Non–Archimedean analytic curves and the local–global principle

Vlerë Mehmeti

Laboratoire de Mathématiques d'Orsay University Paris–Saclay

French-Korean IRL webinar, 21.06.2021

Overview

- 2 Berkovich analytic spaces
- 3 Main statement and patching
- Other local–global principles

Local-global principle (LGP)

F a field,

(日) (四) (日) (日) (日)

Local-global principle (LGP)

F a field, $(F_i)_{i \in I}$ a family of *overfields*, i.e. $F \subsetneq F_i \ \forall i \in I$,

- 4 目 ト - 4 日 ト

Local-global principle (LGP)

F a field, $(F_i)_{i \in I}$ a family of *overfields*, i.e. $F \subsetneq F_i \ \forall i \in I$, V/F a variety (i.e. given by a system of polynomial equations over *F*),

(四) (三) (三)

Local-global principle (LGP)

F a field, $(F_i)_{i \in I}$ a family of *overfields*, i.e. $F \subsetneq F_i \ \forall i \in I$, V/F a variety (i.e. given by a system of polynomial equations over *F*),

 $V(F) \neq \emptyset \iff V(F_i) \neq \emptyset$ for all $i \in I$

Local-global principle (LGP)

F a field, $(F_i)_{i \in I}$ a family of *overfields*, i.e. $F \subsetneq F_i \ \forall i \in I$, V/F a variety (i.e. given by a system of polynomial equations over *F*),

 $V(F) \neq \emptyset \iff V(F_i) \neq \emptyset$ for all $i \in I$

• Example: the Hasse-Minkowski theorem 1921

F = Q, V - the non-trivial zeros of a quadratic form, (F_i)_{i∈I} the completions of Q (*i.e.* ℝ, Q_p, p-prime)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Local-global principle (LGP)

F a field, $(F_i)_{i \in I}$ a family of *overfields*, i.e. $F \subsetneq F_i \ \forall i \in I$, V/F a variety (i.e. given by a system of polynomial equations over *F*),

$$V(F) \neq \emptyset \iff V(F_i) \neq \emptyset$$
 for all $i \in I$

- Example: the Hasse-Minkowski theorem 1921
 - F = Q, V the non-trivial zeros of a quadratic form, (F_i)_{i∈I} the completions of Q (*i.e.* R, Q_p, p-prime)
- Counter-example: $2Y^2 = X^4 17Z^2$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Local-global principle (LGP)

F a field, $(F_i)_{i \in I}$ a family of *overfields*, i.e. $F \subsetneq F_i \ \forall i \in I$, V/F a variety (i.e. given by a system of polynomial equations over *F*),

$$V(F) \neq \emptyset \iff V(F_i) \neq \emptyset$$
 for all $i \in I$

- Example: the Hasse-Minkowski theorem 1921
 - F = Q, V the non-trivial zeros of a quadratic form, (F_i)_{i∈I} the completions of Q (*i.e.* R, Q_p, p-prime)
- Counter-example: $2Y^2 = X^4 17Z^2$

A modern variant: Geometric LGP

F-the function field of a curve, $(F_i)_i$ interpreted locally on a model of said curve (*e.g.* discrete completions of *F*)

イロン 不聞 とくほとう ほとう

• Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*

< A > <

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*
- Previous versions of patching techniques were used to study the inverse Galois problem

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_p). Let F = k(C), where C/k is a normal irreducible projective curve.

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_p). Let F = k(C), where C/k is a normal irreducible projective curve. There exists a family of overfields $(F_i)_i$, s.t. if V/F is a "homogeneous" variety over a rational linear algebraic group G/F, then

$$V(F) \neq \emptyset \iff V(F_i) \neq \emptyset \ \forall i.$$

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_p). Let F = k(C), where C/k is a normal irreducible projective curve. There exists a family of overfields $(F_i)_i$, s.t. if V/F is a "homogeneous" variety over a rational linear algebraic group G/F, then

$$V(F) \neq \emptyset \iff V(F_i) \neq \emptyset \ \forall i.$$

• Rational: $G \cong \mathbb{P}_F^n$;

・ 何 ト ・ ヨ ト ・ ヨ ト

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_p). Let F = k(C), where C/k is a normal irreducible projective curve. There exists a family of overfields $(F_i)_i$, s.t. if V/F is a "homogeneous" variety over a rational linear algebraic group G/F, then

$$V(F) \neq \emptyset \iff V(F_i) \neq \emptyset \ \forall i.$$

- Rational: $G \cong \mathbb{P}_F^n$;
- (homogeneous over G) = (V(F) = G/H(F)),
 "homogeneous" includes projective homogeneous varieties and torsors;

