Cyclotomic Hecke L-values of a totally real field

Hae-Sang Sun (UNIST)
Joint w/ Byungheup Jun and Jungyun Lee

$$
2021 \text { June } 07
$$

French-Korean IRL Webinar in Number Theory

Question

Can L-values detect or recover its coefficients:

- in an analytic way,
- in an algebraic way in $\overline{\mathbb{Q}}$, or
- in an algebraic way in $\overline{\mathbb{F}}_{\ell}$?

For a Dirichlet series $L(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$, one gets

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} L(\sigma+i t) n^{\sigma+i t} d t=a_{n} \quad n \in \mathbb{Z}_{+}
$$

for all $\sigma>\sigma_{a}$. : abscissa of convergence

Question

When a_{n} are algebraic and $L(s)$ possesses algebraicity, can we recover the algebraic properties of a_{n} from the L-values?

Previous Results

- Let f be a newform of weight 2 and level N with
= Hecke ergen cusp r form. "primitive", ie. N:minumal

$$
f(z)=\sum_{n \geq 1} a_{f}(n) \exp (2 \pi i n z)
$$

- $\operatorname{Set}\left(\mathbb{Q}_{f}:=\mathbb{Q}\left(a_{f}(n) \mid n \geq 1\right) . \subseteq \overline{\mathbb{Q}}\right.$

$$
L(s, f, \psi):=\sum_{n=1} \frac{a_{f}(n) \psi(n)}{n^{s}}
$$

- Let $L(s, f, \psi)$ the modular L-function twisted by a Dirichlet character ψ.
- There exist two complex numbers Ω_{f}^{+}and Ω_{f}^{-}such that

$$
\begin{aligned}
& \text { omplex numbers } \Omega_{f}^{+} \text {and } \Omega_{f}^{-} \text {such that } \\
& L_{f}(\psi):=\frac{\tau(\bar{\psi}) L(1, f, \psi)}{\Omega_{f}^{ \pm}} \in \mathbb{Q}_{f}(\psi)^{\text {Adjoin all the }} \text { values of } \psi \\
& \text { to } \mathbb{Q}_{f} .
\end{aligned}
$$

for all ψ with $\psi(-1)= \pm 1$ and the Gauss sum $\tau(\psi)$ of ψ.

- Set $\Xi_{p}:=$ the set of Dirichlet characters of p-power conductors. $p:$ a prime.

Theorem (Luo-Ramakrishnan)

- $\mathbb{Q}_{f}\left(\mu_{p^{\infty}}\right)=\mathbb{Q}\left(\mu_{p^{\infty}}, L_{f}(\psi), \psi \in \Xi_{p}\right)$.
- $\mathbb{Q}_{f}=\mathbb{Q}\left(L_{f}\left(\chi_{D}\right) \mid \chi_{D}:\right.$ quadratic $)$.

$$
\begin{gathered}
\mu_{\text {poo }}=\text { the set of } \\
\text { all p-power roots } \\
\text { of } 1 .
\end{gathered}
$$

Previous Results, II

"all but finitely "

Theorem (S.)

$\mathbb{Q}_{f}(\psi)=\mathbb{Q}\left(L_{f}(\psi)\right)$ for almost all ψ of p-power conductors.
To show " $C^{\text {" }}$

- Let $\ell \neq p$ be primes. Set $\mathbb{F}_{f}:=\mathbb{F}_{\ell}\left(a_{n}(f): n \geq 1\right)$.
- If $\bar{\rho}_{f, \ell}$) is irreducible, then there exist $\Omega_{f}^{ \pm} \in \mathbb{C}$ such that $L_{f}(\xi)$ are integral for all Dirichlet ξ and $\exists \xi$ s.t. $L_{f}(\xi) \not \equiv 0(\bmod \mathcal{L})$. residual Galois rep'n assoc. to f

Conjecture

If $\bar{\rho}_{f, \ell}$ is irreducible, then $\mathbb{F}_{f}(\psi)=\mathbb{F}_{\ell}\left(L_{f}(\psi)\right)$ for almost all $\psi \in \Xi_{p}$.

