Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Entanglement in the family of division fields of a CM elliptic curve

Riccardo Pengo (based on joint work with Francesco Campagna)

- arXiv:2006.00883
- Unité des mathématiques pures et appliquées, École normale supérieure de Lyon
- riccardo.pengo@ens-lyon.fr, riccardopengo@gmail.com
- https://sites.google.com/view/riccardopengo/

French-Korean International Research Laboratory in Mathematics Webinar in Number theory, 17 May 2021

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

1 Entanglement in families of number fields

3 Maximality and minimality of division fields

2 Effective linear disjointness for CM elliptic curves

4 A detailed description of the entanglement over the rationals

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields 2

A detailed description of the entanglement over the rationals

1 Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

3 Maximality and minimality of division fields

4 A detailed description of the entanglement over the rationals

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

ENS DE LYON

Fix a number field F with algebraic closure \overline{F} , and let $\mathscr{F} = \{F_s\}_{s \in S}$ be a family of Galois extensions $F \subseteq F_s \subseteq \overline{F}$.

Basic definitions

• \mathscr{F} is linearly disjoint (over F) if the map:

$$\iota_{\mathscr{F}}: \operatorname{Gal}\left(\prod_{s \in S} F_s \middle/ F\right) \hookrightarrow \prod_{s \in S} \operatorname{Gal}(F_s \middle/ F)$$

is an isomorphism;

• Lenstra (2006): F is entangled (over F), otherwise.

Problem: Study the entanglement in the family *F*.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Artin (1927), Lehmer & Lehmer (1957): For any number field F, any $a \in F^{\times}$ and $N \in \mathbb{N}$, set: $F_{N}^{(a)} := F(\zeta_{N}, \sqrt[N]{a}) \quad \text{filling} \quad \text{for any number field } F, any a \in F^{\times} \text{ and } N \in \mathbb{N}, \text{ set:}$ and study the entanglement of $\mathfrak{F}_{p}^{(a)} := \{F_{p}^{(a)}\}_{p} \bigotimes$ (connected to Artin's primitive root conjecture).

Radical families

Some entanglement: Suppose $F = \mathbb{Q}$. For any $a \in \mathbb{Q}^{\times}$, one has:

$$F_2^{(a)} \subseteq \prod_{p \mid \Delta_{\mathbb{Q}(\sqrt{a})}} F_p^{(a)}$$

and in particular we have entanglement if $\Delta_{\mathbb{Q}(\sqrt{a})}$ is odd.

Cyclotomic fields: The family $\mathscr{T}_{\mathbb{G}_m} = \{\mathbb{Q}(\zeta_{p^{\infty}})\}_{p \in \mathscr{P}}$, where:

$$\mathbb{Q}(\zeta_{p^{\infty}}) := \varinjlim_{n \in \mathbb{N}} \mathbb{Q}(\zeta_{p^{n}})$$

is linearly disjoint over Q, as follows from ramification theory.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

ENS DE LYON

Fix a number field F, an elliptic curve $E_{/F}$ and an ideal $J \subseteq End_{\overline{F}}(E)$. Then, define:

Division fields

Serre (1971): If $\operatorname{End}_{\overline{F}}(E) \cong \mathbb{Z}$, there exists a finite set $S \subseteq \mathscr{P}$ such that $\mathscr{F}_E \setminus \{F(E[p^{\infty}])\}_{p \in S}$ is linearly disjoint.

Campagna & Stevenhagen (2018), Lombardo & Tronto (2019): *S* can be taken to be any set of primes containing the divisors of $B_E := 2 \cdot 3 \cdot 5 \Delta_F \cdot N_{F/\mathbb{Q}}(f_E)$ and those $p \in \mathscr{P}$ for which F(E[p]) is not maximal.

Brau & Jones (2016), Morrow (2019), Daniels & Lozano-Robledo (2019), Jones & McMurdy (2020), Daniels & Morrow (2020), Daniels & Lozano-Robledo & Morrow (2021): One can classify the entanglement in the family \mathscr{F}_E by determining the *F*-rational points of certain modular curves of composite level.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Fix a number field F, an elliptic curve $E_{/F}$ and an ideal $J \subseteq \text{End}_F(E)$. Then, considering the diagram:

Galois representations

the extension $F \subseteq F(E[I])$ is said to be maximal if $\rho_{E,I}$ is surjective.