< □ > < □ > < □ > < □ > < □ > < □ >

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via *algebraic patching*
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_p). Let F = k(C), where C/k is a normal irreducible projective curve. There exists a family of overfields $(F_i)_i$, s.t. if V/F is a "homogeneous" variety over a rational linear algebraic group G/F, then

$$V(F) \neq \emptyset \iff V(F_i) \neq \emptyset \ \forall i.$$

- Rational: $G \cong \mathbb{P}_F^n$;
- (homogeneous over G) = (V(F) = G/H(F)),
 "homogeneous" includes projective homogeneous varieties and torsors;
- LGP-HHK is applicable to quadratic forms if char $k \neq 2$.

Vlerë Mehmeti (LMO)

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

Preview of the main statement:

Theorem (LGP- \mathcal{M}_{x} , M. '19)

F = k(C), k a complete ultrametric field and C/k a normal irreducible projective curve

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

Preview of the main statement:

Theorem (LGP- \mathcal{M}_{x} , M. '19)

F = k(C), k a complete ultrametric field and C/k a normal irreducible projective curve V/F a "homogeneous" variety over a rational linear algebraic group G/F

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

Preview of the main statement:

Theorem (LGP- \mathcal{M}_{\times} , M. '19)

F = k(C), k a complete ultrametric field and C/k a normal irreducible projective curve

V/F a "homogeneous" variety over a rational linear algebraic group G/F C^{an} - analytification of C, \mathcal{M} -the sheaf of meromorphic functions on C^{an} ,

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

Preview of the main statement:

Theorem (LGP- \mathcal{M}_{\times} , M. '19)

F = k(C), k a complete ultrametric field and C/k a normal irreducible projective curve

V/F a "homogeneous" variety over a rational linear algebraic group G/F C^{an} - analytification of C, \mathscr{M} -the sheaf of meromorphic functions on C^{an} , then $F = \mathscr{M}(C^{\mathrm{an}})$ and

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}$$

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

Preview of the main statement:

Theorem (LGP- \mathcal{M}_{\times} , M. '19)

F = k(C), k a complete ultrametric field and C/k a normal irreducible projective curve

V/F a "homogeneous" variety over a rational linear algebraic group G/F C^{an} - analytification of C, \mathscr{M} -the sheaf of meromorphic functions on C^{an} , then $F = \mathscr{M}(C^{\mathrm{an}})$ and

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}$$

• LGP- $\mathcal{M}_x \Rightarrow$ LGP-HHK

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

Preview of the main statement:

Theorem (LGP- \mathcal{M}_{\times} , M. '19)

F = k(C), k a complete ultrametric field and C/k a normal irreducible projective curve

V/F a "homogeneous" variety over a rational linear algebraic group G/F C^{an} - analytification of C, \mathcal{M} -the sheaf of meromorphic functions on C^{an} , then $F = \mathcal{M}(C^{\mathrm{an}})$ and

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}$$

• LGP- $\mathcal{M}_x \Rightarrow$ LGP-HHK

• LGP-HHK \Rightarrow LGP- \mathcal{M}_x if k is discrete and other hypotheses

(日)

Setting

• $(k, |\cdot|)$ - a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k, |x+y| \leq \max(|x|, |y|)$)

Setting

- $(k, |\cdot|)$ a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k, |x+y| \leq \max(|x|, |y|)$)
- Examples: Q_p, C_p, K((t)) endowed with the t-adic valuation, any field K endowed with the trivial norm 0 → 0, 0 ≠ x → 1.

Setting

- $(k, |\cdot|)$ a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k, |x+y| \leq \max(|x|, |y|)$)
- Examples: Q_p, C_p, K((t)) endowed with the t-adic valuation, any field K endowed with the trivial norm 0 → 0, 0 ≠ x → 1.
- $(k, |\cdot|)$ is totally disconnected,

Setting

- $(k, |\cdot|)$ a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k, |x+y| \leq \max(|x|, |y|)$)
- Examples: Q_p, C_p, K((t)) endowed with the t-adic valuation, any field K endowed with the trivial norm 0 → 0, 0 ≠ x → 1.
- $(k, |\cdot|)$ is totally disconnected,
 - ▶ why we can't define analytic functions as over ℂ:

$$f(x)=egin{cases} 0, & |x|\leq 1\ 1, & |x|>1 \end{cases}$$

Setting

- $(k, |\cdot|)$ a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k, |x+y| \leq \max(|x|, |y|)$)
- Examples: Q_p, C_p, K((t)) endowed with the t-adic valuation, any field K endowed with the trivial norm 0 → 0, 0 ≠ x → 1.
- $(k, |\cdot|)$ is totally disconnected,
 - ▶ why we can't define analytic functions as over ℂ:

$$f(x) = egin{cases} 0, & |x| \leq 1 \ 1, & |x| > 1 \end{cases}$$

Ways to avoid the problem:

- Tate's rigid geometry;
- Q Raynaud's approach using formal schemes and models;
- Berkovich's analytic geometry;
- Huber's adic spaces.

