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Abstract

Normal form theory is very important and useful in simplifying the forms of equations restricted on
the center manifolds in studying nonlinear dynamical problems. In this paper, using the center manifold
theorem associated with the integrated semigroup theory, we develop a normal form theory for semilinear
Cauchy problems in which the linear operator is not densely defined and is not a Hille—Yosida operator and
present procedures to compute the Taylor expansion and normal form of the reduced system restricted on
the center manifold. We then apply the main results and computation procedures to determine the direc-
tion of the Hopf bifurcation and stability of the bifurcating periodic solutions in a structured evolutionary
epidemiological model of influenza A drift and an age structured population model.
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1. Introduction
1.1. Normal form theory

To determine the qualitative behavior of a nonlinear system in the neighborhood of a nonhy-
perbolic equilibrium point, the center manifold theorem implies that it could be reduced to the
problem of determining the qualitative behavior of the nonlinear system restricted on the center
manifold, which reduces the dimension of a local bifurcation problem near the nonhyperbolic
equilibrium point. The normal form theory provides a way of finding a nonlinear analytic trans-
formation of coordinates in which the nonlinear system restricted on the center manifold takes
the “simplest” form, called normal form. These two methods, one reduces the dimension of the
original system and the other eliminates the nonlinearity of the reduced system, are conjunctly
used to study bifurcations in nonlinear dynamical systems. A normal form theorem was obtained
first by Poincaré [54] and later by Siegel [56] for analytic differential equations. Simpler proofs
of Poincaré’s theorem and Siegel’s theorem were given in Arnold [5], Meyer [46], Moser [48],
and Zehnder [67]. For more results about normal form theory and its applications see, for exam-
ple, the monographs by Arnold [5], Chow and Hale [8], Guckenheimer and Holmes [26], Meyer
and Hall [47], Siegel and Moser [57], Chow et al. [9], Kuznetsov [34], and others.

Normal form theory has been extended to various classes of partial differential equations. In
the context of autonomous partial differential equations we refer to Ashwin and Mei [6] (PDEs
on the square), Eckmann et al. [ 18] (abstract parabolic equations), Faou et al. [20,21] (Hamilto-
nian PDEs), Hassard, Kazarinoff and Wan [28] (functional differential equations), Faria [22,23]
(PDEs with delay), Foias et al. [25] (Navier—Stokes equation), Kokubu [33] (reaction—diffusion
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equations), McKean and Shatah [45] (Schrodinger equation and heat equations), Nikolenko [51]
(abstract semi-linear equations), Shatah [55] (Klein—Gordon equation), Zehnder [68] (abstract
parabolic equations), etc. We refer to Chow et al. [10] (and references therein) for a normal form
theory in quasiperiodic partial differential equations.

In this paper, we develop a normal form theory for the following abstract Cauchy problem
with non-dense domain

du(t)

dt
u(0)=xe D(A),

= Au(t) + F(u(t)), >0, (1.1

where A : D(A) C X — X is a non-densely defined linear operator on a Banach space X, and
F : D(A) — X is a k-time continuously differentiable function for some k > 2. The Cauchy
problem (1.1) is said to be non-densely defined if

D(A) # X.

Therefore A is not the infinitesimal generator of a strongly continuous semigroup of bounded lin-
ear operators on X, and in general, F (x) does not belong to D(A). So the solution of system (1.1)
is not a mild solution derived from the classical semi-linear formulation.

1.2. Motivation — age structured models

The main motivation comes from investigating the nonlinear dynamics of structured (age,
size, space, etc.) population models described by various types of equations including par-
tial differential equations with nonlinear and nonlocal boundary conditions (Cantrell and Cos-
ner [7], Diekmann and Heesterbeek [14], lannelli [29], Magal and Ruan [41], Murray [49],
Perthame [53], Thieme [61], Webb [64], etc.). It is well-known that several types of differential
equations, such as functional differential equations (Adimy [1], Diekmann et al. [15], Hale and
Verduyn Lunel [27], Liu et al. [35]), age structured models (Magal [39], Magal and Ruan [42],
Perthame [53], Thieme [58,60], and Webb [64]), parabolic partial differential equations (Chu
et al. [11], Ducrot et al. [16]), and partial differential equations with delay (Ducrot et al. [17]
and Wu [66]), can be formulated as non-densely defined Cauchy problems in the form of (1.1).
Here we present two examples of structured models and refer to Da Prato and Sinestrari [13],
Thieme [58,59], and Magal and Ruan [40,42] for more examples.

(a) A structured model of influenza A drift. Suppose that the total host population size N
is a constant. Let 7 (¢) be the number of infected individuals at time ¢. Let a > 0 be the time
since the last infection, that is, the duration of time since an individual has been susceptible.
Assume that the average number of amino acid substitutions is a continuous variable. More
precisely, let k£ > O be the average number of amino acid substitutions per unit of time (that is,
the mutation rate). Then the number of substitutions after a period of time a in the susceptible
class is given by ka. Let s(¢, a) be the density of uninfected hosts (structured with respect to a),

so that falzl s(t,a)da = fk];zl s(t, k= 1)k~1dl is the number of uninfected hosts that were last
infected by a virus which differed by more than kag and less than ka; amino acid substitutions
from the virus strain prevailing at time 7. v > O is the recovery rate of the infected hosts. y €

L3 (0, +00) describes how amino acid substitutions affect the probability of reinfection and
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satisfies liminf,_, { Y (ka) > 0. Define p := t/k as the threshold of sensitivity, which is the
time necessary to be re-infected after one infection. This is also equivalent to assuming that it is
necessary to reach a threshold value t for the average number of amino acid substitutions before
re-infection. Assume that

§ ifa>r,

a)=2546x(a):=
vi@) =ox(@ {o ifae,1),

where § > 0. Note that f0+°°s(t, a)(a)da + 1(t) = N, Vt > 0. Assume without loss of gener-
ality that k =1 and N = 1. Then we have a structured evolutionary epidemiological model of
influenza A drift (see Pease [52], Inaba [30,31], Magal and Ruan [44])

5 5 +o00 +
t
sta) | s(’a)z—Sx(a)s(t,a)(l—fs(t,l)dl) . 1>0,a>0,
ot da
0
+00 n
s(t,O):v(l—/s(t,l)dl) , (1.2)
0
+00
5(0,.) =s0 € LL(0,400) with /so(l)dlgl,
0

where xT = max(x, 0). Consider the Banach space
X =R x L0, +00)

endowed with the usual product norm

o
= le| + el
@

Consider the linear operator A : D(A) C X — X defined by

(0-(2)
4 -9

with
D(A) = {0} x W10, +00).
Then
Xo:=D(A) = {0} x L'(0, +:00).
Set

X4 =Ry x LL(0,400) and Xo4 := XoN X4 = {0} x L1 (0, +00).
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We also consider the nonlinear operator F : (0, +00) x (0, +00) x D(A) — X defined by

0 vl = [
F(v,8,< )):( o v ) (1.4)
¢ —(1= [y " edhTsxe
By identifying s(t,.) with u(t) = (S (? )), we can rewrite the system as the following abstract
Cauchy problem ’
du(t) 0 S
T =Au(t)+ F(v,8,u(t)) fort>0 and u(0)= € D(A). (1.5)
50

(b) An age structured population model. Let u(z, a) denote the density of a population at time
¢t with age a. Consider the following age structured model with nonlinear boundary conditions
(see Magal and Ruan [43])

dult, a) + du(t, a) =—pu(t,a), acec0,+00),
Jat da
+00
u(t,0) =ah< / y(a)u(t,a)da), (1.6)
0
u(0,.) = ¢ e LL((0, +00); R),

where © > 0 is the mortality rate of the population, ay (a) is the fertility rate at age a, o« > 0 is
a parameter, the function /4 (-) describes some limitation for the reproduction of the population.
Similarly as in (a) for Eq. (1.2), consider the same space X = R x L1(0, +00) with the usual
product norm. Let A : D(A) C X — X be the linear operator on X defined by

(-7
@ —¢ — Uy

with the same domain D(A) = {0} x W!1(0, +00) and D(A) = Xo. Let H : Xg — X be the

map defined by
+00
by ((0)) _ (h(fo y(a)go(a)da)). (1.8)
(0 OLI

Then by identifying u(z,.) to v(¢) = (u((l) )) € Xy, the system (1.6) can be reformulated as the
following non-densely defined abstract Cziuchy problem

dv(t)

= Av(t) +aH(v(0)), forr>0, ()= ( 0 ) e D(A). (1.9)
)

It has been shown that Hopf bifurcation can occur in age-structured models such as (1.2)
and (1.6) (see Magal and Ruan [44,43] and references cited therein) and a Hopf bifurcation
theory has been recently developed for general age structured models in Liu et al. [36]. But up to
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now, the stability of the bifurcating periodic orbits is unknown for such systems. To address this
issue, a normal form theory for age structured models, and more generally for the non-densely
defined abstract Cauchy problem, needs to be developed. This is a first motivation for this paper.
Another motivation is coming from the analysis of Bogdanov—Takens bifurcation in the context
of age structured models. By using the normal theory presented in this article Liu, Magal and
Xiao [38] obtain recently a first example of Bogdanov—Takens for an age structured model.

1.3. Nonlinear dynamics of semilinear equations with non-dense domain

For the semilinear Cauchy problem (1.1), if A is a Hille-Yosida operator and is densely de-
fined (i.e., D(A) = X), given an initial datum in the phase space integrating the equation yields
a corresponding trajectory through that point (the constant of variation formula), so the semilin-
ear Cauchy problem is well-posed and has been extensively studied, see Engel and Nagel [19].
When A is non-densely defined (i.e., D(A) # X), the constant of variation formula may be not
well-defined and one may be able to integrate the equation twice to recover the well-posedness
(this is how integrated semigroups are introduced). When A is a Hille—Yosida operator but its
domain is non-densely defined, Da Prato and Sinestrari [13] investigated the existence of several
types of solutions for non-densely defined Cauchy problems. Thieme [58] studied the semilinear
Cauchy problem with a Lipschitz perturbation of the closed linear operator A by using integrated
semigroup theory.

We have been interested in studying the nonlinear dynamics, such as stability, bifurcations,
periodic solutions, and invariant manifolds, in the semilinear Cauchy problem (1.1) when A is
non-densely defined and is not Hille-Yosida, and have made some progress on this subject. Ma-
gal and Ruan [40] presented some techniques and results for integrated semigroups, obtained
necessary and sufficient conditions for the existence of mild solutions for non-densely defined
non-homogeneous Cauchy problems, and applied the results to study age-structured models. Ma-
gal and Ruan [42] extended the results of Thieme [58] to the case when the operator A is not
Hille-Yosida. Namely, we studied the positivity of solutions to the semilinear problem (1.1),
the Lipschitz perturbation of the problem, differentiability of the solutions with respect to the
state variable, time differentiability of the solutions, and the stability of equilibria. Magal and
Ruan [43] established a center manifold theory for the semilinear Cauchy problem (1.1) with
non-dense domain. Center-unstable manifolds for non-densely defined semilinear Cauchy prob-
lems were studied in Liu et al. [37]. Employing the center manifold theory in [43], Liu et al. [36]
established a Hopf bifurcation theorem for abstract non-densely defined Cauchy problems.

In this paper we use the integrated semigroup theory, the semilinear Cauchy problem the-
ory, and the center manifold theory (see [40,42,43]) to establish a normal form theory for the
non-densely defined Cauchy problem (1.1) when D(A) is not dense in X and A is not a Hille—
Yosida operator. The goal is to provide a method for computing the required lower order terms of
the Taylor expansion and the normal form of the reduced equations. The main difficulty comes
from the fact that the center manifold is defined by using implicit formulae in general. Here we
will show that it is possible to find some appropriate changes of variables (in Banach spaces)
to compute the Taylor expansion at any order and the normal form of the reduced system. The
main results and computation procedures will be used to Hopf bifurcation in the structured evo-
lutionary epidemiological model of influenza A drift (1.2) and the age structured population
model (2.2).
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1.4. An outline

The plan of the paper is as follows. In Section 2, we will present some preliminary results
on integrated semigroups and the center manifold theorem for the non-densely defined Cauchy
problem (1.1) and give an outline on the computation of the reduced system restricted on the
center manifold. In Section 3, we introduce some notions, justify the change of variables that
establishes the equivalence between the original and reduced systems and present the normal
form theory of the nonresonance type. In Section 4, we provide computational procedures for
the Taylor expansion and normal form of the reduced system on the center manifold. Section 5
is devoted to the application of the normal theory to the two structured models (1.2) and (1.6);
namely, we calculate the Taylor expansion of the reduced system of the structured evolutionary
epidemiological model (1.2) of influenza A drift on the center manifold and present the normal
form of the age structured population model (1.6) restricted on the center manifold, respectively,
from which we are able to study stability and direction of the Hopf bifurcation in these two
structured models.

2. Preliminaries and the sketchy computation procedure
2.1. Semiflows generated by nondensely defined Cauchy problems

A mild solution of Eq. (1.1) (or integrated solution) is a solution of the integral equation

t t
ut)=x+A / u(s)ds + / F(u(s))ds foreachr > 0,
0 0

wherein

t
/u(s)ds € D(A) foreacht > 0.
0

This last inclusion implies in particular that u(¢) € D(A) for each ¢t > 0.
From hereon, set

Xo:= m
and consider Ag as the part of A in Xg. That is, Ag is the linear operator on X defined by
Ap=A on D(Ap) = {x eD(A): Ax € Xo}.
Throughout this article, we will make the following assumption:

Assumption 2.1. We assume that:

(i) The resolvent set p(A) of A is non-empty;
(ii) Ay is the infinitesimal generator of a strongly continuous semigroup {74, (¢)};>0 of bounded
linear operators on Xj.
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Since p(A) is non-empty, we have p(A) = p(Ag) and can define the integrated semigroup
{Sa()}i=0 C L(X) generated by A as

t
Sa(t) == (A — Ag) / Ta,(s)ds(I — A)™!
0

whenever A € p(A). Then it is equivalent to considering a mild solution or a solution of
u(t) =Tay()x + (Sa© Fw)(t) fort >0,

where
d
(Sao )= E(SA * (1),

whenever t — (S4 * f)(¢) 1= fot Sa(t —s) f(s)ds is differentiable.

We refer to Arendt [2,3], Arendt et al. [4], Da Prato and Sinestrari [13], Kellermann and
Hieber [32], Magal and Ruan [40,43], Neubrander [50], and Thieme [59,60] for more results and
references on integrated semigroups. When A is a Hille—Yosida operator (see Kellermann and
Hieber [32]), the convolution (S4 * f)(¢) is differentiable with respect to the time variable ¢ as
long as f € L'((0, 7), X) (with T < 4+00), and one has the following estimation

t
|(Sao HHO] < M/e“’(”s) | £)|ds, ve=o0,
0

for some constant M > 1, and w € R.

For the age structured model (1.2), the linear operator A is Hille—Yosida if and only if p = 1.
When p > 1, the time differentiability of (S4 * f)(¢) becomes more difficult. Similar difficul-
ties arise in the context of parabolic equations with nonhomogeneous boundary conditions (see
Ducrot et al. [16]). Therefore, here we will consider the most general case in which A is not a
Hille—Yosida operator. In this case, the time differentiability of (S4 * f)(¢#) becomes an issue.
In practice, this question is related to the existence of solutions for PDE problems with nonho-
mogeneous boundary conditions which are only LP integrable in time. This question has been
studied recently in Magal and Ruan [40] and Thieme [60] for the general case and in [16] for the
almost sectorial case.

Motivated by the above discussions, in this paper we will make the following assumption.

Assumption 2.2. The map t — (S4 * f)(¢) is differentiable whenever + — f(¢) is continuous,
and there exists a map 4 : [0, +00) — [0, +00) such that

[(Sao D] <8@) SE)p]Hf(S) , V=0,
sel0,z

where

8(t) >0 ast\(O0.
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Now we need to consider the linear bounded perturbation of A and have the following pertur-
bation theorem which was proved in Magal and Ruan [40, Theorem 3.1].

Theorem 2.3. Let Assumptions 2.1 and 2.2 be satisfied. Let L € L(X¢, X). Then A+ L : D(A) C
X — X satisfies Assumptions 2.1 and 2.2.

Recall that the equilibrium solutions of system (1.1) must satisfy
Au+ F(u)=0 withu € D(A).

So, by using the change of variables v(¢) = u(¢) — u, we obtain

t t

vt)=x+A / v(s)ds + / G(v(t))ds
0 0
with G(x) = F(x + u) — F(u). Therefore, without loss of generality, we can assume that u = 0.
Furthermore, due the perturbation theorem (Theorem 2.3), we can replace A by A + DG(0) and

G by G — DG(0), and assume that F': Xg — X is Ck-smooth with k > 1 in some neighborhood
of 0 and satisfies

F0)=0 and DF(0)=0.

Now, u = 0 is an equilibrium and the linearized equation around 0 is

du

E:Aou(t) fort >0, u(0) = x € Xp.
In this setting, one can construct a semi-linear theory, we refer to [42] for more results on this
topic. In particular, when F is Lipschitz on bounded sets of X, the Cauchy problem (1.1) gen-
erates a unique maximal nonlinear semiflow {U (f)};>0 generated on the subspace X := D(A).

2.2. Spectral decomposition of the state space

By analogy to ordinary differential equations, we assume that X has the following spectral
decomposition

Xo = Xos ® Xoc ® Xou
in terms of the spectrum of Ag. Namely, we consider
os(Ag) = {A €5 (Ag) :Re(r) <0},

oc(Ag) = {A € a(Ag) : Re(r) =0},
ou(Ag) = {1 € 0(Ap) : Re(n) > 0},

and assume that for each k = s, c, u,
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(I — Ao)™ Xok C Xox

for each A in p(Ay), the resolvent set of Ag, and oy (Ag) is equal to the spectrum of A : D(Ag) N
Xox — Xok, the part of Ag in Xog. It follows that

T4, (1) Xok C Xok, Vi=0.

Here in order to obtain a smooth center manifold, we need to assume that

dim(Xos) = +o00, dim(Xo.) < +o0o, and dim(Xg,) < -+o0.

Actually since the proof for the smoothness of the center manifold uses some smooth truncation
function on Xy, this assumption is needed (in general) to derive a smooth local center manifold
theory. Since Xoy is an infinite dimensional space, it is well known that one needs an extra
condition to derive the growth rate of T, (t) = T4,(¢)|x,,. Namely we need to assume that

(I T4, (O £0xo,)
wo(Aos) = lim = Koo

0.

Since Xo. and X, are finite dimensional spaces, this condition is also equivalent to the fact that
the essential growth rate of {T4,(#)};>0 is negative, i.e.,

In(|| Tay () [less
Wess(Ag) 1= tl}?ww <

0.

See Webb [64,65] and Engel and Nagel [ 19] for more discussions on this topic.
For clarity, we summarize the above assumptions on Ag in the following statement.

Assumption 2.4. There exist two bounded linear projectors with finite rank, ITy. € L(Xp) \ {0}
and Iy, € L(Xp), such that

Hoc oy = oy TToe = 0

and

TorTay (1) = Tay ) ok, V=0, Vk={c,u}.
In addition,
(a) If Mo, # 0, then wo(—Aolmy, (x,)) <O
(b) o (Aol (x) CiR.
(c) If Moy := 1 — (o + IMoy) # 0, then wo(Ao| 1y, (x,)) < O.

