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Entanglement
in families of

number field . D . . = . . . =
E:F : " Fix a number field F with algebraic closure F, and let & = {F.}.cs be a family of Galois extensions F < Fs < F.
linear

disjointness

ol * Z is linearly disjoint (over F) if the map:

Maximality

and lg: Gal(n Fs F) — [] Gal(Fs/F)

minimality of
division fields seS seS

A detailed

description is an isomorphism;
of the entan-
Emcie e * Lenstra (2006): & is entangled (over F), otherwise.

=:i:=  Problem: Study the entanglement in the family &.
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Radical families

Artin (1927), Lehmer & Lehmer (1957): For any number field F, any a€ F* and N €N, set:

= F(tn, %) &MQA\ 'fAX"Lo\

and study the entanglement of Z(?) {F(a)}p@ connected to Artin’s prlmltlve root conjecture).

Some entanglement: Suppose F = Q. For any a€ Q*, one has:

a)g l_[ Fﬁ()a)

PlAq(ya)

and in particular we have entanglement if Ag(yz) is odd.

Cyclotomic fields: The family {Q(Lp>)}per, Where:
Q({pe) = “_m,@((p")

neN

is linearly disjoint over @, as follows from ramification theory.
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Division fields

Fix a number field F, an elliptic curve £/F and an ideal / < Endz(E). Then, define:

E[l]:= (" ker(E(F) iy (F))  Etors := E(F)tors

acel
E[I°]:=lim E[I"] FE = {F(E[p™])}pez
neN \
é“u-i*o*" ]

Serre (1971): If Endz(E) = Z, there exists a finite set S € % such that Z7 \ {F(E[p™])} pes is linearly disjoint.

Campagna & Stevenhagen (2018), Lombardo & Tronto (2019): S can be taken to be any set of primes
containing the divisors of B :=@-3-5Ar-Nf,o(f£)[and those p e & for which F(E[p]) is not maximal.
[ 7
Brau & Jones (2016), Morrow (2019), Daniels & Lozano-Robledo (2019), Jones & McMurdy (2020),
Daniels & Morrow (2020), Daniels & Lozano-Robledo & Morrow (2021): One can classify the entanglement

in the family Zg by determining the F-rational points of certain modular curves of composite level.
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Entanglement

in families of  Fix a number field F, an elliptic curve £/F and an ideal / < Endg(E). Then, considering the diagram:

number fields

Autz(Eiors) = GL(2)

]

Gr:=Gal(F/F) — Autz(E[I])

\ !

Autz E[/]

the extension F < F(E[/]) is said to be maximal if pg; is surjective.

= aoron Serre (1971): If Endz(E) = Z, the image of pg has finite index in Autz(Eiors) = GLg(Z). In particular, the
extension F < F(E|[p]) is maximal for all but finitely many pe 22.
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Complex multiplication

Fix a number field F and an elliptic curve E/r. Then:
e Shimura (1998): If Endg(E) Z Z then Endr(E)=0 <K c F;
* Bourdon & Clark (2020): If Endg(E) =@ and [ =0 is invertible, E[/] is a free G /I-module of rank one;
* Serre (1971): If Endg(E) =@, the image of pg has finite index inside Autg (Eiors) = 0 € GLo(2) = Autz(Eors).
In particular, there exists a finite set S <22 such that the family cC—

FE,s = {F(E[p™])}pesr\s

is linearly disjoint over F.

* For any invertible ideal / =@, the extension F < F(E[l]) is said to be maximal if pg;(Gr) =Autg(E[I])=(G/1)*.
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Fix a number field F and an elliptic curve E/r.

Campagna & P. (2020):

Effective

HS If Endr(E)=0 <K< F, and S< 2 is any set containing the prime divisors of
for CM —_)

elliptic

curves BE {f.@?AF NF/Q fE

the family &g s is linearly disjoint over F. C(j O'S

Sketch of proof: We use ramification theory, as follows
@ the extension F < F(E[/]) is unramified outside (/-@F)-fg, for every ideal / €@ coprime to fg;

@ the extension F < F(E[p"]) is maximal and totally ramified at each prime dividing p-OF, for every prime ideal
ptBe-0 and every neN. A different proof is provided by Lozano-Robledo (2018);

—
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© every sub-extension of F < F(E[p"]) ramifies at some prime dividing p-OF, for every rational prime p{ Be and every
ne’zZsy.

10
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) c Y2 .9
r; 2 F(LM\ 2 ke Two natural problems
L_/,__\/_,)

Fix a number field F and an elliptic curve E/r. We have two related problems:
e find the smallest sets S € 2 such that the family g s := {F(E[p™])}pes\s is linearly disjoint;
* find the smallest sets S’ < 22 such that F < F(E[p"]) is maximal for every pe 22\ S" and neN.

Suppose now that Endr(E) =0 <K< F and F = Hg := K(j(E)) is the ring class field of G.
Campagna & P. (2020): If(ﬁ@iEO,S)(;@K?’, then Pic(@) # {1} and:

* the family | g = Zg 4 | is linearly disjoint;

* the extension | F < F(E[p"]) | is maximal, for every pe 2 and neN.
Moreover, if Pic(@) # {1} there exist infinitely many elliptic curves E/H@ such that Hp(Eiors) # Kab.

Sketch of proof: We divide it in two steps:
e if F< F(E[N]) is not maximal for some N >3, then we show that Hp(Eiors) = K2°;

* we use the existence of infinitely many quadratic extensions of Hg which are not abelian over K, to

construct the elliptic curves E/p, by twisting a given one.
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k;_—(o/"__‘r( Ray class fields for orders

Fix a number field K, an order @ < K and a non-zero ideal / €@. Let G, :=0 ®7Z, for any pe 22.