Vlerë Mehmeti (LMO)

Some advantages:

< ∃⇒

 Some advantages: good topological properties, analogy with classical complex setting and schemes;

- Some advantages: good topological properties, analogy with classical complex setting and schemes;
- Solution There is an analytification functor X → X^{an} :
 X a locally f.t. scheme, X^{an} its Berkovich analytification

- Some advantages: good topological properties, analogy with classical complex setting and schemes;
- **②** There is an analytification functor $X \rightsquigarrow X^{an}$: X a locally f.t. scheme, X^{an} its *Berkovich analytification*
 - GAGA-type theorems

- Some advantages: good topological properties, analogy with classical complex setting and schemes;
- There is an analytification functor X → X^{an}:
 X a locally f.t. scheme, X^{an} its Berkovich analytification
 - GAGA-type theorems
 - ★ A proper analytic curve is algebraic.

- Some advantages: good topological properties, analogy with classical complex setting and schemes;
- There is an analytification functor X → X^{an}:
 X a locally f.t. scheme, X^{an} its Berkovich analytification
 - GAGA-type theorems
 - * A proper analytic curve is algebraic.
 - \blacktriangleright A sheaf of meromorphic functions \mathscr{M} can be defined

- Some advantages: good topological properties, analogy with classical complex setting and schemes;
- There is an analytification functor X → X^{an}: X a locally f.t. scheme, X^{an} its Berkovich analytification
 - GAGA–type theorems
 - ★ A proper analytic curve is algebraic.
 - \blacktriangleright A sheaf of meromorphic functions \mathscr{M} can be defined

GAGA theorem for ${\mathscr M}$

If X/k-normal irreducible projective algebraic curve, then $\kappa(X) = \mathscr{M}(X^{\mathrm{an}})$.

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1,\mathrm{an}}$

 $(k, |\cdot|)$ - a complete ultrametric field

< A > <

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_{k}^{1,an}$ over k is

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_{k}^{1,an}$ over k is

• the set of multiplicative semi-norms on k[T] which extend the norm on k

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_k^{1,an}$ over k is

- the set of multiplicative semi-norms on k[T] which extend the norm on k
 - examples: $a \in k, r \ge 0, \eta_{a,r} \in \mathbb{A}_k^{1,\mathrm{an}}$, where

$$\eta_{a,r} \colon k[T] o \mathbb{R}_{\geqslant 0}$$

 $P(T) \mapsto \sup_{|b-a| \le r} |P(b)|,$

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_{k}^{1,an}$ over k is

- the set of multiplicative semi-norms on k[T] which extend the norm on k
 - examples: $a \in k, r \ge 0, \eta_{a,r} \in \mathbb{A}_k^{1,\mathrm{an}}$, where

$$\eta_{a,r} \colon k[T] o \mathbb{R}_{\geqslant 0}$$

 $P(T) \mapsto \sup_{|b-a| \le r} |P(b)|,$

• $\eta_{a,r}$ is uniquely determined by the closed disc B(a,r),

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_k^{1,an}$ over k is

- the set of multiplicative semi-norms on k[T] which extend the norm on k
 - examples: $a \in k, r \ge 0, \eta_{a,r} \in \mathbb{A}_k^{1,\mathrm{an}}$, where

$$\eta_{a,r} \colon k[T] \to \mathbb{R}_{\geqslant 0}$$

 $P(T) \mapsto \sup_{|b-a| \le r} |P(b)|,$

η_{a,r} is uniquely determined by the closed disc B(a, r),
 r = 0, k → A^{1,an}_k;

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_k^{1,an}$ over k is

- the set of multiplicative semi-norms on k[T] which extend the norm on k
 - examples: $a \in k, r \ge 0, \eta_{a,r} \in \mathbb{A}_k^{1,\mathrm{an}}$, where

$$\eta_{a,r} \colon k[T] o \mathbb{R}_{\geqslant 0}$$

 $P(T) \mapsto \sup_{|b-a| \le r} |P(b)|,$

- η_{a,r} is uniquely determined by the closed disc B(a, r),
 r = 0, k → A^{1,an}_k;
- topological properties: locally compact, connected, contractible;