In order to obtain an ordinary differential equation for the reduced system, we need the fol-
lowing theorem which was proved in Magal and Ruan [43, Proposition 3.5].
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Theorem 2.5. Let Assumption 2.1 be satisfied. Let I1y : Xo — Xo be a bounded linear operator
of projection satisfying the following properties

o — Ag) "' = — Ag) "' Ty, Vi>w,
and

Iy(Xo) C D(Ag) and Aglmyx,) is bounded.

Then there exists a unique bounded linear operator of projection Il on X satisfying the following
properties:

(i) Mlx, = Io.
(i) I1(X) C Xo.
(i) T —A)~'=0I — AT, Yo > w.
Since dim(X.) < +o00 and dim(Xo,) < 400, the linear operators Ao, and Ag, are bounded.

So we can apply the above theorem to obtain I, (respectively I1,), a unique extension of the
projectors on [Ty, (respectively Iy, ). Define

;=1 — 1.+ ).

Then we obtain a decomposition of the larger state space

X=X, ®X.® X,
with

Xe = Xoc, Xu = Xou, Xos & Xs,
and such that
W —A)7T'X X, Viep(A).

Moreover, for k = s, ¢, u, we have o (Ax) = 0x(Aop), wherein Ay is the part of A in Xy.

Now, for k = ¢, u, we can project (1.1) on Xok, and uy(¢t) := ITxu(t) satisfies an ordinary
differential equation

du(t)
dt

= Aug(0) + MM F (u(1))

while when we project (1.1) on Xy, ug(t) = IT;u(t) is a solution of a new non-densely defined
Cauchy problem on Xj:

dug(t)
dt

= Agug(0) + I F (u(1)).
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At this level, in order to construct a comprehensive center manifold theory, one needs an eval-

vation of || [T;(Sa ¢ F(w))(@)|| = ||(Sa, © II;F(u))(t)| expressed as a function of the growth

rate of Ta,, () = Ta,(t)|x,,- So the following result which was proved in Magal and Ruan [42,

Proposition 2.14] plays a particularly important role in this context.

Proposition 2.6. Let Assumptions 2.1 and 2.2 be satisfied. Let ws € R and M4 > 1 be such that
|Ta@®)|| < Mae®**, Vit =>0.

Let ¢ > 0 be fixed. Then for each t. > 0 satisfying Ms5(t;) < ¢, we have

[(Sao @] = Cle,y) sup I fo)], ve=o0,
s€[0,¢]

whenever y € (wa, +00), f € C(R4, X), and with

2e max(1, e 77%)
1 — el@a—y)Te

C(e,y):=
2.3. Center manifold theorem
Set
Xp =X 0 Xy.
Let I1. € L(X) be the projector satisfying
n.(X)y=X, and (I —1I1.)(X)=Xp.
Define
I, =1-11,.
The following result is based on the approach developed by Vanderbauwhede [62] and Vander-
bauwhede and Iooss [63, Theorem 3]. In the context of integrated semigroups the following result
was proved in Magal and Ruan [43, Theorem 4.21].
Theorem 2.7. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let r > 0 and let F : Bx,(0,r) — X
be a map. Assume that there exists an integer k > 1 such that F is k-time continuously differen-
tiable in Bx,(0,r) with F(0) =0 and DF(0) =0. Assume that F : Xg — X is Ck-smooth with
k > 1 in some neighborhood of 0. Then in the setting described above, there exists a C*-smooth
function ¥ : Xo. — Xon which satisfies ¥ (0) =0, D¥ (0) =0, and
M ={x.+W(xc):xc € X} (center manifold)

is a locally invariant center manifold for the semiflow generated by (1.1). This means that there
exists §2 C Xo, a bounded neighborhood of 0 in X, such that
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ifu@©eMnNLandu(t) e 2, YVt €[0,t], thenu(t) e M.

Moreover, as I, is defined on X, we can project (1.1) on X and obtain an ordinary differential
equation

duc(t)
dt

= Agctte(t) + M Fluc(t) + W (uc(t))]  (reduced system). .1
Furthermore, if t — u.(t) is a solution on an interval I of the reduced system (2.1) and

ue(t) + ¥ (uc()) e, vieel,
thent — u(t) :==uc(t) + ¥ (uc(t)) is a mild solution of system (1.1); namely,

u(t):u(s)+Afu(l)dl+/F(u(s))ds, Vt,s el witht >s.

S )
Conversely, if u : R — Xq is a complete orbit of (1.1) and if
u(t)e 2, VteR,

then

ut)ye M, VvteR,
and t — I1.u(t) is a solution of the reduced system (2.1).
2.4. A sketchy procedure of computing the reduced system

Our paper is devoted to the computation of the Taylor expansion and normal form of the
reduced system (2.1). First, one needs to realize that the center manifold ¥ is known only through
an implicit fixed point procedure. Of course, when

D'w(0)=0 foreachl=1,...,k,

the Taylor expansion of the reduced system (2.1) is simply given by

duc(t)
dt

k
= Ageuc(t) + Z %HCDIF(O)(uc(t), o ue(D) + hot.
=1

In general, the only information available to compute the Taylor expansion and normal form of
the reduced system is the following result (see Magal and Ruan [43, Lemma 4.20]).
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Lemma 2.8. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let r > 0 and let F : Bx,(0,r) — X
be a k-time continuously differentiable map (with k > 1) in Bx, (0, r) with

F(0)=0 and DF(0)=0
and
HhDjF(O)|XCXxCX...XX( =0 foreachj=2,...,k.
Then
D/w(0)=0 foreachj=1,... k.
Description of the method at the order 3. Assume first that
My D*F(0)|x, xx, #0.

Let G € V2(X., D(A) N X},) be a homogeneous polynomial of degree 2 (see Section 3 for a
precise definition). Consider the following global change of variable

GTu) <& {HCU:HC”’ N FG(My).  (2.2)
V= — =0 V). .
! ctt Myv = Myu — G(Mow) ! ¢

Then formally (since the solution is not time differentiable), we obtain

V' =u'— DG(Teu)(Meu')
= Au+ F(u) — DG(ITeu)(M.[Au + F (w)]).

Thus

V' =A[v+ GUT) |+ F(v+ G(1ev))
— DG(IT.v) (e [Av + F (v + G(IT.v))]).

We naturally introduce the Lie bracket
[A, Gl(xc) = DG(x)(Acxe) — AG(xe), Vxc € Xe.
Then we obtain a new non-densely defined Cauchy problem

dvu(t)
dt

=Av(t)+H(v(t)) fort >0 and v(0)=x e D(A), 2.3)
where

H(v) = F[v+ G(1v)] - [A, GlU1v) — DGUT)(IT.F (v + G(IT:v))).
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We can rewrite H as
H(v)=F(v) — [A, G](I1.v) + [F (v + GUT.v)) — F(v)]
— DG(Tv)(IT.F (v + G(IT.v))),

and since D F(0) = 0, we obtain

1 1
5 hD2H<0)(xc,xc>=5HhD2F(O>(xc,xc)—[A,G]<xc).

Therefore, in order to cancel out the second order term we need to solve
1
[A, Gl(xe) = EHthF(O)(xC, xe) with G € V3(X,, D(A) N Xp). (2.4)

By applying Theorem 2.7 and Lemma 2.8 to system (2.3), we deduce that the reduced system
of (2.3) has the following form

dv.
dt

= Acve 4+ e Flve + G(ve) | + R(ve),
where
R(ve) = Fve + G(ve) + ¥ (ve) | — M Fve(t) + G (ve (1)) ]
and ¥ : Xo. — Xop is a local center manifold of the new system (2.3) satisfying
v (0)=0, DY (0)=0, and D?¥(0)=0.

Now assume that the F is C*-smooth locally around O (so is ¥). Then we see that R(v,) is of
order 4 and the Taylor expansion of the reduced system (2.1) at the order 3 is given by

dv, 1 2
dr = Acve + Z_!HCD F(0)[ve, vel

1
+ 51 (A D*FO)[Gwe). ve] + e D*FO)[ve. G(ve)]}

+ %HCD3F(O)[UC, Ve, Vel + heo.t. (2.5)
Therefore, in order to compute the Taylor expansion of the reduced system at the order 3, we
(only) need to compute G at the order 2. Then we can apply the normal form theory to the
reduced ODE system.
An alternative approach, to compute both the normal form and the reduced system, would be
to use the following change of variables

u:=v+ GUI.v)

wherein
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G € V*(Xc, D(A)).
In this case

Hou=1TII.v+ I1.G(I1.v),
u=v+GUIl,v) & 2.6)
ITyu = Iyv+ I, G(I1:v).

Then the map &.(x.) = x. + I[1.G(x.) from X, into itself is only locally invertible around 0. This
type of change of variables leads to an infinite dimensional normal form theory for non-densely
defined Cauchy problem.

3. Normal form theory — nonresonant type results

Letm > 1. Let Y be a closed subspace of X. Let L;(X[', Y) be the space of bounded m-linear
symmetric maps from X§' = Xo x Xo x --- X Xp into ¥ and L;(X[", D(A)) be the space of
bounded m-linear symmetric maps from X' = X, x X, x --- x X, into D(A). That is, for each
L € Li(X, D(A)),

L(x1.....xn) € D(A), Y(x1.....xn) € X",

and the maps (xy, .., x;) = L(x1,...,x,) and (x1,..,Xy,) = AL(x1,...,X,) are m-linear
bounded from X" into X. Let L, (X", X;, N D(A)) be the space of bounded m-linear symmetric
maps from X' = X x X. x---x X into D(A,) = X, N D(A) which belongs to L (X", D(A)).

Let k = dim(X,) and Y be a subspace of X. We define V""" (X, Y) the linear space of homo-
geneous polynomials of degree m. More precisely, given a basis {b;} =1, of X., V"(X.,Y)
is the space of finite linear combinations of maps of the form

.....

k
Xe =ijbj € Xe— x'xy2 . x*V
Jj=1

with
ni+ny+---+ny,=m and VeY.
Define amap G: L; (X', Y) — V™ (X.,Y) by
G(L)(xe) =L(xc,...,xc), YLeLy(X",Y).

Let G € V" (X, Y), we have G(x.) = %D’”G(O)(xc, .o, Xe). So

1
G 1(G)=—D"G(0).
m!
In other words, we have

1
L=—‘D’"G(O) & Gxe)=L(xe,...,x:), VYx.€Xe.
m!
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It follows that G is a bijection from L;(X',Y) into V" (X.,Y). So we can also define
V™ (X, D(A)) as

V"(Xe, D(A)) :=G(Ls(X, D(A))).

In order to use the usual formalism in the context of normal form theory, we now define the Lie
bracket (Guckenheimer and Holmes [26, page 141]). Recall that

Xc=Xoc C D(Ag) C D(A),
so the following definition makes sense.

Definition 3.1. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Then for each G € V" (X., D(A)),
we define the Lie bracket

[A, Gl(xc) := DG (xc)(Axc) — AG(xe), Vxc € Xe. 3.1
Recalling that A, € L(X,) is the part of A in X, we obtain

[A, Gl(xc) = DG (xc)(Acxe) — AG(xe), Vxc € Xe.

Set L := %DmG(O) € Ly (X, D(A) N Xy). We also have
DG(x:)(y)=mL(y, x¢, ..., Xx¢), DG(xc)Acxe =mL(Acxe, Xey ...y Xc),
and
d Act At
[A, Gl(xc) = E[L(e Cxeroo €xe)](0) — AL(xe, ..., xo). (3.2)

We consider two cases when G belongs to different subspaces, namely, G € V" (X,
D(A)N Xp) and G € V"' (X, D(A)), respectively.

31 GeV™"(X., D(A)NXy)
We consider the change of variables (2.2), i.e.,
u=v+ G{I.v).
Then
G(x¢):=L(xc, Xey ooy Xe), Vxc € Xe.
The map x, — AG(x.) is differentiable and

D(AG)(xc)(y) = ADG (xc)(y) =mAL(y, X, ..., Xc).
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Defineamap £ : X — X by
Ex):=x+Gl.x), VxelX.

Since the range of G is included in X, we obtain the following equivalence

y=§@) & x=§0),
where

§' M=y -GULy), VyeX,

and

e '(x)=M.x, VxeX.
Finally, since G(x) € D(A), we have

§(D(A) cD(A) and &'(D(A)) C D(A).
The following result justifies the change of variables (2.2).

Lemma 3.2. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let L € L (X", X, N D(A)). Assume
that u € C([0, ], X) is an integrated solution of the Cauchy problem

du(t)
dt

— Au(t) + F(u(t)), te€[0,7],  u(0)=x e D(A). (3.3)

Then v(t) = £~ (u(t)) is an integrated solution of the system

dv(t)
dt

=Av(t) + H(v(®)), tel0,1], v(0) =£~1(x) € D(A), (3.4)
where H : D(A) — X is the map defined by

H(§(x)) = F(§(x)) — [A, G1(Tex) = DG(ITex)[ T F (5(x))].

Conversely, if v e C([0, t], X) is an integrated solution of (3.4), then u(t) = &(v(t)) is an inte-
grated solution of (3.3).

Proof. Assume that u € C ([0, t], X) is an integrated solution of the system (3.3), that is,

t
/u(l)dl € D(A), Vrel0,r],
0
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and
t t
u(t):x+A/u(l)dl+fF(u(l))dl, vt €0, t].
0 0
Set
v() =& (u®), Vvtelo,l.
We have
t 13 t
A/v(l)dl=A/u(l)dl—/AG(1'[cu(l))dl
0 0 0
t t
=u(t) —x—/F(u(l))dl—/AG(HCu(l))dl
0 0

=u(t) — G(Meu)) — (x — G(1.x))
+ (G(Meu)) — G(I.x))

t t

—/F(u(l))dl—/AG(]‘[Cu(l))dl

0 0
=v(t) — & 1) + (G(Teu®)) — GUT.x))

t 1

—/F(u(l))dl—fAG(HCu(l))dl.
0

0

Since dim(X,) < o0, t — I1.u(t) satisfies the following ordinary differential equations

dI u(t)
dt

= AocTTeu(t) + I F (u(1)).

By integrating both sides of the above ordinary differential equations, we obtain

t

G(Meu()) —G(ch)szG(ch(l))<
0

dITu(l)
dl
dl )

t
= / DG(Meu®)) (Ao Heud)) + DG(Meu®)) (M F (u(l)))dl.
0

It follows that
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t
A/v(l)dl:v(t)—f(x)
0

t
+ / DG (Meu(D)[AocITeu(l) + M F (u(D)]dl
0
t t

- / F(u)dl - / AG(au(D))dl.

0 0
Thus

t t

v(t)=g(x)+A/u(1)dl+/H(u(1))dl,
0

0

in which

H(E(x)) = F(§(x)) + AG(IT.£(x))
- DG(HCS(X))[ACHCS(-X) + HLF(%-(X))]

Since I1.£ = I, the first implication follows. The converse follows from the first implication
by replacing F by H and & by =1, O

Set for each n > 0,
BC'R, X) = {f € CR.X) :supe 1| (1) < +o0].
teR

The following lemma was proved in Magal and Ruan [43, Lemma 4.6].

Lemma 3.3. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. For each n € (0, —wo(Aos)), the
following properties are satisfied:

(1) Foreach f € BC"(R, X) and eacht € R,
Ks(f)(0):= lim_ TI;(Sao f(t+.))( —1) exists.

(ii) Ky is a bounded linear operator from BC(R, X) into itself.
(iii) Foreacht,s e Rwitht >s,

Ks(f)(0) = Tao,(t =)Ks(f)($) + s (Sa o f(s + ) —9).

The following lemma was proved in Magal and Ruan [43, Lemma 4.7].
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Lemma 3.4. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let n € (0, infycq (4,,) Re(1)) be fixed.
Then we have the following:

(1) Foreach f € BC"(R, X) and eacht € R,

+00 +00
Ku(f)(t) :=— / e Ao T, 4+ t)dl = — / e A=D1 £(hdl
0 t

exists.
(ii) K, is a bounded linear operator from BC"(R, X) into itself.
(iii) For each f € BC"(R, X) and eacht,s € R witht > s,

Ku(f)(@) = Ky (f)(5) + Mou(Sa © f s + )t = ).
We now prove the following lemma.

Lemma 3.5. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. If
f@) = ket x
for some k €N, A €iR, and x € X, then

(Ku 4+ K)(ITy £)(0) = (=D KA — Ap) "%V Tx € D(AR) € D(A).
Proof. We have
+o0

K.(f)(©0)=— / eMike=A0d I, xdl
0

+00

dk [ —Aoul
:—d7 / M e Aou I, xdl
0

d* |
= —W(—)\I + Aow)” yx

d* |
= W(AI — Agy)” TIyx
= (=D*K\T — Aoy~ TV T, x.

Similarly, we have for u > w4 that

(Wl = AT K (O = lim (] = AT T (Sa 0 f(r+))(=1)
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-7
= lim [ Tay (=t —s)(ul — A f(s + T)ds
T—>—00
0

r

= lim [ Tay, (r —s)(ul — A~ I, f(s — r)ds
r—+o00 ’

0

+00
- / Taoy (Ol — A" T, F(~Dydl.
0
So we obtain that

+00
(I — A)'K (f)(0) = / (=D*e ™M Ty (1) (I — A) ™' Mxdl
0

k
Tk
= (=D*KI T — Ag)"* TV (il — A) ' Tx
=l — A ' =Dk — Ay~ D 1x.

O — Ag) ' (I — A~ yx

Since (uI — A)~! is one-to-one, we deduce that
Ky (@) = (=DKW — Ag)~*FD 1o x
and the result follows. O
The first result of this section is the following proposition which is related to nonresonant
normal forms for ordinary differential equations (see Guckenheimer and Holmes [26], Chow and

Hale [8], and Chow et al. [9]).

Proposition 3.6. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. For each R € V" (X, Xy), there
exists a unique map G € V" (X, X, N D(A)) such that

[A, Gl(xc) = R(x.), Vx.eX.. (3.5)
Moreover, (3.5) is equivalent to
G(x) = (Ky + K;) (R(e"xc) ) (0),
or
L(x1, ..., xm) = (Ky + Ko (H (e x1, ..., e x,))(0),

with L := 1, DG (0) and H := -1, D™ R(0).



Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011 943

Proof. Assume first that G € V" (X, X;, N D(A)) satisfies (3.5). Then L = %DmG(O) €
Ls(XI, Xp N D(A)) satisfies

d

E[L(eAC’xl, e eA"xm)](O) =AnL(x1,....,x0) +H(X1,...,%n),

where H = %D”’R(O) € Ly(X7, Xp). Then (3.5) is satisfied if and only if for each
(x1,...,xp) € X" andeach € R,

d

E[L(eA”'xl, e eAftxm)](t) = AhL(eAf’xl, ...,eAf’xm)
+ H(eA“’xl, ey eAC’xm). (3.6)
Set
v(t) == L(eA”txl, . eAC’xm), vVt e R,
and
w(t) = H(eAC'xl, R eAC’xm), Vi e R.
The Cauchy problem (3.6) can be rewritten as
dz(tt) = Apv(t) + w(t), VieR. 3.7)

Since L and H are bounded multilinear maps and o (A¢.) C iR, it follows that for each n > 0,
veBC"(R,X) and we BC"(R, X).
Let n € (0, min(—wo(Aos), infreq(a,,) Re(1))). By projecting (3.7) on X,,, we have

dIl,v(t)

dt = A, 0,v(@) + IT,w(t),

or equivalently, V¢, s € R with ¢ > s,

t
(1) =eAu<’*s>17uv(s)+/eAM(’*”nuw(l)dz,
N

t
M,(s) = e 209 7,0(1) —/e’A“(Z’S)H,,w(Z)dl.

s

By using the fact that v € BC"(R, X), we obtain when ¢ goes to 400 that

IT,v(s) = K,(IT,w)(s), VselR.
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Thus, for s =0 we have
MuL(x1, .. xm) = Ky (T H (e, .., e %)) (0).
By projecting (3.7) on X, we obtain

dIlv(t)
dt

= A I, v(t) + I;w(t),
or equivalently, V¢, s € R with 7 > s,

(1) = Ta, (t — )ITv(s) + (Sa, © Tyw (. + )t — ).
By using the fact that v € BC"(R, X), we have when s goes to —oo that

Iu(t) = K(ITsw)(¢), VteR.
Thus, for t = 0 it follows that
I L(x1, ..., xm) = Ky (I H (e xq, ..., e x,,)) (0).

Summing up (3.8) and (3.9), we deduce that

L(xt, ..., xm) = (Ku + K (H (e x1, ..., e x,))(0).

Conversely, assume that L(x1, ..., x,) is defined by (3.10) and set

v(1) i= (Ku + K (H (e xy, . e x,))(0), VieR.

Then we have

v(t) = L(eAftxl, e, eA”txm), Vi e R.

(3.8)

(3.9)

(3.10)

Moreover, using Lemma 3.3(iii) and Lemma 3.4(iii), we deduce that for each 7, s € R with r > s,

V(1) =Tay(t — s)v(s) + (Sa ow(. +9)) — ),
or equivalently,

t t

v(t) =v(s) + A/v(l)dl + / w(l)dl.

N S

Since t — v(t) is continuously differentiable and A is closed, we deduce that

v(t) e D(A), VteR,
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and

dv(t)
dt

=Av(t) +w(), VreR.

The result follows. O

Remark 3.7 (An explicit formula for L). Since n := dim(X.) < 400, we can find a basis
{e1,...,en} of X, such that the matrix of A, (with respect to this basis) is reduced to the Jordan
form. Then for each x. € X,, eA<’ x, is a linear combination of elements of the form

tk e)" X;

for some k € {1,...,n}, some A € 6(A;) C iR, and some x; € {e1,...,e,}. Let A1,..., Ay €
0(Ay) CIR, x1,...,xpm €ler,...,enl k1, ..., ky €{1,...,n}. Define

f@t):= H(tkle)‘"'xl, ., tk’"e}"""xm), vVt e R.
Since H is m-linear, we obtain
f6)y=ttery
with
k=ki+ky+-+kn, A=A+ +An,
and
y=HMX1,..., Xm).
Now by using Lemma 3.5, we obtain the explicit formula
(Ku + K (H(OM e xy, .., (OFmermx,))(0) = (=D*KIT — Ap)~ %D 1T,y € D(A).
3.2. GeV™(X., D(A))
From (3.2), for each H € V" (X,, X), to find G € V" (X, D(A)) satisfying
[A,G]=H, (3.11)
is equivalent to finding L € Ly (X, D(A)) satisfying

d

TlL(M )] = AL )+ H ) (3.12)

for each (x1, ..., x,) € X' with

G(H)=H.
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Define &, : V"'(X., X¢) = V™(X., X¢) by
0, (G :=[Aq,G:l, YG.eV"(X., X), (3.13)
and O : V"(X., X; N D(A)) — V"™(X., X)) by
@,},‘l(Gh) :=[A,Gyl, VYGpe Vm(XC, XnN D(A)).
We decompose V" (X, X.) into the direct sum
V™(Xe, Xe) =Ry, ®Cyys (3.14)
where

R, = R(65)

is the range of ©;,, and C;, is some complementary space of R, into V" (X, X,).

The range of the linear operator &y, can be characterized by using the so-called non-resonance
theorem. The second result of this section is the following theorem.

Proposition 3.8. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let H € R;, & V" (X, X}). Then
there exists G € V"(X., D(A)) (non-unique in general) satisfying

[A,G]=H. (3.15)
Furthermore, if N (©},) = {0} (the null space of ©Y,), then G is uniquely determined.
Proof. By projecting on X, and X} and using the fact that X, C D(A), it follows that solving
system (3.11) is equivalent to finding G, € V" (X, X.) and G, € V" (X, X N D(A)) satisfy-
ing
[Ac, G l=TI.H (3.16)
and
[A, Gyl =II,H. (3.17)

Now it is clear that we can solve (3.16). Moreover, by using the equivalence between (3.11)
and (3.12), we can apply Proposition 3.6 and deduce that (3.17) can be solved. O

Remark 3.9. In practice, we often have
N(©5) NR(O5) ={0}.
In this case, a natural splitting of V" (X, X.) will be

V™(Xe, Xe) = R(Oy,) ® N(Oy,).
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Define P, : V" (X, X) = V" (X,, X) the bounded linear projector satisfying
Pm(vm(Xcv X)):R:n®vm(xca Xh)a and (I_Pm)(vm(XC,X))ZCfn

Again consider the Cauchy problem (3.3). Assume that D F'(0) = 0. Without loss of generality
we also assume that for some m € {2, ..., k},

M, DY F(0)|x, xx,xxx. =0, g(HcDjF(0)|XL.><XC><<--><XL.) €Cy, (Cm-1)

foreach j=1,...,m — 1.
Consider the change of variables

u(t) =w(t) + G(Mw()) (3.18)

and the map I + %G oIl. : D(A) — D(A) is locally invertible around 0. We will show that
we can find G € V" (X, D(A)) such that after the change of variables (3.18) we can rewrite the
system (3.3) as

dw(t)
dt

=Aw() + H(w(t)), fort >0, and w@)={+Goll)xe D(A), ((3.19)

where H satisfies the condition (Cy,). This will provide a normal form method which is analo-
gous to the one proposed by Faria and Magalhides [24].

Lemma 3.10. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let G € V""(X., D(A)). Assume
that u € C([0, t], X) is an integrated solution of the Cauchy problem (3.3). Then w(t) = (I +
G o I1.)"Y(u(t)) is an integrated solution of the system (3.19), where H : D(A) — X is the map
defined by

H(w(®)) = F(w(®) — [A, Gl(ITw®)) + O (|w®n)|" ).

Conversely, if w € C([0, t], X) is an integrated solution of (3.19), then u(t) = (I + G o I1.)w(t)
is an integrated solution of (3.3).

Lemma 3.10 can be proved similarly as Lemma 3.2, here we omit it.
Proposition 3.11. Let Assumptions 2.1, 2.2 and 2.4 be satisfied. Let r > 0 and let
F:Bx,(0,r) — X be a map. Assume that there exists an integer k > 1 such that F is k-time
continuously differentiable in Bx,(0,r) with F(0) =0 and DF(0) =0. Let m € {2,...,k} be

such that F satisfies the condition (C,,—1). Then there exists a map G € V" (X, D(A)) such
that after the change of variables

u) =w()+ G(ch(t)),
we can rewrite system (3.3) as (3.19) and H satisfies the condition (Cy,), where

H(w(®)) = F(w(®) — [A, G(ITw®) + O (|wn)|").
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Proof. Let x. € X.. We have

H(xc) = F(xc) — [A, G1UTex) + O (lIx " *").

It follows that

H(x.) = %DZF(O)(xC,xC) +o+ D" 'F(0)(xe, ..., xc)

(m —1)!

+7>m[i,D'"F(o><xc, . .,xc)] + - Pm)[iD’”F(O)(xc, . .,xc)}
m! m!

—[A, Gl(xo) + O(llxc ™)

since DF(0) = 0. Moreover, by using Proposition 3.8 we obtain that there exists a map G €
V™ (X, D(A)) such that

[A, G](x.) =Pm|:i'DmF(0)(xc, . .,xc):|.
m!

Hence,
1
H(xe) = = D*F(0)(xc, xc) + -+ + D" F(0)(xc, ..., Xc)
2! (m—1)!
1 m m+1
+U = Pw) %D FO)(xc, ..., xe) [+ O(llxc ™). (3.20)
By the assumption, we have forall j =1,...,m — 1 that
Iy DY H(0) [, x X, x-x e = I DT F(0) | X, xx, x5 x. =0
and

g(HcDjH(O)|XC><X(.><-~-><XC) = g(HcDjF(O)|XL.><X(.><-~><XC) € C;
Now by using (3.20), we have
1 1
%HthH(O”XCXXCX-»-XXC = th71 |:(I - Pm)(%DmF(O)(xu cees xc)>i| =0
and

G(M:D"™ H(0) X x X xxx.) = G{ITG ™ [(I = Pu) (D" FO) (xc, ..., x0)) |} € 5.

The result follows. O



Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011 949

4. Normal form computation

In this section we provide the method to compute the Taylor expansion at any order and
normal form of the reduced system of a system topologically equivalent to the original system:

du(t)
dt
u(0)=x € D(A).

= Au(t) + F(u(r)), t>0, 4.1

Assumption 4.1. Assume that F' € CK(D(A), X) for some integer k > 2 with
F0)=0 and DF(0)=0.
Set
Fi.=F.

Once again we consider two cases, namely, G € V"(X., D(A) N X},) and G € V" (X., D(A)),
respectively.

4.1. GeV™(X,, D(A) N Xp)

For j =2,...,k, we apply Proposition 3.6. Then there exists a unique function G; €
VJ (X, Xn N D(A)) satistying

1 .
[A, Gjl(xc) = FHhDJ Fi1(0)(xe, ..., xc),  Vxc € Xe. 4.2)

Define &; :X—>Xand‘§j_1 : X — X by
§i(x):=x+G;[I:x) and Ej_l(x) =x—-G;(II.x), VxeX.
Then
Fj(x):=F;_1(§j(x)) —[A, G;1(T.x) — DG j(IT.x)[ 1. Fj_ (§;(x))].
Moreover, we have for x € X that
M.Fj(x)=I.Fj_1(§(x)) = . Fj_i (x + G;(I1.x)).
Since the range of G| is included in X}, by induction we have
TM.Fj(x) =TI1.F (x + Go(ITex) + G3(ITex) + - - - + G j(ITcx)).
Now, we obtain

I, D’ Fi(0) | x,xx.xxx. =0 forall j=1,...,k.
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Setting
@) =§ "ok o0 (u®)
=u(t) — Ga(Meu(r)) — G3(Meu(t)) — -+ — G (Meu(r)),
we deduce that u (¢) is an integrated solution of the system

d“; t(t) = Aup(®) + Fi (@), 1>0,

u(0) =xx € D(A).

4.3)

Applying Theorem 2.7 and Lemma 2.8 to system (4.3), we obtain the following result which is
one of the main results of this paper.

Theorem 4.2. Let Assumptions 2.1, 2.2, 2.4, and 4.1 be satisfied. Then by using the change of
variables

up(t) =u(t) — Go(Meu(t)) — G3(Meu(t)) — - — G (Meu(?))
&
u(t) = ug(t) + Gao(Meur (1)) + G3(Meur (1)) + -+ - + Gr (Meur (1)),

the map t — u(t) is an integrated solution of the Cauchy problem (4.1) if and only if t — uy(t)
is an integrated solution of the Cauchy problem (4.3). Moreover, the reduced system of Cauchy
problem (4.3) is given by the ordinary differential equations on X :

dx.(t)
dt

X (1) + Go(x:(2))
+ G3(xc (1) + - 4+ Gr(xc(1))

=Acx.(t) + I F [ } + Re(xc (1)), (4.4)

where the remainder term R, € C*(X., X.) satisfies
D/R.(0)=0 foreach j=1,...,k,
or in other words R.(x.(t)) is a remainder term of order k.

If we assume in addition that F € C¥t2(D(A), X), then the map R. € C***(X., X.) and
R.(x.(t)) is a remainder term of order k + 2, that is

Re(xe) = IIxelIF2 0 (xo), 45)
where O (x.) is a function of x. which remains bounded when x. goes to 0, or equivalently,
D/R.(0)=0 foreachj=1,....k+1.

Proof. By Theorem 2.7 and Lemma 2.8, there exists ¥ € C k(XC, Xp,) such that the reduced
system of (4.3) is given by
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% = Acxc(t) + I Fxc(t) + Ga(xc (1)) + G3(xc (1)) + -+ 4 Gi(xc () + Wi (xe (1)) ]
and
DI (0)=0 forj=1,...,k.
By setting

Re(xe) = M F[xc + Ga(xe) + G3(xe) + -+ 4 Grlxe) + Wi (xo) ]
- HCF[XC + Ga(xe) + G3(xe) + -+ + Gk(xc)]7

we obtain the first part of the theorem. If we assume in addition that F' € C k+2(D(A), X), then
¥, € CH2(x,, X}). Thus,

Re € C*2(X., Xo).

Set
h(xe) :=xc + Ga(xe) + G3(xe) + -+ + G (xe).
We have
Re(xe) = M A F[h(xe) + Wi (xe) | — F[h(xo)]}
1
=11, / DF (h(xc) + s¥k (xo)) (Wi (xe) )ds.
0
Define

h(xe) == h(xe) + s (xe).

Since DF (0) =0, we have
1
DF (h(x)) (¥ (x0)) = DF (0) (¥ (x.)) + / D?F (Ih(xe)) (h(xe), Wi (xe))dl
0
1

- / D2F (7)) (R(x), Wi (x0) ).

0

Hence,

1 1
Re(xe) =11, / / D2F(I(h(xe) + 5% (20))) (hCxe) + 5% (). Wi () )dlds
00
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and h(x.) is a term of order 1, ¥ (x.) is a term of order k + 1, it follows that (4.5) holds. This
completes the proof. O

Remark 4.3. In order to apply the above approach, we first need to compute I7, and A., then

IT := 1 — I1, can be derived. The point to apply the above procedure is to solve system (4.2).
To do this, one may compute

W — Ah)_k%HhDjF(O) (4.6)

for each A € iR and each k > 1 by using Remark 3.7, or one may directly solve system (4.2) by
computing [T}, % D/F j—1. This last approach will involve the computation of (4.6) for some spe-
cific values of A € iR and some specific values of k > 1. This turns out to be the main difficulty
in applying the above method.

In Section 5, we will use the last part of Theorem 4.2 to avoid some unnecessary computations.
We will apply this theorem for k =2, F in C*, and the remainder term R, (x.) of order 4. This
means that if we want to compute the Taylor expansion of the reduced system to the order 3
(which is very common in such a context), we only need to compute G,. So in application the
last part of Theorem 4.2 will help to avoid a lot of computations.

4.2. Ge V*(X., D(A))
Now we apply Proposition 3.11 recursively to (4.1). Set

upi=u.
Form=2,...,k,let G,, € V""(X., D(A)) be defined such that

[A, Gl(xe) =P [%DmFm_l(O)(xc, e, xc)] for each x. € X,.
We use the change of variables

Um—1 =Um + Gy ([Touy,).
Then we consider F, given by Proposition 3.11 and satisfying
Fontm) = Fy—1 () = [A, G ] (Mettm) + O (Jlu | *).
By applying Proposition 3.11, we have
DY Fp(0)|x, xx,x-xx. =0, forall j=1,...,m,

and

G(MeD Fp(0)|x, xx.x-xx,) €C5,  forall j=1,....m.
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Thus by using the change of variables locally around 0

ur(®) = 4+ GiIl) ™ .. (I + G3IT) " (I + GoIl,) " u(r),

we deduce that uy(f) is an integrated solution of system (4.3). Applying Theorem 2.7 and
Lemma 2.8 to the above system, we obtain the following result which is the main result of this
paper and indicates that systems (4.1) and (4.3) are locally topologically equivalent around 0.

Theorem 4.4. Let Assumptions 2.1, 2.2, 2.4, and 4.1 be satisfied. Then by using the change of
variables locally around 0

ur @)= + G~ ... (I + G3I) (I + Go1) ™ u(r)
p=4
u®)=U~+GoIl.)(I + G3I1.) ... (I + GrII)ui (1),

the map t — u(t) is an integrated solution of the Cauchy problem (4.1) if and only if t — uy(t)
is an integrated solution of the Cauchy problem (4.3). Moreover, the reduced equation of Cauchy
problem (4.3) is given by the ordinary differential equations on X.:

dx.(1)
dt

k
1
=Acxe()+ ) %HCD”‘Fk(O)(xC(t), e X)) + Re(xe (D)),

m=2

where
1
g(—'HcDmFk(0)|xc><xe><...><xr> € C&, forallm=1,... k,
m!

and the remainder term R, € Ck(XC, X ) satisfies
D'R.(0)=0 foreachj=1,...,k,
or in other words R.(x.(t)) is a remainder term of order k. If we assume in addition that F €

CK*2(D(A), X). Then the reduced equation of Cauchy problem (4.3) is given by the ordinary
differential equations on X.:

dx.(1) k+1
T = Acxe(D) + mZ:Z — D" Fie(0) (xe(0), -, xe(D)) + Re(xe (1),

the map R. € C*72(X., X.), and R.(x.(t)) is a remainder term of order k + 2, that is
Re(xe) = Ilxe 2 0 (x),
where O (x.) is a function of x, which remains bounded when x. goes to 0, or equivalently,

D'R.(0)=0 foreachj=1,....k+1.
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Proof. By Theorem 2.7 and Lemma 2.8, there exists ¥; € C k (X¢, Xp) such that the reduced
system of (4.3) is given by

dx(1)

dr =Acxc(t)+Hch[xc(t)+lpk(xc(t))]

and
D/ (0)=0 forj=1,..., k.
By setting
Re(x) = M Fy[xe 4+ Wi (xe) | — M Fi(xc),

we obtain the first part of the theorem. If we assume in addition that F € C¥*2(D(A), X), then
Y, € CH2(X., X}). Thus, R, € C¥*2(X., X.) and

Re(xc) =11, {Fk[xc+l1/k(xc)] Fk(xc)}
1
=1l / DFy (xc + Sl]lk(xc))(lpk(xc))ds
0

Set

h(xe) i= xc + sWr(xc).

Since DF (0) =0, we have

1
DFy(h(xe)) (Wi (xc)) = D Fy(0) (Wi (xc) +/D2Fk Ih(xe)) (h(xe), Wi (xe))dl
0

_ / D2 F(1h(x0)) (h(xe). i () )l
Hence,
1 1
Rc(xc)zHc//Dsz(l(xC+s'1/k(xc)))(xc+SWk(Xc),q’k(xc))dlds
00

and ¥ (x.) is a term of order k£ + 1, it follows that
Re(xe) =[x O (xc).

The result follows. O
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5. Applications

In this section we apply the normal form theory developed in the previous sections to the two
examples of structured models (1.2) and (1.6) introduced in Section 1. Namely, we will compute
the Taylor expansion of the reduced system of model (1.2) on the center manifold and the normal
form of model (1.6) on the center manifold, respectively, from which we will be able to determine
the direction of the Hopf bifurcation and stability of the bifurcating periodic solutions in these
two models.

5.1. A structured model of influenza A drift

We first recall the results in Magal and Ruan [44] on the existence of Hopf bifurcation in the
structured evolutionary epidemiological model (1.2) of influenza A drift. The following theorem
was proven in Magal and Ruan [44].