Conjecture (Variant of Greenberg's conjecture)

If $\bar{\rho}_{f, \ell}$ is irreducible, then $L_{f}(\chi) \not \equiv 0(\bmod \mathfrak{L})$ for almost all $\chi \in \Xi_{p}$.

Theorem (S.)

$\mathbb{F}_{\ell}(\psi)=\mathbb{F}_{\ell}(L(0, \psi))$ for almost all odd $\psi \in \Xi_{p}$.

- K : a totally real field with $d=[K: \mathbb{Q}]$.
- p : a rational prime unramified in K.
- $\mathrm{Cl}_{K}\left(p^{n}\right)$: ray class group of K modulo p^{n}. Can show $\operatorname{cond}(x)=\operatorname{cond}(\psi)$.
- χ : a ray class character of the form $\chi=\psi \circ N_{K / \mathbb{Q}}$ for a Dirichlet character ψ of p-power conductor. It is called a cyclotomic character of K of p-power modulus.
- $\chi_{\mathrm{f}}:=\psi \circ N_{K / \mathbb{Q}}:\left(O / p^{n}\right)^{\times} \rightarrow \overline{\mathbb{Q}}^{\times}$.
- $\tau(\chi):=\chi\left(\mathfrak{d}_{K}\right) \sum_{\alpha(\operatorname{lod}} \chi_{\mathrm{f}}(\alpha) \exp \left(\frac{2 \pi i \operatorname{Tr}(\alpha)}{p^{n}}\right)$.

Different of $K \uparrow \alpha\left(\bmod p^{n}\right)$
Hecke L-function of χ is

It is well-known that

$$
L_{K}(s, \chi)=\sum_{\substack { \mathfrak{a} \\
\begin{subarray}{c}{\text { midity }-\mathbb{Q} \\
\text { ideal } \neq(0){ \mathfrak { a } \\
\begin{subarray} { c } { \text { midity } - \mathbb { Q } \\
\text { ideal } \neq (0) } }\end{subarray}} \frac{\chi(\mathfrak{a})}{N_{K}(\mathbb{a})^{\mathfrak{s}}} .
$$

$$
L_{K}(0, \chi) \in \mathbb{Q}(\chi)=\mathbb{Q}(\psi)
$$

Theorem (Jun-Lee-S.)
Let $F=Q\left(\exp \left(\frac{2 \pi i}{p(p-1)}\right)\right)$, Then $F\left(L_{K}(0, \chi)\right)=F(\chi)$ for almost all totally,χ.

Remark

- The Leopoldt conjecture is equivalent to saying that all the characters on $\mathrm{Cl}_{K}\left(p^{\infty}\right)$ are the cyclotomic characters.
- One can obtain a generalization such that for a tame ray class character ξ,

$$
F\left(L_{K}(0, \xi \chi)\right)=F(\xi, \chi)
$$

for almost all totally odd χ. under some mild cond on cond (ξ)

Proof: reduction to non-vanishing problem

For almost all cyclotomic characters χ of p-power moduli, verify inclusion

$$
F(\chi) \subseteq F\left(L_{K}(0, \chi)\right)
$$

- Evaluate the following quantity in two different ways:

$$
\frac{1}{[F(\chi): F]} \operatorname{Tr}_{F(\chi) / F}\left(\chi_{\mathrm{f}}(\alpha) L_{K}(0, \bar{\chi})\right)
$$

where α is chosen so that $\mathbb{Q}\left(\chi_{\mathrm{f}}(\alpha)\right)=\mathbb{Q}(\chi)$.

- Assume that $F(\chi) \subsetneq F\left(L_{K}(0, \chi)\right)$ for infinitely many χ.

$$
\begin{aligned}
& L_{x}:=F\left(L_{k}(0, x)\right) . \\
& \operatorname{Tr}_{F(x) / F}= \operatorname{Tr}_{L_{x / F}}\left(L_{k}(0, x) \operatorname{Tr}_{F(x), L_{x}}\left(x_{f}(\alpha)\right)\right)= \\
& \operatorname{Tr}_{F(x) / L_{x}}\left(\chi_{f}(\alpha)\right) \neq 0 \Longleftrightarrow F(x)=L_{x}
\end{aligned}
$$

Next task is to show: the average is nonvanishing for χ with sufficiently large conductor.