ENS DE LYON

Serre (1971): If $\operatorname{End}_{\overline{F}}(E) \cong \mathbb{Z}$, the image of ρ_E has finite index in $\operatorname{Aut}_{\mathbb{Z}}(E_{\operatorname{tors}}) \cong \operatorname{GL}_2(\widehat{\mathbb{Z}})$. In particular, the extension $F \subseteq F(E[p])$ is maximal for all but finitely many $p \in \mathscr{P}$.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

1 Entanglement in families of number fields

2 Effective linear disjointness for CM elliptic curves

3 Maximality and minimality of division fields

4 A detailed description of the entanglement over the rationals

Complex multiplication

CM Entanglement

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Fix a number field F and an elliptic curve $E_{/F}$. Then:

- Shimura (1998): If $\operatorname{End}_F(E) \not\cong \mathbb{Z}$ then $\operatorname{End}_F(E) \cong \mathcal{O} \subseteq K \subseteq F$;
- Bourdon & Clark (2020): If $\operatorname{End}_{F}(E) \cong \mathcal{O}$ and $I \subseteq \mathcal{O}$ is invertible, E[I] is a free \mathcal{O}/I -module of rank one;
- Serre (1971): If $\operatorname{End}_{F}(E) \cong \mathcal{O}$, the image of ρ_{E} has finite index inside $\operatorname{Aut}_{\mathcal{O}}(E_{\operatorname{tors}}) \cong \widehat{\mathcal{O}}^{\times} \subseteq \operatorname{GL}_{2}(\widehat{\mathbb{Z}}) \cong \operatorname{Aut}_{\mathbb{Z}}(E_{\operatorname{tors}})$. In particular, there exists a finite set $S \subseteq \mathcal{P}$ such that the family

$$\mathcal{F}_{E,S} := \{F(E[p^{\infty}])\}_{p \in \mathscr{P} \setminus S}$$

is linearly disjoint over F.

• For any invertible ideal $I \subseteq \mathcal{O}$, the extension $F \subseteq F(E[I])$ is said to be **maximal** if $\rho_{E,I}(G_F) = \operatorname{Aut}_{\mathcal{O}}(E[I]) \cong (\mathcal{O}/I)^{\times}$.

Riccardo Pengo

Effective linear disjointness

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

10

Fix a number field F and an elliptic curve $E_{/F}$.

Campagna & P. (2020):

If $\operatorname{End}_F(E) \cong \mathscr{O} \subseteq K \subseteq F$, and $S \subseteq \mathscr{P}$ is any set containing the prime divisors of

the family $\mathscr{F}_{E,S}$ is linearly disjoint over F.

Sketch of proof: We use ramification theory, as follows:

1 the extension $F \subseteq F(E[I])$ is unramified outside $(I \cdot \mathcal{O}_F) \cdot \mathfrak{f}_E$, for every ideal $I \subseteq \mathcal{O}$ coprime to $\mathfrak{f}_{\mathcal{O}}$;

(0,:0}

- 2 the extension $F \subseteq F(E[p^n])$ is maximal and totally ramified at each prime dividing $p \cdot \mathcal{O}_F$, for every prime ideal $p \nmid B_E \cdot \mathcal{O}$ and every $n \in \mathbb{N}$. A different proof is provided by **Lozano-Robledo (2018)**;
- **3** every sub-extension of $F \subseteq F(E[p^n])$ ramifies at some prime dividing $p \cdot \mathcal{O}_F$, for every rational prime $p \nmid B_E$ and every $n \in \mathbb{Z}_{\geq 1}$.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields 2

A detailed description of the entanglement over the rationals

1 Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

3 Maximality and minimality of division fields

4 A detailed description of the entanglement over the rationals

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

ENS DE LYC

Two natural problems

Fix a number field $\frac{F}{F}$ and an elliptic curve $\frac{E_{F}}{E}$. We have two related problems:

- find the smallest sets $S \subseteq \mathscr{P}$ such that the family $\mathscr{F}_{E,S} := \{F(E[p^{\infty}])\}_{p \in \mathscr{P} \setminus S}$ is linearly disjoint;
- find the smallest sets $S' \subseteq \mathscr{P}$ such that $F \subseteq F(E[p^n])$ is maximal for every $p \in \mathscr{P} \setminus S'$ and $n \in \mathbb{N}$.