Proposition 5.1.

(i) Consider the curves defined by

in the (v, §)-plane for some ¢ > 1. Then for each n > 0,

v, = c(arcsin<—1> +2(n+ 1)71)
C

is a Hopf bifurcation point for system (1.5) around the branch of equilibrium points s,,, where

Ev(a) — { V(l - gp)e_lsu(l—gv)(a—l)’ l:fg Z 1’

v(l =S5y, ifa €l0,1],
+o0 1+571

S, = sv(Ddl = v 1.

v /Sv() l—i-l)_l <
0

Moreover, the period of the bifurcating periodic orbits is close to

1
wy = carcsin(——) + 7 +2nm.
c
(ii) Consider the curves defined by

1+v (9?2
Vol 1-%

Sy =v+
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in the (v, 8)-plane for some ¢ > 1. Then for each n > 0,

~ (1
v, = c<arcs1n(—> + 7+ 2nn>
c

is a Hopf bifurcation point for system (1.5) around the branch of equilibrium points 5.
Moreover, the period of the bifurcating periodic orbits is close to

1
Wy = carcsin(—) + 7+ 2nm.

Cc

In order to apply the normal form theory to system (1.5), we include the parameter v into the
state variable in system (1.5) and consider the system

dv(r)
dr 0.

du(t)
S = Aun) + F(v(®), 8y, u()) = Au(t) + F (v(1), u (1)), 5.1

0 _
v(0) =19 eR, u(O):uoz( ) € D(A),
50
where A is defined in (1.3) and F is given by (1.4). Making the change of variables
u=u+u, and v=vV+;

with i, = (5(1), we obtain the system

dﬁ(t)_o

de

g o (5.2)
o = Au(t) + H(0(1), u (1)),

where

H®, @) = F@+ v, @+ tip1,) — FO+ v, )

Since Evk € (0, 1), the map u — F (v, u) is differentiable in a neighborhood of %,, . We have

~ Y o d( gy ~
FHO, 0)V) =3, F O+ vg, U + Upt,) V) + 3 F O + v, 4 + mw%w
o~ _ ~. o~ — d(ﬁ’\')\—‘rvk)fv
— 3 F @ + vk, U ) D) — 3 F (U + vk, W) — i (V)

dv

and

O H®,0) (i) = 8, F (0 + v, & + lip ) ()
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with

—v [ 7 gWal )

auF(U,M)(’lZ)=< ~ o0 o0 ~
=8, x[F(1 — 7 p)dl) — ¢ [T FDal

hereu= (| ).i = () € DCA). Hence, 3 A (0, 0)(¥) =0 and g H (0, 0) @) = , F (v 7y, ) @),
Set
Y =R x X, Yo=R x D(A)
and
A=A+ 0, F(v,iiy).
The following lemma is obtained in Magal and Ruan [42].
Lemma 5.2. The linear operator A,: D(A) C X — X is a Hille-Yosida operator and

wO,ess((A\v)O) <-8,(1-5,) <0.

Consider the linear operator L : D(L) C Y—Y defined by

12~ (araronae) = (20)
7)) \A+o,Fo.a)u) \A,n

with D(L) =R x D(A) and the map H : D(L) — Y defined by

1(2)=(w )
~ = AN E
u W (ﬁ)
where W : D(L) — X is defined by

W= F(/V\—i_ Vi, i;+ ﬁ?—i—vk) - F(/U\—’- Vi, ﬁ?—i—vk) - 8MF(Vk, ﬁvk)it\-

(o) (o)
H =0 and DH =0.
0 0

Now we can reformulate system (4.2) as the following system

Then we have

dw(t)
dt

= Lw(t)+ H(w(),  w(0)=wye D). (5.3)

The following lemma is a consequence of the results proved in Liu et al. [35, Section 3.1].
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Lemma 5.3. The linear operator L is a Hille-Yosida operator and the essential growth rate of
Ly satisfies

@0,ess(Lo) = =8y, (1 = Sy,) <0.
Set
2 ={reC|Re(r) > =8,,(1-S,)}.

The characteristic function takes the form

+00 +00 a
A(V, )\’) — 1 +v / e_f(;l[)x-H;v(l—Su)X(l)]dlda —_ / /e— La[)»-F(Su(l—SU)X(l)]dlSUX(S)Ev(s)dsda.
0 0 0

From Lemma 4.6 in Magal and Ruan [44], we know that

(W — Ay~ (‘i) — <O> (5.4)
¢ ¢

is equivalent to

(1 = C)a — v De Jo P4y (1=5y)x (D1dl }

p(a) = A, 2! - “ .
+ (C2a+ D f(;l e~ /s [A+8uk(l—Suk)X(l)]dl(SVkX(s)EVk (s)ds

a
+ /‘ - fxa[Hsuk(1—§Uk)x(1)]dla(s)ds7
0

where

+
3

o\a

e~ [ 8y A=Su)x OV G0y o,

~)
Il

3

o\&

o= [ Dty (1_§Vk)X(l)]d15ka (8)5y, (s)dsda,

3

o= Jo Ay (1=Su)x DNdl g,

Q
N
Il

O
Il
St O O —

By using (4.4) and Lemma 4.6 in [44], we obtain that the projector on the generalized eigenspace
of A,, associated to A is given by
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dAg, M)\ !
[((1 — Cil,)@ — il e B B0 0= Sux Ot ]
X a < )
+ (Caly5@ + T1,3) [ e F A A=50x DMl g 5 ()5, (s)ds

e A\v
where A = iw with @ # 0. Define 1. * : X — X by

A (B R (@Y (@) (3
© \g) "N \g) TG ) T\g)<h

Hence
Ay (1 A, (1 i, (1
. 0 Zniwk 0 +H—iwk 0
0
:( dAWgior) y—1 dA(,—iwr)\—1 ) (5.5)
(D) T by + () Ty
where
bi(a) = (1 — Ci[pmiay e~ Jo i@kt (1=Sy)x 01l
a
+C2|)\=iwk/eff;’[l’wk+5uk(lfsuk)x(l)]dl(sw(X(S)EVk (s)ds.
0
ba(a@) = (1 — Cl|smrigy e~ J0 1mi0x oy (1=Sy)x D1l
a
Coli e /e_J;a[—iwk+5vk(l—Svk)X(l)]dl(SVkX(s)gvk (s)ds.
0
Set

0 0 A, A
e = , o= and 1, *:=1—11.".
° (bl) 2 <b2> h ‘

Lemma 5.4. We have

For each A € iR\ {—iwg, iwg},

R i (1 0
A=A, I =
( ) (0> (¢>>
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960
with
@) = —(FA0io0 T _bi@ _ (dAGrzion)T_ba@
di (A —iwg) dx (A +iwp)
(1— Cl)g—fg’[x+8vk<1—ivk)x<l>]dz
+A(V"’)‘)7] a “[A+8y, (15 Ddi ’
+C2f0 e_fs[ +3u, (1=Sy ) x (D] S X (8)5y, (8)ds

Moreover, if A =iwy, we have

ol — A\ A
(l k vk| ]’:‘Vk( )

—1 A\vk 1
I
T <0>
0
dZA(vk,iwk)b1+M)

_ (dAWgio) 2,1
() G538

= (_(dA(uk,—iww)—l by
dr 2iwy

with
dA (v, iw,
M) = (Vk, iwy)
dxr
abl(a) _ C2|)m:la)k f(_)a Sei'/‘; [iwk+5vk(17Suk)x(l)]d18w(x(S)EW( (S)ds
_ o JiTiontsy, (-5, x (01dI
xS a—s)e Hen o (=Su X DMl s,, (5)5y, (s)dsda)
+ (f0+oo ae- fo”[iwk+5vk(1—Suk)x(l)]d1da)
x (f(;’ e~ f;I[iwk_ka(l_guk)X(l)]dlaka(s)gvk (s)ds) }
If A = —iwg, we have
- a,, (1
—ioxd — Ay |z, )7k
( k vk|1_[:vk (X)) h <0>
: )
. _ 2 .
(dA(w:i,)L lwk)) 2(%d A(Zk)lz lwk)bz +N)

:<(dA(Vksiwk))—l b _
dr 2iwy,

with
dA(vg, —i
N(a) = (i, —iwg)
di
_abz(a)  Colieio f(;l se*[f[*iwk+5vk(lfgvk)x(l)]dlav]cx(S)§vk (S)ds_

_ o= Jo l-iontsy, (A=Sy)x (Ol
< 0+oo Ja—s)e” ff[—ia)k+6uk(l—gvk)x(l)]dla‘)kx(S)EUk (s)dsda

50 gem ilmiontdy A=5,)x Ol
| x [ e Koty A=So)0xWldls | (615, (s)ds




961

Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011

Proof. Since

(u—fTvk)*(O):;.(O)
by (A —iwg) \ b1

and
~ (0 1 0
(I —Ay) =— ,
by (A+iwk) \ by
for each A € iR\ {—iwg, iwg},
—~ N -1 K”k 1
A=Ayl 7, (X)) 11, (0>

h

-~ A, (1 0
(A —A,,) 117,1*<0> <¢>

If A =iwg, we have

-~

A, (1
il — Ay | 2 v
(iwy vk|17;Uk(X)) h <0>

. -~ —1 A\”k l . 0
= lim (Al-— Avk| Aoy )y 1T = lim .
1, % (x) A—iwy [0)

A= iy h
rep(Auy)

Note that
dA( io)\ ™' bi(a)
dx O —iay)
(1—Cpe” Jo 8y, A=Sy) x Dlal :|

+ A, ! [ . _
+Cy an e s [A+5Uk(1—svk)x(l)]d18vkX(S)Evk (s)ds
_ — J§ vy (1=Sy ) x (Dal
—A(v, Mbi(a) + W(A —iwyg) (1= Oa c ’
+Cy fél oI [M—sv"'“_S”")X(I)Jdl&)kx(s)§,)k (5)ds

AT (3 — o) A(vg, 1)

_ (A —iwp)?
AVLIO0 (3 — o) Ay, A)
Oy JE DS, (1=Su ) x (Dl
— Ao, Wby (a) 4 4808100 (3 oy [TV kx
k> ! dx k Gy [ e S5 Tt =Sy ) x 01! s
2 g e s Bu X ()3 (5)ds
A= iwk)2

X

and
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lim lim
i OO (5 ) A, 1) rmvion TA0KT0) ALy

(h —iap)? . 1 dA (v, iwg)
- ()

Therefore,

dA (v, iwy) N (A —iwg)? d>A(vg, i)

7 5 Ty + (O —iw) g —iaxy)

AW, A) = (h —iwy)

with g(0) = ;, % Hence

i . (1—Cyye— 6 0+u 1=Su)xndl
{—A(vk,)y)bl(a)_kwo\_lwk) |: 1

. :
i HCy [ e S5 Ut A=Supx Dl o ()5, (s)ds

im :
A—ioy (A —iwy)?

a -
. b1 (@)—(1—Cy)e™ o Pt (=S x Dl

oy s dA(vg,iwg) 1

{ ()" l(,()k) dr [ a T

-G f(;l e IS [}\'*'51)1( (I—S\;k )X([)Jdlavk X (‘Y)Elfk (s)ds

A—iwg ()x — ia)k)z

A—iwp)? d*A
( lzwk) (Vk lwk))b](d)

A—>iwyg A — la)k)2

which implies (5.6). Similarly, if A = —iwg, we can prove (5.7). O

Lemma 5.5. We have

e (0)=n () =C) - ()
N <1// —<p(: —<P2)

with
@ (0o
a) = _—
vl dn
i T i g e~ Jo liontdy A=Suy)x Dldl
% |:( " | Lwg, ¢ ‘/f)a o, s 1 - (5.8)
+ Mimiwpmy [y € f it 0=S0x@ldls, y ()5, (s)ds
and

dA(vg, —iawg)\ !
w(a) = <d—)»>
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—v T . Ve~ f(;l[—ia)k‘l'(suk(1_§|Jk)x(l)]dl
y |:( /k\ 7= zwk,w—llf)a s s . (5.9
+ I|)\=7iwk,$=1p f() e fJ [—iwk+8y, (1=Sy ) x (D] 8ka(S)§Vk (S)dS

For each A € iR\ {—iwg, iwg},

_ A (O 0
(A — Ay Ay ) Hh =
m, = (X) 14 é1

with

_ i@ () a — [E A8y, (1=Sy)x (D)l
d1(a) = G o0 Gorion —i—/e x k Y (s)ds
0

(_Vkﬂ$=1//)e

= Jo I8y, (1=8y ) x (D1dl }
+Tlpmy [y e PP O=S00xDMLs o ()5, (s)ds

+ A, 27! [

Moreover, if A =iwy, we have

il — A —~ —ln Vk
Gond = Aul 7, )7, (w>
< y ) (5.10)
- i 2 . )
gty + Mo — ()T (M + 3 R )

with
FINORES) i

Ve, iwp) - ey 3 _
Lo _ Ia:w,xziwkfse [lortoy (=Sy)x DLy ()5, (s)ds

0

Mi(a) =api(a)

+00 a
_ vk( / /(a $)em f;’[iwwauk(lSvk)xa)Jdlw(s)dsda)e JiTintsy, (1-5y) x Ol

0 0

+00 a
n ( / f(a _s)e—f;’[iwkmk(1—svk)x(l>]d11/,(S)dsda>
0

0

a

X </efsa[iwk+5uk(1Evk)x(l)]dl(gUkX(S)Evk(s)ds>

0

and

a
Ms(a) :feff;’[iwwavk<1f§vk>x<z>1zﬂ¢(S)ds_
0
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If A = —iwg, we have

. ~ A, (0
(—iand — Ay )y, k( )

1, (x) W

5.11)

0 )
- —i - 2 .
(Z;fi,zk + Ny — (FREGE) TH (N 4 J R )

with

Ni(@) = apa(@) == = Tlpmyimmiog [ se” FTAHRA=S0XOMs, 5 (5)5,, (s)ds

a
dA(v, —iwp) =~ /
dxr

0

_ Vk( / /(a e f;’[—iwk+avk<1—suk)x<l>]dzw(s)dsda)e—f(;’[—iwwavk(1—svk>xu)]dl
0 0

+00 a
+ < f /(a —S)efSa[iwk+8"k(1g”k)x([)]dllﬂ(s)dsda>
0 0

a

x (/6fsa[i‘“"J”S”k(lS”k)X(l)]dl(Ska(s)iuk(s)ds)

0
and

a

Nz(a):/e—ff[—iwkmk(l—Suk>x<Z)]d1¢(s)ds_

(=}

Proof. Since

and

-t (2 ()
Tt (x) o) Otio) \¢)’

for each A € iR\ {—iwg, iwg},

~ i [0
A=A, 3 —l
( v ) (w)

(o)
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If A = iwg, we have

—~ A, 0
iod — Ay | 3 g
(iwy Vk|H:Vk(X)) h (W)

. -~ —1 A\vk 0 .
= lim (AI—-Ay,| 3 ) 11, = lim .
h—iog 1, " (x) v A—~iop  \ P
rep(Ayy) rep(Ayy)
Note that
n@ Ao 1! (=g Ty Yo Jo B (=500 x (D1
—_—— k> - a <
O —iwp) + Tlpmy foa e s [A+8uk(1—Svk)x(l)]d15UkX(s)§Vk (s)ds
. (—vg Ty ye 0 T+ou =Sy x 0l
=AW, Mpr1(@) +(h—iop) | a <
(p +I|$=lj/ f(;z e js [)»+5vk(]—5vk )X(l)]dla‘)kx(s)gvk (s)a's
B (A — i) A(v, 1)
_ i)’
I INC )
(—oeTlomy)e” J§ 80y, (1=Su ) x D1dl
_A(Vk,)\) ](Cl)‘i‘()\,_la)k) ~ - Ay T
2 Ty 0K et =Sy x OMlls, ()5, (s)ds

X
(A —iwy)?

and

e G—ie? (A o))
r—ior (A —lwp) A(vg, A) di '
We have
 dAg,iwp) | (o= iwp)? AP A, iwr) . .
A, A) = (A —iwy) n + 5 T + O —iwp) g —iwp)
3 .
with g(0) = %%. Hence
Ave, Mgi(a) + (A — iwk) (0 Tlgmy e~ 0 Tu =Su 0 Ol
=AWk, Mp1(a) + (A — 1wk " a <
i +lgmy fo & BV O=Sux OMLs, 5 ()5, (s)ds
iy (A —iawg)?
dA(vaiwk) o (u)
—(A—iwg) (—vT gy e 0P+ O =Svpx1dl
. Iy Jy & BB O—SOrOMl s, ()5, (5)ds
= lim O ion)?
—lwyg
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s 2 2 .
L e e )
A= iwp (A —iay)?
1 d?>Avg, iwy)
=—-Mi(a) - ET(PI(G),

which yields (5.10). If A = —iwg, we can prove (5.11) similarly. O
Lemma 5.6. We have
o(L) =0 (A,)U{0}.

Moreover, for A€ p(L)N 2 =82\ (U(Xvk) U {0}), we have

(1 — L)) ((5)) = <(u_2i)—l (i))

and the eigenvalues 0 and =Liwy of L are simple. The corresponding projectors
Iy, MM+, 1Y — Y on the generalized eigenspace of L associated to 0, Ziwy, respectively, are

given by
m()= (o)
0 u - 0 )
r 0
Iy, W)= HZ”ku .

+iwg

In this context, the projectors I1.: Y — Y and I1 : Y — Y are defined by

.(y) = (ITp + Hiwk + H—iwk)(y)s Vyey,
my(y)y=U—1II)(y), VyeY.

Denote
Yo :=1I.(Y), Yy = Ip(Y),

and

Then we have

and
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()= (o ()i )= (s 0))

Define the basis of Y. = I1.(Y) by

) o) o)

We have the following lemma.
Lemma 5.7. For A € iR we have

0 0 i
(M—Lh)_lnh<<(l>)): <(u—fTVk| R )T (é))

1, %)
and

0 0 i
(M = Ly)~' ((Z)) = ((u — Ayl x, )yl (3)) '

n o (X)

In the following, we will compute the Taylor expansion of the reduced system of (5.3). We
apply the procedure described at the end of Section 4 and apply the method with k =2 in Theo-
rem 4.2. For j =2, we must find L, € £S(YC2, Y, N D(L)) by solving the following equation for
each (wy, wp) € YCZ:

%[Lz(eL”twl,eLf’wz)](O) = LyLo(wy, w) + %HthH(O)(wl, wy). (5.12)
Define G>:Y — Y, N D(L) by
Go(Mow) := Ly(IM,w, Mow), Yw €Y,
£:Y—>Yand& 'Y — Y by
&Ew):=w—Gy(II,w) and Sz_l(w) =w+ Gy(I1.w), YwEeY.

Then we define H : D(L) — Y by

Hy(w) = H(& ' (w)) + LG2(IT,w) — DG (ITew) LM ew
— DGay(Mew)ITH (&' (w)).

By applying Theorem 4.2 to (5.3) with k = 2, we obtain the following theorem.
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Theorem 5.8. By using the change of variables

w2 () =w(t) = G2(Mew®) & w)=wr ) + Ga([Tewa (1)),

the map t — w(t) is an integrated solution of the Cauchy problem (5.3) if and only if t — wa(t)
is an integrated solution of the Cauchy problem

dw; (1)
dt
wr(0) =wy € D(L).

