution (ρ, g)

of (5) has the following regularity:

ρ ∈ C2([0, T ], H1(R)) ∩ C0([0, T ], H3(R))

g ∈ C2([0, T ], L2([−1, 1], H1(R))) ∩ C0([0, T ], L2([−1, 1], H3(R))).
(35)

Note that this assumption implies that g is uniformly bounded with respect to ε, which is
quite strong. In particular, this excludes the case of initial or transition layers. Indeed, if,
for instance, f is not isotropic at t = 0, then ρ(t = 0) 6= f(t = 0), and hence g(t = 0) =
1
ε
(f − ρ)|t=0 = O(ε−1) cannot be uniformly bounded with respect to ε.

With this assumption, we can obtain the following result.

Theorem 4.1. If ∆t satisfies the following condition

∆t ≤
∆x2σ

6
+

2

3
ε∆x, (36)
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then for every time T > 0, there exists a constant C independent of ∆t, ∆x, and ε, such
that the numerical solution obtained by scheme (6) satisfies the following error estimate

max
n,n∆t≤T

(
∑

i∈Z

|ρ(tn, xi) − ρn
i |∆x+ ε

∑

i∈Z

[

|g(tn, xi+ 1

2

, v) − gn
i+ 1

2

(v)|
]

∆x

)

≤ C
(
(1 + ε2)∆t+ ∆x2 + ε∆x

)
.

This theorem is proved in the following sections: in section 4.1, we first derive the trun-
cation error of the scheme, then in section 4.2, we apply the same analysis as for the stability
result to prove the theorem.

4.1 Truncation error

Let an
i and 1

ε2 b
n
i be the truncation errors of scheme (6), that is to say the reminders obtained

by inserting the exact solution of (5) in relations (6):

ρ(tn+1, xi) − ρ(tn, xi)

∆t
+

[

v
g(tn+1, xi+ 1

2

) − g(tn+1, xi− 1

2

)

∆x

]

= an
i (37a)

g(tn+1, xi+ 1

2

, .) − g(tn, xi, .)

∆t
(37b)

+
1

ε∆x
(I − [.])

(

v+(g(tn, xi+ 1

2

, v) − g(tn, xi− 1

2

, v) + v−(g(tn, xi+ 3

2

, v) − g(tn, xi+ 1

2

, v))
)

(37c)

= −
σ

ε2
g(tn+1, xi+ 1

2
, v) −

1

ε2
v
ρ(tn, xi+1) − ρ(tn, xi)

∆x
+

1

ε2
bni .

We can prove the following estimate of these truncation errors:

Lemma 4.1. There exists a constant C̃ independent of ∆t, ∆x and ε, such that

‖an‖ + ‖|bn‖| ≤ C̃
(
(1 + ε2)∆t+ ∆x2 + ε∆x

)

for every n

This lemma is proved by using standard simple techniques (Taylor-Lagrange formula of
different orders). But to simplify the paper, the proof—which is a bit long—is given in
appendix A.

Now, let ρ̃n
i and g̃n

i+ 1

2

be the convergence errors, that is to say the sequences defined by

ρ̃n
i = ρ(tn, xi) − ρn

i and g̃n
i+ 1

2

(v) = g(tn, xi+ 1

2

, v) − gn
i+ 1

2

(v).
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Then these sequences satisfy the ”perturbed” scheme, written in the following compact form:

ρ̃n+1
i − ρ̃n

i

∆t
+D0

[
vg̃n+1

i

]
= an

i (38a)

g̃n+1
i+ 1

2

− g̃n
i+ 1

2

∆t
+

1

ε
(I − [.])

(
v+D− + v−D+

)
g̃n

i+ 1

2

= −
σ

ε2
g̃n+1

i+ 1

2

−
1

ε2
v δ0ρ̃n

i+ 1

2

+
1

ε2
bni , (38b)

with the homogeneous initial data ρ̃0
i = 0 and g̃0

i+ 1

2

= 0 for every i.