More discussion

Need to study the Galois average of

$$
\left.\operatorname{Tr}\left(L_{K}(0, \bar{\chi})\right)=\frac{\operatorname{Tr}}{i^{3[K: \mathbb{Q}]} \sqrt{d_{K}}} \frac{\sqrt{\pi^{[K: \mathbb{Q}]}}}{} \tau(\bar{\chi}) L_{K}(1, \chi) .\right)
$$

- $\operatorname{Tr}_{F(\chi) / F}(\tau(\bar{\chi}) \chi(\mathfrak{a}))$ behaves essentially like an additive character.
- The Galois average the average " $\operatorname{Tr}_{F(\chi) / F}\left(\tau(\bar{\chi}) L_{K}(1, \chi)\right)$ " is essentially a special value of a Dirichlet series with additive twists

$$
\sum_{\mathfrak{a}} \frac{\operatorname{Tr}_{F(\chi) / F}(\tau(\bar{\chi}) \chi(\mathfrak{a}))}{N(\mathfrak{a})^{s}}
$$

Problem reduces to verify non-vanishing of L-values with additive twists.

- As verification for additive twists is quite similar to multiplicative one, let us focus on non-vanishing of $L_{K}(\mathbb{N}, \chi)$.

Approximate functional equation

Let $W(\chi):=i^{-d} \frac{\tau(\chi)}{\sqrt{N\left(p^{n}\right)}}$.
Fast convergent series expression

$$
\text { for } L_{K}(1, x)
$$

$L_{K}(1, \chi)=\sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N_{K / \mathbb{Q}}(\mathfrak{a})} F_{1}\left(\frac{N_{K / \mathbb{Q}}(\mathfrak{a})}{p^{\frac{3 n}{4}[K: \mathbb{Q}]}}\right)+W(\chi) \sum_{\mathfrak{a}} \bar{\chi}(\mathfrak{a}) F_{2}\left(\frac{N_{K / \mathbb{Q}}(\mathfrak{a})}{d_{K} p^{\frac{n}{4}[K: \mathbb{Q}]}}\right)$, F_{1}, F_{2} : fast decaying functions.
The average $\frac{1}{[F(\chi): F]} \operatorname{Tr}_{F(\chi) / F}\left(\chi_{\mathrm{f}}(\alpha) L_{K}(1, \chi)\right)$ is decomposed into two parts:

- First part: For an integer $m \geq 1$, let us set $c_{m}:=\left|\left\{\mathfrak{a} \mid N_{K / \mathbb{Q}}(\mathfrak{a})=m\right\}\right|$.

$$
\sum_{m \geq 1} \frac{\operatorname{Tr}_{F(\chi) / F}(\psi(m \bar{a})) c_{m}}{m} F_{1}\left(\frac{m}{p^{\frac{3 n}{4}[K: \mathbb{Q}]}}\right)
$$

where $\chi=\psi \circ N_{K / \mathbb{Q}}$ for a Dirichlet character ψ.

- Second part:

$$
\sum_{\mathfrak{a}} \operatorname{Tr}_{F(\chi) / F}(W(\chi) \bar{\chi}(\alpha \mathfrak{a})) \frac{1}{N_{K / \mathbb{Q}}(\mathfrak{a})} F_{2}\left(\frac{N_{K / \mathbb{Q}}(\mathfrak{a})}{d_{K} N(p)^{\frac{n}{4}}}\right)
$$

First part: Lattice point counting

We can show :

$\sum_{\kappa \in \mu_{p-1}} \sum_{m \equiv a \kappa\left(\bmod p^{n}\right)} \frac{c_{m}}{m} F_{1}\left(\frac{m}{\left.p^{\frac{3 n}{4}[K: \mathbb{Q}]}\right)=11+(\text { small error })+(\text { smaller error }), ~}\right.$
which correspond to three parts, respectively:
(i) 1 occurs only if $m=1$.
(ii) Exceptional part: $m \equiv a \kappa\left(\bmod p^{n}\right)$ with $\kappa \neq 1$ and $m<p^{n}$.
(iii) Generic part: the summation is over $m \geq p^{n}$. (Easy estimation)

