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Abstract

The results obtained in this article aim at analyzing Bogdanov-Takens
bifurcation in a predator prey model with an age structure for the preda-
tor. Firstly, we give the existence result of the Bogdanov-Takens singu-
larity. Then we describe the bifurcation behavior of the parameterized
predator prey model with Bogdanov-Takens singularity.
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1 Introduction
The goal of this article is to study an example of Bogdanov-Takens nor-

mal form computation for a non standard class of partial differential equation.
Bifurcation theory has a long history and for infinite dimensional dynamical
systems an important reduction tool is the center manifold theory. Indeed, the
existence of such a locally invariant manifold permits to identify an infinite di-
mensional system to a finite dimension system of ordinary differential equations.
Nevertheless even if the reduction is theoretically possible its applicability is not
always guaranteed because such an invariant manifold is only implicitly defined.

∗Research was partially supported by National Natural Science Foundation of China (Grant
Nos. 11871007 and 11811530272) and the Fundamental Research Funds for the Central Uni-
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Normal form theory has been extended to various classes of partial differen-
tial equations. In the context of partial differential equations many classes of
equations have been considered and we refer to [2, 6, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 31, 35, 43, 44] for a nice overview on this topic.

The center manifold that we are using here is extending the one obtained
by Vanderbauwhede and Iooss [38]. For partial differential equations with ho-
mogeneous boundary condition we also refer to the book of Haragus and Iooss
[17] for a very nice overview on this topic. Bogdanov-Takens normal form com-
putation is also considered in [17, p.102] which corresponds to 02-bifurcation.
In the book of Magal and Ruan [30] the non densely defined case is considered.
Roughly speaking the non-densely defined Cauchy problems correspond to the
non-linear boundary conditions in some classes of partial differential equations.

Due to the nonlinear boundary condition for such a class of partial differential
equation, such a system can only be rewritten as a non densely defined semi-
linear Cauchy problem. That is to say that

v′(t) = Lv(t) + F (v(t)), for t ≥ 0, and v(0) = x ∈ D(L), (1.1)

where L = D(L) ⊂ X → X is a linear operator on a Banach space X, and
F : D(L) → X is a sufficiently smooth map that is also Lipschitz on bounded
sets with

F (0X) = 0X and DF (0X) = 0L(X).

The above system is called non-densely defined whenever

D(L) 6= X.

Definition 1.1 A mild solution (or integrated solution) of (1.1) is a contin-
uous function v ∈ C([0, τ ], D(L)) satisfying the two following properties:∫ t

0

v(s)ds ∈ D(L),∀t ∈ [0, τ ]

and

v(t) = x+ L

∫ t

0

v(s)ds+

∫ t

0

F (v(s))ds,∀t ∈ [0, τ ].

It is important to observe that in such a problem the solution belongs to a
strictly smaller subspace D(L), namely

v(t) ∈ D(L),∀t ∈ [0, τ ].

Therefore the equation (1.1) generates a semiflow on the smaller subspace D(L).
The linearized equation around the equilibrium 0 is

w′(t) = Lw(t) +DF (0)(w(t)),∀t ≥ 0, and w(0) = x ∈ D(L). (1.2)

The major difficulty in the normal form computations is coming from the fact
that the linearized equation generates a C0-semigroup on D(L) while the range
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of F is the larger space X 6= D(L). Therefore the normal form theory used in
this article is non standard compared with the one by Haragus and Iooss [17].

Our motivation is coming from a predator prey system with an age structure
for the predator. The system considered is the following

dU(t)

dt
= rU(t)

(
1− κ−1U(t)

)
− A(t)U(t)

α+ U(t)2
,

∂tv(t, a) + ∂av(t, a) = −D v(t, a), for a ≥ 0,

v(t, 0) = µ
A(t)U(t)

α+ U(t)2

(1.3)

for t ≥ 0 and with initial distribution

U(0) = U0 ≥ 0 and v(0, a) = v0(a) ∈ L1
+(0,∞).

In the model (1.3), U(t) is the number of prey at time t, a → v(t, a) is the
population density of predator structured with respect to the chronological age
a of the predator. That is to say that∫ a2

a1

v(t, a)da

is the number of predator with age between a1 and a2. We assume that the
predators become adults (i.e. can reproduce) when they reach the age τ > 0
and we set

A(t) =

∫ ∞
τ

v(t, a)da, (1.4)

which is the number of adult predators.
Here we use the simplified Monod-Haldane (also called simplified Holling

type IV) functional response, that was used by Andrew [1]. This functional
response takes the following form

U

α+ U2
.

It means that the rate of predation increases when the number of prey is small
and then decreases when the number of prey is above some threshold value.
This type of functional response has also been used by Xiao and Ruan [40, 41],
Pan and Wang [33] and many others.

By using (1.3), we obtain the following delay differential equations
dU(t)

dt
= rU(t)

(
1− κ−1U(t)

)
− A(t)U(t)

α+ U(t)2
,

dA(t)

dt
= e−Dτµ

A(t− τ)U(t− τ)

α+ U(t− τ)2
−D A(t),

(1.5)

whenever t ≥ τ .
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When τ = 0, the number of adult predators A(t) coincides with the total
number of predators

V (t) :=

∫ ∞
0

v(t, a)da, ∀t ≥ 0

and the system (1.3) is equivalent to the following ordinary differential equations
dU(t)

dt
= rU(t)

(
1− κ−1U(t)

)
− V (t)U(t)

α+ U(t)2
,

dV (t)

dt
= µ

V (t)U(t)

α+ U(t)2
−DV (t).

(1.6)

Global qualitative analysis and Bogdanov-Takens bifurcation were proved for
(1.6) by Ruan and Xiao [32]. The goal of this article is to extend their results
to the age structured model (1.3)-(1.4).