 $(k, |\cdot|)$ - a complete ultrametric field

The analytic affine line $\mathbb{A}_{k}^{1,an}$ over k is

- the set of multiplicative semi-norms on k[T] which extend the norm on k
 - examples: $a \in k, r \ge 0, \eta_{a,r} \in \mathbb{A}_k^{1,\mathrm{an}}$, where

$$\eta_{a,r} \colon k[T] o \mathbb{R}_{\geqslant 0}$$

 $P(T) \mapsto \sup_{|b-a| \le r} |P(b)|,$

- η_{a,r} is uniquely determined by the closed disc B(a, r),
 r = 0, k → A^{1,an}_t:
- topological properties: locally compact, connected, contractible;
- analytic functions: formal power series over k convergent somewhere.

 $\eta_{a,r}$ а

$\mathbb{A}_{k}^{1,\mathrm{an}}$'s tree-like structure

æ

イロト イヨト イヨト イヨト

• The projective analytic line: $\mathbb{P}_k^{1,\mathrm{an}} = \mathbb{A}_k^{1,\mathrm{an}} \cup \{\infty\}.$

э

・ロト ・四ト ・ヨト ・ヨト

- The projective analytic line: $\mathbb{P}_{k}^{1,\mathrm{an}} = \mathbb{A}_{k}^{1,\mathrm{an}} \cup \{\infty\}.$
 - Properties: compact, contractible, $\mathscr{M}(\mathbb{P}^{1,\mathrm{an}}_k) = k(T)$.

< 4 → < 3

- The projective analytic line: $\mathbb{P}_k^{1,\mathrm{an}} = \mathbb{A}_k^{1,\mathrm{an}} \cup \{\infty\}.$
 - Properties: compact, contractible, $\mathscr{M}(\mathbb{P}^{1,\mathrm{an}}_k) = k(T)$.
- $\mathbb{P}_k^{1,\mathrm{an}}$ and $\mathbb{A}_k^{1,\mathrm{an}}$ are good representatives of analytic curves

< 同 ト < ∃ ト

- The projective analytic line: $\mathbb{P}_k^{1,\mathrm{an}} = \mathbb{A}_k^{1,\mathrm{an}} \cup \{\infty\}.$
 - Properties: compact, contractible, $\mathscr{M}(\mathbb{P}^{1,\mathrm{an}}_k) = k(T)$.
- $\mathbb{P}_k^{1,\mathrm{an}}$ and $\mathbb{A}_k^{1,\mathrm{an}}$ are good representatives of analytic curves
 - All analytic curves have a graph-like structure with infinite branching.

Theorem (LGP- \mathcal{M}_{x})

Let k be a complete ultrametric field. Let C/k be a normal irreducible projective curve. Let F denote its function field. Suppose V/F is a "homogeneous" variety over a rational linear algebraic group G/F. Then $F = \mathscr{M}(C^{\mathrm{an}})$, where C^{an} - Berkovich analytification of C, and

 $V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (LGP- \mathcal{M}_{x})

Let k be a complete ultrametric field. Let C/k be a normal irreducible projective curve. Let F denote its function field. Suppose V/F is a "homogeneous" variety over a rational linear algebraic group G/F. Then $F = \mathscr{M}(C^{\mathrm{an}})$, where C^{an} - Berkovich analytification of C, and

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}.$$

• \mathcal{M}_{x} has nice algebraic properties (*e.g.* it is a Henselian valued field);

Theorem (LGP- \mathcal{M}_{x})

Let k be a complete ultrametric field. Let C/k be a normal irreducible projective curve. Let F denote its function field. Suppose V/F is a "homogeneous" variety over a rational linear algebraic group G/F. Then $F = \mathscr{M}(C^{\mathrm{an}})$, where C^{an} - Berkovich analytification of C, and

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}.$$

M_x has nice algebraic properties (*e.g.* it is a Henselian valued field);
LGP-*M_x* is applicable to quadratic forms when char *k* ≠ 2.

イロト イヨト イヨト イヨト

Theorem (LGP- \mathcal{M}_{x})

Let k be a complete ultrametric field. Let C/k be a normal irreducible projective curve. Let F denote its function field. Suppose V/F is a "homogeneous" variety over a rational linear algebraic group G/F. Then $F = \mathscr{M}(C^{\mathrm{an}})$, where C^{an} - Berkovich analytification of C, and

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in C^{\mathrm{an}}.$$

• \mathcal{M}_{x} has nice algebraic properties (*e.g.* it is a Henselian valued field);

• LGP- \mathcal{M}_{x} is applicable to quadratic forms when char $k \neq 2$.