= Lws(t) + Ho(wa(1)), >0, (5.13)

Moreover, the reduced system of the Cauchy problem (5.13) is given by the ordinary differential
equations on R x X

dav(t)
. 0
~ -~ -~ (5.14)
dxc(t)  ~ Ay V(1) ) = ( (1) )
dr (Ap)exc (@) + 1. "W + Gr) (xc(t) + R, () >

(1)

where I/?\C e C*R x X¢, Xo), and I/?\C (x ®

) is a remainder of order 4, that is,

R (: ) = |, x0) | 0@, x0),

where O (V, x.) is a function of (U, x.) which remains bounded when (V, x.) goes to 0, or equiv-
alently,

DjﬁC(O)zo foreach j=1,...,3.

Furthermore,

which implies that
~ (D o . N
R. (x ) = O (W |lxcll + D2 {Ixcll? + Vllxel® + llxell?).
C

Proof. We apply Theorem 4.2 to system (5.3) and deduce that the reduced system of (5.13)
consists of ordinary differential equations on X, of the form

dwc(t)
dt

= Lewc(t) + TEH[we(t) + Ga(we(0))] + Re(we(®)),

where R. € C*(X,, X.) is the remainder term of order 4, which means that D/ R.(0) =0, Vj =
1,2, 3. Since
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Re(we) :=MH{H[we + Ga(we) + Wa(we)] — H[we + Ga(we) ]},

and the first component of H is 0, by using the formula for I7F we deduce that R.(w,) has the

following form
w ()=
c e = ﬁc ( v.> .

~
v

0 ) is an equilibrium solution of (5.13) and

Moreover, since for each D € R small enough, (

>

belongs to the center manifold X.. It follows that

() = (o) 427 5,))

) =0, VU eR small enough.

Thus

5
N
S

So we must have

~ (7
RC< ):O, Vv € R small enough.
Ox
We deduce that
3/ R.(0
.C,S)z , Vi=1,...,4
LAY

This completes the proof. O
In order to apply the above theorem and to compute the Taylor expansion of the reduced

system it only remains to compute L.
Set

with @ = (), =1,2,3. We have

D?H (0)(w, wy) =< O )
’ D*W(0) (w1, wy)

and

D3 H (0) (w1, wa w3)=( 0% )
e D3W(0)(wy, wa, w3) )’

where
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D2W (0)(wy, wn) = (Cl (wr, wz))

Cr(wy, wy)
with
+o0 +00
Cl(w17w2)=—7fl/wz(l)dl—ﬁz/sm(l)dl,
0 0
(¢ + d”"A)f p1(Ddl

dSV
du

Co(wi, w2) =68y X | + (po1y + <p1v2)

+(<P1+ d

* oy (1)l
ds., [ﬁz@kfo m(l)dl—qol(l—??vk)) ]

X o~ _
dv " | 401Gy Jo ™ e2(Ddl — ga(1 = S)

and

3 _ 0
D*W(0)(wr, w2, w3) =

C3(wy, w, w3)

with

PN o o d2Sy,
(Q2V1V3 + @3V1V2 + 91V2V3) — 5
Clwiwp,w) =8ux | g5, (vzﬁs Jo = o1l + 7172 [ 0 (1>d1)

W\ 1o f0+°° e2()dl

s, [o1 +°°q02+ Drdl + o [T 1+ 5

P v3X
v W lf() @2dl + ) f() @1dl)

dsvk

’\7le
+

db “k

v, dU
s, . [ +°°903+ CuDrdl + 93 [ o1 + SByal ]

4 v X
v G fo (p3d1+V3fO p1dl)

d(svkﬂx (02 foF™ o3 + d;k%dl +03 e+ s“"’v}dl

+

da "k

+

dsy, ~ _
dv " | 4 S Gy [F gadl + D5 7 padl)
%5 I _ Al
Vi~ ~ —
+ g Vv —@1(1 = 8y) + 5y /¢1d1
L 0 i
4% I Al
K00 x| —@3(1 —Sy) +5 dl
+ 2 2ViX p3(1 Suk)+5vk/§03
L 0 i
d28 - +o00 -
+ —5D03 01 x| —2(1 = Sy,) +5 dl
dU2 3V1X ©2 Vi Vk @2 .

L 0 m
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Next recall that
Ll (et Let 0)=Lo(L L L
E[ 2(e""wi, e"'w2)](0) = La(Lewy, wa) + La(wy, Lew).

So system (5.12) can be rewritten as

1
Ly(Lewy, wa) + La(wy, Lewy) = Ly Ly (wy, w) + 517;1D2H(0)(w1, wy).

(i) Computation of L,(e1, e1). We have
I, D*H(0)(e;, e1) =0, Lee; =0.
So the equation
Ly(Lcer, e1) + La(er, Leer) = LpLa(er, e1) + %UthH(O)(el, er)

is equivalent to

0=LpLs(er,er).
Since 0 belongs to the resolvent set of Lj, we obtain that

Ly(e1,e1) =0.

(ii) Computation of L;(ey, e2). We have

0
D*H(0) (e, e2) = ((— o bl(l)dl> )
O12

with
ds ds e
O =25, x| by 2% ﬂfb Ddl
1.2 ukx|:1dv + T 1)
0
ds “+o00
+ ”kx[ﬁvk/bl(l)dl—bl(l—ivk)}
dv
0
and
L.ep =0, Leer =iwge;.

So in this case system (5.15) becomes

971

(5.15)

(5.16)
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. 1
iwgLa(ey, e2) = LyLa(ey, e2) + 51711D2H(0)(€1, e2).
Thus

1
(ioxd — Lp)La(er, e2) = EnthHm)(el, e2).

Now by using Lemma 5.7, we obtain

0
L. _
Ly(er,e2) = z(lwkl — Ly~ ', (( o+°°b1(l)dl>>
61,2

S bl ,1 0 1. 1 0

=—20 "7 (Gl — Ly, (1) + —(ioxd — Ly)~ ', ( 0 )
2
0 O12

+00 b (D)l 0

— _Jo OIAAE 0
2 < (dA(vk —m)k)) lzlwk _(dA(Uj}limk))2(%d2AE;fiia)k)hl+M)>
+a 0
2

0
dA(vg.iwg) d=A(
( si M= () My +1”k2"”")¢1))

where M, M| and M are defined in Lemmas 5.4 and 5.5 with ¢ = ®; >. Hence

0
L2(€1,€2)=L2(€2,e1)=(< 0 )) (5.17)
Y12
where
dAWg.—iwg) y—1 _b
Pt (0L ()
2 — . 2 .
2 _(dA(lj)ilwk))_2(%d Afiv)fz,twk)bl +M)
o 1 1(dAv, io)\ " 1d>A(vg, iwg)
— M, — - =222 M, + -0 TR
oy T2 2( dn TP R
with

Y =0,.

(iii) Computation of L;(eq, e3). We have

0
D*H(0)(ey, e3) = ( (— o bz(l)dl> )
613

with
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S, ds, [
013—%)([172 o +ﬂ/b2(l)dl]

dv dv
0

ds i
+ = x[ / by()dl — by (1 — Svk)}

dv

0
and

L.e; =0, Lees = —iwges.

In this case system (5.15) becomes

. 1
—iwgLa(er, e3) = LyLa(er, e3) + 5HthH(O)(e1,e3).

So

1
(—iwxl — Lp)La(er, e3) = EHhDZH(OXel, e3).

Thus, by Lemma 5.7 we have

| R _
Ly(ey,e3) = 5(—10)1{1 — Ly~ ', (( hz(l)dl>>
O13

by (D)l X 0 1 B 0

=———F——(—iex! —Lp) " Hp| (1\ |+ z(—iwgl — Lyp)" Iy 0
2 (o)) "2 (o1)
0 013
* by (l)dl 0
- 2 (dA(vk iop =L by dAGg—iwg) o 1 d2AGy.—iwp) >
an g an )7 (3 2 by+N)
i 0
2

< : >
91 dA(vg,—iwg) | —1 1 a2 A(vg,—iwg)
Ziwg TN~ ()7 (Nt — 55— %)

where N, N1 and N are defined in Lemmas 5.4 and 5.5 with ¢ = ©®1 3. Then

0
L2(61763)=L2(€3,€1)=(( 0 )) (5.18)
V1,3

where

+
0
Yi3=—

Cbhy(dIT (dA(, i)\~ by
2 dX Diwg

[ dAw, —iay) -2 ldzA(Vk,—iwk)b2+N
dX 2 dx2



974 Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011

N _
diog 27772 dx L+

o 1 1/dAg, —iwp)\ " 1d?A (v, —iwg)
N, — o 22 -0 Y
+ ( 2 w2z~
with
Y =013.

(iv) Computation of L;(ez, e2). We have

0
D*H(0)(ez, €2) = ( 0 )
28y, xb1 foF* br(Dal

and
Le.er =iwger.
In this case system (5.15) becomes
. 1 2
2iwgLa(ez, e2) = LypLa(ez, e2) + EHhD H(0)(ez, €2).
So
. 1 2
QRiwgl — Lp)La(ez, e2) = EHhD H(0)(e2, e2)

and Lemma 5.7 implies

0
La(ez, e2) = %(ﬁwu—Lhrlm (( 0 ))

28y, xb1 fyF* bi(Dal

= ((w§2)>, (5.19)

where

a
1 A <
Vo = _2?1 B 6<./)2 n E/e_fs Riox o 1=Sy)x Oldly, () g
LWy iy
0

(= Tpmy amtin e 0120k (=S x O1 }

1
+ = A(vg, 2iawg) ! [ ~ apn; 3
2 + Tgmy =i f(f e s [21wk+5vk(l*Suk)X(l)Jdl(SVkX(S)EVk (s)ds

with

+00

W =28, xbi / b1 ()l

0
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(v) Computation of L;(e2, e3). We have

0
D*H(0)(e2, €3) = ( 0 )
Su x1b2 [oF*° br(ydi+by [ by(dl)

and
Leer =iwger, L.es = —iwges.

In this case system (5.15) reduces to

. . 1 2

(lwx —iwg)La(er, e3) = LyLa(er, e3) + 517hD H(0)(e2, 3).
Thus
1 2
—LyLa(ez, e3) = EHhD H(0)(e2, e3),

and by Lemma 5.7 we have

L(ez,e3) = La(e3, e2)

| 0
=5<—Lh)—lnh( 0 )
Su x1b2 JoF*° b1(Ydi+by [ by(dl)

- <<£3)> , (5.20)

where

a
S B +1/e_fsa[s"k(l_s”k)X(l)]le(s)ds
’ 2wy 2w 2
0
1 Ty 1 _oye~ JaTuy =Sy x 0l
A0 [( My e (SO ]

+ 1g=yp=0 g € Js 1% v )X Sue X ()5, (s)ds

with

+00 +00
lﬁZSUkX|:b2/b1(l)dl+b1/bz(l)dl].

0 0

(vi) Computation of L;(e3, e3). We have

0
D*H(0)(e3, e3) = ( 0 )
28y, xb2 fo ba(Ddl



976 Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011
and
L.es = —iwges.

In this case system (5.15) becomes

. 1 5

—2iwyLa(es, e3) = LyLa(e3, e3) + EHhD H(0)(e3, e3).
Hence
. 1 2
(=2iwrl — Lp)La(e3, e3) = 517hD H(0)(e3, e3).

It follows from Lemma 5.7 that

0
Ly(e3,e3) = %(—Ziwkl — Ly tm, (( 0 ))

28y, xb2 J5° ba(Ddl

== _n; _ - N —1 Vg
2 ( lekl AUk'n:uk (X)) Hh (25kab2 f0+oc bz(l)dl)

- (<£3)) (5.21)

where
a
Uas = o 9 +1/e_f;'[_ziwmuk(1—§Uk>x<z)]dl¢(s)ds
’ 6iwy 2w 2
0
1 .1
+ EA(Vks —2iwy)
[(—vkﬂa:w S }
X o . _
o Mgy imaion fy €= 5 IS0 OS5 ()5, (9)ds
with
+00
Ip=28vkxb2fb2(l)dl.
0

Next, we can express the above computations in terms of the following basis of Y. = IT.(Y):

(@) = (@) =)
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with

b1 —b
cl=bi+by, = ‘l, = (5.22)

Lemma 5.9. The symmetric and bilinear map L : YC2 — Y, N D(L) is defined by

(@) La(er,er) =0;
(b) Ly(ey,e,) and Ly(e3,¢1) are defined by

()
Ly(e1,e) =La(er,e1) = ( O ) ;

2Re 2

(¢) La(e1,e3) and Ly(e3,¢)) are defined by

()
Ly(€),e3) = La(e3,e1) = ( Or ) ;

2Imyr 2

(d) Ly(2,, ) is defined by

Ly(ez,e2) = ( Or ) ;
2Re Y2 2+2923

(e) La(ez,e3) and Ly (e3,¢y) are defined by

Or
Lz(gz,%):Lz(%,?z):(( Or ))

2Imyrp o

Or
(f) La(e3,e3) = ( 0= )
<—2 Re ¥ 2+2v23 )

where Y1 2, Y22, and Yy 3 are defined in (5.17), (5.19), and (5.20), respectively.

Proof. We use the fact that

~ ~ ~ € —e3
ey =ep, er»=er+e3, and e3= - .

1

(a) By using (5.16), (a) follows.
(b) We have

Ly(€1,e2) = La(er, e2) + La(eq, e3).

So by using (5.17) and (5.18), we obtain
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Ly(er,e) = ( O .
¢1,2+1ﬂ1,3>

Since Y1 2(a) = ¥1.3(a), Ya > 0, (b) follows.
(c) We have

~ o~ 1 1
Lo(er,e3) = L2<61, 17(62 - 63)) = ZT[L2(€17€2) — La(e1, e3)].

It follows from (5.17) and (5.18) that

o1 Or
L2(61,€3)=lf ( O )
Yi2-v¥13
and (c) follows.

(d) By using (5.19), (5.20) and (5.21), we have

Ly(€3,2) = La(ex + 3, €2+ €3)

= La(ez,e2) +2L2(ez, e3) + La(e3, e3)

Or
= Or ) .
( Y20+2Y23+VY33

Note that ¥ 2(a) = Y3 3(a), Ya > 0, (d) follows.
(e) We have

o~ 1
Ly(ez,e3) =L (ez + e3, l—,(ez — 63)>
1
= ?[Lz(ez, e2) — La(e3, e3)]

_! ( o )
K (Ilfz.zo—R%J)

and (e) follows.
(f) We have

- o~ 1 1
Ly(e3,e3) = Lz(l—.(ez —e3), 17(62 - 63))

= —[La(e2, €2) — 2L (€2, €3) + La(e3, €3)]

()
=— 0 .
(¢z,2—2wﬂj,3+l//3,3 )

This completes the proof. O



Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011 979

In the following lemma we compute the Taylor expansion of the reduced system (5.14) by
using the formula obtained for L, in Lemma 5.9.

Lemma 5.10. The reduced system (5.14) expressed in terms of the basis {€|,¢3,e3} has the
following form

av(t)
de

i)
dr \ y(t)

where the matrix M. is given by

x(t) P ) (5.23)
ZMC< >+(H2+H3 TR | (x|
Yo (y(t))

the map Hy :R3 —> R?is defined by

- +o00 .
A () = (=5 [ swar)[¢a0uion | (RCHEY
() =\ 05| (anen,
0
2 Re(dA(”k Jiwg) Ilé;\;f),k,zke

Ao o) |-
+ ‘d (Vi fwg) ’ (5.24)

di

Im (dA(Uk Jdwg) Il)»—fzwk o=0

di Colr=—iwy,
where
£ =xc1+ yea +2(x* — y*) Re(¥.2) +2(x* + y*) Y23
+4vx Re(¥1,2) + 40y Im( 2) + 4xy Im(y2 2)
and

e_avkx[<s+ va)/é(l)dl—i—E dS”"}

as, (- ~
- ( fsa)dl—s(l—suk))
0

where 1//1 2(a), Y2.2(a) and Y 3(a) are obtained in (5.17), (5.19), and (5.20), respectively. The
map H3 R3 — Rz is defined by

~ ( v ) l‘dA(vk,ia)k) -
H3 X = -
())=el @

2 Re(dA(vk Jiwg) Ilk——zwk 9=¢
CZl)»—*lwk

, (5.25)

Im (dA(vk Jiwg) I|k——1wk y=¢
dx Coli=—iwy
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with

_5d’S
(xc1 + ycz)v2 5t

d vy
+ D2 [ (xey + yea) (Dl

s =38ux

. 6d5vk’v‘x |:(xc1 + yeo) fO xc1+yer + VL le:|

ds,, ~
dv + %v f0+ xcy + yepdl

d?s,, =2

+3d2

[ (xc1 +ye)(1 = Sy) + 5y, f (xc1 + ycz)dl} (5.26)
and the remainder term ﬁ]c e C*(R3,R?) is given by

()= IO OGN C) o

Proof. By using the Taylor expansion of W around 0, the reduced system (5.14) can be rewritten
as follows:

+v

av(t)

dt 7
) 1 A @) \\°
= Rexe(t) + 5 10 DPW(O) <(1+G2) (xc(t)>>

1A, ﬁ(r>>>3 ~ (ﬁ(r))
+3'1‘[C DW(O)<(1+G2)<xC(t) + Ry xe(f) .

0 0
Xe = = _ .
<x61 + ycz) (X(bl +b2) + )’(bll—-bz)>

Since {€}, ¢, ¢3} is used as the basis for Y, = I1.(Y), ie., {(0), (O)} is a basis of X, :=

C1 2
0
M, = [ w"} .
—wry 0

(vii) Computation of ﬁz(Y). We have

Set

Ay, .
I, ™ (X), we obtain that

VY o~ o~ U UU U
I + G»y) < ) =vel +xex + ye3 + Lo(Vey + xex + yes, ver + xex + ye3)
Xc

=7V¢) +x& + y& + 12 L2(21,81) + x°L2 (22, 82) + y*L2(3, 23)
+2Vx Ly (€1, €2) + 2vyLa(e1,e3) + 2xyLa(ea, €3).
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By Lemma 5.9, it follows that

(1+G2><f>=(<o>), (5.28)
¢ &

where

£(a) = xc1(a) + yea(a) +2(x* — y?) Re(¥2.2(@)) +2(x2 + y?)¥2.3(0)
+ 4vxRe(V12(a)) + 40y Im(v¥) 2(a)) + 4xy Im(Y2,2(a)).

Then we deduce that

o~ 2 ~ 400
Lotwo () =(TH 50,
2 () 0

By projecting on X, using (5.5), (5.8), (5.9), and the same identification as above, we obtain that

1Ay o ﬁ(z)))z
5 e DW(O)((”G”(XC@

_ HAVk (—ﬁ 0+°°f;‘(l)dl>
)

i A i /0
| - Ay Ay
_< v/é(l)dl)ﬂc <0>+nc (9)

0

+o00 dA( o) |-
_[ = Vi, LWk
_( v / g(z)dz)‘idk

0

0
+ ,
@1ly=0 + @2ly—o

where ¢| and ¢; are defined in (5.22), ¢; and ¢, are defined in (5.8) and (5.9). Note that

(oryes 2ty )
o1ly=0 + 2|y =0

0
<(dA(Vk la)k)) (”k iy . §=0 )b + (dA(vk —lwk)) ](1|K=—iwk~$=9 )b2>

Colr=ioy, Colr=—iwy,

0
<Re(dA(vk iwg) )C + Im(dA(\)k Jiwg) )C )

_|dAg o) |
N dx

0
<R (dA(Uk Liwg) 1|)L7—l(uk o= B)C +Im(dA(vk Jiwg) I|A771wk =l 0)C2> .

G |A**lw G ‘A**tw/{

Then (5.24) follows.
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- (D ~ (7 1 A, | .5 7\\° ;3 7\?
Ri, ( ) =Ry, ( > + —IT. " { D°W(0) <(I + G») ( )) —D°W(0) ( ) .
X 3! Xe X

Then by (5.28), we deduce that the remainder term satisfies the order condition (5.27). Thus it

only remains to compute %D3 W (0) (; ) .
(viii) Computation of ﬁ3(Y). We have
3 7\ [0
D W (0) = .
Xc S
Then we obtain
1A, N\ 1_4, [0
—I,. " D°W(0) =-II."*
3! Xc 6 S

“ (ot o)
6 \ ¢1ly=c + @2ly=c

1 dA(vg, i) |
6 di

0
(Re(dA(Uk iwy) Il)»—ftw]\ o= g)c +Im(dA(vk Jwy) ”k——zwk o= g) 2)

Colr=— Cola=—iwy,

and (5.25) follows. O

The main result of this section is the following theorem in which we summarize the above
results.

Theorem 5.11. The reduced system (5.14) expressed in terms of the basis {€1, ¢, €3} has the
following form

dv(t)

.

i <x(t)> Y <x(z‘)> B+ B )( V(1) ) (5.29)
di\y»)) =" \yo TG

where

The map Hy: R} > R2is defined by
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(1)) =me

dA(vg,iwg) |~
+[ =%

A0 i) - (Re(%»

Im(dA(vk,iwk))

) Re(dA(vk Jwg) ‘A——ta)k 7=0,
Cola=—iwy,

Im (dA(Uk Jwy) ‘)»—ftwk =0 )
d) C2|A**lw,\

where

+00
0, x,y)=—V / (xc1+ ye2)(Ddl,

(xe1 + yer + T8y 52 (xey + yer)(Ddl

él :8ka ds
Uk

+ (xe1 + ye)v—;

—+00
ds,, - _
7 (xc1 +yc)dl — (xc1 + ye)(1 = Sy) ),

0

and the map Hy :R3 —> R? is defined by

~ _ dA j
A (1) ) = | R0 : (Re(—%""“))
3 x =3, X, Y) | ——— i
(y) dr Im(dA(Uk»lwk))
dA ‘ =—io
2 [ Re( (Uk ren) sz\)L_k—Z):Z

dA(vg, i) |~
+[=%

Im (dA(vk Jwy) ”)uf—zwk o= 92)
dx CZ‘kfftwk

2 Re(dA(\)k Jiwg) ]l)»——m)k 9o=¢
CZlA——tmk

LdA g, iwg) |~
6 dx

Im (dA(Vk Jiwg) Il)»——tmk o=¢
di CZlA-—tmk

where

m@,x,w:—ﬁ/ E ()l

(xe1 4 yer + “"kﬁ)f *E (dl

02 =38y, x +§1f0 (xc1+ ye)(Ddl

dS,,k
+$1V dv

Du 55 Ex(hdl —&,(1—S
7 /El() —&1(1—Sy)
0
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with

E1=2(x" — y*)Re(¥2.2) +2(x* + y*)¥23
+4vxRe(yr12) +4vy Im(yr12) + 4xy Im(¢22)

where Y1 2(a), Y2,2(a), ¥, 3(a) and ¢ are obtained in (5.17), (5.19), (5.20), and (5.26), respec-
tively. The remainder term ch € C*(R3, R?) is given by
: Gl
y .

(6= IC=IC) I

From Theorem 5.11, dropping the auxiliary equation introduced for handling the parameter,

we get the following equation
_2 <Re(dA(1:;()liwk) ) )
Im(dA(]:jk)liwk) )

d (x(t) _ x(t) dA(vk iwy)
d (y(t)) =M (y(z)) ol y)‘
Vi, i, |)»—71w
2 Re(dA( BLD) C2|A—lifuk0] )

N ‘dA(vk,iwk) N

dA’ | =—1lw,
Im (dA(\:ik}szk) 2‘2“752]‘01 )
d
+30,x, ) M >/ Re(dAlLien))
3 ' Im(w)

dA(V]‘ iwg) |)»7—zmk =0,
2
Re( C2|)Lffzwk )

dA (v, iwg) |
.|

Im (dA(l)k Jwk) |)L——1wk<p =0,
dxr C2|A——1(1)k

2 Re(dA(Uk ta)k) Il/\,f,wk Y=g
C2|A**lwk

1|dA (v, iwg) |

- Roe. 5.30
6’ dn + 2c ( )

I (dA(Uk ta)k) IlA—*lwk Y=c
d Cala=— iwg

In the following we will study the direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions. We first make some preliminary remarks. Rewrite the system of
ordinary differential equations (5.30) as the following form

ax = F(X,V) (5.31)
a '

where the stationary point is X = 0 € R? and the critical value of the bifurcation parameter D

is 0. Since the equilibrium solutions belong to the center manifold, we have for each [V] small
enough that

F(0,79)=0
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One may observe that d, F(0,V) is unknown whenever U # 0. System (5.29) only provides an
approximation at the order 2 of 9, F(0,V) with respect to V. Nevertheless by using Proposi-
tion 4.22 in Magal and Ruan [43], we know that the eigenvalues A (D) of 3, (0, D) are the roots
of the original characteristic equation

A2 A
vh(v) + v
& 0=A1(v, 1) := A[A + v/c(c)] + vzx(c)(l — e_)‘)

0O=A(w,M)=1—e¢"+

& 0= A0+ ) = A+ @+ uor(@] + (4 1) k(01— e ),

12
rES2, k(c) = L
and

A(0) = Hiwg.

From Proposition 5.1, we know that for ¢ > 1 the characteristic equation has a unique pair of
complex conjugate roots A(D), A(D) close to iwy, —iwy forvin a neighborhood of 0. Here A0 =
a®) +io®), a(0) =0 and iw(0) =iwy and

a’(0) > 0.

The spectrum of 9, F (0, V) is

o (3:F(0,D)) = {% D), 2, D) }.

By using a standard procedure (see for example the proof of Lemma 3.3 on page 92 in
Kuznetsov [34]) and by introducing a complex variable z, system (5.31) can be written for suffi-
ciently small [D] as a single equation:

=AMz + 8. D), (5.32)
where
3 o
AD)=a®) +io®), g(z,z,v) = Z ﬁgi.,'(ﬁ)zlzj+0(|z|3).
i+j=2""""

It is easy to check that (5.31) satisfies

1) F(0,7) =0 for D in an open interval containing 0, and 0 € R? is an isolated stationary point
of F;
2) F(X,V)isjointly CL*2(L >2) in X and 7 in a neighborhood of (0, 0) € R? x R;
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3) Dx F(0,7) has a pair of complex conjugate eigenvalues A and A such that

D) =a®) +io®),
where @ (0) = wy > 0, a(0) =0, o’ (0) #£ 0,

By Hassard et al. [28, Theorem II, page 16], for (5.31) we have: there exist an £, > 0 and a
CL*1_function V(e),

3

D(e) = vaez" +0(eF) (0<e<ep) (5.33)
1

such that for each ¢ € (0, &) there exists a periodic solution P (¢) with period 7 (¢), occurring
for U ="(e). The period T (¢) of P, (r) is a CL+!-function

(51
2 2 L+1
T(s):w—k|:l+21:rgi£ ’i|+0(s ) (0<e<egy). (5.34)
Exactly two of the Floquet exponents of P (t) approach 0 as € | 0. One is O for € € (0, &), the
other is a CL*!-function

51
K(g) = Z/@e?" + 05 (0<e<ep). (5.35)
1

P.(t) is orbitally asymptotically stable with asymptotic phase if x(¢) < 0, and is unstable if
k(e) > 0.

From the above results we know that the stability of the bifurcating periodic solution and the
direction of the Hopf bifurcation are determined by the sign of « (¢) and V(g). Now the problem
becomes to compute the coefficients «p; and Dy; in (5.35) and (5.33). Applying the results in
Hassard et al. [28, pages 45-51] and using a transformation of the following form

7=E+x(&,&7D)

L+1 ,
=+ Y sz‘j(ﬁ)élg/, xij=0fori=j+1,
i+j=2 I

we can change Eq. (5.32) into the Poincaré normal form as follows:

_ [L/2] . ~
E=1ME+ Y ;M + 0 (lgl|&. 7| ) = C&.5.9). (5.36)
j=1

where C (£, €,7) is CL*2 jointly in £, €,V in a neighborhood of 0 € C x C x R, then the periodic
solution of period T (¢) such that £(0, D) = ¢ of (5.36) has the form
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£ =eexp[2mit/T(e)] + O(e"T2),

where
2 L
T(e)="|1 e |+ o(elt! 5.37
(€) wk[+212r,e}+ (41 (5.37)
and
L .
V(e) = Z%}e’ + O(eLH). (5.38)
1
Furthermore 71, ..., 74 and vy, ..., Dy are given by the following formulae:
~ ~ Rec1(0) ~
v =0, V) = — , v3 =0,
a’(0)
R 1 . a//(o))\2
Dy = “7O |:Recz(0) +DRec)(0) + — 2

—1
71 =0, 7 = —[Imc1(0) + 120/ (0)], 73 =0,
W

/! 0
@ )@% +Imc (0)D + Imc2(0) — Wg}. (5.39)

1 —~
Ty =—— |:a)/(0)V4 +
Wi

The Floquet exponents of the periodic solution are given by

51

k(@)= rpe” + 0", (5.40)
1
where
ky =2Rec1(0), k4 =4Recy(0) —I-ZRCC/I(O)T)\Q, (541
i 1 0
10) = = (52001811 0) = 2|g11 O = ~]g02(0)]? ) + 0. (5.42)
2wy 3 2

To use the bifurcation formulae for « (¢), V(¢) and T'(¢), we need only compute ¢1(0), ¢ (0), and
¢2(0). For sufficiently small ¢, if k5 # 0, D, # 0, the stability of the bifurcating periodic solutions
and the direction of the Hopf bifurcation are determined by the sign of x» and ;. In applications,
usually computation of «, and 7, is sufficient.

In the following, for system (5.31) we shall obtain explicit expressions for U and «, only.
From (5.39) and (5.31) we know that to compute x> and U, we only need ¢;(0). By (5.42), in
order to obtain c1(0) we only need to compute g20(0), g11(0), g02(0) and g21(0). Thus we only
need to compute at v = 0. Setting D = 0 in (5.30), we obtain the following system
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d ! ! dA(vg, i
a (x( )) =Mc<x( )) + ‘M
dr \ y(t) Y (t) -

-2 Re(dA(”deiwk) ”g;:ii:ez )

B dA(ion) Hi=—iop. 5=,
2 [Re(==3; Colhm—iay

dAgiwp) am—iog 5=,
T (s ey )

+ ‘dA(vk, iwg)

R, 5.43
d)\. + 2(,‘5 ( )

dAOg.iwp) Tim—iog.9=0
Im
( d C2 |)L=—iruk

where

+00
0 =6ukx[<xc1 +yer) f (xer +y02)(l)dl},
0

(xer +ye2) Jo &1 (Dl }

6 =68y, x
‘ { +E1 [ (et + ye) (Dl

with
§1=2(x* = y*)Re(¥n.0) +2(x° +y*) 23 + 4xy Im(¥0).
By introducing a complex variable z = y + ix, system (5.43) can be written as a single equation

z=iwyz(t) +8(z,2),
where g(z, 7) is an expansion in powers of z and z:

2 52 25

_ z _ z 7°Z
gz, D =gw—=—+gnzzt+gn—+g—+---
2 2 2
in which
0 (Im TIA:—iwk,a:el)oz + (Im ﬂx=—iwk,a=el )20
2 RN L~
+iRel|x=—iwp,5=0,)02 + i(Re I|}=—iw,5=0,)20
811 =01 ~ ~ ,
0 (Re I =—iw,5=0,)02 + Re I |5=—iwy,5=6,)20
3~ NN
—i(Am I [} =—jw,g=6,)02 — idM T [ =_j0; 5=0,)20
820=g811 10, 802 =811 — 0
with

~ b coswy(a — s)e” I 5”k(1_§”k)X(l)d13ka(S)
(Re 1 )=—iw,g=6,)11 = / / oo oo dsda
A [e1(s) [y caDdl+c2(s) [y cr(Ddl]

~ L sinwg(a — s)e” ‘SVk(l_g”k)X(l)dlSvkx(s)
Am I [ =—iwy,=0.)11 = / / oo oo dsda
x [c1(s) [y caDdl+c2(s) [y er(Ddl]
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(Re T =—iw.5=0,)02

+00 a “+o00

N f / coswy(a — s)e~ kB 1=SuxDdls | 5 (5)c) () / Cz(Dd’]dsda,
0 0 0

(Im 7|5 =—iwp. 5=6,)02

+00 a +00

= // sina)k(a—s)e_fxa8”1<(1_§"k)xa)dl8vkx(s)C2(s)/cz(l)dl}dsda,
0 0 0

(Re I'p=—iw,5=6,)20

+00 a +oo
= / /{cosa)k(a—s)e_fsaavk(I_S”k)xa)dlévkx(s)cl(s) / cl(l)dl}dsda,
0 0 0

(Im 7|5 =—iw. 5=61)20

+00 a

+00
= / /{sina)k(a—s)ef»vu‘S”k(lgvk)X(l)dléukx(s)cl(s)/cl(l)dl}dsda,
0 0 0

1|dA (v, i) |2 )
01= 5‘—& [Cala=—ian] ™"
dA(vi, iwg) dA (v, iwg)
=Re(CrRe| —— ImCyI ],
Q2 e2e< I >+m 2m< dn )
dA(vi, iwyg) dA (v, iwy)
=Re(Cr1 — ) —-ImCyRe{ —— |,
Q3 e(Cy m< i > mCp e( an )

0 02[(Re ﬂx:—iwk,azez)u —i(Im Tlx:—iwk,a:ez)ll]
= 1 - . - £
—o3[dmI|j=—iw,5=0,)11 +i(ReI|=—iw,5=6,)11]

and

(ﬂx:-mk,@:ez)u + 3(ﬂx=—iwk,a=ez)30 }

1 .
g21=591(92—103){ = =
+ il |a=—iw,5=0:)21 + i3I A=—iwy,5=6,)03

with

(Tlx:—iwk,azez)lz
2¢1(s) [y = Re(¥2,2) + Y231l

400 a o0
- / /e*f;’[fiwkﬁsuk(lfSI,k)xa)]dz(s‘)kX(s) +dea(s) fy ™ Im(Y2,2) (Dl ’
s 2[—Re(¥2) + ¥2.31(5) fo cr1(Ddl

+4Im(Y,0)(s) [ ea(Ddl
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(Tlrm—icon.5=67)30
- 77 - TPt (=S, x DMl [ZCI(S) fo+o°[Re(‘ﬁ252)+1/’2,3](l)d1}ds
Vi +00
5w 2[Re(Y2,2) + ¥231(s) [y c1(Dydl

(ﬂk:—iwk,$:02)2l

205(5) fyF*[Re(¥2,2) + ¥2,31(0)dl
+dei(s) fo Im(Y2,2) (Dl

2[Re(¥2,2) + ¥2,31(5) [y 2Dyl
+4Im(Y2,2)(s) [y 1 (Dl

400 a
= / /67fiya[iiwk"’svk(]7§vk)X(l)]d18VkX(S)
0

0

(I |r=—iwg,5=6,)03

+00 a 00
_ / /e_f:[_iwkka(1—§vk)x(l)]dJSVkX(S) [Zcz(s)f(;r [—Re(¥2,2) +J:/foi,3](l)dl} Jsda
s 2[—Re(¥22) + ¥2.31(5) fy ca(Ddl

Therefore, we have

i
Rec1(0) =Re| —(g20811) + 821
2wy, 2

_ 2RegiiImgi; +ImgoRegi; +Reglmgy,

2wy

0 Re(ﬂk:—iwk@:@)u +3 Re(ﬂk:—iwk,$:92)30
2 ~ ~
+Im(] |p=—iwy,5=6,)21 + 3Im( [5=—i 0y, 5=6,)03

1
+ na ~ ~ ,
0 Im(] |y =—iwp,5=0,)12 — 3Im(I | =iy, 5=6,)30
3 ~ ~
+ Re(I [x=—iawy,5=6,)21 +3Re(I |)=—iwy,5=6,)03
7|3 5 + (M7 je—ioy
Re g1 = o1 02[( |AAlwk,<p 002 + ( IAAWW 91)20] ’
+ o3l(Re I |h=—iwy,5=0,)02 + (Re I |x=—iwy,5=6,)20]
ReT ——iwy T + Ref ——iwn. 0=
Imgi = o1 o2[( |)LAlwk,(p 0,002 + ( |}»Alwk,(p 9,)20] ’
—o3[dm I =—iw,5=6,)02 + AM 1 [} =—jw; ,5=6,)20]
Rel| ——iwn . G=
Reo = o1 02( |AAtwk,ga o011 ’
—o3(Im 1| =—jw,5=0,)11
Im17]| i o=
ImQZ—Ql QZ( |)~Alwk~,<ﬂ 91)11 ,
+o3(Re I |h=—iw,5=6,)11
and
~ Rec;(0)
V) = — , k2 =2Rec1(0).

o’(0)
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For the symmetric case (ii) in Proposition 5.1, we only need to replace vy and wy by Vi and @y,
respectively in the expression of Re ¢1(0). From the above discussion we can state the following
result.

Theorem 5.12. The direction of the Hopf bifurcation is determined by the sign of V,: if v > 0
(< 0), then the bifurcating periodic solutions exist for v > v (v < vi). The periodic solutions
are stable (unstable) if ko <0 (> 0).

The existence of Hopf bifurcation in the structured evolutionary epidemiological model of
influenza A drift (1.2) obtained in Magal and Ruan [44] and the stability of the bifurcated periodic
solutions given in Theorem 5.12 indicate that influenza A has an intrinsic tendency to oscillate
due to the evolutionary and/or immunological changes of the influenza viruses. This will be very
helpful in understanding the seasonal occurrence of influenza A, in predicting the epidemics of
specific influenza A strains, and in designing effective vaccine programs.

5.2. An age structured population model

Now we apply the normal form theory developed in the previous sections to the age structured
population model (1.6). At first, we make the following assumptions.

Assumption 5.13. Assume that u > 0, @ > 0, y € L*°(0, +00) is a map defined by

_ \1,—¢(a—1) ifa >
y(a)=(a— T)neig(air)l[r,-&-oo)(a) = { (@a—1)e , taz=rt,
0, otherwise,

where 7 > 0, ¢ > 0,n € N, and assume that ¢ > 0 whenever n > 1. The map h: R — R is
defined by

h(x) =xexp(—px), VxeR,
where 8 > 0.
For the operator A defined by (1.7), we have
p(A)={reC:Re(h) > —pu},

and for each A € p(A),

mar ()-0)

& gla)=e Wmay +/e_()‘+“)(“_s)w(s)ds.
0

It is readily checked that
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|0 — a1 < IM, Vi .

A+

So A is a Hille-Yosida operator. Now we consider A, the part of A in X, which is defined by
0 0 0 0
AO = A = , . V € D(A()),
® Z —¢ —ue 4
and

D(Ag) = {(Z) € {Or} x W1((0, +00), R) : ¢(0) =0}.

The linear operator Ag is the infinitesimal generator of a strongly continuous semigroup
{Ta,(t)}s>0 of bounded linear operators on X, which is defined by

()= (7, 100)
N o) T\ T ()0

{e’”go(a —1), ifa—t>0,

0, otherwise.

with
Ty (1) (@) (@) =

Then we consider {S4(#)};>0 C £(X) the integrated semigroup generated by A. That is the fam-

X) € X, the map t — Sa(¢)x is

ily of bounded linear operators on X, such that for each x = ( "

an integrated solution of the Cauchy problem

dSa(t)x
dt

=ASAa(W)x+x, fort>0, and S4(0)x=0.

Thus, we deduce that

wo(3)+ (1, )+ [0 )
Y\ ) T \Lox OA° W

with

0, ifa—1t>0,
e My, ifa—1t<0.

L) (x)(a) ={

Finally define a convolution

t

(SA*f)(t)Z/SA(t—S)f(S)dS

0



Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011 993

for f € Ll(O,'L’; X). Then for each f € Ll(O,r;X), the map r — (Sa * f)(¢) belongs to
C'([0, 7], Xo) N C([0, 7], D(A)), and

d
(Sa< fH) = E(SA * f)(t)
satisfies
t t
Sao )= A/(SA o fHihdl + / fhdl, Vrelo,r].
0 0
Then the integrated solution of system (1.9) is unique and is given by

0
v(t) = Ta, (1) 0 + (SaoaH(v())®), Vi=0.
Set
Xot = {0} x L} (0, +00).
The positive equilibrium solution of (1.9) is given for each o > ¢ by
_ 0 I =
Vg =| _ with Uy (a) = C exp(—pua),
Uy

where

1 _ In(e [y7° y(@e"da)
00 = —75 , and C:= o0 — .
o y(a)e Hda By v(ae Hida

The linearized system of (1.9) around vy is

dﬁf) — Aw(t) + aDH @ )w(t) fort>0,  v(t) € Xo.
where
+o0
«DH(3,) (0> _ <n(a) N J/(a)go(a)da)
© 0

and

e 1 — In(x oo y(a)e "da)

n(c) =ah’( / y(a)ﬁa(a)da) = — - .
; o Y(@e Hida

To simplify the notation, we set
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Byx =Ax +aDH(vy)x with D(By) = D(A).
In the following we summarize some results obtained in Magal and Ruan [43].

Lemma 5.14. Let Assumption 5.13 be satisfied. Then the linear operator By : D(A) C X — X
is a Hille-Yosida operator and

Wess ((Bo)o) < — it
Set
2= {A € C:Re(r) > —u}.
By using the above lemma, we deduce that for each A € 2,
Leo(By) <& A(a,Ar)=0,

where the characteristic function is

+00
Ala, A) :=1—n(a) / y(@e *TM%a  foreach A € 2.
0

Moreover, by using the fact that y (a) = (@ — )"e~ 5“0 L[z, +o0) (@), for each A € £2, the char-
acteristic equation

A(a,A) =0
is equivalent to

e~ Fwr

— . 5.44
(¢ +2+ ! 44

1=nln(a)

In the following, we regard « as the bifurcation parameter and have the following result on Hopf
bifurcation in model (1.6) (Magal and Ruan [43]).

Proposition 5.15. Let Assumption 5.13 be satisfied and assume that t > 0. Then the character-
istic equation (5.44) with o = o, k € N\ {0}, has a unique pair of purely imaginary roots Liwy,
where

e HT

(e + )2+ o)

1=n!n(oy)

and wy > 0 is the unique solution of

—(a)t+(n+1)arctan @ ):n — 2km,
s+u
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so that the age structured model (1.6) undergoes a Hopf bifurcation at the equilibrium u = ug,.
In particular, a non-trivial periodic solution bifurcates from the equilibrium u =, .

In the following we study the direction and stability of the Hopf bifurcation by applying the
normal form theory developed in previous sections to the Cauchy problem (1.9). We first include
the parameter « into the state variable. Consider the system

da(t) _o
dt
dz(tt) = Av(t) + () H(v(1)).

() =apeR, v(0)=uvge Xp.

Making a change of variables

V(1) =0(1) + U,
we obtain the system
do(t)
=0,
dt

dv(t) N A _ _
T = Av(t) + a(t)H(v(t) + va) —a(t)H (vy).

Now setting

a =0+ o,
we obtain
da(t
‘Zg ) _o,
450 R _ (5.45)
=Av(1)+ H(@,v),
where
H@,7) =@+ a)[H@) + T@rap) — HO@tra)]-
We have

HH @, 0)(w) = @+ ax) DH @ + T @+ap) (w)

and
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¥ H@,0)@) = &{ HW+ V@4a) — HOG+ap)

dV(Gyay) )

+ @+ ak)[DH(?Jr ﬁmak))( 7a

- DH(v@m))(%)} }
So
3 H(0,0)=a;DH(Ty,) and 03H(0,0)=0.
Set
X=RxX, Xo=R x D(A).

Consider the linear operator A : D(A) C X — X defined by
(5)= (i cwprsa) = (o)
Al )= A= ~
v (A~+arDH Vg))v By v

D(A) =R x D(A),

with

and the map F : D(A) — X defined by

where W : D(A) — X is defined by

a . - _ _
w (ﬁ) =@+ o) [HO+ V@ tap) — HO@rap)] — DH (U, (D).

Then we have

0 0
F( ):O and DF( ):O.
0 0

Now we can reformulate system (5.45) as the following system

dw(t)
dt

= Aw(t) + F(w(),  w(0) =wo € D(A). (5.46)

The following lemmas were obtained in Magal and Ruan [43].
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997
Lemma 5.16. Let Assumption 5.13 be satisfied and assume that T > 0. Then

G(Bak|ﬁc(x)) = {iwk, —iwyi}, G(Bak|(1_ﬁc)(x)) = U(Bak) \ {iwk, —iowx}
with

ﬁczﬁiwk +ﬁ—iwk,

e () = (ssgm :
+iowg =\ dA(etio) ! +
w adkzwk [5+f0

00 ‘/:Y‘"OO y (l)e—(:tiwk+u)(l—s)dll//(S)ds]e—(:l:iwk+,u). )
and

~ (1 0
11 = N o . ) .
¢ (O) (dA(iflk):lwk) e~ okt dA(afi’A o) ™ = (—iwgtp):

Observe that by construction we have

0 0
Boy e—Fioptw). | =

. 0
a

ef(iiwk+/l,).
Set

Iy = —1I1,), X, :=M.(X), and X, :=,(X).

Lemma 5.17. Let Assumption 5.13 be satisfied and assume that Tt > 0. Then

o (A) =0 (By,) U{0}.
Moreover, we have for A € p(A) N 2 = 82\ (0 (By,) U{0}) that

= A! ((5,)) - ((A—Bai‘l (i))

and the eigenvalues 0 and Liwy of A are simple. The corresponding projectors Iy, I+, : X +
iX - X +iX are defined by

W) () (al) ()eren

Iy v
Note that we have

i (x) =M_j0, (X), VxeX+iX.

In this context, the projectors I1. : X — X and I1j, : X — X are defined by
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Hc(x)5=(no+niwk +H—iwk)(x)» Vx ek,
IIy(x): = —1I.)(x), VxelX.
We denote
X :=T(X), Xy = I (X), Aci=Alx, Ap = Alx,.
Now we have the decomposition
X=X X,.

Define the basis of X, by

= (o)) A=<(0)> =(<o>)

with
= e—(u+iwk)- and ¢ = e—(ﬂ—iwk)~.
We have
Aey =0, Aer =iwger, and Aez = —iwyges.
Set
a o
w = <A> = ((0)) € D(A),
v ~
u
_ ~ o o
Iv:=,, WU =y W =ch=(AA)=<A)
I1lv Ve
and

0

€1

Notice that {( ) , (f )} is the basis of X .. Set
2

e er)
Ve =
Xi1¢c1 + x202

and

+00

X = / y(a)e "da =

0

nlexp(—ut)
(4ot
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We observe that for each

with v = (7 ),i=1.2,

D>W (0)(wy ., wa) = D*W(0) ((‘“) , (“2>)
V1 1%)

= a; D?H (Vg (v1, 12) + @2 DH (V) (1) + @1 DH (D) (v2)

Y _ d_b? o
+a2akD2H(vak)<vl’ Ud&+ : a—o)
+ G D?H (T )<v AV +o )
1¢k 2773 2, d& 220
with
Blin(ax x)—2] 172 +0o )
DzH(ﬁak)((()),(O)):( ax =)o V(“)‘”’(a)da).
1) \@ 0
Then
1 1 aN? (v
—D*W(0)(w)? = D2W(O)< 0 ) =< )
2! (ﬁ) 0
where
~ & I (' ’
b= f y(a)ﬁ(a)daJr—ﬁ(n(a"X)_ ) /y(a)ﬁ(a)da -
(7% , 2x 0

By projecting on X, and using Lemma 5.16, we obtain

1y DZW(O)( ¢ )2:$ﬁ <1>
2! ( ) “\o

u

<

0
|:dA(0‘;k):iwk) C +dA(ak —iw) ~ 62:|‘

Now we compute 5; D2W (0) (w,), 21, 1.DF (0)(we)?, %11, D> F (0)(w,)? and 4, D3 W (0) (w,)?
expressed in terms of the basis {e], 3, ¢3}. We first obtain that

o~

2
ED W(0)(we)” = —D W(O)(( 0 )) —<0>,

xjc1+x3¢
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where
. Tt
J:_i / y(a)(xic1 + x2c2)(a)da
(2794
0
| ) +00 2
+%</y(a)(xlc1+X2cz)(a)da> .
X 0
Thus
l17 D?>F(0)(we)? = ( o 2)—( 0 )
3 C=\saowo ((2))) " \Fa
0
= ~ 0 (5.47)
(W |:dA(adk):iwk)lcl_i_dA(a;;I,k—iwk) 1 )
and

~\\ 2
1 2 2 2 o
I, D F(0)(w.)” = _'(I_HC)D F(0)<<ﬁ ))

21
0
—[ ~ 1 . (5.48)
( ¥ |:_ dA(a;);iwk) -1 - dA(u/fi,;iwk) —162 ] )

Next we obtain

1 1 a\® [y
§D3W(0)(wc)3_§D3W(O)< ) :(o)

with

7= 1 672<x1 ~|—x2> . 2B8x 67<961 +x2)2
(ax)?(1 —In(ox x)) 2 o (1 —In(ox x))? 2

482(—In(axx) +3) x> (xl +x2>3

3(1 = In(eu x))? 2

By Lemma 5.16, we obtain
1n D3F(0)(w )3—( 0 >—< )
3¢ < T \Iapwoyw)?) wn()

0
| 0 ) (5.49)
(W |: dA(ak,iwk>lcl+dA(ak-—fwk)102i| )

dhr dh
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In the following we will compute the normal form of system (5.46). Define
Of V(X X)) — V(X X:) by

0, (Go):=[A: G.l, VG.e V(X X, (5.50)
and O : V"(X,, X, N D(A)) — V™ (X, X)) by
OL(Gp) :=[A,Gul, VYGh e V™ (X, Xy N D(A)). (5.51)
We decompose V™ (X,, X;) into the direct sum
V' (Xe, Xo) =R;, ®C,,
where
R = R(O5),

is the range of ®f,, and Cf, is some complementary space of R, into V" (X., X.). Define
P : VA, X) = V(X,, X) the bounded linear projector satisfying

P (V™" (X, X)) =R, & V" (Xe, X)), and (I — Pp)(V"(Xe, X)) =

Now we apply the method described in Theorem 4.4 for k = 3 to system (5.46). The main
point is to compute G, € V2(X., D(A)) defined such that

[A, G2l(w,) = 792[ D?F(0)(w,, wc)] for each w, € X, (5.52)

in order to obtain the normal form because the reduced system is the following

dw.(1) 1
o =Acwe(n) + EHCDng(O)(wC(z), we (1))
1
+ §HCD3F3(0)(wc(t), we (), we(®)) + Re(we (1)) (5.53)
where
%H D?F3(0)(we, we) = 11_1 D*F>(0)(we, we)
l 2
= 517 -D*F(0)(we, we) — [Ae, IT.G2](w) (5.54)
and

1 3 1 3
5” -D° F3(0) (we, we, wc)— H D7 B> (0)(we, we, we) — IT[A, G3l(we)

%H D Fr(0)(we, we, we) — [Ae, TG31(we). (5.55)
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Set
Guix =IG,, VYk=c,h, m=>2.

Recall that (5.52) is equivalent to finding G2 € V?(X,, X,) and Gaj, € VZ(X,, &), N D(A))
satisfying

1 2
[Ac, G2,c] =11.P, ED F(0)(we, we) (5.56)
and

1 2
[A, G241 =IT4P> ED FO)(we, we) |. (5.57)

From (5.55), we know that the third order term %HCD3 F>(0)(we, we, we) in the equation is
needed after computing the normal form up to the second order. In the following lemma we find
the expression of SL!IYCD3 F(0)(we, we, we).

Lemma 5.18. Let G, € V2(X,, D(A)) be defined in (5.52). Then after the change of variables
w=w+ Gy(I1l.w), (5.58)

system (5.46) becomes (after dropping the bars)

dw(t)
dt

=Aw(t)+F2(w(t)), w(0) =wy € D(A),
where
F(w(®) = F(w®) — [A, Gal(we®) + O(Jwi) ).

In particular,

1
§HCD3F2<0>(wC, We, We)

2 1 3
=11.D F(O)(wm GZ(wc)) + gncD F(0)(we, we, we)
1 2
— DGz,c(wc)[EHcD F(0)(we, we) — [Ae, G2,c](wc)]~ (5.59)

Proof. From Proposition 3.8, the first part is obvious. We only need to prove the formula (5.59).
Set

wi(t) == Mew(t),  w@t):=Mw(t), Vk=c, h.

We can split the system (5.46) as
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du;,ct(t) = Ao (1) +17L,F(wc(t) + wh(t))»
d
u:lhl(t) = Apwy (t) + Iy F (we () + wi (1))

Note that (5.58) is equivalent to

We =We + Go,c(We), wp = Wh + G2, p(We).
Since dim(X,) < +o00, we have
W, (t) = [1+ DGQ,C(wC(t))]‘l [Ac(We(t) + Gare(We (1)) + O F(w(t) + Ga(we(1))]
= Ac(We(t) 4+ Go,ce(We (1)) + M F(w(t) + G2 (we(1)))
— DG (We (1)) [Ac(We () + Go.c(We (1)) + M F(W(t) + G2 (we (1)) ]

¢ _c G c _C
A (e (1) + 2.c(we(2))) i|+0(||w([)||4)

+ DG (We () DGa.o(We (1)) [ + I F(@(t) + Go (W, (1))

Hence

.F(w())
= HCF(E(I) + GZ(wc(t))) - [Ac, GZ,C](wc(t))
— DGy, (We))[MF (W) + Ga2(e (1)) = [Ae, Ga. (@) ]+ 0(|w®) ).

Let w. € X,. It follows that

HCF2(wC) = HCF(wC + GZ(wc)) - [AC» GZ,C](wc)
— DG, c(we) [ F (we + Ga(we)) — [Ae, Gacl(we)] + O (lwell?).

Thus we have

I F(we) = zl!HchF(O)(wc, we) — [Ae, Ga,cl(we)
+ 1. D*F(0)(we, Ga(we)) + %HCD3F(O)(u)c, We, W)
— DGz,c(wc)[%HchF(O)(ww we) — [Ae, Gz,c](wc)} + O (Jlwel*).
Then (5.59) follows and the proof is complete. 0O

Set

we = e + x1ex + xoe3.
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We shall compute the normal form expressed in terms of the basis {e},e3,e3}. Consider
V™3, C3) and V"(C3, & N D(A)), which denote the linear space of the homogeneous poly-
nomials of degree m in 3 real variables, &, x = (x1, xp) with coefficients in C3 and X, N D(A),
respectively. The operators @5, and @2 considered in (5.50) and (5.51) now act in the spaces
V™(C3,C3) and V™(C3, &, N D(A)), respectively, and satisfy

o o o o
@;(Gm,c) X1 = [A(,‘1 Gm,c] X1 = DGm,cAc X1 - Ach,c X1
X2 X2 X2 X2

o
D.G}, . (x] ) Mx
X2

a2\ (¢ n a2\ (¢ ’
D"(c;(.) 8 MC(n)_M”(G;(.) .
s X2 , X2

O (Gmp) =[A, Gl = DG Ac — AyG i,

a G\ (@
VGme | x1 | =| Ghe || 11 | €V™(C.CY), VGuueV™(C XN DY)
x2 Gy ./ \x2
(5.60)
with
0 0 0 . 0
iw
Ae=|0 iwx 0 and Mc=|: ke }
] 0 —iwg
0 0 —iwg
We define O, : Vm(C3,C?) — V™(C3,C?) by
_ (G%, G2 G?
() () () ()
Gm,c Gm,c X2 Gm,c
G2
v( ’”) e V(C3,C?). (5.61)
G3
m,c
Lemma 5.19. For m € N\{0, 1}, we have the decomposition
V™ (C?,C*) =R(®,) @ N(O%,) (5.62)
and
0 A ‘
— B R —qgr=-—1,
N(©},) = span (X?lxgza(“) ( 0 ) an ) (5.63)

g1 —g5=1, gi,q/ €N, i=1,2,3



Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011 1005

Proof. The canonical basis of V"(C3, C?) is

P {()( o ) 112+ 3=}
= 5 =mq.
0 xP s T

q1 .92

. iy O q3 0
Since M, = [ ) ], foreach [ "1 2°¢ A a o € &, we have
0 —iwg 0 x ' xy a?3

. (x] x P x'xdP o3 X1 xxdP o3
¢ - D, M, M,
0 0 X2 0

) xPxd s
=iwk(qr —q2—1) 0

©)

and

Q|

"\ xl P an a2 ) T\ xn RSHE
' 0
=io(q1 —q2+1) <x§“x§”aq3 > '

Hence the operators @¢, defined in (5.61) have diagonal matrix representation in the canonical
basis of V"(C3, C?). Thus, (5.62) and (5.63) hold. O

From (5.63), we obtain

—c X1 0
N(OZ)_Span{( 0 >’<x2&>}’
2 ~2
=y XX xjo 0 0 >}
N(O3)—Span{( 0 )( 0 )’<x1x§>’<x2a2 : (5.64)

Define PR and PV : V"*(C3,C?) — V™ (C3, C?) the bounded linear projectors satisfying
PR(vm(C3,C?)=R(E5)

and
P, (V"(C3,C?)) =N (®},).