Suppose now that $\operatorname{End}_{F}(E) \cong \mathcal{O} \subseteq K \subseteq F$ and $F = H_{\mathcal{O}} := K(j(E))$ is the ring class field of \mathcal{O} .

Campagna & P. (2020): If $(H_{\mathcal{O}}(E_{tors}) \neq K^{a})$, then $Pic(\mathcal{O}) \neq \{1\}$ and:

- the family $\mathcal{F}_E = \mathcal{F}_{E,\phi}$ is linearly disjoint;
- the extension $\left| F \subseteq F(E[p^n]) \right|$ is maximal, for every $p \in \mathcal{P}$ and $n \in \mathbb{N}$.

Moreover, if $Pic(\mathcal{O}) \neq \{1\}$ there exist **infinitely many** elliptic curves $E_{/H_{\mathcal{O}}}$ such that $H_{\mathcal{O}}(E_{tors}) \neq K^{ab}$. **Sketch of proof:** We divide it in two steps:

- if $F \subseteq F(E[N])$ is not maximal for some N > 3, then we show that $H_{\mathcal{O}}(E_{\text{tors}}) = K^{\text{ab}}$;
- we use the existence of infinitely many quadratic extensions of $H_{\mathcal{O}}$ which are not abelian over K, to construct the elliptic curves $E_{/H_{\mathcal{O}}}$ by twisting a given one.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

	_	_	
			_
		ENS I	DE LYO

Ray class fields for orders

Fix a number field K, an order $\mathcal{O} \subseteq K$ and a non-zero ideal $I \subseteq \mathcal{O}$. Let $\mathcal{O}_p := \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ for any $p \in \mathcal{P}$. Söhngen (1935), Stevenhagen (2001), Lv & Deng (2015), Yi & Lv (2018), Campagna & P. (2020): The ray class field of K modulo (I, \mathcal{O}) is the abelian extension $K \subseteq H_{I,\mathcal{O}} := (K^{ab})^{[U_{I,\mathcal{O}},K]}$, where:

$$U_{I,\mathcal{O}} := \prod_{p \in \mathscr{P}} (\mathscr{O}_p^{\times} \cap (1 + I \cdot \mathscr{O}_p)) \subseteq \prod_{p \in \mathscr{P}}' (K \otimes_{\mathbb{Q}} \mathbb{Q}_p)^{\times} = (\mathbb{A}_{\mathbb{Q}} \otimes_{\mathbb{Q}} K)^{\times} \cong \mathbb{A}_K^{\times}$$

and $[\cdot, K]: \mathbb{A}_{K}^{\times} \to G_{K}^{ab}$ is the Artin map. In particular, $H_{\mathcal{O}} := H_{1,\mathcal{O}}$ is the ring class field of \mathcal{O} . Yi & Lv (2018), Campagna & P. (2020, \geq 2021): We have the isomorphisms:

$$\operatorname{Gal}(H_{I,\mathcal{O}}/K) \cong \frac{\mathbb{A}_{K}^{\times}}{K^{\times} \cdot U_{I,\mathcal{O}}} \cong \frac{\mathscr{I}_{I,\mathcal{O}}}{\mathscr{P}_{I,\mathcal{O}}} \implies \operatorname{Gal}(H_{\mathcal{O}}/K) \cong \operatorname{Pic}(\mathcal{O}) \text{ and } \operatorname{Gal}(H_{I,\mathcal{O}}/H_{\mathcal{O}}) \cong \frac{(\mathcal{O}/I)^{\times}}{\pi_{I}(\mathcal{O}^{\times})}$$

where $\pi_I: \mathcal{O} \to \mathcal{O}/I$ is the canonical quotient map, $\mathscr{I}_{I,\mathcal{O}}$ is the group of invertible ideals $\mathfrak{a} \subseteq \mathcal{O}$ such that $\mathfrak{a} + I = \mathcal{O}$, and $\mathscr{P}_{I,\mathcal{O}} \subseteq \mathscr{I}_{I,\mathcal{O}}$ is the "ray" of principal ideals generated by those $\alpha \in \mathcal{O}$ such that $\pi_I(\alpha) = 1$.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals Fix a number field F and an elliptic curve $E_{/F}$. Weil's pairing gives the "lower bound" $F \cdot \mathbb{Q}(\zeta_N) \subseteq F(E[N])$. Söhngen (1935), Stevenhagen (2001), Campagna & P. (2020): If $\operatorname{End}_F(E) \cong \mathcal{O} \subseteq K \subseteq F$, and $I \subseteq \mathcal{O}$ is invertible, then we have the "lower bound":

Minimality of division fields

 $F \cdot H_{I,\mathcal{O}} \subseteq F(E[I])$

where $K \subseteq H_{I,\mathcal{O}}$ is the ray class field of K modulo (I,\mathcal{O}) .