Corollary (Parimala-Suresh '09, HHK '09, M. '19)

Any quadratic form of dimension ≥ 9 defined over $\mathbb{Q}_p(T)$, $p \neq 2$, has a non-trivial zero over $\mathbb{Q}_p(T)$.

3

イロン イヨン イヨン

What is *patching*?

æ

イロト イヨト イヨト イヨト

G/F - linear algebraic group

∃ →

< 47 ▶

G/F - linear algebraic group

Patching property (PP) $\forall g \in G(F_0), \exists g_i \in G(F_i), i = 1, 2, \text{ s.t.}$ $g = g_1 \cdot g_2 \text{ in } G(F_0)$

A 🖓

G/F - linear algebraic group

Patching property (PP) $\forall g \in G(F_0), \exists g_i \in G(F_i), i = 1, 2, \text{ s.t.}$ $g = g_1 \cdot g_2 \text{ in } G(F_0)$

Question

Under what conditions on $F, F_i, i = 0, 1, 2$, and G is (PP) satisfied?

・ 同 ト ・ ヨ ト ・ ヨ ト

G/F - linear algebraic group

Patching property (PP) $\forall g \in G(F_0), \exists g_i \in G(F_i), i = 1, 2, \text{ s.t.}$ $g = g_1 \cdot g_2 \text{ in } G(F_0)$

Question

Under what conditions on $F, F_i, i = 0, 1, 2$, and G is (PP) satisfied?

• G/F is rational, *i.e.* birationally equivalent to some \mathbb{P}_{F}^{n} ;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

G/F - linear algebraic group

Patching property (PP) $\forall g \in G(F_0), \exists g_i \in G(F_i), i = 1, 2, \text{ s.t.}$ $g = g_1 \cdot g_2 \text{ in } G(F_0)$

Question

Under what conditions on $F, F_i, i = 0, 1, 2$, and G is (PP) satisfied?

• G/F is rational, *i.e.* birationally equivalent to some \mathbb{P}_{F}^{n} ;

• Some conditions on $F, F_i, i = 0, 1, 2$:

・ 何 ト ・ ヨ ト ・ ヨ ト

 ${\cal G}/{\cal F}$ - linear algebraic group

Patching property (PP) $\forall g \in G(F_0), \exists g_i \in G(F_i), i = 1, 2, \text{ s.t.}$ $g = g_1 \cdot g_2 \text{ in } G(F_0)$

Question

Under what conditions on $F, F_i, i = 0, 1, 2$, and G is (PP) satisfied?

- G/F is rational, *i.e.* birationally equivalent to some \mathbb{P}_{F}^{n} ;
- Some conditions on $F, F_i, i = 0, 1, 2$:
 - satisfied in HHK's setting,

 ${\cal G}/{\cal F}$ - linear algebraic group

Patching property (PP) $\forall g \in G(F_0), \exists g_i \in G(F_i), i = 1, 2, \text{ s.t.}$ $g = g_1 \cdot g_2 \text{ in } G(F_0)$

Question

Under what conditions on $F, F_i, i = 0, 1, 2$, and G is (PP) satisfied?

- G/F is rational, *i.e.* birationally equivalent to some \mathbb{P}_{F}^{n} ;
- Some conditions on $F, F_i, i = 0, 1, 2$:
 - satisfied in HHK's setting,
 - realised geometrically by Berkovich curves.

Vlerë Mehmeti (LMO)

Analytic curves and LGP

э

A D N A B N A B N A B N

 U_1, U_2 – compact analytic domains in C^{an} (building blocks of the analytic structure)

 U_1, U_2 – compact analytic domains in C^{an} (building blocks of the analytic structure)

 U_1, U_2 – compact analytic domains in C^{an} (building blocks of the analytic structure)

G/F-rational lin. alg. group

 U_1, U_2 – compact analytic domains in C^{an} (building blocks of the analytic structure)

G/F-rational lin. alg. group $\forall g, \exists g_1, g_2$ such that $g = g_1 \cdot g_2$

 U_1, U_2 – compact analytic domains in C^{an} (building blocks of the analytic structure)

G/F-rational lin. alg. group $\forall g, \exists g_1, g_2$ such that $g = g_1 \cdot g_2$

Proposition (\star)

 $\forall g \in G(\mathscr{M}(\{\eta\})), \exists g_i \in G(\mathscr{M}(U_i)), i = 1, 2, \text{ such that } g = g_1 \cdot g_2$