S6hngen (1935), Stevenhagen (2001), Lv & Deng (2015), Yi & Lv (2018), Campagna & P. (2020):

The ray class field of K modulo (/,6) is the abelian extension K < H; 5 := (K2?)[V1o K1 where:

U= TT1(@n(1+1-6,) < [T(KegQp)* =(Ageg K)* =A%
pe peP

and [,K]: Aj — G;b is the Artin map. In particular, Hg := Hy ¢ is the ring class field of 0.
Yi & Lv (2018), Campagna & P. (2020, = 2021): We have the isomorphisms:

Ak o7 . /1)
Gal(H/,@/K)EKX_ZI@E@’I’Z = | Gal(Hp/K)=Pic(0)| and GaI(H,,@/H@)EJ(”(/@Z)

where 7;: © — @ /| is the canonical quotient map, .%; 5 is the group of invertible ideals a <@ such that
a+/=0, and &5 < .9 s is the “ray” of principal ideals generated by those a € @ such that 7;(a) =1.
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Minimality of division fields

Fix a number field F and an elliptic curve E/£. Weil’s pairing gives the “lower bound” F-Q({y) < F(E[N]).

Séhngen (1935), Stevenhagen (2001), Campagna & P. (2020):
If Ende(E)=0 <K< F, and | <@ is invertible, then we have the “lower bound™:

|F-Hio < F(EL)]

where K € H, s is the ray class field of K modulo (/,0).

Sketch of proof: Use the adelic description of the abelian extension K < H, 5, together with a general result
of Shimura (1971), which follows from the main theorem of complex multiplication.

Coates & Wiles (1977), Kuhman (1978), Campagna & P. (2020): If F(Eiors) = F-Kabjhen:
(-

|F-Hio = F(ED)]

for every invertible ideal Imwhere ¢: A — C* is any Hecke character factorising yg: A — C* via the
norm map Ng/x: Af — AL, In particular, if Nk g(f, N @) has at least two prime divisors, the family ¢ is
entangled over F.
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Indices of Galois representations

Fix a number field F and an elliptic curve E/r, such that Endg(E)=0 c K< F.
Lombardo (2017), Bourdon & Clark (2020), Campagna & P. (= 2021): We have:

_[FnK?®: Hpl 10"

= <[FnK3®: Hy]- 16"
[F(Erors): F-K2P] [ 0]-107]

|Auto(Erors): pE(GF))|

and in particular [Autg(Ecors): pE(GE)| = [F N K®: Hp) 10| if F(Eiors) = F- K2P.

Shimura (1971), Robert (1983), Gurney (2019), Campagna & P. (2020): If K #Q(i), there exist
infinitely many elliptic curves | E/p, | such that Hp(Eiors) = Kab,

Sketch of proof: Start from Eg such that Hg((Eo)iors) # K2P, and twist it. More precisely:
* there exist infinitely many primes p € 2 which split as p-@ =p-p and are inert in Q(i);
* if pfNp,/q(f5,) then Ho(Eolp]) = Hyo (/@) for some ap € Hp which is not a square;

° we set £y := Eé%). All these curves are twists of Eg, but pairwise non-isomorphic over Hg.
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Deuring's formula and twisting

Fix an elliptic curve Ejq such that Endg(E) =0 < K. Note that K< Q(E[/]) if |0/1]>2.
Let wg: Ag — C* be the Hecke character associated to E/k.
Deuring (~1955), Milne (1972): f£ =Ny q(fye) - Ak-
Fix pe 2 and neN. We consider the maximality of the division fields K(E(®)[p"]), for a € Q*.
Campagna & P. (2020): If Ag <-4, we can reduce to the following cases:
o if a=(-1)(9"D/2g for some odd g€ 2 such that qfp-fg, the field K(E(®)[p"]) is always maximal;
* if ae{-2,-1,2} and 21 p-fE, the field K(E(“)[p”]) is always maximal;
o if a=(-1)P~1/2p and p=3, then K(E(®[p"]) is maximal & K(E[p"]) is maximal;
o if a€{-2,-1,2} and p" =2" = |al, then K(E(®[2"]) is maximal & K(E[2"]) is maximal.

Sketch of proof: Use Deuring's formula, and general facts about twisting of Galois representations.
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Entanglements over the rationals

Fix an imaginary quadratic field K and an order & < K such that Pic(@) = {1} and Ap < —4.
Let pe & be the unique prime ramifying in Q € K.
Label all the elliptic curves over @ which have CM by @ as {A;}}%, in such a way that [ | <|fa,,, |-
Campagna & P. (2020): Let rp:=4 if 0 €{Z[2i],Z[v-2]}, and ry:=2 otherwise. Then:
the family %, is linearly disjoint over K. Moreover:
* the division fields K(A,[q"]) are maximal if g # p;
* the division fields K(A,[p"]) are minimal, if n=ry—1.
we have A, :A(r,Ar), for a unique r' < ry and a unique discriminant A, € Z such that ptA,.
Moreover, the family Z4 s is linearly disjoint over K, for every S €2 containing each q|p-A,.
Finally, we have that:

* the division fields K(A,[q"]) are maximal, for every g€ & and neN,;
e if n=zro—1, then K(Ar[p"]) = Hpno(VAr) and K(Ar[p"]) n K(AAL]) = K(VAY).
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Thank you very much for your attention!
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« A la fin des épreuves vient le bonheur »