4.2 Analysis of the convergence error

In this section, we apply the same analysis as for the stability result to prove that ρ̃n and g̃n

can be controlled by the truncation errors.
Step 1.
We multiply (38a) by ρ̃n+1

i and take the sum over i to get

1

2∆t

(
‖ρ̃n+1‖2 − ‖ρ̃n‖2 + ‖ρ̃n+1 − ρ̃n‖2

)
+
∑

i∈Z

ρ̃n+1
i D0

[
vg̃n+1

i

]
∆x =

∑

i∈Z

ρ̃n+1
i an

i ∆x. (39a)

Second, we multiply (38b) by g̃n+1
i+ 1

2

, we take the velocity average, we sum over i, which yields

1

2∆t

(
‖|g̃n+1‖|2 − ‖|g̃n‖|2 + ‖|g̃n+1 − g̃n‖|2

)
+

1

ε

〈
g̃n+1 , (I − [.])

(
v+D− + v−D+

)
g̃n
〉

= −
σ

ε2
‖|g̃n+1‖|2 −

1

ε2

∑

i∈Z

[

vg̃n+1
i+ 1

2

]

δ0ρ̃n
i+ 1

2

∆x+
1

ε2

〈
g̃n+1 , bn

〉
.

(39b)

Finally, we add up (39a) and ε2 times (39b), we use (20) and lemma 3.4 to get

1

2∆t

(
‖ρ̃n+1‖2 − ‖ρ̃n‖2 + ‖ρ̃n+1 − ρ̃n‖2

)
+
∑

i∈Z

ρ̃n+1
i D0

[
vg̃n+1

i

]
∆x

+
ε2

2∆t

(
‖|g̃n+1‖|2 − ‖|g̃n‖|2 + ‖|g̃n+1 − g̃n‖|2

)
+ ε

〈
g̃n+1 ,

(
v+D− + v−D+

)
g̃n
〉

=
∑

i∈Z

ρ̃n
i a

n
i ∆x− σ‖|g̃n+1‖|2 +

∑

i∈Z

[

vD0g̃n+1
i+ 1

2

]

ρ̃n
i+ 1

2

∆x+
〈
g̃n+1 , bn

〉
.

(40)

Step 2.
Here, we can copy the steps 2 to 4 of the stability analysis (see section 3) for relation (40).
Therefore, skipping the details, we just give the resulting energy estimate:

1

2∆t

(
‖ρ̃n+1‖2 − ‖ρ̃n‖2

)
+

ε2

2∆t

(
‖|g̃n+1‖|2 − ‖|g̃n‖|2

)

≤ −σ‖|g̃n+1‖|2 +

(
3∆t

4
− ε

∆x

2

)
∑

i∈Z

[

|v|
(

D+g̃n+1
i+ 1

2

)2
]

∆x

+
∑

i∈Z

ρ̃n
i a

n
i ∆x+

〈
g̃n+1 , bn

〉
.

(41)
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Step 3.
We estimate the scalar products of the right-hand side of (41) by using two different Young
inequalities:

∑

i∈Z

ρ̃n
i a

n
i ∆x ≤

1

2

(
‖ρ̃n+1‖2 + ‖an‖2

)

〈
g̃n+1 , bn

〉
≤
σ

2
‖|g̃n+1‖|2 +

1

2σ
‖bn‖2.

(42)

Moreover, by taking the positive part of the factor (3∆t
4

− ε∆x
2

) in (41), we have the estimate

(
3∆t

4
− ε

∆x

2

)
∑

i∈Z

[

|v|
(

D+g̃n+1
i+ 1

2

)2
]

∆x ≤

(
3∆t

4
− ε

∆x

2

)+
4

∆x2
‖|g̃n+1‖|2. (43)

Now, we can use the inequalities (42) and (43) to obtain the energy estimate

‖ρ̃n+1‖2 + ε2‖|g̃n+1‖|2

≤ (1 + ∆t)‖ρ̃n‖2 + ε2‖|g̃n‖|2 +

(

−
σ

2
+

4

∆x2

(
3∆t

4
− ε

∆x

2

)+
)

2∆t‖|g̃n+1‖|2

+ ∆t‖an‖2 +
∆t

σ
‖|bn‖|2.

(44)

Note that the factor of ‖|gn+1‖|2 in the right-hand side of (44) is non-positive if 4
∆x2

(
3∆t
4

− ε∆x
2

)+

≤ σ
2
. Since σ > 0, an equivalent condition is 4

∆x2

(
3∆t
4

− ε∆x
2

)
≤ σ

2
, which gives the sufficient

condition

∆t ≤
∆x2σ

6
+

2

3
ε∆x,

which is a bit more restrictive than the CFL condition (9). In that case, the energy esti-
mate (44) can be simplified in

‖ρ̃n+1‖2 + ε2‖|g̃n+1‖|2

≤ (1 + ∆t)
(
‖ρ̃n‖2 + ε2‖|g̃n‖|2

)
+ ∆tCσ

(
‖an‖2 + ‖|bn‖|2

)
,

where Cσ = 1 + 1
σ
.

Now, by using a simple recursion, we obtain

‖ρ̃n‖2 + ε2‖|g̃n‖|2

≤ (1 + ∆t)n
(
‖ρ̃0‖2 + ε2‖|g̃0‖|2

)

+ ∆tCσ

n∑

k=1

(
‖an−k‖2 + ‖|bn−k‖|2

)
(1 + ∆t)k−1.
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If n is such that n∆t ≤ T , we can use the classical inequality (1 + ∆t)n ≤ en∆t ≤ eT .
Moreover, we can use lemma 4.1 and the fact that ρ̃0 = g̃0 = 0 to get

‖ρ̃n‖2 + ε2‖|g̃n‖|2

≤ eTCσT C̃
(
(1 + ε2)∆t+ ∆x2 + ε∆x

)2
,

and hence

‖ρ̃n‖ + ε‖|g̃n‖|

≤ C
(
(1 + ε2)∆t+ ∆x2 + ε∆x

)
,

where C = e
T
2

√

CσTC̃ is independent of ∆t, ∆x, and ε. This concludes the proof of the
theorem.

5 Conclusion

In this paper, we have proposed a very simple stability proof for the recent AP scheme
of [23]. An explicit CFL condition that can be used in a computational code has been found:
it insures that the scheme is stable and accurate, independently of ε. This condition gives
a classical parabolic CFL condition ∆t = O(∆x2) when ε goes to 0. Our proof uses very
basic and simple arguments (energy estimates and Young inequalities), and is valid for one-
dimensional linear equations with non-constant coefficients, continuous velocity variable, in
the whole space. Our technique applies to general linear collision operators like operators of
neutron transport or linear radiative transfer. By the same technique, we have also proved
uniform error estimates. We mention that, in a work in preparation [24], we are able to
apply our method to a simple non-linear problem coming from radiative transfer.

In the future, the analysis of this scheme for initial boundary-value problems will be
investigated. It would also be important to extend the scheme and its analysis to 2 or 3
dimensional problems.

References

[1] C. Bardos, R. Santos, and R. Sentis. Diffusion approximation and computation of the
critical size. Trans. Amer. Math. Soc., 284(2):617–649, 1984.

[2] M. Bennoune, M. Lemou, and L. Mieussens. Uniformly stable numerical schemes for the
Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comput.
Phys., 227(8):3781–3803, 2008.

[3] M. Bennoune, M. Lemou, and L. Mieussens. An asymptotic preserving scheme for the
Kac model of the boltzmann equation in the diffusion limit. To appear in Contin. Mech.
Thermodyn., 2009.

17



[4] C. Buet, S. Cordier, B. Lucquin-Desreux, and S. Mancini. Diffusion limit of the Lorentz
model: asymptotic preserving schemes. M2AN Math. Model. Numer. Anal., 36(4):631–
655, 2002.

[5] J. A. Carrillo, T. Goudon, and P. Lafitte. Simulation of fluid and particles flows:
asymptotic preserving schemes for bubbling and flowing regimes. J. Comput. Phys.,
227(16):7929–7951, 2008.

[6] J. A. Carrillo., T. Goudon, P. Lafitte, and F. Vecil. Numerical schemes of diffusion
asymptotics and moment closures for kinetic equations. J. Sci. Comput., 36(1):113–
149, 2008.

[7] P. Degond, J.-G. Liu, and L. Mieussens. Macroscopic fluid models with localized kinetic
upscaling effects. Multiscale Modeling & Simulation, 5(3):940–979, 2006.

[8] L. Gosse and G. Toscani. Asymptotic-preserving & well-balanced schemes for radiative
transfer and the Rosseland approximation. Numer. Math., 98(2):223–250, 2004.

[9] S. Jin. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equa-
tions. SIAM J. Sci. Comput., 21(2):441–454, 1999.

[10] S. Jin and C. D. Levermore. The discrete-ordinate method in diffusive regimes. Trans-
port Theory Statist. Phys., 20(5-6):413–439, 1991.

[11] S. Jin and C. D. Levermore. Fully discrete numerical transfer in diffusive regimes.
Transport Theory Statist. Phys., 22(6):739–791, 1993.

[12] S. Jin and L. Pareschi. Discretization of the multiscale semiconductor Boltzmann equa-
tion by diffusive relaxation schemes. J. Comput. Phys., 161(1):312–330, 2000.

[13] S. Jin and L. Pareschi. Asymptotic-preserving (AP) schemes for multiscale kinetic
equations: a unified approach. In Hyperbolic problems: theory, numerics, applications,
Vol. I, II (Magdeburg, 2000), volume 141 of Internat. Ser. Numer. Math., 140, pages
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A Estimate of the truncation errors: proof of lemma 4.1

First, we remind (with no proof) that standard Taylor expansions give the following estimates
for some time finite differences.

Lemma A.1. (i) If ψ ∈ C1([0, T ]), then

|ψ(tn+1) − ψ(tn)| ≤ ∆tmax
[0,T ]

|ψ′|.

(ii) If ψ ∈ C2([0, T ]), then

|
ψ(tn+1) − ψ(tn)

∆t
− ψ′(tn)| ≤ ∆tmax

[0,T ]
|ψ′′|.

Then we also have the following estimates for some space finite differences.

Lemma A.2. (i) If φ ∈ H1(R) and ∆x ≤ 1, then

∑

i∈Z

φ(xi)
2∆x ≤ 2‖φ‖2

H1.
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(ii) If φ ∈ H2(R), then

∑

i∈Z

|
φ(xi+1) − φ(xi)

∆x
− φ′(xi)|

2∆x ≤
∆x2

3
‖φ′′‖2

L2.

(iii) If φ ∈ H3(R), then

∑

i∈Z

|
φ(xi+1) − φ(xi)

∆x
− φ′(xi+ 1

2

)|2∆x ≤
∆x4

320
‖φ′′′‖2

L2 .

Proof. For (i), we write the difference of the continuous and discrete L2 norms of φ as

∫

R

φ(x)2 dx−
∑

i∈Z

φ(xi)
2∆x

=
∑

i∈Z

∫ xi+1

xi

(φ(x)2 − φ(xi)
2) dx =

∑

i∈Z

∫ xi+1

xi

(∫ x

xi

d

dy
(φ(y)2) dy

)

dx

=
∑

i∈Z

∫ xi+1

xi

(∫ x

xi

2φ′(y)φ(y) dy

)

dx.

Then, using a simple Young inequality, we get:

∑

i∈Z

φ(xi)
2∆x ≤

∫

R

φ(x)2 dx+
∑

i∈Z

∫ xi+1

xi

(∫ x

xi

(
φ′(y)2 + φ(y)2

)
dy

)

dx

≤

∫

R

φ(x)2 dx+
∑

i∈Z

∫ xi+1

xi

(∫ xi+1

xi

(
φ′(y)2 + φ(y)2

)
dy

)

dx

= ‖φ‖2
L2 + ∆x

(
‖φ′‖2

L2 + ‖φ‖2
L2

)

≤ (1 + ∆x)‖φ‖2
H1 .

For (ii), we use the Taylor-Lagrange formula up to first order to get

φ(xi+1) − φ(xi)

∆x
− φ′(xi) = −

1

∆x

∫ xi+1

xi

(x− xi+1)φ
′′(x) dx.

Then a simple Cauchy-Schwarz inequality gives the following:

∣
∣
∣
∣

φ(xi+1) − φ(xi)

∆x
− φ′(xi)

∣
∣
∣
∣

2

≤
∆x

3

∫ xi+1

xi

φ′′(x)2 dx.

Finally, we get the result by multiplying by ∆x and taking the sum over i ∈ Z.
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For (iii), we use the Taylor-Lagrange formula up to second order to get the following two
relations:

φ(xi+1) − φ(xi+ 1

2

) =
1

2
φ′(xi+ 1

2

) +
∆x2

8
φ′′(xi+ 1

2

) +

∫ xi+1

x
i+1

2

(x− xi+1)
2

2∆x
φ′′′(x) dx,

φ(xi) − φ(xi+ 1

2

) = −
1

2
φ′(xi+ 1

2

) +
∆x2

8
φ′′(xi+ 1

2

) −

∫ x
i+1

2

xi

(x− xi)
2

2∆x
φ′′′(x) dx.