Patching and proof of LGP- \mathcal{M}_{x}

э

→ ∃ →

Image: A mathematical states and a mathem

Patching and proof of LGP- \mathcal{M}_x

Key idea of proof of LGP- \mathcal{M}_x :

< 1 k

Key idea of proof of LGP- \mathcal{M}_x : • $x_i \in V(\mathcal{M}(U_i)), i = 1, 2.$

< 1 k

Key idea of proof of LGP- \mathcal{M}_{x} :

$$\ \, \textbf{i} \in V(\mathcal{M}(U_i)), \, i=1,2.$$

2 Action of *G*: $\exists g \in G(\mathscr{M}(\{\eta\})) \text{ s.t. } x_1 = g \cdot x_2 \in V(\mathscr{M}(\{\eta\})).$

Key idea of proof of LGP- \mathcal{M}_{x} :

$$x_i \in V(\mathcal{M}(U_i)), \ i = 1, 2.$$

- **2** Action of G: $\exists g \in G(\mathcal{M}(\{\eta\})) \text{ s.t. } x_1 = g \cdot x_2 \in V(\mathcal{M}(\{\eta\})).$
- Proposition (*): $\exists g_i \in G(\mathcal{M}(U_i)),$ $i = 1, 2, \text{ s.t. } g = g_1 \cdot g_2.$

Key idea of proof of LGP- \mathcal{M}_x :

$$x_i \in V(\mathcal{M}(U_i)), i = 1, 2.$$

- **2** Action of G: $\exists g \in G(\mathcal{M}(\{\eta\})) \text{ s.t. } x_1 = g \cdot x_2 \in V(\mathcal{M}(\{\eta\})).$
- Proposition (*): $\exists g_i \in G(\mathcal{M}(U_i)),$ $i = 1, 2, \text{ s.t. } g = g_1 \cdot g_2.$

•
$$x'_1 := g_1^{-1} \cdot x_1 \in V(\mathscr{M}(U_1)), x'_2 := g_2 \cdot x_2 \in V(\mathscr{M}(U_2)).$$

Key idea of proof of LGP- \mathcal{M}_{x} :

$$x_i \in V(\mathcal{M}(U_i)), i = 1, 2.$$

- **2** Action of G: $\exists g \in G(\mathscr{M}(\{\eta\})) \text{ s.t. } x_1 = g \cdot x_2 \in V(\mathscr{M}(\{\eta\})).$
- Proposition (*): $\exists g_i \in G(\mathcal{M}(U_i)), i = 1, 2, \text{ s.t. } g = g_1 \cdot g_2.$

a
$$x'_1 := g_1^{-1} \cdot x_1 \in V(\mathscr{M}(U_1)), \ x'_2 := g_2 \cdot x_2 \in V(\mathscr{M}(U_2)).$$

So By construction $x'_{1|\{\eta\}} = x'_{2|\{\eta\}}$, so they can be glued to give $x \in V(\mathcal{M}(U_1 \cup U_2))$.

Key idea of proof of LGP- \mathcal{M}_{x} :

$$x_i \in V(\mathcal{M}(U_i)), i = 1, 2.$$

- **2** Action of G: $\exists g \in G(\mathscr{M}(\{\eta\})) \text{ s.t. } x_1 = g \cdot x_2 \in V(\mathscr{M}(\{\eta\})).$
- Proposition (*): $\exists g_i \in G(\mathcal{M}(U_i)),$ $i = 1, 2, \text{ s.t. } g = g_1 \cdot g_2.$

$$\begin{array}{l} \mathbf{x}_1' := g_1^{-1} \cdot x_1 \in V(\mathscr{M}(U_1)), \\ x_2' := g_2 \cdot x_2 \in V(\mathscr{M}(U_2)). \end{array}$$

So By construction $x'_{1|\{\eta\}} = x'_{2|\{\eta\}}$, so they can be glued to give $x \in V(\mathscr{M}(U_1 \cup U_2))$.

Goal: Generalize Proposition (\star) to more complicated covers.