Consider the new time variable t̂ =
t

τ
and the new age variable â =

a

τ
and

set
Û
(
t̂
)

= U
(
τ t̂
)
and v̂

(
t̂, â
)

= τv
(
τ t̂, τ â

)
.

Then

Â(t̂) :=

∫ ∞
1

v̂
(
t̂, â
)
dâ =

∫ ∞
1

τv
(
τ t̂, τ â

)
dâ =

∫ ∞
τ

v
(
τ t̂, a

)
da = A(τ t̂).

By using this rescaling (and dropping the hat notation) we obtain the following
system for t ≥ 0

dU(t)

dt
= τ

[
rU(t)

(
1− κ−1U(t)

)
− A(t)U(t)

α+ U(t)2

]
,

∂tv(t, a) + ∂av(t, a) = −τ D v(t, a), for a ≥ 0,

v(t, 0) = τµ
A(t)U(t)

α+ U(t)2
,

(1.7)

with
A(t) =

∫ ∞
1

v(t, a)da. (1.8)

In the rest of the paper we will consider the rescaled system (1.7)-(1.8) instead
of (1.3)-(1.4).

Recently, codimension 2 bifurcations, such as Bogdanov-Takens bifurcation
[18, 4], zero-Hopf bifurcation [42, 3] and others, have attracted the attention of
numerous researchers in the context of population dynamics. We also refer to
Haragus and Iooss [17] for more results going in that direction.

Bogdanov and Takens’s bifurcation firstly revealed the bifurcation phenom-
ena (Hopf and homoclinic bifurcations) caused by Bogdanov-Takens singularity
in planar systems which is an important discovery in the bifurcation theory.
Bogdanov-Takens bifurcation is a well-studied example of a bifurcation in two-
parameter family of autonomous differential equations, meaning that two pa-
rameters must be varied for the bifurcation to occur, the two equilibria (a saddle
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and a nonsaddle) of the system collide via a saddle-node bifurcation and a limit
cycle is generated by an Hopf bifurcation around the nonsaddle equilibrium
which degenerates into an orbit homoclinic to the saddle and disappears via a
homoclinic bifurcation. We refer to the books [5, 16, 23, 34]. We also refer to
[19, 20] for some nice illustration in the context of population dynamics.

Age structured models have a long history and we refer to the books of
[7, 21, 22, 39]. Here we use the integrated semigroup to define a notion of
solution. This was first used in this context by Thieme [36].

The first result of Bogdanov-Takens bifurcation for an age structured model
was investigated in [29] by using the integrated semigroup theory and the normal
form theory developped in [28] for non densely defined Cauchy problems. We
refer to the book of Magal and Ruan [30] for more results on this subject. In
[29], in order to derive Bogdanov-Takens bifurcation we were forced to extend
the original age structured model to a larger class of partial differential equation.
Here we do not need to extend the system. Therefore all the properties obtained
by using Bogdanov-Takens bifurcation for the planar system are inherited by
the system (1.3)-(1.4).

The plan of the paper is the following. In section 2, we study the equilibrium
solutions. We will rewrite the system (1.7) as an abstract non densely defined
Cauchy problem in section 3. The linearized equation and the characteristic
equation are considered in section 4 and section 5, respectively. In section 6, we
study Bogdanov-Takens singularity. Section 7 is devoted to Bogdanov-Takens
bifurcation. Finally, in the last section, we present some numerical simulations.

2 Equilibria
By using system (1.7) we obtain the following system for the equilibria

0 = τ

[
rU
(
1− κ−1U

)
− A U

α+ U
2

]
,

v′(a) = −τ D v(a), for a ≥ 0,

v(0) = τµ
A U

α+ U
2 ,

(2.1)

with
A =

∫ ∞
1

v(a)da. (2.2)

From the second equation of (2.1), we have

v(a) = e−τDav(0),∀a ≥ 0,

and by using (2.2) and the last equation (2.1), we obtain

A =

∫ ∞
1

e−τDadav(0) =
e−τD

τD
v(0)
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and

v(0) = τ µ
U

α+ U
2

∫ ∞
1

e−τDadav(0), (2.3)

respectively. We can see that there are two cases.
Case 1: Assume that v(0) = 0. Then

A = 0

and
U = 0 or U = κ.

Case 2: Assume that v(0) > 0. Then from equation (2.3) we deduce that

α+ U
2

=
µ

D
e−τDU.

Remark 2.1 As a consequence of the above formula we have

U

α+ U
2 =

D

µ
eτD. (2.4)

So we should consider the zeros of the following second order function

p (x) = x2 − µ

D
e−τDx+ α

with
p(0) = α > 0 and p′(0) = − µ

D
e−τD < 0.

Therefore whenever p(x) has some real roots they must be all strictly positive.
Moreover the discriminant of p(x) is

∆ =
( µ
D
e−τD

)2
− 4α.

Then we have two cases.
Case 2)-(a):

∆ = 0⇔
√
α =

µ

2D
e−τD

and in the case we have
U =

µ

2D
e−τD. (2.5)

Case 2)-(b):
∆ > 0⇔

√
α <

µ

2D
e−τD

and we have two solutions

0 < U− :=
µ

2D
e−τD −

√
∆

2
< U+ :=

µ

2D
e−τD +

√
∆

2
.

Whenever U > 0 and by considering the first equation of (2.1), we deduce that

A = r
(
α+ U

2
) (

1− κ−1U
)
. (2.6)

To summarize, we have the following result.
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Lemma 2.2 (Equilibria) The boundary equilibria

(U, v) = (0R, 0L1) and (U, v) = (κ, 0L1)

always exist.
Moreover we have the following alternatives:

(i) If
√
α =

µ

2D
e−τD and

µ

2D
e−τD

1

κ
< 1, (2.7)

then the interior equilibrium is unique and given by

U =
µ

2D
e−τD and v(a) = e−τDav(0)

with v(0) = τDeτDA and A is given by (2.6).

