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Abstract

This paper is devoted to the study of the essential growth rate of some class of semigroup generated by bounded perturbation
of some non-densely defined problem. We extend some previous results due to Thieme [H.R. Thieme, Quasi-compact semigroups
via bounded perturbation, in: Advances in Mathematical Population Dynamics—Molecules, Cells and Man, Houston, TX, 1995,
in: Ser. Math. Biol. Med., vol. 6, World Sci. Publishing, River Edge, NJ, 1997, pp. 691-711] to a class of non-densely defined
Cauchy problems in LP?. In particular in the context the integrated semigroup is not operator norm locally Lipschitz continuous.
We overcome the lack of Lipschitz continuity of the integrated semigroup by deriving some weaker properties that are sufficient to
give information on the essential growth rate.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of this paper is to study the essential growth rate of some class of semigroup generated by bounded
perturbation of some non-densely defined Cauchy problem. In order to investigate such problems, we first need to
consider non-densely defined non-homogeneous Cauchy problem

d -
d—L;=Au(t)+f(t), 1 €10, 7], u(0) =x € D(A), (1.1)
where A : D(A) C X — X is a linear operator on a Banach space X and f € L'((0, 79), X). When A is a Hille—
Yosida operator and is densely defined (i.e., D(A) = X), the problem has been extensively studied (see Pazy [15] and
Yosida [26]). When A is a Hille—Yosida operator but its domain is non-densely defined, Da Prato and Sinestrari [5]
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investigated the existence of several types of solutions for (1.1). They first reformulated (1.1) as a sum of operator
problems (i.e., Bu = Au+ f with Bu(t) = ‘2—;‘), and then obtained the existence and uniqueness of integrated solutions
of (1.1) for each x € D(A) and each f € L'((0, 19), X).

A very important and useful approach to investigate such non-densely defined Cauchy problems is to use the
integrated semigroup theory, which was first introduced by Arendt [1,2]. In the context of Hille—Yosida operators,
we have the following relationship between the integrated semigroup and integrated solutions of (1.1). An integrated
semigroup {S(7)};>0 is a strongly continuous family of bounded linear operators on X, which commute with the
resolvent of A, such that for each x € X the map t — S(¢)x is an integrated solution of the Cauchy problem

%:Au(t}+x, u(0) =0. (1.2)

Arendt [1,2] proved that if there is a strongly continuous family of bounded linear operators {S(¢)};>0 on X, which is
assumed to be exponentially bounded (see Section 2 for precise definition), and if (ul — A lx=pn fooo e M S(t)xdt
holds for all x € X and all u > w large enough (where (w, 00) C p(A)), then {S(#)};>0 is an integrated semigroup and
A is called its generator. Kellermann and Hieber [8] further developed the integrated semigroup theory and provided
an easy proof of Da Prato and Sinestrari’s result [5]. To be more specific, Kellermann and Hieber [8] proved that

when A is a Hille-Yosida operator, the map ¢t — (S % f)(¢) := fot S( —s) f(s)ds is continuously differentiable and
u(t) = %(S * f)(t) is an integrated solution of (1.1). For recent studies on the integrated semigroup theory, we refer
to the monographs of Arendt et al. [3], Xiao and Liang [27] and the references cited therein.

In this article, as in Magal and Ruan [10] and Thieme [22], we consider the case where the integrated solution of
the Cauchy problem (1.1) only exists whenever f belongs the L?((0, 7p), X) for some p € [1, +00). The situation is
motivated in particular by application to age-structured model, or application to neutral delay differential equations

in L?. We make the following assumptions.

Assumption 1.1. We assume that the resolvent set of A is non-empty, and the part Ag of A in Xg = D(A) is the
infinitesimal generator of a strongly continuous semigroup {7'4,(¢)};>0 of bounded linear operators on Xy.

Under Assumption 1.1, it follows that p(A) = p(Ap), because both the resolvent set of A and the resolvent set of
Ay are not empty, and it also follows that A generates a integrated semigroup {S4(?)};>0 on X.

Assumption 1.2. Let p € [1, +00) be fixed. We assume that there exist M > 0 and @ € R, such that for each T > 0
and each f € L7 ((0, 7), X), there exists u s € C([0, 7], X) an integrated solution of the Cauchy problem (1.1) with
x =0, satisfying

|lus@)| < M“em_')f(-)||L,,((0J),X), vt €0, 7].

Let L : D(A) — X be a bounded linear operator. The purpose of this paper is to obtain an estimation of wg ess ((A +
L)o), the essential growth rate of {T(a41),(¢)};>0 (see Section 3 for a precise definition of the essential growth rate).
When the domain of A is dense in X, then {T(a41),(?)};>0 is obtained as the unique solution of

t
T(a+1L), (1) =Ty, (1) + f Tag(t —$)LT(a+1),(s) ds,
0
and when

LTy, () is compact for each z > 0,

by using the approach of Webb [23] (see also [13, Theorem 3.2]), one may deduce that (because x —
fot Ta(t — s)LT(a4+1)(s)x ds is compact for each 7 > 0)

CUO,ess((A + L)O) < @0,es5(A0)-

The main problem here is to obtain the same results as above whenever A is non-densely defined. In Section 2, we
obtain the following theorem (see Theorem 2.7).
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Theorem 1.1. Let Assumptions 1.1 and 1.2 be satisfied. Let L : D(A) — X be a bounded linear operator. Then
A+ L:D(A) C X — X also satisfies Assumptions 1.1 and 1.2. In particular (A + L)g the part of A+ L in X is
the infinitesimal generator of a strongly continuous semigroup {T(a+1),(t)};>0 of bounded linear operators on Xj.
Moreover {T(a+1),(t)}:>0 is the unique solution of the fixed point problem

1

d
T = Tag0) + 5 [ Sat =9)LTias1y(5) s
0

Also inspired by the results of Thieme [19], we obtain the following theorem which is the main result of this paper.