Lattice point counting

Now need to estimate the growth order of

$$
\sum_{\substack{m \leq x \\ m \equiv b\left(p^{n}\right)}} c_{m}=\#\left\{\mathfrak{a} \mid N(\mathfrak{a}) \equiv b\left(\bmod p^{n}\right), N(\mathfrak{a})<x\right\}
$$

Let $\left\{\mathfrak{b}_{1}, \cdots, \mathfrak{b}_{h}\right\}$ be representatives of Cl_{K}. Let C_{K} be the fundamental domain of $\left(K_{\mathbb{R}}^{+}\right)$for the action of totally positive units. Then,
totally positive
elements
in $K_{\mathbb{R}}:=K \otimes \mathbb{R}\{\mathfrak{a}:$ integral $\}=\bigsqcup_{i=1}^{h} \mathfrak{b}_{i}\left(C_{K} \cap \mathfrak{b}_{i}^{-1}\right)$.
(Minkowski space)
For $O_{p}=O_{K} \otimes \mathbb{Z}_{p}$, define $\mathcal{E}: \underset{\mathcal{O}^{\times}}{=}\left\{\alpha \in O_{p}^{\times} \mid N(\alpha)=1\right\}, \mathcal{E}_{n}:=\mathcal{E} \cap\left(1+p^{n} O_{p}\right)$.

Question

For a $\gamma \in O_{p}^{\times}$and a nonzero ideal \mathfrak{b}, need to estimate the size of

$$
\mathcal{C}_{n, \gamma}(x):=\left\{\alpha \in C_{K} \cap \mathfrak{b} \mid \alpha \equiv \varepsilon \gamma\left(\bmod p^{n}\right), \varepsilon \in \mathcal{E} / \mathcal{E}_{n}, N(\alpha) \leqslant x\right\}
$$

More on lattice point counting

Proposition

$$
\left|\mathcal{C}_{n, \gamma}(x)\right| \ll \begin{cases}x^{1-\frac{1}{[K: Q]}} & \text { if } 0<x \leq N\left(p^{n}\right) \\ \frac{x}{p^{n}} & \text { if } x \geq N\left(p^{n}\right)\end{cases}
$$

Using a non-singular simplicial (closed)cone decomposition (not disjoint) with respect to \mathfrak{b}

$$
C_{K}=\bigcup_{i} C_{i}
$$

the problem reduces to estimate

$$
\left\{\alpha \in C_{i} \cap \mathfrak{b} \mid \alpha \equiv \varepsilon \gamma\left(\bmod p^{n}\right), \varepsilon \in \mathcal{E} / \mathcal{E}_{n}, N(\alpha) \leq x\right\}
$$

Con $C_{i} \cap b^{\prime}$.
a "p-adic expansion" is well-defined.
This plays a role of Minkowski theory
or Geometry of numbers

Lattice point in non-singular simplicial cone

Let \mathfrak{b} be a nonzero ideal and C a nonsingular cone in $K_{\mathbb{R}}^{+}$with respect to \mathfrak{b}.

Lemma

- $A \gamma \in \mathfrak{b} \cap C$ can be written uniquely as

$$
\gamma=\gamma_{0}+\gamma_{1} p+\gamma_{2} p^{2}+\cdots+\gamma_{n} p^{n}
$$

with digits $\gamma_{i} \in p \mathcal{P}_{C} \cap \mathfrak{b}$.
P_{C} : the fund. domain for C w.r.t b.

- $\operatorname{Set}\langle\gamma\rangle_{k, C}:=\gamma_{0}+\gamma_{1} p+\gamma_{2} p^{2}+\cdots+\gamma_{k} p^{k}$.
- If $N(\gamma)<N\left(p^{k}\right)$, then $\gamma=\langle\gamma\rangle_{k, C}$.
- If $\alpha \in C \cap \mathfrak{b}, \alpha \equiv \gamma \varepsilon\left(p^{n}\right)$, and $N(\alpha)<x<N\left(p^{n}\right)$, then $\alpha=\langle\gamma \varepsilon\rangle_{n, C}$.