(ii) If
√
α <

µ

2D
e−τD and

µ

2D
e−τD

1

κ
< 1, (2.8)

then we have the following alternatives:

(a) If
µ

2D
e−τD +

√
∆ > κ, (2.9)

the system has exactly one positive interior equilibrium and this in-
terior equilibrium is given by

U− =
µ

2D
e−τD −

√
∆

2
and v−(a) = e−τDav−(0)

with v−(0) = τDeτDA− and

A− = r
(
α+ U

2

−

) (
1− κ−1U−

)
.

(b) If
µ

2D
e−τD +

√
∆ < κ, (2.10)

the system has exactly two positive interior equilibria and the interior
equilibria are given by

U± =
µ

2D
e−τD ±

√
∆

2
and v±(a) = e−τDav±(0)

with v±(0) = τDeτDA± and

A± = r
(
α+ U

2

±

) (
1− κ−1U±

)
.

Remark 2.3 Whenever
√
α =

µ

2D
e−τD we have

U =
√
α and U

2
= α. (2.11)
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3 Abstract Cauchy problem formulation
In this section we will rewrite the system (1.7) as an abstract non densely

defined Cauchy problem. We adapt the idea of Thieme in [36]. Consider X =
R2 × L1(0,∞) endowed with the usual product norm∥∥∥∥∥∥

 U
γ
v

∥∥∥∥∥∥ = |U |+ |γ|+ ‖v‖L1 .

Consider the closed subspace of X

X0 = R× {0R} × L1(0,∞) =


 U

0R
v

 ∈ X

 . (3.1)

Let L : D(L) ⊂ X → X be the linear operator defined by

L

 U
0R
v

 =

 −χU
−v(0)

−v′ − τ D v

 (3.2)

and
D(L) := R× {0R} ×W1,1(0,∞). (3.3)

Then we can observe that X0 = D(L) and L is non densely defined. Let
F : X0 → X be the nonlinear operator defined by

F

 U
0R
v

 =

 B1(U,A)
B2(U,A)

0L1

 (3.4)

where

A :=
∫ +∞
1

v(a)da, B1(U,A) := χU + τ

[
r
(
1− κ−1U

)
− A

α+ U2

]
U,

B2(U,A) := τµ
AU

α+ U2
.

(3.5)

The partial differential equation (1.7) can be rewritten as the following non-
densely defined abstract Cauchy problem

dw(t)

dt
= Lw(t) + F (w(t)) for t ≥ 0, w(0) = w0 ∈ X0. (3.6)

4 Computation of the linearized equation
In the rest of the paper, we will make the following assumption.
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Assumption 4.1 We assume that

√
α =

µ

2D
e−τD and

µ

2D
e−τD < κ. (4.1)

Set

w =

 U
0R
v


where U and v are described in Lemma 2.2-(i). Then we have

w ∈ D(L) and Lw + F (w) = 0.

In order to work around a 0-equilibrium we use the following change of variable

x(t) = w(t)− w

and in the rest of the paper the solution x(t) we will consider is a mild solution
of the abstract Cauchy problem

dx(t)

dt
= Lx(t) + F (x(t) + w)− F (w) , for t ≥ 0, x(0) = x0 ∈ X0. (4.2)

The linearized equation of (4.2) around the equilibrium 0 is

dx(t)

dt
= Lx(t) +DF (w)x(t) for t ≥ 0, x(0) ∈ X0, (4.3)

where

DF (w)

 U
0R
v

 =

 α1U + α2A
γ2A
0L1


with

A :=

∫ +∞

1

v(a)da, α1 = χ+ τr

(
1− µe−τD

κD

)
, α2 = −τD

µ
eτD, γ2 = τDeτD.

5 Computation of the characteristic equation
Abstract Cauchy problem (4.2) can be rewritten as

dx(t)

dt
= Px(t) +H(x(t)), for t ≥ 0, (5.1)

where
P = L+DF (w)

is a linear operator and

H(x) = F (x+ w)− F (w)−DF (w)x
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satisfies H(0) = 0 and DH(0) = 0. Next we will study the spectral properties of
the linearized equation of (5.1) in order to investigate the dynamical behavior
for system (5.1). Denote

Ω := {λ ∈ C : Re(λ) > −min{χ, τD}}. (5.2)

By applying the results of Liu, Magal and Ruan [27], we obtain that if λ ∈ Ω,
then λ ∈ ρ(L) and

(λI − L)−1

 δ
γ
v

 =

 δ̃
0R
ṽ

 , whenever

 δ
γ
v

 ∈ X and

 δ̃
0R
ṽ

 ∈ D(L),

where

δ̃ =
δ

λ+ χ
, ṽ(a) = e−(λ+τD)aγ +

∫ a

0

e−(λ+τD)(a−s)v (s) ds.

Moreover, L is a Hille-Yosida operator.
Now it remains to precise the spectral properties of P := L + DF (w). For

convenience, we set C := DF (w). Let λ ∈ Ω. Since λI − L is invertible, it
follows that λI −P = λI − (L+C) is invertible if and only if I −C (λI − L)

−1

is invertible. Moreover, when I − C (λI − L)
−1 is invertible we have

(λI − (L+ C))
−1

= (λI − L)
−1 (

I − C(λI − L)−1
)−1

.

Consider

(I − C(λI − L)−1)

 δ
γ
v

 =

 ζ1
ζ2
v̂

 .