Theorem 1.2. Let Assumptions 1.1 and 1.2 be satisfied. Let L : D(A) — X be a bounded linear operator. Assume that
LTa,(t) is compact  for eacht > 0.

Then we have the following inequality

wO,ess((A + L)O) < ©0,es5(A0)-

One may note that when A is a Hille-Yosida operator (which corresponds here to the case p = 1 in Assump-
tion 1.2), the above result basically summarizes the results proved by Thieme [19]. The above question has been stud-
ied by Rhandi and Schnaubelt [16] using extrapolation method, but they assume in addition that the map ¢ — LT, (¢)
is operator norm continuous which is not satisfied in general for age structured models. The above result uncompass
this difficilty. We also refer to Thieme [20,21] for further result going in that direction. So finally here the point is to
extend the previous results of Thieme [19] for the case p =1 to the case p € [1, 4-00).

The above theorem can apply to various class of examples, such as age-structured problems in L”, functional
differential equations in the space of continuous functions (see Liu, Magal and Ruan [9] for more details). In particular,
the above theorem can be applied to study neutral function differential equation in L? (see Ducrot, Liu and Magal [6]
for more details).

The plan of the paper is the following. In Section 2, we recall some results about integrated semigroups. In Sec-
tion 3, we recall some results about the spectral theory for linear operators. The Section 4 is devoted to the proof the
main result Theorem 1.2.

2. Integrated semigroup

In this section we recall some results about integrated semigroups. We refer to Arendt [1,2], Neubrander [14],
Kellermann and Hieber [8], Thieme [18], and Arendt et al. [3], and Magal and Ruan [10] for more detailed results on
this subject.

Let X and Z be two Banach spaces. Denote by L£(X, Z) the space of bounded linear operators from X into Z
and by £(X) the space L(X, X).Let A: D(A) C X — X be a linear operator. If A is the infinitesimal generator of a
strongly continuous semigroup of bounded linear operators on X, we denote by {74 (t)};>¢ this semigroup. We denote

by p(A) = {A € C: LI — A is invertible} the resolvent of A. From here on, we also denote by X := D(A), and Ag
the part of A in X, which is a linear operator on X defined by

Aox = Ax, Vx € D(Ag):={y e D(A): Ay € Xo}.
If (w, +00) C p(A), then it is easy to check that for each A > w,
D(Ap))=(I —A)"'Xg and (A —Ag) =l —A)x,.

In the following, we assume that operator A satisfies the following assumption.

Assumption 2.1. We assume that A : D(A) C X — X is a linear operator on a Banach space (X, ||.]|), satisfying the
following properties:
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(a) There exist two constants ws € R and M4 > 1, such that (w4, +00) C p(A) and
M4
(A —wa)*’

(b) limj_ 4yoo(A] — A)"1x =0, Vx € X.

| = A7 g, < Vi >wa, Yk 1;

By using Hille—Yosida theorem (see Pazy [15, Theorem 5.3 on p. 20]), Lemma 2.1 in [10], and the fact that if
p(A) # () then p(A) = p(Ap), one obtains the following lemma.

Lemma 2.1. Assumption 2.1 is satisfied if and only if p(A) # @, Ag is the infinitesimal generator of a Co-semigroup
{Ta,(®)}i>0 on Xo, and

T4y @) | < Mae®s', Vit >0.
Now we give the definition of integrated semigroups.

Definition 2.2. Let (X, ||.||) be a Banach space. A family of bounded linear operators {S(#)};>0 on X is called an
integrated semigroup if

i) $(0)=0;
(i) The map t — S(¢)x is continuous on [0, +00) for each x € X;
(iii) S(¢) satisfies S(s)S(¢) = f(; Sr+1t)—SFr)dr,Vt,s >20.

An integrated semigroup {S(¢)};>0 is said to be non-degenerate, if S(t)x =0, V¢ > 0, implies x = 0. According
to Thieme [18], we say that a linear operator A : D(A) C X — X is the generator of a non-degenerate integrated
semigroup {S(7)};>0 on X if and only if

t
xe D), y=Ax <& S(t)x—tx:/S(s)yds, vVt > 0.
0
From [18, Lemma 2.5], we know that if A generates {S4(#)};>0, then foreach x € X and ¢ > 0,
t t
/SA(s)xdseD(A) and SA(t)x=A/SA(s)xds+tx.
0 0

An integrated semigroup {S(7)};>0 is said to be exponentially bounded if there exist two constants M>0and® > 0,
such that

[SO] ) < Me™, VE=0.

When we restrict ourself to the class of non-degenerate exponentially bounded integrated semigroups, Thieme’s notion
of generator is equivalent the one introduced by Arendt [2]. More precisely, combining Theorem 3.1 in Arendt [2] and
Proposition 3.10 in Thieme [18], one has the following result.

Theorem 2.3. Let {S(1)};>0 be a strongly continuous exponentially bounded family of bounded linear operators on a
Banach space (X, ||.||) and A : D(A) C X — X be a linear operator. Then {S(t)};>0 is a non-degenerate integrated
semigroup and A its generator if and only if there exists some @ > 0 such that (®, +00) C p(A) and

o0
(AI—A)_lx:kfe_AsS(s)xds, YA > o.
0

The following result is well-known in the context of integrated semigroups (see [10, Proof of Proposition 2.4]).
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Proposition 2.4. Let Assumption 2.1 be satisfied. Then A generates a uniquely determined non-degenerate exponen-
tially bounded integrated semigroup {Sa(t)};>0. Moreover, for each x € X, each t > 0, and each p > wa, Sa(t)x is
given by
t
Sa(t)x = uf Ta() (I — A)'xds + [I — Tag®)](wl — A)~'x. (2.1)
0

Furthermore, the map t — S4(t)x is continuously differentiable if and only if x € Xo and

dSa(t)x

dt

=Ty, (t)x, Vt=0, Vx € Xo.

From now on we denote by

t
(Sa* (@) =/SA(I —s)f(s)ds, Viel0,1],
0
whenever f € L'((0, 1), X).
We now consider the inhomogeneous Cauchy problem
d -
d—”t‘ =Au(t)+ f@), tel0,w],  u(0)=xe D(A), (2.2)

and assume that f belongs to some appropriate subspace of L' ((0, ), X).

Definition 2.5. A continuous map u € C ([0, tp], X) is called an integrated solution of (2.2) if and only if
t
/u(s) ds e D(A), Vtel0, 1],
0

and
t t

u(t):x—l—A/u(s)ds—l—/f(s)ds, vt € [0, 79].
0

0

We consider the case where the map f belongs to L ((0, tp), X) for some p € [1, +00) and we make the following
assumption.

Assumption 2.2. Let be p € [1, +00). Assume that there exist M > 0 and @ € R such that for each 79 > 0 and each
fecl(o, ol X),

d S
HE( A% O

A 1/p
< M( / (| f)])” ds) , Vtel0, 1l
0

Next from Theorem 2.11 in Magal and Ruan [10], we have the following result.

Theorem 2.6. Let Assumptions 2.1 and 2.2 be satisfied. Then for each T > 0 and each f € LP((0, 1), X), the map
t — (Sa * f)() is continuously differentiable on [0, t]. The map t — u(t) defined by

d
u(t) =Ta,(t)x + E(SA * f)(t), Vtel0, 1],

is an integrated solution of (2.2). Moreover, for each f € L?((0, t), X), we have the following estimate

%(SA * )| < M| vt € [0, 7]. (2.3)

TFO | 0.0,
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From now on for each v > 0 and each f € L?((0, 7), X), we set

d
(Sao HH) = E(SA * f)(), Vtel0, 7]

We now recall some properties that we will be used in the sequel. The proof of these relations can be found for instance
in Magal and Ruan [10]. First we have for each T > 0 and f € L?([0, 7], X):

t
Sao fH)= lirJlrl /TAO(t —Du(ul — A)_lf(l) dl, VYtel0,r1]. 2.4)
—>+00
0

This approximation formula was already observed by Thieme [17] in the classical context of integrated semigroups
generated by a Hille—Yosida operator. From this approximation formulation, we then deduce that for each pair
t,s €0, ] withs <t, and f € C([0, 7], X),

(Sa 0 [)(A) =Tay(t =5)(Sa o f)(s) + (Sa o fs + )t = 5). (2.5)

We also observe that
t

Sa(t) = %fSA(t —s)xds.

0
So as an immediate consequence of Assumption 2.2, we have
[Sa®] £y, <8@, Y120, (2.6)
where
! 1/p
5(t):=M ( / eP®! dl) . Vt>0. (2.7)
0

The following result is a consequence of Theorem 3.1 in [10].

Theorem 2.7. Let Assumptions 2.1 and 2.2 be satisfied. Let L : D(A) — X be a bounded linear operator. Then
A+ L:D(A) C X — X also satisfies Assumptions 2.1 and 2.2. In particular (A + L)o the part of A+ L in X is
the infinitesimal generator of a strongly continuous semigroup {T(a+1),(t)}1>0 of bounded linear operators on Xj.
Moreover {T(a+1),(t)}:>0 is the unique solution of the fixed point problem

t

d
TA+1), () = Tay(t) + = / Sa(t = s)LTa+L),(s)ds.
0

Proof. Theorem 3.1 in [10] trivially applies to this situation and it remains to prove that there exists @ € R, and
M > 0, such that

[Sasz o HON <M FOl Loz V€T,

whenever f € L?((0, ), X). In order to obtain this estimation, we apply the last part of Theorem 3.1 in [10] to
A+ L — ylI for some y > 0.
Let y > 0 be fixed. We have

t

(Sayr O = Tim_ [ Tayoy 6= Diatut = 07 F0

(=]

t

—e V! 1%/ Tay(t =Dl — A~ eV f (1) dl
0

=e " (Sace” fO))@).
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So it follows that

|Sa—yr o NO] <M €@ Ol Lonxy V€.,
and

M@ O oo, <@ sup [£6)].

s€[0,1]
where
! I/p
8, (1) ::M(fep@wl dl) . Vt>0.
0

Moreover, for y > 0 large enough, we have
S,MILI <1, V>0,
and it follows from the last part of Theorem 3.1 in [10] that
|Sarr—yro HO) <M @ L O] onyy  ¥EED T,

and by using the same argument as above the result follows. O

The following result is proved in Magal and Ruan [11, Proposition 2.15]. This result provides an exponential
estimation of ||(Sa ¢ f)(?)| expressed in function of the growth rate of {T'4,(¢)};>0.

Proposition 2.8. Let Assumptions 2.1 and 2.2 be satisfied. Let ¢ > 0 be fixed. Then for each t. > 0 satisfying
Maé(te) < €, we have
2emax(1l, e V%)

—yt —ys
eV Sae HO| < Sup € |.f)

|, vt>o0,
whenever y € (wg,+00) and f € C(Ry, X).

To conclude this section we give several equivalent conditions which are necessary and sufficient conditions to
verify Assumption 2.2. For that purpose let us recall some notions.

Definition 2.9. Let (Y, ||.||y) be a Banach space. Let E be a subspace of Y*. Then E is called a norming space of Y
if the map |.|g : T — R defined by

Iyle = sup y*(y), Vyey,
VFEE, [ly*lly«<1

is a norm equivalent to ||.||y.

Let (Y, ||.]ly) be a Banach space. Let a < b be two given real numbers and let g : [a,b] — Y be a map. If g €
[1, 400) we set

n

) — . q 1/q
VLq(g’a’b) :Sup<Z llg (i) g(t,_1)||Y> ’

— =t

where the supremum is taken over all partitions a =ty < --- < t, = b of the interval [a, b]. We also set

llg(t) —g(S)||y>

VL™ (g,a,b)= sup
|t — s

a<t<s<b

Definition 2.10. For each ¢ € [1, +00], the map g : [a, b] — Y is called of ¢g-bounded variation if VLY(g,a, b) is a
finite quantity.
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Then we consider a family of linear bounded operators 7'(¢) € £L(X, Y) for t > 0, where X and Y are Banach
spaces. As in Thieme [22], we introduce for each g € [1, 0c0)

|

where the supremum is taken over all partitions a =ty < - - - < t,, = b of the interval [a, b] and over any (x1, ..., x,) €
X" with Y7 (t; — t;—1)llx;|% < 1. Finally we consider

|

where the supremum is taken over all partitions a =ty < - - - < t,, = b of the interval [a, b] and over any (x{, ..., x,) €
X" with ||x;llx <1Vi=1,...,n.

n

Y (T) = T(ti-1)x

i=1

Vi{T,a,b)= sup{

n

D (1) = Ttin)xi

i=1

V®(T,a,b) = sup[

Definition 2.11. For each g € [1, +o00], the map r — T (¢) is called of g-bounded semi-variation if V(T ,a, b) is a
finite quantity.

To conclude this section, we give various equivalent conditions to verify Assumption 2.2. Combining the result of
Section 4 in Magal and Ruan [10] and the results of Section 3 in Thieme [22] one has the following theorem.

Theorem 2.12. Let Assumption 2.1 be satisfied. Let p, q € [1, o0] be given such that % + é =1 and ® € R be given.
Then the following statements are equivalent:

(1) There exists some constant M > 0 such that foreacht >0andany f € C L([0, 71, X),
[Sa0 NOI <M FOl o ny V€107

(ii) There exists a norming space E of Xo, such that for each x* € E the map t — x* o Sa_51(t) is of g-bounded
variation from [0, a] into X* for any a > 0 and

sup lim VL?(x* o Sa—57(.), 0,1) < 400.
X*EE, |lx* [ <1170
(iii) There exists a norming space E of X, such that for each x* € E there exists x,* € Li((O, 00), R) with
t+h
[x* 0 Sa—ar(t+h) —x* o Sa—ar ()] < / Xxx(s)ds, Vt,h =0,
t

and

sup | X1l 290, +00) < +00.
reE: x* <1

(iv) There exists a norming space E of Xo, such that for each x* € E there exists x+ € L1 ((0, 00), R),
_l’_

o0

/ s" e yn(s) ds

0

1
X = (=1

|x* o (A1 — (A —2D)™"|

for each n > 1 and for each A sufficiently large, and

sup | X1l L9 0, +00) < +00.
x*eE: |lx*|<1

(V) The map t — Sa—g1(t) is of p-bounded semi-variation from [0, t] into L(X, Xg) for each T > 0, and

sup VP (Sa_57,0,7) < +00.

>0
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3. Spectral theory

In this section we recall some known results of spectral theory. We first introduce some notations. Let L : D(L) C
X — X be a linear operator on a complex Banach space X. Denote by p(L) the resolvent set of L, N(L) the null
space of L, and R(L) the range of L. The spectrum of L is o (L) = C\p(L). The point spectrum of L is the set

op(L):={1€C: N(A— L) #{0}}.

The essential spectrum (in the sense of Browder [4]) of L is denoted by oess(L). That is the set of A € o(L) such
that at least one of the following conditions holds: (i) R(Al — L) is not closed; (ii) A is a limit point of o (L);
(i11) N, (L) := ,jicf N((MI — L)¥) is infinite dimensional.

Let Y be a subspace of X. Then we denote by Ly : D(Ly) C Y — Y the part of L on Y, which is defined by

Lyx=Lx, VxeD(Ly):={xeD(L)NY: LxeY}.

Definition 3.1. Let L : D(L) C X — X be the infinitesimal generator of a linear Co-semigroup {TL(t)}t>0 on a
Banach space X. We define wg(L) € [—00, +00) the growth bound of L by

In(||T7 (¢t
wo(L) = tim 2UTLOlceo)
t—>400 t
The essential growth bound wg ¢ss(L) € [—00, +00) of L is defined by
1 Tr (t
w,ess(L) :== lim M’
t—+00 t

where || T7 (¢)]ess 18 the essential norm of 77 (¢) defined by
T2 (@®) | =« (TL () Bx (0, 1)),

here Bx(0,1) = {x € X: ||x||lx < 1}, and for each bounded set B C X, x(B) = inf{e > 0: B can be covered by a
finite number of balls of radius < ¢} is the Kuratovsky measure of non-compactness.

Then we have the following result:

Theorem 3.2. Let L : D(L) C X — X be the infinitesimal generator of a linear C°-semigroup {Ty (t)} on a Banach
space X. Then
wo(L) = max (wo,ess(L), max Re(,\)).
A€o (L)\Oess(L)
Assume in addition that wo ess(L) < wo(L). Then for each y € (wo,ess(L), wo(L)], {A € o(L): Re(X) =y} Co,(L)
is non-empty, finite and contains only poles of the resolvent of L. Moreover, there exists a finite rank bounded linear
operator of projection I1 : X — X satisfying the following properties:

(@ MM —L)y '=0—-L)""11, Vi e p(L);
(b) o(Lpx)) ={r€o(L): Re(d) >y}
() o(Lg—mx)) =0 (L)\o(Lax))-

In Theorem 3.2, the existence of the projector [T was first proved by Webb [24,25] which is the projection on the
direct sum the generalized eigenspaces of L associated to all points A € o (L) with Re(A) > y, and the fact that we
have a finite number of point of the spectrum with real part > y is proved by Engel and Nagel [7].

The following result is due to Magal and Ruan [12, see Lemma 2.1 and Proposition 3.6].

Theorem 3.3. Let (X, |.||) be a Banach space and L : D(L) C X — X be a linear operator. Assume that p(L) # ()
and Lo, the part of L in D(L), is the infinitesimal generator of a linear C O-semigroup {TL,(t)}:>0 on a Banach space
D(L). Then o (L) = o (Lg). Let Iy : D(L) — D(L) be a bounded linear operator of projection. Assume that

oM — Lo) "= —Lo) "My, VYA>ow,weR,
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and
HO(D(L)) C D(Ly) and L0|170(W) is bounded.
Then there exists a unique bounded linear operator of projection Il on X satisfying the following properties:
M) H|p; = Ho;
(i) 11(X) C D(L);

(i) T —L) '=0I—-L)"'T, VA > w.
Moreover, for each x € X we have the following approximation formula

Ox= lim IMoA(M — L) 'x.
A——+00

4. Essential growth rate and bounded perturbation
This section is devoted to the proof of Theorem 1.2.
4.1. Preliminary results
The main result of this section is the following theorem.

Theorem 4.1. Let Assumptions 2.1 and 2.2 be satisfied. Let K| : Xo — Y be a compact linear operator for X into a
Banach space Y. Let K> : X1 — X be a compact linear operator from a Banach space X1 into X. Let be T > 0. Then
the map

t—> Ki1(Sao K f)(@)

is uniformly continuous from [0, t] into Y uniformly with respect to f in bounded subsets of C ([0, t], X1).

Proof. From Assumption 2.2, there exists M > 0, such that for each f € C([0, 7], X), with || f|lcoc < 1, we have
[(Sao H®O| <M, Velo,r].

Since K is compact, it follows from Schauder’s theorem that K : Y* — X is compact. Let &€ > 0 be fixed. Then
since K By (0, 1) is relatively compact in X, we can find xj, ..., x; € X§, with |Ix]|| < [ Kyl +1,Vi=1,...,n,
such that

n
KTBy*(O, 1) C UBy*(xl-*,é‘).
i=1

Since K is compact, we can find xq, ..., x;; € X, such that

m
KyBx,(0.1) C | Bx(xi. ).

i=1
Let n > 0 be fixed. Then for each f € C([0, ], X), with || f]lcc < 1, and any ¢ € [0, T — 5], by the Hahn—Banach
theorem, there exists y* € By+(0, 1), such that
|K1(Sa o Kaf)(t+n) — Ki(Sa o K2 )|y =(y*, Ki((Sa 0 K2 f)(t +1) = (Sa o K2 f)(1)))
= (K7y*, (Sa o K2 f)(t + 1) — K1(Sa © K2 f)(0)).

But there exists ig € {1, ..., n}, such that ||x;; —Kiy*[I<e, so

|K1(Sa o Kaf)(t+n) — Ki(Sao K2 (@),
<eM|Kalzox,x + (x5 (Sa 0 K2 )t + 1) — (Sa o K2 ) (D))
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Now since the map t — f(¢) is continuous on [0, t], this map is uniformly continuous. Therefore we can find ng > 1,
such that

t—sl< =y = | f@) = f()] <e.
We denote by
ng 1T .
t; _—no-i-l’ Vi=0,...,n0+1,
and we define f0: [0, 7] - X by
_ 4o no - _
P70 = s ) + G F). ] V=0
(t,+] =) (tl-H ’)
Then we have for each i =0, ...,no, and each ¢ € [1;°, #;"7 ]
(¢ ("
||f"°<r>—f<r>||<no7||f<,+1> f<r>||+L||f( ()~ fn] <e
(tig1 — 1 3 =1

But foreachi € {0, ...,no + 1}, we can find j; € {0, ..., m}, such that
iji - KZf(t;m)

So if we set

n
(t—1°) (fl+1 —t) .
no ]t+1 Ji?
(tz+1 - ) (tz+1 )

Then we have

Ig — K2 flloo < ||g = K2 f™|| o + | K2f™ — Ko f |, < (14 IK2ll £x1.x) )€

But since g can be rewritten as

gn)=) yi(xi,
i=1

where the functions y; (¢) are the sum of function of the form

Vi e[, 6%, ], Vi=0,...,no.

g(t)_ i i+l

no
yl()_ ( _t }’l) 1 no 1o Eltil—i_z n) ng ”0 s
(tH—l — 1) 7 ’ti+l] (zliz — 1 o) i y1otipal

for distinct i, the function y; (¢) is continuous, positive, and is bounded by 1. So to achieve the proof of Theorem 4.1,
it is sufficient to apply the following lemma. O

Lemma 4.2. Let Assumptions 2.1 and 2.2 be satisfied. Let be x € X and x* € X}, then the map
t— x*((Sa o h()x)(@))

is uniformly continuous on [0, t], uniformly with respect to h in bounded subsets of C ([0, ], R).

Proof. Leth e C Cl (0, 7), R) be given. Then we have
t

t t
%/x*(SA(t — 5)x)h(s)ds :%/x*(SA(s)x)h(t —s)ds:SA(t)h(O)—I—/x*(SA(s)x)h/(t —s5)ds
0 0

0
t

= /x*(SA(s)x)h/(t —s)ds.

0
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Due to Assumption 2.2 we have
[ ((Sa 0 h()x) ()] < Cllkll Lo(,0),R)

for some constant C independent of function /. This implies that for any function & € CC1 ((0, ), R) we have

/x*(SA(s)x)h’(t —5)ds
0

Now if ¢ € CLI, ((0, 1), R), then setting h(s) = ¢(t — s), we obtain h € Ccl, ((0, 1), R) and due to (4.1), we conclude
that

< ClhllLr0.0).R)- (4.1)

T

/x*(SA (s)x)go/(s) ds

0

<Clglironr, Yo eCl(©,1),R).

Since p € [1, +00), by the Riesz’s representation theorem, we know that there exists g € L7((0, 7), R) with ql + % =1
such that

T T

/x*(SA(s)x)go’(s)ds :/g(s)<p(s)ds, Vo € CH((0,7),R).
0 0
Therefore function x*(Sa(.)x)|[0.] belongs to W40, 1), R) with g € (1, +00]. Next since x*(S4(0)x) =0, we
obtain the following integral representation:
t
x*(SA(t)x)=/g(l)dl, vi €0, 7],
0

and
t

x*(Sa 0 h()x)(@) :fg(t — $)h(s)ds.
0
Finally we obtain that for any (s, ¢) € [0, 1]2, witht > s,

2% (S4 0 h()x) (1) = x*(S4 0 h()x) (5)] < ||h||oo[

t—s N
[|g(l)|dl +/|g(t—s+l)—g(l)|dli|.
0 0

This completes the proof of Lemma 4.2. O
4.2. Proof of Theorem 1.2

In this section we investigate the essential spectral growth rate of a bounded perturbation of A. Inspired by the
work of Thieme [19, Theorem 3] we will make the following assumption.

Assumption 4.1. Let L : Xo — X be a bounded linear operator such that LT, (t) : Xo — X is compact for every
t > 0.

Let Z be a Banach space, and let I be an interval in R. From now on we denote by
C.S‘ (I’ ﬁ(XOa Z))

the space of strongly continuous map from 7 into £(Xy, Z). Then for each V € C([0, 7], £L(X0, X)), we denote by
(S4 ¢ V(.))(t) the bounded linear operator from Xy into itself, defined by

(Sa0 VO)O @) :=(SaoV()x)®), Viel0,7], Vx € Xo.

Next we need some preliminary lemmas.
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Lemma 4.3. Let Assumptions 2.1 and 2.2 be satisfied. Let t > 0 be given. Then for each V € C ([0, 7], L(Xo, X)), the
map t — (Sa o V(.))(¢) is continuous from [0, t] into L(Xp).

Proof. Lett,s € [0, t] with t > 5. From (2.5) we have
(Sa0 V) =Tag(s)(Sao V)t =)+ (Sao V(E—s+.))(s).

Thus we obtain

(Sa0 V) = (Sao V())($) =Tags)(Sao V)t =)+ (Sao (V) = V(E—s+.)))s).

Next using Assumption 2.2, one has for any x € X,

k]

[(Sao V)@ = (Sao V()| <8(r—s)HTAO(s)Hl sup ]HV(Z)H +8(s)ls[1(1)p]HV(l) —V(t—s+I)
€|0,t—s €[0,s

where 6(¢) is defined by (2.7). Since V : [0, t] — L(Xo, X) is continuous, it is also uniformly continuous and the
result follows. O

By using Lemma 4.3 we obtain the following result.

Lemma 4.4. Let Assumptions 2.1 and 2.2 be satisfied. Let be Tt > 0. Then we have the following:

(i) Foreach W € C([0, t], L(X0)), there exists a unique V € C ([0, t], L(X0)) solution of
V)= (SaoLV())@®)+W(), Vtel0,r]

(i1) For each We C([0, t], L( X0, X)), there exists a unique Ve C ([0, t], L(Xg, X)) solution of
Vi) =L(Sao VQO)®) + W), Vrelo,7l.

Proof. The follows by using standart fixed point argument, and Lemma 4.3. O

Lemma 4.5. Let Assumptions 2.1 and 2.2 be satisfied. Let T > 0 be fixed. Let F C C([0, t], X) be a set of equicon-
tinuous maps, and assume that there exists \* > w, such that for each n € (0, t],

{021 =A) " @) 1€y, 71, feF) 4.2)
is relatively compact. Then for each 1| € (0, T), the set

{Sao NHD):1€[0,71], feF)

is relatively compact.
Proof. The proof is similar to the proof of Lemma 3.5 in Magal and Thieme [13]. O
The first main result of this section is the following:

Proposition 4.6. Let Assumptions 2.1, 2.2 and 4.1 be satisfied. Let T > 0 be given and let W : [0, 1] — L(Xg, X) be
strongly continuous. Then we have the following:

G) Ift > L(Sg o W()) () is operator norm continuous then the set

{L(Sa0W(QOx)(®): 1 €[0,11], x € Bx, (0, )}

is compact for each t1 € (0, 7).



514 A. Ducrot et al. / J. Math. Anal. Appl. 341 (2008) 501-518

(i) If t — W(t) is operator norm continuous, and the set

{W®)x: 1 €[n. 7], x € Bx,(0, 1)} (4.3)

is compact for each n € (0, t], then the set

{(Sa 0 W()x)(@): 1 €]0, 7], x € By, (0, 1)}

is compact.

Proof. Proof of (i). Since the map t — L(S4 ¢ W(.))(¢) is continuous from [0, ] into £(Xo, X), this map is also
uniformly continuous. Let 71 € (0, t) be fixed, we deduce that

t+h

1
L(Sao W) () — - / L(SaoW())(s)ds

t

=0.
L(X0,X)

lim sup
NOef0,7]

But for each r € [0, 1], and each & € (0, T — 1), we have

t+h t+h t
l/L(SAOW(.))(s)ds=%L|:/ SA(Z—I—h—s)W(s)ds—/SA(Z—S)W(s)ds:|

h
t 0 0
] t+h . t
:EL/SA(t+h—s)W(s)ds—|—EL/[SA(H—h—s)—SA(t—s)]W(s)ds.
t 0

On the one hand, recalling that we have
Sat +1) =T, (r)Sa(t) + Sa(r), Vi,r =0,

we obtain
t

t

1 1

ZL/[SA(H—h —5) = Sat —$)]W(s)ds = ZL/TAO(t —5)Sa(mW(s)ds, Viel0,1].
0 0

On the other hand one has

h

1
< E/”Sf‘(h_S)||L(X0,X)ds||L”£(Xo,X) sup ”WU)HL:(XO,X)'
L£(X0.X) 5 te[0,7]

! t+h
‘ EL / Sat+h—s)W(s)ds
Here we can notice that, since W is strongly continuous, the uniform boundedness principle implies that the above

supremum is finite. Next, Assumption 2.2 implies [|Sa(?) [l z(x,, x) < 6(¢) for each ¢ > 0. Therefore we deduce that
1S4 (@)l £(xo.x) — O when 7 — 0. Thus when & — 0 we have

t

t+h
—L / Sat+h—s)W(s)ds

1
h

It follows that

— 0 uniformly with respect to ¢ € [0, t1].
L(X0,X)

t

t

1
L(SaoW()@) — oL / Tpy(t —$)Sa(R)W (s)ds
0

=0.
L(X0,X)

lim sup
h\Oref0,71)

From Assumption 4.1, the operator LT4,(t — s) is compact for any 0 < s < ¢ < 71. Thus using the same argument
as in the proof of Theorem 3.2 in [13] completes the proof of assertion (i). Finally assertion (ii) directly follows
from Lemma 4.5. Indeed if we set 7 = {t — W(t)x, x € Bx,(0,1)} C C([0, t], X). Then the map r — W(z) is
operator norm continuous from [0, 7] into £(Xg, X), it is uniformly continuous. Thus F is equicontinuous subset of
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C ([0, t], X). Finally for any A > w4, the map (A — A)~ ! is a bounded operator of X and due to assumption (4.3), for
each n € (0, 7) the set

{0 — AW (t)x, t e, 7], x € Bx,(0, 1)}
is relatively compact. Then Lemma 4.5 applies and completes the proof of assertion (ii). O
We now use the above result to obtain an approximated expression for the semigroup {7T(a41),(t)};>0. For that
purpose we consider the map 5 : C; ([0, +00), L(X0)) = Cs([0, +00), L(X()) defined by
B(V)(t)=(SaoLV()) (),
and B : C ([0, 400), L(X0, X)) = Cs([0, +00), L(Xp, X)) defined by
BW)(t) = L(Sa o W())(®).

Then we have the following result.

Proposition 4.7. Let Assumptions 2.1, 2.2 and 4.1 be satisfied. Assume that for some integer n > 0, the map
t — LB"(Ta,)(t) = B"(LTa,)(1)

is operator norm continuous on [0, +00). Then we have the following expression

TiarnyyOx =Y BY(Tay()x) (1) + C(0)x,
k=0

where operator C(t) € L(Xo) is compact for each t 2 0.
Proof. We first recall that the semigroup T(441,),(t) satisfies the following fixed point formulation
Tiat1)o (1) = Tag(t) + (Sa © LT(a+1),()) (1), Vi =0.
This rewrites using the map B as follows:
Tia+1yo = Tag + B(T(a+L)y)-
Next multiplying this equality by L leads us to
LTa+1),=LTa, + B(L Ta+L)y)-
By induction, we obtain
B (LTia+1)0) = B"(LT,) + L(Sa 0 B*(LT(a+ 1)) (4.4)

Now by assumption ¢t — B (LTy,)(2) is operator norm continuous. Thus by using Lemma 4.4, we obtain that
the map t — B"(LT(a+L))(t) = LB"(T(a+L),)(t) is operator norm continuous. Then from (4.4), the operator
t— B T(A+L),) (1) is operator norm continuous. So by Proposition 4.6(i), we deduce that

(B (LT a1, ()x)@): £ €10, ], x € Bx, (0, D} )

is compact for any t > 0.
Next we claim that the set

[B"(LTay()x)(0): 1 € [n, 7], x € Bx,(0, 1)} (4.6)

is compact for any 0 < 1 < 7. Indeed for n = 0, this directly follows from Assumption 4.1, and if n > 1 since the map
t — B"(LTa,)(t) is operator norm continuous, this follows from Proposition 4.6(ii).
Finally, using (4.4)—(4.6), we conclude that the set

B (LT(a+1),()x)(1): t € [n,T], x € Bxy(0, 1))

is compact for each n € (0, 7].
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Recalling now that
B" N (Ta+1y,) = (Sa 0 B'(L Tia+1)))

and that the map t — B (LT a+41),)(t) is operator norm continuous, we deduce by using Proposition 4.6(ii) with this
map that the set

{B" 1 (T(a+1),0)(1): 1 €]0, 7], x € Bx, (0, 1)}
is compact. Finally the result follows from the following expression:
Tasryo = Tag + B(Tap) + B> (Tay) + -+ + B (Tay) + B (Tiatry)-

This completes the proof of Proposition 4.7. O
We now prove the following proposition that will be essential in the proof of our main result.

Proposition 4.8. Let Assumptions 2.1, 2.2 and 4.1 be satisfied. Then the map t — L(Sa ¢ LT, (.))(?) is operator
norm continuous from [0, +00) into L(Xg, X).
Proof. Let ¢ > 0 be fixed. By using formula (2.5), for ¢ > 2e,
L(SA© LTay(.))(t) = LTay()(Sa © LTay(.))(t —&) + (Sa 0 LTay(.+1 —&))(e)
and
(Sa 0 LTag())(t — &) = Tay(t —26)(Sa © LTao(.)) (&) + (Sa © LTy, (. 4 ©))(t — 2e).
So
L(Sa 0 LT4y()) (1) = Ko (Sa © KeTay())(t — 26) + R(e, 1),
where
K¢ = LTy, (e)
and
R(e,1) = LTy (&) Tao(t —26)(Sa © LT4y())(€) 4+ (Sa 0 LTao(. +1 —€))(€)
is of order ¢ by Assumption 2.2. By Assumption 4.1 the linear operator K, is compact. So by Theorem 4.1 the map
t— K (Sa 0 KTy, (.)(t — 2¢) is operator norm continuous on [2¢, +00), and the result follows. O
Proof of Theorem 1.2. Let us first note that by Proposition 4.8, the map t — L(S4 ¢ LT4,(.))(t) is norm continuous,
so by applying Proposition 4.7 for n = 1, we deduce that
TiatL)o (1) = Tag (1) 4 (Sa © LTa,()) (@) + C(1), 4.7

where C(¢) is a compact operator for each ¢ > 0.
Assume first that wp ess(Ag) = wo(Ao). By construction for each y > wy(Ap), there exists M, >0

|Tay ()| < Mye”*, Vi=0,

and it follows that Assumption 2.1 is also satisfied, whenever we replace M4 and w4 by M, and y, respectively. So
by applying Proposition 2.8, it follows that for each y > wo(Ao) there exists some constant M}l, > 0 such that

e (Sa 0 LTay()) 0] < My LI sup ¢ | Tao || < MyILIM,, Vi=0.
se(0,1

From (4.7) we obtain

[Toa 0@ o < ITa0 ]+ 1520 LTag ) 0] < Gy, Vi =0,
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for some constant C,,. Therefore we conclude that w ess((A + L)g) <y for all y > wo(Ap), which implies

wO,ess((A + L)O) < (UO,ess(AO)-

We now consider the case wg ess(Ap) < wp(Ap). Let y € (wo ess(Ap), wo(Ap)] be fixed. By using Theorem 3.2 we
consider I1y : Xo — Xy the finite rank linear bounded projector satisfying:

@ oA — Ag)~' = (h — Ag) ™' Iy, VA € p(Ag);
(b) o (Aolmyx)) ={r €0(Ap): Re(h) = v};
(©) o(Aolr-m)(x)) =0 (Ao) \ o (Aolmyx))-

Since [1j corresponds to the projection on the direct sum of some generalized eigenspaces of finite dimension, we
have ITo(Xo) C D(Ap). Moreover since I1j is a finite rank operator, the restriction Ag|,(x,) is bounded. Then using
Theorem 3.3 we extend this projector in /7 : X — X with the following properties:

() Mlx, = Io;
(i) IT(X) C Xo;
(i) T —A) ' =0T — AT, Vi > w,.

Since Iy is a finite rank operator, IToT(a+1),(¢) is compact for each ¢ > O therefore
| Ta+1)o®) | oo = (I = M) Tea41), (1) | .-
On the other hand one has
(I — o) Ta+L)y (1) = (I — o) Tao (1) + (I — o) (Sa © LT, () (t) + Co(r)
= (I — Ho)Ta, (1) + (I — M) (Sa o LU — )T, () (1)
+ (I = Io)(Sa © LIoTa, () (1) [To + Co (1),

where (I — ITy)(Sa ¢ LIToTa,(.))(t) 1y and Cy(t) are compact for any ¢ > 0.
It follows that

1T as)0 )| o < [ = To)Tay(0) + (I — o) (Sa © LI — ITo) T4y () (1) |(I — M) | .

We set Y := (I — IT)X endowed with the norm of X. Then since (I — IT) commutes with the resolvent of A,
B:D(B)CY — Y the part of A in Y, and By the part of B in D(B), satisfy Assumptions 2.1 and 2.2 in Y, and we
have the following:

[(I = ITo) Ty (t) + (I — Mo)(Sa © LTa, () ()] — Io) = [T, (1) + (Sp o (I — IT)LTp, (1)) |(I — M),

and by construction (see (c) above) we have o (Aol—m,)x)) = 0 (Bo) C {A € C: Re(d) < y}, and wg ess(Ag) =
a)O,ess(BO) <vy.S0

wo(Bo) <y

and
” T(A+L)o(f)“ess < H [TBo(t) + (SB ol — H)LTB<)(t))] ”z:(y) H (- HO)“'

So by applying the same argument as in the first part of the proof (i.e. the case wg ¢ss(Ap) = wp(Ap)), we deduce that
@0,e55((A+L)o) <y, V¥ > @ ess(Ap).

The proof is completed. O
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