Sketch of proof: Use the adelic description of the abelian extension $K \subseteq H_{I,\mathcal{O}}$, together with a general result of **Shimura (1971)**, which follows from the main theorem of complex multiplication.

Coates & Wiles (1977), Kuhman (1978), Campagna & P. (2020): If $F(E_{tors}) = F \cdot K^{ab}$, then:

$F \cdot H_{I,\mathcal{O}} = F(E[I])$

for every invertible ideal $I \subseteq \widehat{\mathfrak{f}_{\varphi} \cap \mathcal{O}}$, where $\varphi \colon \mathbb{A}_{K}^{\times} \to \mathbb{C}^{\times}$ is any Hecke character factorising $\psi_{E} \colon \mathbb{A}_{F}^{\times} \to \mathbb{C}^{\times}$ via the norm map $\mathbb{N}_{F/K} \colon \mathbb{A}_{F}^{\times} \to \mathbb{A}_{K}^{\times}$. In particular, if $\mathbb{N}_{K/\mathbb{Q}}(\mathfrak{f}_{\varphi} \cap \mathcal{O})$ has at least two prime divisors, the family \mathscr{F}_{E} is entangled over F.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Indices of Galois representations

Fix a number field F and an elliptic curve $E_{/F}$, such that $E_{nd_F}(E) \cong \mathcal{O} \subseteq K \subseteq F$.

Lombardo (2017), Bourdon & Clark (2020), Campagna & P. (≥ 2021): We have:

$$\left|\operatorname{Aut}_{\mathscr{O}}(E_{\operatorname{tors}}): \rho_{E}(G_{F})\right| = \frac{\left[F \cap K^{\operatorname{ab}}: H_{\mathscr{O}}\right] \cdot \left|\mathscr{O}^{\times}\right|}{\left[F(E_{\operatorname{tors}}): F \cdot K^{\operatorname{ab}}\right]} \leq \left[F \cap K^{\operatorname{ab}}: H_{\mathscr{O}}\right] \cdot \left|\mathscr{O}^{\times}\right|$$

and in particular $|\operatorname{Aut}_{\mathcal{O}}(E_{\operatorname{tors}}): \rho_E(G_F)| = [F \cap K^{\operatorname{ab}}: H_{\mathcal{O}}] \cdot |\mathcal{O}^{\times}|$ if $F(E_{\operatorname{tors}}) = F \cdot K^{\operatorname{ab}}$.

Shimura (1971), Robert (1983), Gurney (2019), Campagna & P. (2020): If $K \neq \mathbb{Q}(i)$, there exist infinitely many elliptic curves $E_{/H_{\mathcal{O}}}$ such that $H_{\mathcal{O}}(E_{\text{tors}}) = K^{\text{ab}}$.

Sketch of proof: Start from E_0 such that $H_{\mathcal{O}}((E_0)_{\text{tors}}) \neq K^{ab}$, and twist it. More precisely:

- there exist infinitely many primes $p \in \mathscr{P}$ which split as $p \cdot \mathscr{O} = \mathfrak{p} \cdot \overline{\mathfrak{p}}$ and are inert in $\mathbb{Q}(i)$;
- if $p \nmid N_{H_{\mathscr{O}}/\mathbb{Q}}(\mathfrak{f}_{E_0})$ then $H_{\mathscr{O}}(E_0[\mathfrak{p}]) = H_{\mathfrak{p},\mathscr{O}}(\sqrt{\alpha_{\mathfrak{p}}})$ for some $\alpha_{\mathfrak{p}} \in H_{\mathscr{O}}$ which is not a square;
- we set $E_p := E_0^{(\alpha_p)}$. All these curves are twists of E_0 , but pairwise non-isomorphic over $H_{\mathcal{O}}$.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields 2

A detailed description of the entanglement over the rationals

1 Entanglement in families of number fields

3 Maximality and minimality of division fields

Effective linear disjointness for CM elliptic curves

4 A detailed description of the entanglement over the rationals

16

Riccardo Pengo

Deuring's formula and twisting

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Fix an elliptic curve $E_{/\mathbb{Q}}$ such that $\operatorname{End}_{\overline{\mathbb{Q}}}(E) \cong \mathscr{O} \subseteq K$. Note that $K \subseteq \mathbb{Q}(E[I])$ if $|\mathscr{O}/I| > 2$. Let $\psi_E \colon \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$ be the Hecke character associated to $E_{/K}$.

