An upper bound for the theta function

Pascal Autissier

December 16, 2016

Abstract: This is an appendix to a paper by Parent [5]. I give a new upper bound for the norm of the classical theta function on any complex abelian variety.

2010 Mathematics Subject Classification: 14K25, 14K20.

1 Result

Let g be a positive integer. Write \mathbb{H}_g for the Siegel space of symmetric matrices $Z \in M_g(\mathbb{C})$ such that $\mathrm{Im}Z$ is positive definite. To every $Z \in \mathbb{H}_g$ is associated the theta function defined by

$$\forall z \in \mathbb{C}^g \quad \theta_Z(z) = \sum_{m \in \mathbb{Z}^g} \exp(i\pi^{\mathrm{t}} m Zm + 2i\pi^{\mathrm{t}} m z)$$

and its norm defined by

$$\forall z = x + iy \in \mathbb{C}^g \quad \|\theta_Z(z)\| = \sqrt[4]{\det Y} \exp(-\pi^{\mathrm{t}} y Y^{-1} y) |\theta_Z(z)|$$

where Y = ImZ.

My contribution here is the following:

Proposition 1.1: Let $Z \in \mathbb{H}_g$ and assume that Z is Siegel-reduced. Put $c_g = \frac{g+2}{2}$ if $g \leq 3$ and $c_g = \frac{g+2}{2} \left(\frac{g+2}{\pi\sqrt{3}}\right)^{g/2}$ if $g \geq 4$. The upper bound $\|\theta_Z(z)\| \leq c_g (\det \operatorname{Im} Z)^{1/4}$ holds for every $z \in \mathbb{C}^g$.

This result is used by Parent [5] to bound the height of quadratic points on modular curves. Let us remark that $c_g \leq g^{g/2}$ for every $g \geq 2$. In comparison, Edixhoven and de Jong (see [1] page 231) obtained statement 1.1 with c_g replaced by 2^{3g^3+5g} .

2 Proof

Fix a positive integer g. Denote by \mathbb{S}_g the set of symmetric matrices $Y \in \mathrm{M}_g(\mathbb{R})$ that are positive definite. Let us recall a special case of the functional equation for the theta function (see equation (5.6) of [4] page 195): for every $Y \in \mathbb{S}_g$ and every $z \in \mathbb{C}^g$, one has

$$\theta_{iY^{-1}}(-iY^{-1}z) = \sqrt{\det Y} \exp(\pi^{t} z Y^{-1} z) \theta_{iY}(z) \quad . \tag{1}$$

Lemma 2.1: Let $Z \in \mathbb{H}_g$ and $z \in \mathbb{C}^g$. Putting Y = ImZ, one has the inequality $\|\theta_Z(z)\| \leq \|\theta_{iY}(0)\| = \theta_{iY}(0)\sqrt[4]{\det Y}$.

Proof: Put y = Imz. One has

$$|\theta_Z(z)| = \left|\sum_{m \in \mathbb{Z}^g} \exp(i\pi^{\mathsf{t}} m Zm + 2i\pi^{\mathsf{t}} m z)\right| \le \sum_{m \in \mathbb{Z}^g} \left|\exp(i\pi^{\mathsf{t}} m Zm + 2i\pi^{\mathsf{t}} m z)\right| = \theta_{iY}(iy)$$

that is, $\|\theta_Z(z)\| \leq \|\theta_{iY}(iy)\|$.

The functional equation (1) gives $\|\theta_{iY^{-1}}(Y^{-1}y)\| = \|\theta_{iY}(iy)\|$, and one deduces

$$\|\theta_Z(z)\| \le \|\theta_{iY^{-1}}(Y^{-1}y)\|$$
 . (2)

Applying again (2) with Z replaced by iY^{-1} and z by $Y^{-1}y$, one gets $\|\theta_{iY^{-1}}(Y^{-1}y)\| \leq ||\theta_{iY^{-1}}(Y^{-1}y)|| \leq ||\theta_{iY^{-1}}(Y^{-1}y)||$ $\|\theta_{iY}(0)\|$. Whence the result. \Box

Let $Y \in \mathbb{S}_g$. Define $\lambda(Y) = \min_{m \in \mathbb{Z}^g - \{0\}} {}^t m Y m$. For every $t \in \mathbb{R}^*_+$, put

$$f_Y(t) = heta_{itY}(0) = \sum_{m \in \mathbb{Z}^g} \exp(-\pi t^{\mathrm{t}} m Y m)$$

Lemma 2.2: Let $Y \in \mathbb{S}_g$ and put $\lambda = \lambda(Y)$. The following properties hold. (α) The function $\mathbb{R}^*_+ \to \mathbb{R}$ that maps t to $t^{g/2} f_Y(t)$ is increasing. (β) One has the estimate $f_Y\left(\frac{g+2}{2\pi\lambda}\right) \leq \frac{g+2}{2}$.

Proof: (α) The functional equation (1) implies $\sqrt{\det Y} t^{g/2} f_Y(t) = f_{Y^{-1}}(1/t)$ for every $t \in \mathbb{R}^*_+$; conclude by remarking that $f_{Y^{-1}}$ is decreasing.

(β) Part α gives $\frac{\mathrm{d}}{\mathrm{d}t}[t^{g/2}f_Y(t)] \geq 0$, that is, $\frac{g}{2t}f_Y(t) \geq -f'_Y(t)$ for every t > 0. On the other hand,

$$-\frac{1}{\pi}f'_Y(t) = \sum_{m \in \mathbb{Z}^g} {}^{\mathrm{t}}mYm \exp(-\pi t^{\mathrm{t}}mYm) \ge \sum_{m \in \mathbb{Z}^g - \{0\}} \lambda \exp(-\pi t^{\mathrm{t}}mYm) = \lambda[f_Y(t) - 1] \quad .$$

One infers $\frac{g}{2t}f_Y(t) \ge \pi\lambda[f_Y(t)-1]$. Choosing $t = \frac{g+2}{2\pi\lambda}$, one obtains the result. \Box

Proposition 2.3: Let $Y \in S_g$. Putting $\lambda = \lambda(Y)$, one has the upper bound

$$\theta_{iY}(0) \le \frac{g+2}{2} \max\left[\left(\frac{g+2}{2\pi\lambda}\right)^{g/2}, 1\right]$$

Proof: Put $t = \frac{g+2}{2\pi\lambda}$. If $t \ge 1$, then lemma 2.2. α implies the inequality $f_Y(1) \le t^{g/2}f_Y(t)$. If $t \le 1$, then $f_Y(1) \le f_Y(t)$ since f_Y is decreasing. In any case, one obtains $\theta_{iY}(0) = f_Y(1) \le \max(t^{g/2}, 1)f_Y(t)$. Conclude by applying lemma 2.2. β . \Box

Now, to prove proposition 1.1 from lemma 2.1 and proposition 2.3, it suffices to observe that if $Z \in \mathbb{H}_g$ is Siegel-reduced, then $\lambda(\text{Im}Z) \geq \frac{\sqrt{3}}{2}$ (see lemma 15 of [2] page 195).

References

- B. Edixhoven, R. de Jong: Bounds for Arakelov invariants of modular curves. Annals of math. studies 176 (2011), p. 217-256.
- [2] J. Igusa: Theta functions. Grundlehren der math. Wissenschaften 194 (1972).
- [3] A. Javanpeykar: Polynomial bounds for Arakelov invariants of Belyi curves. With an appendix by P. Bruin. Algebra and number theory 8 (2014), p. 89-140.
- [4] D. Mumford: Tata lectures on theta I. Progress in math. 28 (1983).
- [5] P. Parent: Heights on square of modular curves. Preprint (2016); arXiv:1606.09553.
- [6] *R. Wilms:* New explicit formulas for Faltings' delta-invariant. Inventiones math. (2016), to appear.

Pascal Autissier. I.M.B., université de Bordeaux, 351, cours de la Libération, 33405 Talence cedex, France.

pascal.autissier@math.u-bordeaux.fr