Cyclotomic Hecke L-values of a totally real field

Hae-Sang Sun (UNIST) Joint w/ Byungheup Jun and Jungyun Lee

2021 June 07

French-Korean IRL Webinar in Number Theory

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Main Theme

Question

Can L-values detect or recover its coefficients:

- in an analytic way,
- in an algebraic way in $\overline{\mathbb{Q}}$, or
- in an algebraic way in $\overline{\mathbb{F}}_{\ell}$?

For a Dirichlet series
$$L(s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$
, one gets

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} L(\sigma + it) n^{\sigma + it} dt = a_n \qquad \qquad \gamma \in \mathbb{Z}_+$$

for all $\sigma > \sigma_a$. : abscissa of convergence

Question

When a_n are algebraic and L(s) possesses algebraicity, can we recover the algebraic properties of a_n from the L-values?

Previous Results

• Let f be a newform of weight 2 and level N with = Hecke eigen cusp farm, "primitive", i.e. N: minimal $f(z) = \sum_{i=1}^{n} a_f(n) \exp(2\pi i n z)$. Here f_{ijkl} or f_{ijkl} $\mathbb{R} \ge 1$ $\mathbb{Q}_{p} := \mathbb{Q}(a_f(n) \mid n \ge 1) \le \mathbb{Q}$ \mathbb{Q}_{p} $\mathbb{Q}_{p} := \mathbb{Q}(a_f(n) \mid n \ge 1) \le \mathbb{Q}$ \mathbb{Q}_{p} \mathbb{Q}_{p $\lfloor (s,f,\psi) := \sum_{n>1} \frac{a_{f}(n)\psi}{n^{s}}$ $L_{f}(\psi) := \frac{\tau(\overline{\psi})L(1, f, \psi)}{\Omega_{f}^{\pm}} \in \mathbb{Q}_{f}(\psi) \xrightarrow{\text{Adjoing all the of } \psi}_{\text{to } Q_{f}}$ $1) = \pm 1 \text{ and } \psi = \tilde{\zeta}$

for all ψ with $\psi(-1) = \pm 1$ and the Gauss sum $\tau(\psi)$ of ψ .

• Set Ξ_p := the set of Dirichlet characters of p-power conductors. p: a prime.

Previous Results, II

Theorem (S.)

 $\mathbb{Q}_{f}(\psi) = \mathbb{Q}(L_{f}(\psi)) \text{ for almost all } \psi \text{ of } p \text{-power conductors.}$

- Let $\ell \neq p$ be primes. Set $\mathbb{F}_f := \mathbb{F}_\ell(a_n(f) : n \ge 1)$.
- If $\overline{\rho}_{f,\ell}$ is irreducible, then there exist $\Omega_f^{\pm} \in \mathbb{C}$ such that $L_f(\xi)$ are integral for all Dirichlet ξ and $\exists \xi$ s.t. $L_f(\xi) \not\equiv 0 \pmod{\mathcal{L}}$. residual Galaxis reprint assoc to f.

Conjecture

If
$$\overline{\rho}_{f,\ell}$$
 is irreducible, then $\mathbb{F}_f(\psi) = \mathbb{F}_\ell(L_f(\psi))$ for almost all $\psi \in \Xi_p$

Conjecture (Variant of Greenberg's conjecture)

If $\overline{\rho}_{f,\ell}$ is irreducible, then $L_f(\chi) \not\equiv 0 \pmod{\mathfrak{L}}$ for almost all $\chi \in \Xi_p$.

Theorem (S.)

$$\mathbb{F}_{\ell}(\psi) = \mathbb{F}_{\ell}(L(0,\psi))$$
 for almost all odd $\psi \in \Xi_{p}$.

Setup

ŀ

- K: a totally real field with $d = [K : \mathbb{Q}]$.
- *p* : a rational prime unramified in *K*.
- $\operatorname{Cl}_K(p^n)$: ray class group of K modulo p^n . Can show $\operatorname{Cand}(\chi) = \operatorname{Cond}(\psi)$.
- χ : a ray class character of the form $\chi = \psi \circ N_{K/\mathbb{Q}}$ for a Dirichlet character ψ of *p*-power conductor. It is called a *cyclotomic* character of *K* of *p*-power modulus.