We are now ready to compute the normal form of the reduced system expressed in terms of the

basis {e}, ez, e3} of X.. From (5.47), (5.48), (5.56), (5.57), (5.60)—(5.62) and (5.64), we know
G

that to find G € V2(X,, D(A)) defined in (5.52) is equivalent to finding Gro.=|6G. | =

.G, e VX(C3,C3 and Gajy := IT;, G, € V(C3, &), N D(A)) such that
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1
p 5 Dsz,cMcx 0
[ c,Gz,c]< X1 >= G3. x| G3, =< R 71 )
(m> Dx< )M( )—MC< ) PR(A))

3 X2 3
GZ,(' 2,c

and

[A, G241 = DG pAc — AnGon

0
= ~ 1
v dAeiop) ~1 dAg i) 7!
_ (()Z()Llwk) c1— (0112“L iwy) .

dA(oy,iwg) —
w |:dA(otk —iwg) :|
< 1x10 4+ Araixy + 2a20x1 +apxixx + 2a02x2 )

1x2a + Az()lxl + 2a02x1 +apxixy + 2a20x§

where

with
dA (g, iog) ! 1
dx ar(1 —In(ogx))’

d Aok, iog) " xBn(axx) —2)
dx (1 —In(ax))?

Al=Ay=—

azp=djp =ap2 =

From (5.54), it is easy to obtain the second order terms of the normal form expressed in terms
of the basis {e],e>,e3}):

1 2 e~ 0
EHCD F3(0)(w()7wc)=(e]ag2’e3)(lev(ﬁzl)>

0
= (e1, €2, €3) (Alxlﬁ)
Ajxoa
= Aixjder + A_lngx‘é}.

Notice that the terms O (|x|e?) are irrelevant to determine the generic Hopf bifurcation. Hence,
it is only needed to compute the coefficients of

() = ((79)

in the third order terms of the normal form. Firstly from Chu et al. [12, pages 22-24] and by
computing we obtain
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0 0
) TNG)
X2 v

W =x7vn0 + X333 + 251529723

with

and

0

0 1 2 12
Go, (X1) = (,-z,uk(azoxl 2u11X1JC23002x2)>
X2

ﬁ (Yagox?+2a1 3100 —a20x3)
Therefore we have

BUn@ )2
[DZW(O)(wc,Gz(wC))]&zoz( i Slsz)

0
with
+o00
S1= f y(a)(xic1 + x2c2)(a)da,
0
+00 1 5 | 5
720y (@20X] — 2a11X1x2 — 3402X3)C1
So=fv@\ s s YU ) @da.
0 +m(§a02xl + 2a1x1x2 —azoxz)cz—l-lll
Hence

[11. D*W (0) (we, G2(we)) ],

_ Bn(ex) —2) 515, (ﬁc (1)>
X 0

Bn(ey x) —2) [ 0 }
PR 6, - I (5.65)
dA(o:ik):lwk) c1 + a'A(ot;;i,)L iwg) e

From (5.49), (5.59) and (5.65), we have

1
[—HCD3F2(0>(wc, We, wc)]
a=0

3!
N 0
V| dawyg.iop ! 1A (g, —iwp) ~
— af}:uuk) C1+‘ a;zl,)\ iy e
0
Bn(ag x)—2)
+7S1S2|:JA iop) ~1 Ay, —iwy) ~] }
X (Ot;):la)k) o+ (0(1:1,)L iwy) ¢

Now we obtain the third order terms of the normal form expressed in terms of the basis {e], 3, e3}
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1
§HCD3F3 (0) (we, we, we)

0
dA(ay,iof) 1
4p2(— ln(akx)+3))(2 (X1+X2 )3 dr
T A o
=@aa| v oo™ [ L1 o(|xj@?)
= N 3 A
P
3 dA (e, iop) ~1 BlIn(eg x)—2)
+( d X $152
dAy,—ioy) ~1 Bn(e 0 ~2)
ar X N

0

= (e1, €2, €3) ( Cixix ) + 0(|X|572)
CTlxlx%

with
A 2 dA(oz iog) ~1 B2 (= In(ar ) +3) x>
217k(‘111 3|a11| )+ T 2(1=In(ax x))3
= 4 dAnion 1 g(in(i0-2) | Jo ™ v@vn2@da
da =M@ |4 1542y (@129 3 (a)da

Therefore we obtain the following normal form of the reduced system

d (x1(t) x1(0) Axio Cixix;
_<1 ):MC<1 (2T + " +O(Ixla? +|(oex)|)
dt \ x,(¢) x2(1) Axpa C1x1x2
The normal form above can be written in real coordinates (w1, w») through the change of

variables x1 = w1 — iwy, X2 = wy + iws. Setting w1 = pcos&, wy = psiné, this normal form
becomes

{/)=t16?,0+tz,03+0(a29+|(p’a)|4)’ (5.66)

E=—a+0(|(p, D)),

where

t1 =Re(Ay), t» =Re(Cy).

Following Chow and Hale [8] we know that the sign of ¢ty determines the direction of the
bifurcation and that the sign of ¢, determines the stability of the nontrivial periodic orbits. In
summary we have the following theorem.

Theorem 5.20. The flow of (1.6) on the center manifold of the origin at o = oy, k € N*, is given
by (5.66). Furthermore, we have the following

(i) Hopf bifurcation is supercritical if 111y < 0, and subcritical if 111y > 0;
(ii) the nontrivial periodic solution is stable if 1 < 0, and unstable if 1, > 0.
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Remark 5.21. We would like to mention that since the normal form theory and the computa-
tion procedure developed in Sections 3 and 4 is for general semilinear Cauchy problems, the
theory and technique of computing the reduced system and normal form could be applied to
other types of equations such as transport equations (Perthame [53]), reaction—diffusion equa-
tions (Kokubu [33], Eckmann et al. [18]), and partial differential equations with delay (Faria [22,
23]).

References

[1] M. Adimy, Integrated semigroups and delay differential equations, J. Math. Anal. Appl. 177 (1993) 125-134.

[2] W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc. 54 (1987) 321-349.

[3] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987) 327-352.

[4] W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems,
Birkhiuser, Basel, 2001.

[5] V.I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York,
1983.

[6] P. Ashwin, Z. Mei, Normal form for Hopf bifurcation of partial differential equations on the square, Nonlinearity 8
(1995) 715-734.

[7] R.S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Ser. Math. Comput. Biol., John Wiley
and Sons, Chichester, UK, 2003.

[8] S.-N. Chow, J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

[9] S.-N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press,
Cambridge, 1994.

[10] S.-N. Chow, K. Lu, Y.-Q. Shen, Normal forms for quasiperiodic evolutionary equations, Discrete Contin. Dyn. Syst.
2 (1996) 65-94.

[11] J. Chu, A. Ducrot, P. Magal, S. Ruan, Hopf bifurcation in a size structured population dynamic model with random
growth, J. Differential Equations 247 (2009) 956—1000.

[12] J. Chu, Z. Liu, P. Magal, S. Ruan, Normal forms for an age structured model, submitted for publication.

[13] G. Da Prato, E. Sinestrari, Differential operators with non-dense domain, Ann. Sc. Norm. Super. Pisa Cl. Sci. 14
(1987) 285-344.

[14] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infective Diseases: Model Building, Analysis
and Interpretation, Wiley, New York, 2000.

[15] O. Diekmann, S.A. Van Gils, S.M. Verduyn Lunel, H.-O. Walther, Delay Equations: Functional-, Complex-, and
Nonlinear Analysis, Springer-Verlag, New York, 1995.

[16] A. Ducrot, P. Magal, K. Prevost, Integrated semigroups and parabolic equations. Part I: linear perturbation of almost
sectorial operators, J. Evol. Equ. 10 (2010) 263-291.

[17] A. Ducrot, P. Magal, S. Ruan, Projectors on the generalized eigenspaces for partial differential equations with time
delay, in: J. Mallet-Paret, J. Wu, Y. Yi, H. Zhu (Eds.), Infinite Dimensional Dynamical Systems, in: Fields Inst.
Commun., vol. 64, 2013, pp. 353-390.

[18] J.-P. Eckmann, H. Epstein, C.E. Wayne, Normal forms for parabolic partial differential equations, Ann. Inst.
H. Poincaré Phys. Théor. 58 (1993) 287-308.

[19] K.-J. Engel, R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York,
2000.

[20] E. Faou, B. Grébert, E. Paturel, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs.
1. Finite-dimensional discretization, Numer. Math. 114 (2010) 429-458.

[21] E. Faou, B. Grébert, E. Paturel, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs.
II. Abstract splitting, Numer. Math. 114 (2010) 459—490.

[22] T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc.
352 (2000) 2217-2238.

[23] T. Faria, Normal forms for semilinear functional differential equations in Banach spaces and applications, Part II,
Discrete Contin. Dyn. Syst. 7 (2001) 155-176.

[24] T. Faria, L.T. Magalhdes, Normal forms for retarded functional differential equations with parameters and applica-
tions to Hopf bifurcations, J. Difterential Equations 122 (1995) 181-200.

[25] C. Foias, L. Hoang, E. Olson, M. Ziane, On the solutions to the normal form of the Navier—Stokes equations, Indiana
Univ. Math. J. 55 (2006) 631-686.


http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4164696D793933s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4172656E6474383761s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4172656E6474383762s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4172656E64743031s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4172656E64743031s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib41726E6F6C64s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib41726E6F6C64s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib414D31393935s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib414D31393935s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib636332303033s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib636332303033s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib43686F7748616C65s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib43686F774C6957616E67s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib43686F774C6957616E67s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib43686F774C755368656Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib43686F774C755368656Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4368752D447563726F742D4D6167616C2D5275616Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4368752D447563726F742D4D6167616C2D5275616Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4461507261746Fs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4461507261746Fs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib646832303030s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib646832303030s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4469656B6D616E6Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4469656B6D616E6Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib447563726F742D4D6167616C2D507265766F7374s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib447563726F742D4D6167616C2D507265766F7374s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib447563726F742D4D6167616C2D5275616E32303133s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib447563726F742D4D6167616C2D5275616E32303133s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib447563726F742D4D6167616C2D5275616E32303133s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib45636B6D616E6E31393933s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib45636B6D616E6E31393933s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib456E67656C2D4E6167656Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib456E67656C2D4E6167656Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib46616F75313061s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib46616F75313061s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib46616F75313062s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib46616F75313062s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib466172696132303030s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib466172696132303030s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib466172696132303031s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib466172696132303031s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib46617269613139393561s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib46617269613139393561s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib466F69617332303036s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib466F69617332303036s1

1010 Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011

[26] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,
Springer-Verlag, New York, 1983.

[27] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York,
1993.

[28] B.D. Hassard, N.D. Kazarinoff, Y.-H. Wan, Theory and Applications of Hopf Bifurcation, London Math. Soc.
Lecture Note Ser., vol. 41, Cambridge Univ. Press, Cambridge, 1981.

[29] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monogr. C.N.R., vol. 7,
Giadini Editori e Stampatori, Pisa, 1994.

[30] H. Inaba, Mathematical analysis for an evolutionary epidemic model, in: M.A. Horn, G. Simonett, G. Webb
(Eds.), Mathematical Methods in Medical and Health Sciences, Vanderbilt University Press, Nashville, TN, 1998,
pp. 213-236.

[31] H. Inaba, Epidemic threshold and stability in an evolutionary epidemic model, in: C. Castillo-Chavez, et al. (Eds.),
Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, in:
IMA Vol. Math. Appl., vol. 126, Springer, New York, 2002, pp. 337-359.

[32] H. Kellermann, M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989) 160-180.

[33] H. Kokubu, Normal forms for parametrized vector fields and its application to bifurcations of some reaction diffu-
sion equations, Japan J. Appl. Math. 1 (1984) 273-297.

[34] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1998.

[35] Z. Liu, P. Magal, S. Ruan, Projectors on the generalized eigenspaces for functional differential equations using
integrated semigroups, J. Differential Equations 244 (2008) 1784—1809.

[36] Z. Liu, P. Magal, S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys. 62
(2011) 191-222.

[37] Z. Liu, P. Magal, S. Ruan, Center-unstable manifolds for non-densely defined Cauchy problems and applications to
stability of Hopf bifurcation, Can. Appl. Math. Q. 20 (2012) 135-178.

[38] Z. Liu, P. Magal, D. Xiao, Bogdanov—Takens bifurcation in a predator prey model with age structure, submitted for
publication.

[39] P. Magal, Compact attractors for time-periodic age structured population models, Electron. J. Differential Equations
2001 (2001) 1-35.

[40] P. Magal, S. Ruan, On integrated semigroups and age structured models in L? spaces, Differential Integral Equations
20 (2007) 197-239.

[41] P. Magal, S. Ruan (Eds.), Structured Population Models in Biology and Epidemiology, Lecture Notes in Math.,
vol. 1936, Springer, Berlin, 2008.

[42] P. Magal, S. Ruan, On semilinear Cauchy problems with non-dense domain, Adyv. Differential Equations 14 (2009)
1041-1084.

[43] P. Magal, S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf
bifurcation in age structured models, Mem. Amer. Math. Soc. 202 (951) (2009).

[44] P. Magal, S. Ruan, Sustained oscillations in an evolutionary epidemiological model of influenza A drift, Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 (2010) 965-992.

[45] H.P. McKean, J. Shatah, The nonlinear Schrédinger equation and the nonlinear heat equation — reduction to linear
form, Comm. Pure Appl. Math. XLIV (1991) 1067-1080.

[46] K.R. Meyer, The implicit function theorem and analytic differential equations, in: A. Manning (Ed.), Dynamical
Systems — Warwick 1974, in: Lecture Notes in Math., vol. 468, Springer-Verlag, New York, 1975, pp. 191-208.

[47] K.R. Meyer, G.R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer-Verlag,
New York, 1992.

[48] J. Moser, A rapidly convergent iteration method and nonlinear differential equations II, Ann. Sc. Norm. Super. Pisa
20 (1966) 499-535.

[49] J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, Berlin, 2003.

[50] F. Neubrander, Integrated semigroups and their application to the abstract Cauchy problem, Pacific J. Math. 135
(1988) 111-155.

[51] N.V. Nikolenko, The method of Poincaré normal forms in problems of integrability of equations of evolution type,
Russian Math. Surveys 41 (1986) 63—114.

[52] C.M. Pease, An evolutionary epidemiological mechanism with application to type A influenza, Theoret. Pop. Biol.
31 (1987) 422-452.

[53] B. Perthame, Transport Equations in Biology, Birkhduser, Basel, 2007.

[54] H. Poincaré, Sur le probleme des trois corps et les équations de la dynamique, Acta Math. 13 (1890) 1-270.

[55] J. Shatah, Normal forms and quadratic nonlinear Klein—-Gordon equations, Comm. Pure Appl. Math. XXXVIII
(1985) 685-696.


http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4775636B656E6865696D6572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4775636B656E6865696D6572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib48616C652D5665726475796E2D4C756E656Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib48616C652D5665726475796E2D4C756E656Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib48617373617264s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib48617373617264s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib49616E6E656C6C69s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib49616E6E656C6C69s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib496E61626131393938s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib496E61626131393938s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib496E61626131393938s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib496E61626132303032s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib496E61626132303032s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib496E61626132303032s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4B656C6C65726D616E6Es1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4B6F6B75627531393834s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4B6F6B75627531393834s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4B757A6E6574736F76s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4C69752D4D6167616C2D5275616E3038s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4C69752D4D6167616C2D5275616E3038s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4C69752D4D6167616C2D5275616E3130s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4C69752D4D6167616C2D5275616E3130s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4C69752D4D6167616C2D5275616E3132s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4C69752D4D6167616C2D5275616E3132s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C3031s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C3031s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E3037s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E3037s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E3038s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E3038s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E303961s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E303961s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E303962s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E303962s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E32303130s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6167616C2D5275616E32303130s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D634B65616E2D536861746168s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D634B65616E2D536861746168s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D65796572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D65796572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D657965722D48616C6Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D657965722D48616C6Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6F736572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D6F736572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4D757272617932303033s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4E65756272616E646572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4E65756272616E646572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4E696B6F6C656E6B6Fs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib4E696B6F6C656E6B6Fs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib506561736531393837s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib506561736531393837s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib5065727468616D65s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib506F696E63617265s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib536861746168s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib536861746168s1

Z. Liu et al. / J. Differential Equations 257 (2014) 921-1011 1011

[56] C.L. Siegel, Ober die Normalform analytischer Differentialgleichungen in der Nahe einer Gleichgewichtslosung,
Nachr. Akad. Wiss. Gottingen Math.-Phys. (1952) 21-30.

[57] C.L. Siegel, J.K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, New York, 1971.

[58] H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral
Equations 3 (1990) 1035-1066.

[59] H.R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl.
152 (1990) 416-447.

[60] H.R. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomo-
geneous Cauchy problem, J. Evol. Equ. 8 (2008) 283-305.

[61] H.R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.

[62] A. Vanderbauwhede, Center manifold, normal forms and elementary bifurcations, in: U. Kircraber, H.-O. Walther
(Eds.), Dynamics Reported, vol. 2, John Wiley & Sons, 1989, pp. 89-169.

[63] A. Vanderbauwhede, G. Tooss, Center manifold theory in infinite dimensions, in: C.K.R.T. Jones, U. Kircraber,
H.O. Walther (Eds.), Dynamics Reported - New Series, vol. 1, Springer-Verlag, Berlin, 1992, pp. 125-163.

[64] G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.

[65] G.F. Webb, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc. 303
(1987) 155-164.

[66] J. Wu, Theory and Applications of Partial Differential Equations, Springer-Verlag, New York, 1996.

[67] E. Zehnder, A simple proof of a generalization of a theorem by C.L. Siegel, in: J. Palis, M. do Carmo (Eds.),
Geometry and Topology, in: Lecture Notes in Math., vol. 597, Springer-Verlag, Berlin, 1977, pp. 855-866.

[68] E. Zehnder, C.L. Siegel’s linearization theorem in infinite dimensions, Manuscripta Math. 23 (1978) 363-371.


http://refhub.elsevier.com/S0022-0396(14)00169-7/bib53696567656Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib53696567656Cs1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib53696567656C2D4D6F736572s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D65393061s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D65393061s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D65393062s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D65393062s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D653038s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D653038s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib546869656D653033s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib56616E64657262617577686564653839s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib56616E64657262617577686564653839s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib56616E64657262617577686564652D496F6F7373s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib56616E64657262617577686564652D496F6F7373s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib576562623835s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib576562623837s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib576562623837s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib5775s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib5A65686E6465723737s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib5A65686E6465723737s1
http://refhub.elsevier.com/S0022-0396(14)00169-7/bib5A65686E6465723738s1

	Normal forms for semilinear equations with non-dense domain with applications to age structured models
	1 Introduction
	1.1 Normal form theory
	1.2 Motivation - age structured models
	1.3 Nonlinear dynamics of semilinear equations with non-dense domain
	1.4 An outline

	2 Preliminaries and the sketchy computation procedure
	2.1 Semiﬂows generated by nondensely deﬁned Cauchy problems
	2.2 Spectral decomposition of the state space
	2.3 Center manifold theorem
	2.4 A sketchy procedure of computing the reduced system

	3 Normal form theory - nonresonant type results
	3.1 G∈Vm(Xc,D(A)⋂Xh)
	3.2 G∈Vm(Xc,D(A))

	4 Normal form computation
	4.1 G∈Vm(Xc,D(A)⋂Xh)
	4.2 G∈Vm(Xc,D(A))

	5 Applications
	5.1 A structured model of inﬂuenza A drift
	5.2 An age structured population model

	References