Then we obtain
v = v̂

and we should have

∆(λ)

(
δ
γ

)
=

(
ζ1 + α2

∫ +∞
1

(∫ a
0
e(λ+τD)(s−a)v̂ (s) ds

)
da

ζ2 + γ2
∫ +∞
1

(∫ a
0
e(λ+τD)(s−a)v̂ (s) ds

)
da

)
,

where the 2 by 2 matrix ∆(λ) is defined by

∆(λ) :=

(
1− α1

λ+χ −α2

∫ +∞
1

e−(λ+τD)ada

0 1− γ2
∫ +∞
1

e−(λ+τD)ada

)
. (5.3)

Whenever ∆(λ) is invertible, we have(
δ
γ

)
= ∆(λ)−1

(
ζ1 + α2

∫ +∞
1

(∫ a
0
e(λ+τD)(s−a)v̂ (s) ds

)
da

ζ2 + γ2
∫ +∞
1

(∫ a
0
e(λ+τD)(s−a)v̂ (s) ds

)
da

)
.

As a consequence we obtain the following lemma.
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Lemma 5.1 The following results hold.

(i) σ(P )∩Ω = σp(P )∩Ω = {λ ∈ Ω : det ∆(λ) = 0}, where σp(P ) is the point
spectrum of P .

(ii) If λ ∈ ρ(P ) ∩ Ω, we have the following formula for the resolvent

(λI − P )−1

 ζ1
ζ2
v̂

 =

 δ∗

0R
v∗

 (5.4)

with {
δ∗ = δ

λ+χ

v∗(a) = e−(λ+τD)aγ +
∫ a
0
e(λ+τD)(s−a)v̂ (s) ds,

where δ and γ are given by the following formula(
δ
γ

)
= ∆(λ)−1

(
h1(λ)
h2(λ)

)
with(

h1(λ)
h2(λ)

)
:=

(
ζ1 + α2

∫ +∞
1

(∫ a
0
e(λ+τD)(s−a)v̂ (s) ds

)
da

ζ2 + γ2
∫ +∞
1

(∫ a
0
e(λ+τD)(s−a)v̂ (s) ds

)
da

)
(5.5)

and ∆(λ) are defined in (5.3).

From the explicit formula for the resolvent we deduce the following lemma.

Lemma 5.2 For each λ0 ∈ σ (P ) ∩ Ω, λ0 is a pole of the resolvent of order k0
if and only if λ0 is a root of order k0 of ∆(λ).

Since L is a Hille-Yosida operator, and DF (w) is bounded, P is also a Hille-
Yosida operator. Consequently P0 (the part of P in X0) generates a strongly
continuous semigroup {TP0(t)} on X0. In order to apply the center manifold
theorem and normal form theory, we need to study the essential growth bound
of P0. By using the perturbation result in Thieme [37] or Ducrot Liu and Magal
[8] we obtain the following estimation.

Proposition 5.3 The essential growth rate of the strongly continuous semi-
group generated by P0 is strictly negative.

6 Bogdanov-Takens singularity
In this section, we prove that the equilibrium 0X of (4.2) is a Bogdanov-

Takens singularity under some assumptions. Notice that

σ(P ) ∩ Ω = σP (P ) ∩ Ω = {λ ∈ Ω : det ∆(λ) = 0}.

Since the matrix ∆(λ) in (5.3) is triangular we obtain

det ∆(λ) =

(
1− α1

λ+ χ

)(
1− γ2

∫ +∞

1

e−(λ+τD)ada

)
, λ ∈ Ω.
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Assumption 6.1 We assume that

√
α =

µ

2D
e−τD and κ = 2

√
α. (6.1)

Remark 6.2 The condition (6.1) implies that µ
2D e

−τD < κ. Hence under As-
sumption 6.1, the system (1.7) has a unique interior equilibrium.

Under Assumption 6.1,

det ∆(λ) =
f(λ)

g(λ)

with
f(λ) = λ2 + τDλ(1− e−λ), g(λ) = (λ+ χ) (λ+ τD) . (6.2)

Then λ = 0 is a root of det ∆(λ) = 0 with algebraic multiplicity 2 and

σ (P ) ∩ iR = {0} and ω0,ess (P0) < 0.

Now we compute the projectors on the generalized eigenspace associated to
eigenvalue 0 of P. From the above discussion we already knew that 0 is a pole
of (λI − P )

−1of finite order 2. This means that 0 is isolated in σ (P ) ∩ Ω and
the Laurent’s expansion of the resolvent around 0 takes the following form

(λI − P )
−1

=

+∞∑
n=−2

λnBPn,0.

The bounded linear operator BP−1,0 is the projector on the generalized eigenspace
of P associated to 0. We remark that

λ2 (λI − P )
−1

=

+∞∑
m=0

λmBPm−2,0.

So we have the following approximation formula

BP−1,0 = lim
λ→0

d

dλ

(
λ2 (λI − P )

−1
)

and by computation, we can obtain the following lemma.

Lemma 6.3 Let Assumption 6.1 be satisfied. Then 0 is a pole of (λI − P )
−1

of order 2, and the projector on the generalized eigenspace of P associated to
the eigenvalue 0 is given by

BP−1,0

 ζ1
ζ2
v̂

 =

 δ#

0R
v#


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with

δ# = τDχh2(0)
χ2µ(1+τD) −

τDh′2(0)
µ(1+τD) + h1(0) + τD[(1+τD)(χ−2)+χ]h2(0)

2χµ(1+τD)2
,

v#(a) = τDh2(0)
1+τD e−τDa, h1(0) = ζ1 + α2

∫ +∞
1

(∫ a
0
eτD(s−a)v̂ (s) ds

)
da,

h2(0) = ζ2 + γ2
∫ +∞
1

(∫ a
0
eτD(s−a)v̂ (s) ds

)
da,

h′2(0) = γ2
∫ +∞
1

(∫ a
0

(s− a) eτD(s−a)v̂ (s) ds
)
da.