•
$$\chi_{\mathrm{f}} := \psi \circ N_{K/\mathbb{Q}} : (O/p^n)^{\times} \to \overline{\mathbb{Q}}^{\times}.$$

• $\tau(\chi) := \chi(\mathfrak{d}_K) \sum_{\alpha \pmod{p^n}} \chi_{\mathrm{f}}(\alpha) \exp(\frac{2\pi i \mathrm{Tr}(\alpha)}{p^n}).$
Hecke *L*-function of χ is

$$L_{K}(s,\chi) = \sum_{\substack{\mathfrak{a}: \frac{\chi(\mathfrak{a})}{N_{K/\mathbb{Q}}(\mathfrak{a})^{\mathfrak{s}}}} \frac{\chi(\mathfrak{a})}{N_{K/\mathbb{Q}}(\mathfrak{a})^{\mathfrak{s}}}.$$

It is well-known that

 $L_K(0,\chi)\in\mathbb{Q}(\chi)=\mathbb{Q}(\psi)$.

Theorem (Jun-Lee-S.)

Let
$$F = \exp(\frac{2\pi i}{p(p-1)})$$
 Then $F(L_K(0,\chi)) = F(\chi)$ for almost all totally χ .

Yr: odd.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Remark

- The Leopoldt conjecture is equivalent to saying that all the characters on Cl_K(p[∞]) are the cyclotomic characters.
- One can obtain a generalization such that for a tame ray class character ξ ,

$$F(L_K(0,\xi\chi))=F(\xi,\chi)$$

for almost all totally odd χ . under some mild cond. on $Cond(\xi)$.

Proof: reduction to non-vanishing problem

For almost all cyclotomic characters χ of *p*-power moduli, verify inclusion

 $F(\chi) \subseteq F(L_K(0,\chi)).$

• Evaluate the following quantity in two different ways:

$$\frac{1}{[F(\chi):F]}\operatorname{Tr}_{F(\chi)/F}\left(\chi_{\mathrm{f}}(\alpha)L_{K}(0,\overline{\chi})\right),$$

where α is chosen so that $\mathbb{Q}(\chi_{f}(\alpha)) = \mathbb{Q}(\chi)$.

• Assume that $F(\chi) \subsetneq F(L_{K}(0,\chi))$ for infinitely many χ . $L_{\chi} := F(L_{K}^{(o,\chi)}).$ $T_{r_{F(\chi)/F}} = T_{r_{L_{\chi}/F}} \left(L_{\chi}^{(o,\chi)} T_{r_{F(\chi)/L_{\chi}}}^{(\chi)} \right) = O.$ $T_{r_{F(\chi)/L_{\chi}}} (\chi_{j}^{(u)}) \neq o \iff F(\chi) = L_{\chi}$

Next task is to show: the average is nonvanishing for χ with sufficiently large conductor.

Need to study the Galois average of

$$T_{\mathcal{V}}\left(L_{K}(0,\overline{\chi})\right) = \left(\frac{i^{3[K:\mathbb{Q}]}\sqrt{d_{K}}}{\sqrt{\pi^{[K:\mathbb{Q}]}}}\tau(\overline{\chi})L_{K}(1,\chi)\right) \qquad \sum_{\substack{(I,\mathcal{V}) \in \mathcal{V}(K) \\ \mathcal{V}}}\tau(\overline{\chi})L_{K}(1,\chi)$$

- $\operatorname{Tr}_{F(\chi)/F}(\tau(\overline{\chi})\chi(\mathfrak{a}))$ behaves essentially like an additive character.
- The Galois average the average "Tr_{F(χ)/F} (τ(χ̄)L_K(1, χ))" is essentially a special value of a Dirichlet series with additive twists

$$\sum_{\mathfrak{a}} \frac{\mathrm{Tr}_{F(\chi)/F}(\tau(\overline{\chi})\chi(\mathfrak{a}))}{N(\mathfrak{a})^s}$$

Problem reduces to verify non-vanishing of L-values with additive twists.

• As verification for additive twists is quite similar to multiplicative one, let us focus on non-vanishing of $L_K(\emptyset, \chi)$.

Approximate functional equation

Let
$$W(\chi) := i^{-d} \frac{\tau(\chi)}{\sqrt{N(p^n)}}$$
.
 $L_K(1,\chi) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N_{K/\mathbb{Q}}(\mathfrak{a})} F_1\left(\frac{N_{K/\mathbb{Q}}(\mathfrak{a})}{p^{\frac{3n}{4}[K:\mathbb{Q}]}}\right) + W(\chi) \sum_{\mathfrak{a}} \overline{\chi}(\mathfrak{a}) F_2\left(\frac{N_{K/\mathbb{Q}}(\mathfrak{a})}{d_K p^{\frac{n}{4}[K:\mathbb{Q}]}}\right),$
The average $\frac{1}{[F(\chi):F]} \operatorname{Tr}_{F(\chi)/F}(\chi_f(\alpha) L_K(1,\chi))$ is decomposed into two parts:

• First part: For an integer $m \ge 1$, let us set $c_m := |\{\mathfrak{a} | N_{K/\mathbb{Q}}(\mathfrak{a}) = m\}|$.

$$\sum_{m\geq 1} \frac{\operatorname{Tr}_{F(\chi)/F}(\psi(m\overline{a}))c_m}{m} F_1\left(\frac{m}{p^{\frac{3n}{4}[K:\mathbb{Q}]}}\right).$$

where $\chi = \psi \circ N_{K/\mathbb{Q}}$ for a Dirichlet character ψ .