For any open cover of C^{an} , there exists a "nice" refinement

< ∃⇒

• • • • • • • • • •

For any open cover of C^{an} , there exists a "nice" refinement

4 E b

< ⊡ > < ∃</p>

for which $\forall g_i \in G(\mathcal{M}(\bullet))$,

< A > <

for which $\forall g_i \in G(\mathscr{M}(\bullet)), \exists h_j \in G(\mathscr{M}(\bigcirc))$ s.t. for example:

for which $\forall g_i \in G(\mathscr{M}(\bullet)), \exists h_j \in G(\mathscr{M}(\bigcirc))$ s.t. for example:

 $g_1 = h_1 \cdot h_2$ $g_2 = h_3 \cdot h_2$ $g_3 = h_4 \cdot h_2$

for which $\forall g_i \in G(\mathscr{M}(\bullet)), \exists h_j \in G(\mathscr{M}(\bigcirc))$ s.t. for example:

$g_1 = h_1 \cdot h_2$	$g_1 = h_1 \cdot h_2$
$g_2 = h_3 \cdot h_2$	
$g_3 = h_4 \cdot h_2$	$g_2 = h_1 \cdot h_2$

< /□ > < ∃

F = k(C), k, C as before, k non-trivially valued

3

F = k(C), k, C as before, k non-trivially valued \mathcal{P}_F the set of non-trivial rank 1 valuations on F s.t. $v_{|k}$ is either trivial or the norm on k

- 4 回 ト 4 ヨ ト 4 ヨ ト

F = k(C), k, C as before, k non-trivially valued \mathcal{P}_F the set of non-trivial rank 1 valuations on F s.t. $v_{|k}$ is either trivial or the norm on k

Analytic curves and valuations

There exists a bijection $C^{\mathrm{an}} \longleftrightarrow \mathcal{P}_F$, s.t. if $x \mapsto v_x$, then $\widehat{\mathcal{M}}_x = F_{v_x}$, where F_{v_x} is the completion of F w.r.t. v_x .

F = k(C), k, C as before, k non-trivially valued \mathcal{P}_F the set of non-trivial rank 1 valuations on F s.t. $v_{|k}$ is either trivial or the norm on k

Analytic curves and valuations

There exists a bijection $C^{\mathrm{an}} \longleftrightarrow \mathcal{P}_F$, s.t. if $x \mapsto v_x$, then $\widehat{\mathcal{M}_x} = F_{v_x}$, where F_{v_x} is the completion of F w.r.t. v_x .

Theorem (LGP-val, M. '19)

Let V/F be a "homogeneous" variety over a rational lin. alg. group. Then

$$V(F) \neq \emptyset \iff V(F_v) \neq \emptyset \ \forall v \in \mathcal{P}_F.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

F = k(C), k, C as before, k non-trivially valued \mathcal{P}_F the set of non-trivial rank 1 valuations on F s.t. $v_{|k}$ is either trivial or the norm on k

Analytic curves and valuations

There exists a bijection $C^{\mathrm{an}} \longleftrightarrow \mathcal{P}_F$, s.t. if $x \mapsto v_x$, then $\widehat{\mathcal{M}_x} = F_{v_x}$, where F_{v_x} is the completion of F w.r.t. v_x .

Theorem (LGP-val, M. '19)

Let V/F be a "homogeneous" variety over a rational lin. alg. group. Then

$$V(F) \neq \emptyset \iff V(F_v) \neq \emptyset \ \forall v \in \mathcal{P}_F.$$

If char $k \neq 2$, LGP-val applies to quadratic forms.

< □ > < □ > < □ > < □ > < □ > < □ >

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

 $V(F) \neq \emptyset \iff V(F_{\nu}) \neq \emptyset \ \forall \nu - \text{discrete.}$

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

 $V(F) \neq \emptyset \iff V(F_{\nu}) \neq \emptyset \ \forall \nu - \text{discrete.}$

• It is shown to be true in some special cases (e.g. for quadratic forms).

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

 $V(F) \neq \emptyset \iff V(F_{\nu}) \neq \emptyset \ \forall \nu - \text{discrete.}$

• It is shown to be true in some special cases (*e.g.* for quadratic forms).

• Let $S_{
m disc} \subset C^{
m an}$ correspond to the discrete valuations on F

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

 $V(F) \neq \emptyset \iff V(F_{\nu}) \neq \emptyset \ \forall \nu - \text{discrete.}$

- It is shown to be true in some special cases (*e.g.* for quadratic forms).
- Let $S_{
 m disc} \subset C^{
 m an}$ correspond to the discrete valuations on F
 - $S_{\rm dics}$: can be well described, is dense in $C^{\rm an}$

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

 $V(F) \neq \emptyset \iff V(F_{\nu}) \neq \emptyset \ \forall \nu - \text{discrete.}$

- It is shown to be true in some special cases (*e.g.* for quadratic forms).
- Let $S_{
 m disc} \subset C^{
 m an}$ correspond to the discrete valuations on F
 - $S_{\rm dics}$: can be well described, is dense in $C^{\rm an}$