From the above results, we obtain a state space decomposition with respect
to the spectral properties of the linear operator P . More precisely, the projector
on the linear center manifold is defined by

ΠP
c

 ζ1
ζ2
v̂

 = BP−1,0

 ζ1
ζ2
v̂

 =

 δ#

0R
v#

 .

Set
ΠP
h := I −ΠP

c .

We denote by

Xc := ΠP
c (X) , Xh := ΠP

h (X) , Pc := P |
Xc
, Ph := P |

Xh
.

Now we have the decomposition

X = Xc ⊕Xh.

Since

BP−1,0

 1
0
0

 =

 1
0
0

 ,

BP−1,0

 0
1
0

 =

 τD
χµ(1+τD) + τD[(1+τD)(χ−2)+χ]

2χµ(1+τD)2

0R
τD

1+τD e
−τD·

 ,

we obtain the basis {χ1, χ2} of Xc defined by

χ1(a) =

 1
0
0

 , χ2(a) =

 0R
0

−µe−τDa

 .

Note that

Pχ1(a) =

 0
0
0

 , Pχ2(a) = χ1(a).

The matrix of Pc in the basis {χ1, χ2} of Xc is given by

P [χ1, χ2] = [χ1, χ2]

[
0 1
0 0

]
.

From the above analysis, we obtain the following theorem.
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Theorem 6.4 Suppose that Assumption 6.1 holds. Then the unique positive
equilibrium

(
U, v

)
of (1.7) is a cusp of codimension 2, i.e., system (1.7) has a

Bogdanov-Takens singularity.

7 Bogdanov-Takens bifurcation
It is more interesting to determine a versal unfolding for the original system

(1.3) with a Bogdanov–Takens singularity, i.e., to determine which of the param-
eters can be chosen as bifurcation parameters such that system (1.3) exhibits
Bogdanov–Takens bifurcation. For this, choose κ and D in system (1.3) as the
bifurcation parameters, i.e., consider 1/κ+ β1 and D + β2, where β := (β1, β2)
vary in a sufficiently small neighborhood of (0, 0). Adding these perturbations
to system (1.3), using the same procedure in section 1 and 3, we obtain

dw(t)

dt
= Lw(t) + F (β,w(t)), t ≥ 0, w(0) ∈ X0, (7.1)

which is corresponding to
dU(t)

dt
= τ

[
rU(t)

(
1−

(
κ−1 + β1

)
U(t)

)
− A(t)U(t)

α+ U(t)2

]
,

∂tv(t, a) + ∂av(t, a) = −τ (D + β2) v(t, a), for a ≥ 0,

v(t, 0) = τµ
A(t)U(t)

α+ U(t)2
,

(7.2)

where L is defined by

L

 U
0
v

 =

 −χU
−v(0)

−v′ − τDv


and F : D(L)→ X is defined by

F (β,w) =

 B∗1 (β,w)
B∗2 (β,w)
−τβ2v



for w =

 U
0
v

 ∈ D(L), here

B∗1 (β,w) = χU + τrU [1− (1/κ+ β1)U ]− τAU

α+ U2
,

B∗2 (β,w) =
τµAU

α+ U2

with A :=
∫ +∞
1

v(a)da.
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In the following, we assume Assumption 6.1 holds. By making the change
of variables x(t) := w(t)− w, (7.1) becomes dx(t)

dt
= Lx(t) +H(β, x(t)), t ≥ 0,

x(0) = w(0)− w =: x0 ∈ D(L).

where H(β, x(t)) = F (β, x(t) + w) − F (0, w). To determine that system (7.1)
is the versal unfolding of system (1.3) with Bogdanov-Takens singularity, we
include the parameter β into the state variable. Consider the system

dβ(t)

dt
= 0, for t ≥ 0,

dx(t)

dt
= Lx(t) +H(β(t), x(t)),

x(0) = w(0)− w =: x0 ∈ D(L)
β(0) = β0 ∈ R2.

(7.3)

Under Assumption 6.1, 0 is an equilibrium of system (7.3). Note that for w = U
0
v

 ∈ D(L),

∂

∂x
H(0, 0)

 U
0
v

 =

 α1U + α2A
γ2A
0L1

 ,
∂

∂β
H(0, 0)β =

 −τrαβ1
0

−e−τDarατ2DeτDβ2


where

α1 = χ, α2 = − τ
κ
, γ2 =

µτ

κ
,A =

∫ +∞

1

v(a)da.

In order to rewrite (7.3) as an abstract Cauchy problem, we set

X = R2 ×X

and consider the linear operator A : D (A) ⊂ X → X defined by

A


βR2 U
0
v


 =


0R2

P

 U
0
v

+ ∂
∂βH(0, 0)β

 ,∀


βR2 U
0
v


 ∈ D (A)

with P is defined in (5.1), D (A) = R2 ×D(P ). Then

D (A) = R2 ×D(P ) := X0.

Since P is a Hille-Yosida operator, we can prove that A is also a Hille-Yosida
operator. Consider F : D (A)→ X the nonlinear map defined by

F


βR2 U
0
v


 =


0R2

Ĥ

β,
 U

0
v


 , for


βR2 U
0
v


 ∈ D (A)
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with

Ĥ

β,
 U

0
v

 = H

β,
 U

0
v

− ∂

∂x
H(0, 0)

 U
0
v

− ∂

∂β
H(0, 0)β.

Then we have
F
(

0R2

0X

)
= 0 and DF

(
0R2

0X

)
= 0.

