An upper bound for the theta function

Pascal Autissier

December 16, 2016

Abstract

This is an appendix to a paper by Parent [5]. I give a new upper bound for the norm of the classical theta function on any complex abelian variety.

2010 Mathematics Subject Classification: 14K25, 14K20.

1 Result

Let g be a positive integer. Write \mathbb{H}_{g} for the Siegel space of symmetric matrices $Z \in$ $\mathrm{M}_{g}(\mathbb{C})$ such that $\operatorname{Im} Z$ is positive definite. To every $Z \in \mathbb{H}_{g}$ is associated the theta function defined by

$$
\forall z \in \mathbb{C}^{g} \quad \theta_{Z}(z)=\sum_{m \in \mathbb{Z}^{g}} \exp \left(i \pi^{\mathrm{t}} m Z m+2 i \pi^{\mathrm{t}} m z\right)
$$

and its norm defined by

$$
\forall z=x+i y \in \mathbb{C}^{g} \quad\left\|\theta_{Z}(z)\right\|=\sqrt[4]{\operatorname{det} Y} \exp \left(-\pi^{\mathrm{t}} y Y^{-1} y\right)\left|\theta_{Z}(z)\right|
$$

where $Y=\operatorname{Im} Z$.

My contribution here is the following:
Proposition 1.1: Let $Z \in \mathbb{H}_{g}$ and assume that Z is Siegel-reduced. Put $c_{g}=\frac{g+2}{2}$ if $g \leq 3$ and $c_{g}=\frac{g+2}{2}\left(\frac{g+2}{\pi \sqrt{3}}\right)^{g / 2}$ if $g \geq 4$. The upper bound $\left\|\theta_{Z}(z)\right\| \leq c_{g}(\operatorname{det} \operatorname{Im} Z)^{1 / 4}$ holds for every $z \in \mathbb{C}^{g}$.

This result is used by Parent [5] to bound the height of quadratic points on modular curves. Let us remark that $c_{g} \leq g^{g / 2}$ for every $g \geq 2$. In comparison, Edixhoven and de Jong (see [1] page 231) obtained statement 1.1 with c_{g} replaced by $2^{3 g^{3}+5 g}$.

2 Proof

Fix a positive integer g. Denote by \mathbb{S}_{g} the set of symmetric matrices $Y \in \mathrm{M}_{g}(\mathbb{R})$ that are positive definite. Let us recall a special case of the functional equation for the theta
function (see equation (5.6) of [4] page 195): for every $Y \in \mathbb{S}_{g}$ and every $z \in \mathbb{C}^{g}$, one has

$$
\begin{equation*}
\theta_{i Y^{-1}}\left(-i Y^{-1} z\right)=\sqrt{\operatorname{det} Y} \exp \left(\pi^{\mathrm{t}} z Y^{-1} z\right) \theta_{i Y}(z) \tag{1}
\end{equation*}
$$

Lemma 2.1: Let $Z \in \mathbb{H}_{g}$ and $z \in \mathbb{C}^{g}$. Putting $Y=\operatorname{Im} Z$, one has the inequality $\left\|\theta_{Z}(z)\right\| \leq\left\|\theta_{i Y}(0)\right\|=\theta_{i Y}(0) \sqrt[4]{\operatorname{det} Y}$.

Proof: Put $y=\operatorname{Im} z$. One has

$$
\left|\theta_{Z}(z)\right|=\left|\sum_{m \in \mathbb{Z}^{g}} \exp \left(i \pi^{t} m Z m+2 i \pi^{t} m z\right)\right| \leq \sum_{m \in \mathbb{Z}^{g}}\left|\exp \left(i \pi^{t} m Z m+2 i \pi^{t} m z\right)\right|=\theta_{i Y}(i y)
$$

that is, $\left\|\theta_{Z}(z)\right\| \leq\left\|\theta_{i Y}(i y)\right\|$.
The functional equation (1) gives $\left\|\theta_{i Y^{-1}}\left(Y^{-1} y\right)\right\|=\left\|\theta_{i Y}(i y)\right\|$, and one deduces

$$
\begin{equation*}
\left\|\theta_{Z}(z)\right\| \leq\left\|\theta_{i Y^{-1}}\left(Y^{-1} y\right)\right\| \tag{2}
\end{equation*}
$$

Applying again (2) with Z replaced by $i Y^{-1}$ and z by $Y^{-1} y$, one gets $\left\|\theta_{i Y^{-1}}\left(Y^{-1} y\right)\right\| \leq$ $\left\|\theta_{i Y}(0)\right\|$. Whence the result.