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C/k a normal irreducible projective curve, F = k(C), V a projective homogeneous variety over a connected lin. alg. group; then

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in S_{\mathrm{disc}} \subset C^{\mathrm{an}}$$

э

イロト イヨト イヨト イヨト

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C/k a normal irreducible projective curve, F = k(C), V a projective homogeneous variety over a connected lin. alg. group; then

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in S_{\mathrm{disc}} \subset C^{\mathrm{an}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C/k a normal irreducible projective curve, F = k(C), V a projective homogeneous variety over a connected lin. alg. group; then

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in S_{\mathrm{disc}} \subset C^{\mathrm{an}}$$

• We study when:

$$V(\mathscr{M}_{x}) \neq \emptyset \,\,\forall x \in S_{disc} \Rightarrow V(\mathscr{M}_{x}) \neq \emptyset \,\,\forall x \in C^{\mathrm{an}}$$
(1)

< 同 > < 三 > < 三 >

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C/k a normal irreducible projective curve, F = k(C), V a projective homogeneous variety over a connected lin. alg. group; then

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in S_{\mathrm{disc}} \subset C^{\mathrm{an}}$$

• We study when:

$$V(\mathscr{M}_{x}) \neq \emptyset \,\,\forall x \in S_{disc} \Rightarrow V(\mathscr{M}_{x}) \neq \emptyset \,\,\forall x \in C^{\mathrm{an}}$$

$$\tag{1}$$

• LGP-disc (M. '21): Property (1) (and consequently Conjecture CTPS) is true for proper varieties satisfying some *strong* smoothness conditions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C/k a normal irreducible projective curve, F = k(C), V a projective homogeneous variety over a connected lin. alg. group; then

$$V(F) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in S_{\mathrm{disc}} \subset C^{\mathrm{an}}$$

• We study when:

$$V(\mathscr{M}_{x}) \neq \emptyset \,\,\forall x \in S_{disc} \Rightarrow V(\mathscr{M}_{x}) \neq \emptyset \,\,\forall x \in C^{\mathrm{an}}$$
(1)

- LGP-disc (M. '21): Property (1) (and consequently Conjecture CTPS) is true for proper varieties satisfying some *strong* smoothness conditions.
- LGP-disc can be applied to reprove Conjecture CTPS for quadratic forms.

э

< □ > < □ > < □ > < □ > < □ > < □ >

• $\pi : C \to S$ a proper relative analytic curve

< ∃⇒

< /□ > < ∃

- $\pi : C \to S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_b a field

- $b \in S$ such that \mathcal{O}_b a field
 - the set of such b is dense in S

- $b \in S$ such that \mathcal{O}_b a field
 - the set of such *b* is dense in *S*
- $\exists Z_b$ a neighborhood of b s.t.

- $\pi : C \to S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_b a field
 - the set of such b is dense in S
- $\exists Z_b$ a neighborhood of b s.t. we can patch on $\pi^{-1}(Z_b)$

- π : $C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_b a field
 - the set of such b is dense in S
- $\exists Z_b$ a neighborhood of b s.t. we can patch on $\pi^{-1}(Z_b)$

LGP- \mathcal{M}_x -hd (M. '20)

If $V/\mathscr{M}(C)$ is a "homogeneous" variety over a rational lin. alg. group G, then $V(\mathscr{M}(\pi^{-1}(Z_b))) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in \pi^{-1}(b)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- π : $C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_b a field
 - the set of such b is dense in S
- $\exists Z_b$ a neighborhood of *b* s.t. we can patch on $\pi^{-1}(Z_b)$

LGP- \mathcal{M}_x -hd (M. '20)

If $V/\mathscr{M}(C)$ is a "homogeneous" variety over a rational lin. alg. group G, then $V(\mathscr{M}(\pi^{-1}(Z_b))) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in \pi^{-1}(b)$.

• A LGP-val-hd can be obtained as a consequence;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- π : $C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_b a field
 - the set of such b is dense in S
- $\exists Z_b$ a neighborhood of *b* s.t. we can patch on $\pi^{-1}(Z_b)$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

LGP- \mathcal{M}_x -hd (M. '20)

If $V/\mathscr{M}(C)$ is a "homogeneous" variety over a rational lin. alg. group G, then $V(\mathscr{M}(\pi^{-1}(Z_b))) \neq \emptyset \iff V(\mathscr{M}_x) \neq \emptyset \ \forall x \in \pi^{-1}(b)$.

- A LGP-val-hd can be obtained as a consequence;
- both these LGP-hd can be applied to quadratic forms.