Now we can reformulate system (7.3) as the following system

dξ(t)

dt
= Aξ(t) + F (ξ(t)) , ξ(0) = ξ0 ∈ D(A). (7.4)

Note that
σ (P ) ∩ iR = {0} and ω0,ess ((P )0) < 0.

For the proof of the following Lemma the reader is referred to Liu, Magal and
Xiao [29, lemma 5.1].

Lemma 7.1 Let Assumption 6.1 be satisfied. Then

σ (A) = σ (A0) = σ (P0) = σ (P ) ,

and for each λ ∈ ρ (A) ,

(λI −A)
−1


β̃ Ũ

ϑ̃
ṽ


 =


λ−1β̃

(λI − P )
−1

 Ũ

ϑ̃
ṽ

+ ∂
∂βH(0, 0)λ−1β̃


 .

(7.5)

Next we compute the projectors on the generalized eigenspace associated to
eigenvalue 0 of A. Note that

BAk,0 :=
1

2πi

∫
SC(0,ε)+

λ−(k+1) (λI −A)
−1
dλ.

Set (
β
x

)
:= BA−1,0

(
β̂
x̂

)
.

Since

(λI −A)
−1
(
β̂
x̂

)
=

(
λ−1β̂

(λI − P )
−1
[
x+ ∂

∂βH(0, 0)λ−1β̂
] )

=

(
0∑

j=−2
λjBPj,0x̂

)
+

 λ−1β̂∑
j=−2

λj−1BPj,0
∂
∂βH(0, 0)β̂

 ,
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it follows that

BAk,0

(
β̂
x̂

)
=

1

2πi

∫
SC(0,ε)+

λ−(k+1)

(
0∑

j=−2
λjBPj,0x̂

)

+λ−(k+1)

 λ−1β̂∑
j=−2

λj−1BPj,0
∂
∂βH(0, 0)β̂

 dλ.

Then
β = 1

2πi

∫
SC(0,ε)

+ λ−k−1λ−1β̂dλ,

x =
∑
j=−2

1
2πi

∫
SC(0,ε)

+ λ−k−1λjBPj,0x̂ dλ

+
∑
j=−2

1
2πi

∫
SC(0,ε)

+ λ−k−1λjλ−1BPj,0
∂
∂βH(0, 0)β̂dλ.

Since∫
SC(0,ε)

+

λ−k−2+jdλ =

∫ 2π

0

(
ρeiθ

)−k−2+j
iρeiθdθ = iρ(−k−1+j)

∫ 2π

0

(
eiθ
)[−k−1+j]

dθ

=

{
2πi, if j = k + 1
0, otherwise

and∫
SC(0,ε)

+

λ−k−1+jdλ =

∫ 2π

0

(
ρeiθ

)−k−1+j
iρeiθdθ = iρ(−k+j)

∫ 2π

0

(
eiθ
)(−k+j)

dθ

=

{
2πi, if j = k
0, otherwise,

we have

β =

{
β̂, k = −1
0, k 6= −1

,

x =



0 k ≤ −4

BPk+1,0

 −τrαβ̂1
0

−e−τDarατ2DeτDβ̂2

 −2 > k > −4

BPk+1,0

 −τrαβ̂1
0

−e−τDarατ2DeτDβ̂2

+BPk,0x̂ k ≥ −2

and

BA−1,0

(
β̂
x̂

)
=

(
β̂

BP0,0
∂
∂βH(0, 0)β̂ +BP−1,0x̂

)
.

Note that
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(λI − P )
−1

=

+∞∑
n=−2

λnBPn,0, and lim
λ→0

1

2

d2

dλ2

[
λ2 (λI − P )

−1
]

= BP0,0.

We first have the following lemma.

Lemma 7.2 We have

BP0,0

 ζ1
ζ2
v̂

 =

 1
2κ1

0R
1
2κ2(a) +

∫ a
0
eτD(s−a)v̂ (s) ds


with

κ1 =

(
τD(−τ2χD2+6τ2D2−4τχD+18τD−6χ+12)

6χµ(τ3D3+3τ2D2+3τD+1) − τD(2+τD)

µχ(1+τD)2

)
ρ1+

(2+τD)τD

µ(1+τD)2
ρ2 + 2ρ3 − τD

µ(1+τD)ρ4,

κ2(a) = e−τDaρ1

(
1 +

1

(τD + 1)
2

)
+ 2e−τDa

τD

1 + τD
ρ2 − 2e−τDaa

τD

1 + τD
ρ1,

ρ1 = ζ2 + γ2

∫ +∞

1

(∫ a

0

eτD(s−a)v̂ (s) ds

)
da,

ρ2 = γ2

∫ +∞

1

(∫ a

0

(s− a) eτD(s−a)v̂ (s) ds

)
da,

ρ3 = α2

∫ +∞

1

(∫ a

0

(s− a) eτD(s−a)v̂ (s) ds

)
da,

ρ4 = γ2

∫ +∞

1

(∫ a

0

(s− a)
2
eτD(s−a)v̂ (s) ds

)
da.

The projector on the generalized eigenspace of A associated to 0 is given in
the following lemma.

Lemma 7.3 0 is a pole of order 3 of the resolvent of A and the projector on
the generalized eigenspace of A associated to 0 is given by

BA−1,0

(
β̂
x̂

)
=

(
β̂

BP0,0
∂
∂βH(0, 0)β̂ +BP−1,0x̂

)
.