Proof of Proposition

- Hence we need to estimate

$$
\#\left\{\langle\gamma \varepsilon\rangle_{n, C} \mid N\left(\langle\gamma \varepsilon\rangle_{n, C}\right)<x, \varepsilon \in \mathcal{E}\right\} .
$$

- If $N\left(\langle\varepsilon \gamma\rangle_{n, C}\right)<N\left(p^{k}\right) \approx x$, then the last $(n-k)$ digits of $\langle\varepsilon \gamma\rangle_{n, C}$ are zeros.
- If $\varepsilon^{\prime} \in \mathcal{E}_{k} / \mathcal{E}_{n}$, then the first k-digits of $\varepsilon \varepsilon^{\prime} \gamma=$ the first k-digits of $\varepsilon \gamma$.
- In sum,

$$
\#\left\{\langle\gamma \varepsilon\rangle_{n, C} \mid N\left(\langle\gamma \varepsilon\rangle_{n, C}\right)<x, \varepsilon \in \mathcal{E}\right\} \leq \#\left(\mathcal{E} / \mathcal{E}_{k}\right) \ll x^{1-1 / d}
$$

In the second part

$$
\sum_{m \geq 1}\left\{\sum_{N(\mathfrak{a})=m} \operatorname{Tr}_{F(\chi) / F}(W(\chi) \bar{\chi}(\alpha \mathfrak{a}))\right\} \frac{1}{m} F_{2}\left(\frac{m}{d_{K} N(p)^{\frac{n}{4}}}\right)
$$

the average $\operatorname{Tr}_{F(\chi) / F}(W(\chi) \bar{\chi}(\alpha \mathfrak{a}))$ is equal to

$$
\frac{1}{\sqrt{N\left(p^{n}\right)}} \sum_{\beta} \operatorname{Tr}_{F(\chi) / F}\left(\chi_{\mathrm{f}}(\beta) \bar{\chi}(\alpha \mathfrak{a})\right) \exp \left(\frac{2 \pi i \operatorname{Tr}_{K / \mathbb{Q}}(\beta)}{p^{n}}\right)
$$

This can be written as

$$
\sum_{\varepsilon \in \mathcal{E} / \mathcal{E}_{n}} \exp \left(\frac{2 \pi i \operatorname{Tr}(\varepsilon \gamma)}{p^{n}}\right)
$$

Proposition

$$
\sum_{\varepsilon \in \mathcal{E} / \mathcal{E}_{n}} \exp \left(\frac{2 \pi i \operatorname{Tr}(\varepsilon \gamma)}{p^{n}}\right) \ll_{p, d} p^{\frac{(d-1) n}{2}}
$$

Let \mathcal{V} be the \mathbb{Z}_{p}-submodule of $p O_{p}$ corresponds to \mathcal{E}_{1} via

$$
\log _{p}=\left(\log _{\wp}\right)_{\wp \supset \mid p}: 1+p O_{p}=\prod_{\wp}\left(1+\wp O_{\wp}\right) \rightarrow p O_{p}=\prod_{\wp} \wp O_{\wp}
$$

Lemma

Let us set $m=\left\lfloor\frac{n}{2}\right\rfloor$. For a sufficiently large integer n,

$$
\mathcal{E}_{1}^{p^{m-1}} \bmod p^{n}=\left(1+p^{m-1} \mathcal{V}\right) \bmod p^{n}
$$

* Only for a bounded number of $\varepsilon \in \varepsilon_{1} / \varepsilon_{1}^{p-1}$, we get

$$
\sum_{\omega} \mathbb{e}\left(\frac{\operatorname{Tr}(\varepsilon \gamma \omega)}{p^{n-m+1}}\right) \neq 0 . \leadsto \begin{aligned}
& \text { Square-root } \\
& \text { Cancellation. }
\end{aligned}
$$