• Second part:

$$\sum_{\mathfrak{a}} \mathrm{Tr}_{F(\chi)/F}(W(\chi)\overline{\chi}(\alpha\mathfrak{a})) \frac{1}{N_{K/\mathbb{Q}}(\mathfrak{a})} F_2\left(\frac{N_{K/\mathbb{Q}}(\mathfrak{a})}{d_K N(p)^{\frac{n}{4}}}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We can show :

$$\frac{1}{[F(\chi):F]} \operatorname{Tr}_{F(\chi)/F}(\psi(m\overline{a})) = \begin{cases} 1 \text{ if } m \equiv a\kappa \pmod{p^n} \text{ for some } \kappa \in \mu_{p-1} \\ 0 \text{ otherwise} \end{cases}$$

$$\sum_{\kappa \in \mu_{p-1}} \sum_{m \equiv a\kappa \pmod{p^n}} \frac{c_m}{m} F_1\left(\frac{m}{p^{\frac{3n}{4}[K:\mathbb{Q}]}}\right) = 1 + (small \ error) + (smaller \ error),$$

which correspond to three parts, respectively:

- (i) $m_{m}(1)$ occurs only if m = 1.
- (ii) Exceptional part: $m \equiv a\kappa \pmod{p^n}$ with $\kappa \neq 1$ and $m < p^n$.
- (iii) Generic part: the summation is over $m \ge p^n$. (Easy estimation)

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

Lattice point counting

Now need to estimate the growth order of

$$\sum_{\substack{m \leq x \\ m \equiv b(p^n)}} c_m = \#\{\mathfrak{a} \,|\, N(\mathfrak{a}) \equiv b \,(\bmod p^n), N(\mathfrak{a}) < x\}.$$

Let $\{\mathfrak{b}_1, \dots, \mathfrak{b}_h\}$ be representatives of Cl_K . Let C_K be the fundamental domain of $K_{\mathbb{R}}^+$ for the action of totally positive units. Then,

$$\begin{array}{l} \begin{array}{l} \begin{array}{c} \text{tstally pointive} \\ \text{elements} \\ \text{in } & K_{\mathbb{R}} \coloneqq \mathbb{K} \otimes \mathbb{R} \\ (\text{Minkewski space}) \end{array} \end{array} \\ \begin{array}{c} \text{For } O_p = O_K \otimes \mathbb{Z}_p, \text{ define } \mathcal{E} \coloneqq \{\alpha \in O_p^{\times} | N(\alpha) = 1\}, \mathcal{E}_n \coloneqq \mathcal{E} \cap (1 + p^n O_p). \end{array}$$

Question

For a $\gamma \in O_p^{\times}$ and a nonzero ideal \mathfrak{b} , need to estimate the size of

$$\mathcal{C}_{n,\gamma}(x) := \{ \alpha \in C_K \cap \mathfrak{b} \, | \, \alpha \equiv \varepsilon \gamma \, (\, \mathrm{mod} \, p^n), \varepsilon \in \mathcal{E}/\mathcal{E}_n, N(\alpha) \, \blacktriangleleft x \}$$

Proposition

$$|\mathcal{C}_{n,\gamma}(x)| \ll egin{cases} x^{1-rac{1}{[K:\mathbb{Q}]}} & ext{if } 0 < x \leq N(p^n) \ rac{x}{p^n} & ext{if } x \geq N(p^n) \end{cases}.$$

Using a non-singular simplicial closed cone decomposition (not disjoint) with respect to b

$$C_K = \bigcup_i C_i$$

the problem reduces to estimate

 $\{\alpha \in C_i \cap \mathfrak{b} \mid \alpha \equiv \varepsilon\gamma \pmod{p^n}, \varepsilon \in \mathcal{E}/\mathcal{E}_n, N(\alpha) \leq x\}.$ Gn $C_i \cap \mathcal{L}$. a "<u>p-adic expansion</u>" is well-defined. This plays a role of Minkowski theory or Geometry of numbers.

Lattice point in non-singular simplicial cone

Let b be a nonzero ideal and C a nonsingular cone in $K_{\mathbb{R}}^+$ with respect to b.