In particular we have

BA−1,0

 (
1
0

)
0

 =


(

1
0

)
 0

0R
0


 ,
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BA−1,0

 (
0
β2

)
0

 =


(

0
β2

)
 1

2κ1

0R
1
2κ2(a)− β2rατ2DeτDe−τDaa


 ,

with

κ1 =

(
τD(−τ2χD2+6τ2D2−4τχD+18τD−6χ+12)

6χµ(τ3D3+3τ2D2+3τD+1) − τD(2+τD)

µχ(1+τD)2

)
ρ1+

(2+τD)τD

µ(1+τD)2
ρ2 + 2ρ3 − τD

µ(1+τD)ρ4,

κ2(a) = e−τDa

(
1 +

1

(τD + 1)
2 − 2a

τD

1 + τD

)
ρ1

+2e−τDa
τD

1 + τD
ρ2,

ρ1 = γ2

∫ +∞

1

(∫ a

0

eτD(s−a) (−e−τDarατ2DeτDβ2) ds) da,
ρ2 = γ2

∫ +∞

1

(∫ a

0

(s− a) eτD(s−a) (−e−τDarατ2DeτDβ2) ds) da,
ρ3 = α2

∫ +∞

1

(∫ a

0

(s− a) eτD(s−a) (−e−τDarατ2DeτDβ2) ds) da,
ρ4 = γ2

∫ +∞

1

(∫ a

0

(s− a)
2
eτD(s−a) (−e−τDarατ2DeτDβ2) ds) da,

BA−1,0


0
0 1
0
0


 =


0
0 1
0
0


 ,

BA−1,0


0
0 0
1
0


 =


0
0 τD

χµ(1+τD) + τD[(1+τD)(χ−2)+χ]
2χµ(1+τD)2

0R
τD

1+τD e
−τDa



 .

Let
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e1(a) =


0R2 1
0
0


 , e2(a) =


0R2 0R
0

−µe−τDa


 ,

e3(a) =



(
0
µ

rατ2DeτD

)
 0

0R
µe−τDa

τD(τD+1) + 1
2 κ̂2(a)− µe−τDaa



 , e4(a) =


(
− 1
τrα
0

)
 0

0R
µe−τDa




with

κ̂2(a) = e−τDa

(
1 +

1

(τD + 1)
2 − 2a

τD

1 + τD

)
ρ1 + 2e−τDa

τD

1 + τD
ρ2,

ρ1 = −γ2
∫ +∞

1

(∫ a

0

e−τDaµds

)
da, ρ2 = −γ2

∫ +∞

1

(∫ a

0

(s− a) e−τDaµds

)
da.

Then e1, e2, e3, e4 are independent and

Ae1(a) = 0, Ae2(a) = e1(a), Ae3(a) = e2(a),Ae4(a) = 0.

From the above results, we obtain a state space decomposition with respect to
the spectral properties of the linear operator A. More precisely, the projector
on the linear center manifold is defined by

ΠAc

(
β̂
x̂

)
= BA−1,0

(
β̂
x̂

)
.

Set
ΠAh := I −ΠAc .

We denote by

Xc := ΠAc (X ) , Xh := ΠAh (X ) ,Ac := A |Xc , Ah := A |Xh .

Now we have the decomposition

X = Xc ⊕Xh.

Let G ∈ V 2(Xc, D(A)∩Xh) be a homogeneous polynomial of degree 2. Consider
the following global change of variable

ς = ξ −G(ΠAc ξ).

By using the results in Liu, Magal and Ruan [28, lemma 5.1], we obtain that
the Taylor expansion of up to second order term on the local center manifold is
given by the ordinary differential equation on Xc :

dςc(t)

dt
= Acςc(t) +

1

2!
ΠAc D

2F (0) (ςc(t), ςc(t)) + h.o.t.
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Now we compute 1
2!Π
A
c D

2F(0) (ςc(t), ςc(t)) expressed in terms of the basis {e1, e2, e3, e4}.
ςc can be expressed by

ςc = x1e1 + x2e2 + β1e3 + β2e4

=



(
− 1
τrαβ2
µ

rατ2DeτD
β1

)
 x1

0R(
µe−τDa

τD(τD+1) + 1
2 κ̂2(a)− µe−τDaa

)
β1 + µe−τDaβ2 − µe−τDax2



 .

By computation, we have

1

2!
ΠAc D

2F(0)



(
− 1
τrαβ2
µ

rατ2DeτD
β1

)
 x1

0R(
µe−τDa

τD(τD+1) + 1
2 κ̂2(a)− µe−τDaa

)
β1 + µe−τDaβ2 − µe−τDax2




2

= (e1, e2, e3, e4)
1

2!


%1

− e
τDa

µ %2(a)

0
0

 ,

with

%1 =
(

τD
χµ(1+τD) + τD[(1+τD)(χ−2)+χ]

2χµ(1+τD)2

)
h2(0)− τD

µ(1+τD)h
′
2(0) + h1(0),

%2(a) = τDe−τDa

1+τD h2(0),

h1(0) = − 1
2
τr(4
√
α+κ)

κ
√
α

x21 + 4
√
α
α β2x1 + α2β1

∫ +∞
1

(∫ a
0
− 2µ
rατ2DeτD

τeτD(s−a)ιds
)
da,

h2(0) = − 1
2
τµr√
α
x21 + γ2β1

∫ +∞
1

(∫ a
0
− µ
rατ2DeτD

2τeτD(s−a)ιds
)
da,

h′2(0) = γ2β1
∫ +∞
1

(∫ a
0
− 2µ
rατDeτD

(s− a) eτD(s−a)ιds
)
da,

ι(s) =
(

µe−τDs

τD(τD+1) + 1
2 κ̂2(s)− µe−τDss

)
β1 + µe−τDsβ2 − µe−τDsx2.