Then, we take the difference of these relations to obtain:

φ(xi+1) − φ(xi)

∆x
− φ′(xi+ 1

2

) =

∫ xi+1

x
i+ 1

2

(x− xi+1)
2

2∆x
φ′′′(x) dx+

∫ x
i+1

2

xi

(x− xi)
2

2∆x
φ′′′(x) dx.

Now, using a Young then a Cauchy-Schwarz inequalities gives

∣
∣
∣
∣

φ(xi+1) − φ(xi)

∆x
− φ′(xi+ 1

2

)

∣
∣
∣
∣

2

≤
∆x3

320

∫ xi+1

xi

φ′′′(x)2 dx.

Again, the final result is obtained by multiplying by ∆x and taking the sum over i ∈ Z.

Now we study the truncation error an
i which is defined by (37a). Since (ρ, g) is the exact

solution, we have:

an
i =

(
ρ(tn+1, xi) − ρ(tn, xi)

∆t
− ∂tρ(tn, xi)

)

+

[

v

(
g(tn+1, xi+ 1

2

) − g(tn+1, xi− 1

2

)

∆x
− ∂xg(tn+1, xi)

)]

Then we estimate the norm of an as follows: we use a Young inequality, lemma A.1, (iii) of
lemma A.2, and lemma 3.5, and we obtain

∑

i∈Z

|an
i |

2∆x ≤ 2

(
∑

i∈Z

∆t2 max
[0,T ]

|∂ttρ(t, xi)|
2 ∆x+

1

2

[
∆x4

320
‖∂xxxg(tn+1, ., v)‖

2
L2

])

.

By using (i) of lemma A.2, the first term of the right-hand side of the previous estimate can
be controlled by a norm of ρ (if ∆x ≤ 1) and we get

∑

i∈Z

|an
i |

2∆x ≤ 2

(

2∆t2‖ρ‖2
X +

1

4

∆x4

320
‖g‖2

Y

)

,

where X = C2([0, T ], H1(R)) and Y = C0([0, T ], L2([−1, 1], H3(R))). Consequently, it is
clear that ‖an‖ ≤ C̃1(∆t+ ∆x2), where C̃1 depends only on the norms of ρ and g.
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Now, we study the truncation error bni which is defined by (37c). Again, since (ρ, g) is
the exact solution, we have:

bni = ε2

(
g(tn+1, xi+ 1

2

, v) − g(tn, xi, v)

∆t
− ∂tg(tn, xi, v)

)

+ ε(I − [.])

(

v+

(
g(tn, xi+ 1

2

, v) − g(tn, xi− 1

2

, v)

Dx
− ∂xg(tn, xi− 1

2

, v)

)

+v−

(
g(tn, xi+ 3

2

, v) − g(tn, xi+ 1

2

, v)

Dx
− ∂xg(tn, xi+ 1

2

, v)

))

+ σ
(

g(tn+1, xi+ 1

2

, v) − g(tn, xi+ 1

2

, v)
)

+ v

(
ρ(tn, xi+1) − ρ(tn, xi)

∆x
− ∂xρ(tn, xi+ 1

2

)

)

The sequel is similar, though a but longer, to what we did for an
i . By using again lemmas A.1

and A.2, and some standard inequalities (Young and Jensen), the reader can easily find that
the following estimate is satisfied:

∑

i∈Z

[
|bni |

2
]
∆x ≤ 4

(

ε42∆t2‖g‖2
X + ε22

4

3
∆x2‖g‖2

Y + σ22∆t2‖g‖2
X +

∆x4

5 × 26
‖ρ‖2

Y

)

,

where X = C2([0, T ], L2([−1, 1], H1(R))) and Y = C0([0, T ], H3(R)). Therefore, we have
‖|bn‖| ≤ C̃2 ((1 + ε2)∆t+ ε∆x+ ∆x2), where C2 depends only on the norms of ρ and g.
Finally, the estimates of ‖an‖ and ‖|bn‖| allow us to complete the proof.
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