Let $Y \in \mathbb{S}_{g}$. Define $\lambda(Y)=\min _{m \in \mathbb{Z}^{g}-\{0\}}{ }^{\text {t }} m Y m$. For every $t \in \mathbb{R}_{+}^{*}$, put

$$
f_{Y}(t)=\theta_{i t Y}(0)=\sum_{m \in \mathbb{Z}^{g}} \exp \left(-\pi t^{t} m Y m\right)
$$

Lemma 2.2: Let $Y \in \mathbb{S}_{g}$ and put $\lambda=\lambda(Y)$. The following properties hold.
(α) The function $\mathbb{R}_{+}^{*} \rightarrow \mathbb{R}$ that maps t to $t^{g / 2} f_{Y}(t)$ is increasing.
(β) One has the estimate $f_{Y}\left(\frac{g+2}{2 \pi \lambda}\right) \leq \frac{g+2}{2}$.
Proof: (α) The functional equation (1) implies $\sqrt{\operatorname{det} Y} t^{g / 2} f_{Y}(t)=f_{Y^{-1}}(1 / t)$ for every $t \in \mathbb{R}_{+}^{*}$; conclude by remarking that $f_{Y^{-1}}$ is decreasing.
(β) Part α gives $\frac{\mathrm{d}}{\mathrm{d} t}\left[t^{g / 2} f_{Y}(t)\right] \geq 0$, that is, $\frac{g}{2 t} f_{Y}(t) \geq-f_{Y}^{\prime}(t)$ for every $t>0$. On the other hand,

$$
-\frac{1}{\pi} f_{Y}^{\prime}(t)=\sum_{m \in \mathbb{Z}^{g}}{ }^{\mathrm{t}} m Y m \exp \left(-\pi t^{\mathrm{t}} m Y m\right) \geq \sum_{m \in \mathbb{Z}^{g}-\{0\}} \lambda \exp \left(-\pi t^{\mathrm{t}} m Y m\right)=\lambda\left[f_{Y}(t)-1\right] .
$$

One infers $\frac{g}{2 t} f_{Y}(t) \geq \pi \lambda\left[f_{Y}(t)-1\right]$. Choosing $t=\frac{g+2}{2 \pi \lambda}$, one obtains the result.
Proposition 2.3: Let $Y \in \mathbb{S}_{g}$. Putting $\lambda=\lambda(Y)$, one has the upper bound

$$
\theta_{i Y}(0) \leq \frac{g+2}{2} \max \left[\left(\frac{g+2}{2 \pi \lambda}\right)^{g / 2}, 1\right]
$$

Proof: Put $t=\frac{g+2}{2 \pi \lambda}$. If $t \geq 1$, then lemma 2.2. α implies the inequality $f_{Y}(1) \leq$ $t^{g / 2} f_{Y}(t)$. If $t \leq 1$, then $f_{Y}(1) \leq f_{Y}(t)$ since f_{Y} is decreasing. In any case, one obtains $\theta_{i Y}(0)=f_{Y}(1) \leq \max \left(t^{g / 2}, 1\right) f_{Y}(t)$. Conclude by applying lemma 2.2. β.

Now, to prove proposition 1.1 from lemma 2.1 and proposition 2.3, it suffices to observe that if $Z \in \mathbb{H}_{g}$ is Siegel-reduced, then $\lambda(\operatorname{Im} Z) \geq \frac{\sqrt{3}}{2}$ (see lemma 15 of [2] page 195).

References

[1] B. Edixhoven, R. de Jong: Bounds for Arakelov invariants of modular curves. Annals of math. studies 176 (2011), p. 217-256.
[2] J. Igusa: Theta functions. Grundlehren der math. Wissenschaften 194 (1972).
[3] A. Javanpeykar: Polynomial bounds for Arakelov invariants of Belyi curves. With an appendix by P. Bruin. Algebra and number theory 8 (2014), p. 89-140.
[4] D. Mumford: Tata lectures on theta I. Progress in math. 28 (1983).
[5] P. Parent: Heights on square of modular curves. Preprint (2016); arXiv:1606.09553.
[6] R. Wilms: New explicit formulas for Faltings' delta-invariant. Inventiones math. (2016), to appear.

Pascal Autissier. I.M.B., université de Bordeaux, 351, cours de la Libération, 33405 Talence cedex, France.
pascal.autissier@math.u-bordeaux.fr