Define the basis of Xc by {e1, e2, e3, e4} and the matrix of Ac in the basis
{e1, e2, e3, e4} of Xc is given by

A [e1, e2, e3, e4] = [e1, e2, e3, e4]


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
Thus by choosing χ = 2 we obtain the Taylor expansion of up to second order
term on the local center manifold as follows
·
x1 = x2 +

τD (2 + τD)

4µ (1 + τD)
2h2(0)− τD

2µ (1 + τD)
h′2(0) +

1

2
h1(0) +O(|(β1, β2, x1, x2)|3)

(7.6)
·
x2 = β1 −

τD

2µ (1 + τD)
h2(0) +O(|(β1, β2, x1, x2)|3).
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Following the procedure of deriving normal form in [5], we can transform the
above system into

·
x1 = x2 (7.7)
·
x2 = α̃1 + α̃2x2 + x21 − x1x2 +O(|(β1, β2, x1, x2)|3),

where

α̃1 =
(
β1 +A1β

2
1 +A2β1β2

) 16A4
3

A3
4

,

α̃2 = − (A5β1 +A6β2)
2A3

A4

with

A1 =

(
2µ (τD + 1) +

[
(τD + 1)

2
+ 1
]
τDρ1

+2τD (τD + 1) τDρ2 − [ρ1τD + µ (τD + 1)] (3τD + 2)

)
2rατDeτD (1 + τD)

2 +

µγ2τD (2 + τD) + µγ2 (3τD + 2) + 2α2µ
2 (1 + τD)

2

2 (1 + τD) rατ2D2e2τD
,

A2 =
µ

rαeτD
, A3 = −

τr
(
6 + 14τD + 7τ2D2

)
8
√
α (1 + τD)

2 < 0,

A4 =
τ2rD

4
√
α (1 + τD)

> 0, A5 = −A2, A6 =
2
√
α

α
.

Theorem 7.4 Assume that Assumption 6.1 holds. Then system (7.2) can un-
dergo Bogdanov-Takens bifurcation in a small neighborhood of the unique posi-
tive equilibrium as the bifurcating parameters (β1, β2) vary in a small neighbor-
hood of (0, 0). More precisely, there exist four bifurcation curves: 2 saddle-node
bifurcation curves SN+ and SN−, Hopf bifurcation curve H and homoclinic
bifurcation curve HL, in the small neighborhood of (0, 0) of parameter plane
(β1, β2), such that system (7.2) has a unique stable limit cycle as (β1, β2) lies
between H and HL, and no limit cycle for system (7.2) outside this region. The
local representations of these bifurcations curves are given by

SN+ = {(β1, β2) : α̃1 = 0, α̃2 > 0} ,
SN− = {(β1, β2) : α̃1 = 0, α̃2 < 0} ,

H =
{

(β1, β2) : α̃1 = −α̃2
2, α̃2 < 0

}
and

HL =

{
(β1, β2) : α̃1 = −49

25
α̃2
2 +O

(
α̃
5/2
2

)
, and α̃2 < 0

}
.

The corresponding bifurcation diagram is shown in Figure 1.
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Figure 1: The Bogdanov-Takens bifurcation diagram of system (7.7) in the small
neighborhood of (α̃1, α̃2) = (0, 0).

8 Numerical simulations
In order to illustrate the Bogdanov-Takens bifurcation for system (7.2), we

present some numerical simulations.

Symbol First set of parameters values Second set of parameters values
τ 0.1 1
r 0.8 0.8
D 0.8 0.8
α 500 500

κ := 2
√
α 44.7214 44.7214

µ := κDeτD 38.7569 79.6234
β1 −10−3 −10−3

β2 −0.2362 −0.3322

Table 1: The formulas used for κ and µ in the first column of the table serve
to satisfy Assumption 6.1. We fix the parameter τ = 0.1 (respectively τ = 1)
in the second column (respectively third column). The parameters in the second
column are computed by using the formula for H. The parameters in the last
line are computed by using the formula for HL.

The parameters values used for the simulation of system (7.2) are listed in
Table 1. In Figure 2 and Figure 3 we run a simulation of the system (7.2) by
using respectively the second and third column of Table 1. In the simulations
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we use the equilibrium solution of the system whenever β1 = β2 = 0. Namely
we use the formula in Lemma 2.2-(i).

Figure 2 corresponds to a simulation of the model (7.2) with the parameters
fixed in the second column of Table 1. We observe that the solution is converging
to a periodic orbit. Actually since τ = 0, A(t) coincides with the total number of
predators V (t) and the Figure 2-(c) corresponds the convergence of the solution
to a periodic orbit of system (7.2) in the phase plane (U, V ).

Figure 3 corresponds to a simulation of the model (7.2) with the parameters
fixed in the third column of Table 1. In this figure we fix in particular τ = 1.
By comparing Figure 2-(c) and Figure 3-(c) we observe that the limit behavior
is much more irregular when τ = 1 than when τ = 0.1. In Figure 3-(c) the limit
cycle follows the U -axis and the A-axis. The picks in Figure 3-(a) and Figure
3-(b) are much sharper than in Figure 2-(a) and Figure 2-(b).
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Figure 2: In this figure we run a simulation of model (7.2) with the first set of
parameters values listed in the second column of Table 1. In figures (a) and (b)
we plot the function t → U(t) and t → A(t) respectively. In figure (c) we plot
the function t→ (U(t), A(t)) in the phase plane (U,A). In figure (d) we plot the
(t, a)→ v(t, a) the age structured density of predators when the time t varies.
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Figure 3: In this figure we run a simulation of model (7.2) with the second set
of parameters values listed in the third column of Table 1. In figures (a) and
(b) we plot the function t → U(t) and t → A(t) respectively. In figure (c) we
plot the function t → (U(t), A(t)) in the phase plane (U,A). In figure (d) we
plot the (t, a) → v(t, a) the age structured density of predators when the time t
varies.
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