Deuring (~1955), Milne (1972): $f_E = N_{K/\mathbb{Q}}(f_{\psi_E}) \cdot \Delta_K$.

Fix $p \in \mathscr{P}$ and $n \in \mathbb{N}$. We consider the maximality of the division fields $K(E^{(\alpha)}[p^n])$, for $\alpha \in \mathbb{Q}^{\times}$.

Campagna & P. (2020): If $\Delta_{\mathcal{O}} < -4$, we can reduce to the following cases:

- if $\alpha = (-1)^{(q-1)/2}q$ for some odd $q \in \mathscr{P}$ such that $q \nmid p \cdot \mathfrak{f}_E$, the field $K(E^{(\alpha)}[p^n])$ is always maximal;
- if $\alpha \in \{-2, -1, 2\}$ and $2 \nmid p \cdot f_E$, the field $K(E^{(\alpha)}[p^n])$ is always maximal;
- if $\alpha = (-1)^{(p-1)/2}p$ and $p \ge 3$, then $K(E^{(\alpha)}[p^n])$ is maximal $\Leftrightarrow K(E[p^n])$ is maximal;
- if $\alpha \in \{-2, -1, 2\}$ and $p^n = 2^n \ge |\alpha|$, then $\mathcal{K}(E^{(\alpha)}[2^n])$ is maximal $\Leftrightarrow \mathcal{K}(E[2^n])$ is maximal.

Sketch of proof: Use Deuring's formula, and general facts about twisting of Galois representations.

Riccardo Pengo

Entanglements over the rationals

Entanglement in families of number fields

Effective linear disjointness for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Fix an imaginary quadratic field K and an order $\mathscr{O} \subseteq K$ such that $Pic(\mathscr{O}) = \{1\}$ and $\Delta_{\mathscr{O}} < -4$. Let $p \in \mathscr{P}$ be the unique prime ramifying in $\mathbb{Q} \subseteq K$. Label all the elliptic curves over \mathbb{Q} which have CM by \mathscr{O} as $\{A_r\}_{r=1}^{+\infty}$, in such a way that $|f_{A_r}| \leq |f_{A_{r+1}}|$.

Campagna & P. (2020): Let $r_0 := 4$ if $\mathcal{O} \in \{\mathbb{Z}[2i], \mathbb{Z}[\sqrt{-2}]\}$, and $r_0 := 2$ otherwise. Then:

 $r \leq r_0$ the family \mathscr{F}_{A_r} is linearly disjoint over K. Moreover:

- the division fields $K(A_r[q^n])$ are maximal if $q \neq p$;
- the division fields $K(A_r[p^n])$ are minimal, if $n \ge r_0 1$.

 $r > r_0$ we have $A_r = A_{r'}^{(\Delta_r)}$, for a unique $r' ≤ r_0$ and a unique discriminant $\Delta_r ∈ \mathbb{Z}$ such that $p \nmid \Delta_r$. Moreover, the family $\mathscr{F}_{A_r,S}$ is linearly disjoint over K, for every $S ⊆ \mathscr{P}$ containing each $q \mid p \cdot \Delta_r$. Finally, we have that:

- the division fields $K(A_r[q^n])$ are maximal, for every $q \in \mathscr{P}$ and $n \in \mathbb{N}$;
- if $n \ge r_0 1$, then $K(A_r[p^n]) = H_{p^n, \widehat{\mathcal{O}}}(\sqrt{\Delta_r})$ and $K(A_r[p^n]) \cap K(A_r[\Delta_r]) = K(\sqrt{\Delta_r})$.

Riccardo Pengo

Entanglement in families of number fields

Effective linear disjointnes for CM elliptic curves

Maximality and minimality of division fields

A detailed description of the entanglement over the rationals

Thank you very much for your attention!

고생 끝에 낙이 온다

« À la fin des épreuves vient le bonheur »