Lemma

•
$$A \gamma \in \mathfrak{b} \cap C$$
 can be written uniquely as

$$\gamma = \gamma_0 + \gamma_1 p + \gamma_2 p^2 + \dots + \gamma_n p^n$$

with digits $\gamma_i \in p\mathcal{P}_C \cap \mathfrak{b}$. \mathcal{P}_C : the find, domain for \mathcal{C}

• Set
$$\langle \gamma \rangle_{k,C} := \gamma_0 + \gamma_1 p + \gamma_2 p^2 + \dots + \gamma_k p^k$$

• If
$$N(\gamma) < N(p^k)$$
, then $\gamma = \langle \gamma \rangle_{k,C}$

• If
$$\alpha \in C \cap \mathfrak{b}$$
, $\alpha \equiv \gamma \varepsilon(p^n)$, and $N(\alpha) < x < N(p^n)$, then $\alpha = \langle \gamma \varepsilon \rangle_{n,C}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Proof of Proposition

• Hence we need to estimate

$$\#\{\langle \gamma \varepsilon \rangle_{n,C} \, | \, N(\langle \gamma \varepsilon \rangle_{n,C}) < x, \, \varepsilon \in \mathcal{E}\}.$$

- If $N(\langle \varepsilon \gamma \rangle_{n,C}) < N(p^k) \approx x$, then the last (n-k) digits of $\langle \varepsilon \gamma \rangle_{n,C}$ are zeros.
- If $\varepsilon' \in \mathcal{E}_k/\mathcal{E}_n$, then the first k-digits of $\varepsilon \varepsilon' \gamma$ = the first k-digits of $\varepsilon \gamma$.
- In sum,

$$\#\{\langle \gamma \varepsilon \rangle_{n,C} \, | \, N(\langle \gamma \varepsilon \rangle_{n,C}) < x, \, \varepsilon \in \mathcal{E}\} \le \#(\mathcal{E}/\mathcal{E}_k) \ll x^{1-1/d}. \quad \Box$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Second part: Exponential sum

In the second part

$$\sum_{m\geq 1}\left\{\sum_{N(\mathfrak{a})=m}\operatorname{Tr}_{F(\chi)/F}(W(\chi)\overline{\chi}(\alpha\mathfrak{a}))\right\}\frac{1}{m}F_2\left(\frac{m}{d_K N(p)^{\frac{n}{4}}}\right),$$

the average $\operatorname{Tr}_{F(\chi)/F}(W(\chi)\overline{\chi}(\alpha\mathfrak{a}))$ is equal to

$$\frac{1}{\sqrt{p(q^n)}} \sum_{\beta} \mathrm{Tr}_{F(\chi)/F}(\chi_{\mathrm{f}}(\beta)\overline{\chi}(\alpha\mathfrak{a})) \exp(\frac{2\pi i \mathrm{Tr}_{K/\mathbb{Q}}(\beta)}{p^n})$$

This can be written as

$$\sum_{\varepsilon \in \mathcal{E}/\mathcal{E}_n} \exp(\frac{2\pi i \operatorname{Tr}(\varepsilon \gamma)}{p^n}).$$

Proposition

$$\sum_{\varepsilon \in \mathcal{E}/\mathcal{E}_n} \exp(\frac{2\pi i \operatorname{Tr}(\varepsilon \gamma)}{p^n}) \ll_{p,d} p^{\frac{(d-1)n}{2}}.$$

▲□▶▲圖▶▲≣▶▲≣▶ = Ξ のQの

Stationary Phase method

Let \mathcal{V} be the \mathbb{Z}_p -submodule of pO_p corresponds to \mathcal{E}_1 via

$$\log_p = (\log_{\wp})_{\wp|p} : 1 + pO_p = \prod_{\wp} (1 + \wp O_{\wp}) \to pO_p = \prod_{\wp} \wp O_{\wp}.$$

Lemma

Let us set $m = \lfloor \frac{n}{2} \rfloor$. For a sufficiently large integer n,

$$\mathcal{E}_1^{p^{m-1}} \bmod p^n = (1 + p^{m-1}\mathcal{V}) \bmod p^n.$$

 $\mathcal{C}(x) = \exp(2\pi i x)$

$$\sum_{\varepsilon \in \mathcal{E}_1/\mathcal{E}_1^{p^{n-1}}} \mathbf{e}\left(\operatorname{Tr}\left(\frac{\varepsilon \gamma}{p^n}\right)\right) = \sum_{\varepsilon \in \mathcal{E}_1/\mathcal{E}_1^{p^{m-1}}} \mathbf{e}\left(\operatorname{Tr}\left(\frac{\varepsilon \gamma}{p^n}\right)\right) \sum_{w \in \mathcal{V}/p^{n-m}\mathcal{V}} \mathbf{e}\left(\operatorname{Tr}\left(\frac{\varepsilon \gamma w}{p^{n-m+1}}\right)\right)$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへぐ