Non-Archimedean analytic curves and the local-global principle

Vlerë Mehmeti

Laboratoire de Mathématiques d'Orsay University Paris-Saclay

French-Korean IRL webinar, 21.06.2021

Overview

(1) Local-global principle
(2) Berkovich analytic spaces
(3) Main statement and patching
(4) Other local-global principles

What is a Local-Global Principle?

Local-global principle (LGP)

F a field,

What is a Local-Global Principle?

Local-global principle (LGP)

F a field, $\left(F_{i}\right)_{i \in I}$ a family of overfields, i.e. $F \subsetneq F_{i} \forall i \in I$,

What is a Local-Global Principle?

Local-global principle (LGP)

F a field, $\left(F_{i}\right)_{i \in I}$ a family of overfields, i.e. $F \subsetneq F_{i} \forall i \in I$,
V / F a variety (i.e. given by a system of polynomial equations over F),

What is a Local-Global Principle?

Local-global principle (LGP)

F a field, $\left(F_{i}\right)_{i \in I}$ a family of overfields, i.e. $F \subsetneq F_{i} \forall i \in I$, V / F a variety (i.e. given by a system of polynomial equations over F),

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \text { for all } i \in I
$$

What is a Local-Global Principle?

Local-global principle (LGP)

F a field, $\left(F_{i}\right)_{i \in I}$ a family of overfields, i.e. $F \subsetneq F_{i} \forall i \in I$, V / F a variety (i.e. given by a system of polynomial equations over F),

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \text { for all } i \in I
$$

- Example: the Hasse-Minkowski theorem 1921
- $F=\mathbb{Q}, V$ - the non-trivial zeros of a quadratic form, $\left(F_{i}\right)_{i \in I}$ the completions of $\mathbb{Q}\left(i . e . \mathbb{R}, \mathbb{Q}_{p}, p\right.$-prime $)$

What is a Local-Global Principle?

Local-global principle (LGP)

F a field, $\left(F_{i}\right)_{i \in I}$ a family of overfields, i.e. $F \subsetneq F_{i} \forall i \in I$, V / F a variety (i.e. given by a system of polynomial equations over F),

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \text { for all } i \in I
$$

- Example: the Hasse-Minkowski theorem 1921
- $F=\mathbb{Q}, V$ - the non-trivial zeros of a quadratic form, $\left(F_{i}\right)_{i \in I}$ the completions of \mathbb{Q} (i.e. $\mathbb{R}, \mathbb{Q}_{p}, p$-prime)
- Counter-example: $2 Y^{2}=X^{4}-17 Z^{2}$

What is a Local-Global Principle?

Local-global principle (LGP)

F a field, $\left(F_{i}\right)_{i \in I}$ a family of overfields, i.e. $F \subsetneq F_{i} \forall i \in I$, V / F a variety (i.e. given by a system of polynomial equations over F),

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \text { for all } i \in I
$$

- Example: the Hasse-Minkowski theorem 1921
- $F=\mathbb{Q}, V$ - the non-trivial zeros of a quadratic form, $\left(F_{i}\right)_{i \in I}$ the completions of \mathbb{Q} (i.e. $\mathbb{R}, \mathbb{Q}_{p}, p$-prime)
- Counter-example: $2 Y^{2}=X^{4}-17 Z^{2}$

A modern variant: Geometric LGP
 F-the function field of a curve, $\left(F_{i}\right)_{i}$ interpreted locally on a model of said curve (e.g. discrete completions of F)

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching
- Previous versions of patching techniques were used to study the inverse Galois problem

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_{p}). Let $F=k(C)$, where C / k is a normal irreducible projective curve.

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_{p}). Let $F=k(C)$, where C / k is a normal irreducible projective curve.
There exists a family of overfields $\left(F_{i}\right)_{i}$, s.t. if V / F is a "homogeneous" variety over a rational linear algebraic group G / F, then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \forall i .
$$

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_{p}). Let $F=k(C)$, where C / k is a normal irreducible projective curve.
There exists a family of overfields $\left(F_{i}\right)_{i}$, s.t. if V / F is a "homogeneous" variety over a rational linear algebraic group G / F, then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \forall i .
$$

- Rational: $G \cong \mathbb{P}_{F}^{n}$;

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_{p}). Let $F=k(C)$, where C / k is a normal irreducible projective curve.
There exists a family of overfields $\left(F_{i}\right)_{i}$, s.t. if V / F is a "homogeneous" variety over a rational linear algebraic group G / F, then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \forall i .
$$

- Rational: $G \cong \mathbb{P}_{F}^{n}$;
- (homogeneous over $G)=(V(\bar{F})=G / H(\bar{F}))$,
"homogeneous" includes projective homogeneous varieties and torsors;

Geometric LGP and algebraic patching

- Harbater, Hartmann, Krashen (HHK) '09: new approach to the geometric LGP via algebraic patching
- Previous versions of patching techniques were used to study the inverse Galois problem

Theorem (LGP-HHK, HHK '09)

Let k be a complete discretely valued field (e.g. \mathbb{Q}_{p}). Let $F=k(C)$, where C / k is a normal irreducible projective curve.
There exists a family of overfields $\left(F_{i}\right)_{i}$, s.t. if V / F is a "homogeneous" variety over a rational linear algebraic group G / F, then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{i}\right) \neq \emptyset \forall i .
$$

- Rational: $G \cong \mathbb{P}_{F}^{n}$;
- (homogeneous over $G)=(V(\bar{F})=G / H(\bar{F}))$,
"homogeneous" includes projective homogeneous varieties and torsors;
- LGP-HHK is applicable to quadratic forms if char $k \neq 2$.

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)
Preview of the main statement:
Theorem (LGP- \mathscr{M}_{x}, M. '19)
$F=k(C), k$ a complete ultrametric field and C / k a normal irreducible projective curve

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)
Preview of the main statement:
Theorem (LGP- \mathscr{M}_{x}, M. '19)
$F=k(C), k$ a complete ultrametric field and C / k a normal irreducible projective curve
V / F a "homogeneous" variety over a rational linear algebraic group G / F

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)
Preview of the main statement:
Theorem (LGP- \mathscr{M}_{x}, M. '19)
$F=k(C), k$ a complete ultrametric field and C / k a normal irreducible projective curve
V / F a "homogeneous" variety over a rational linear algebraic group G / F $C^{\text {an }}$ - analytification of C, \mathscr{M}-the sheaf of meromorphic functions on $C^{\text {an }}$,

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)
Preview of the main statement:

Theorem (LGP- M_{x}, M. '19)

$F=k(C), k$ a complete ultrametric field and C / k a normal irreducible projective curve V / F a "homogeneous" variety over a rational linear algebraic group G / F $C^{\text {an }}$ - analytification of C, \mathscr{M}-the sheaf of meromorphic functions on $C^{\text {an }}$, then $F=\mathscr{M}\left(C^{\text {an }}\right)$ and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }}
$$

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)
Preview of the main statement:

Theorem (LGP- M_{x}, M. '19)

$F=k(C), k$ a complete ultrametric field and C / k a normal irreducible projective curve V / F a "homogeneous" variety over a rational linear algebraic group G / F $C^{\text {an }}$ - analytification of C, \mathscr{M}-the sheaf of meromorphic functions on $C^{\text {an }}$, then $F=\mathscr{M}\left(C^{\text {an }}\right)$ and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }}
$$

- LGP- $\mathscr{M}_{x} \Rightarrow$ LGP-HHK

An analytic point of view

- I adapted algebraic patching to the setting of non-Archimedean analytic curves (geometric in nature)
Preview of the main statement:

Theorem (LGP- \mathscr{M}_{x}, M. '19)

$F=k(C), k$ a complete ultrametric field and C / k a normal irreducible projective curve V / F a "homogeneous" variety over a rational linear algebraic group G / F $C^{\text {an }}$ - analytification of C, \mathscr{M}-the sheaf of meromorphic functions on $C^{\text {an }}$, then $F=\mathscr{M}\left(C^{\text {an }}\right)$ and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }}
$$

- LGP- $\mathscr{M}_{x} \Rightarrow$ LGP-HHK
- LGP-HHK \Rightarrow LGP- \mathscr{M}_{x} if k is discrete and other hypotheses

Analytic functions and complete ultrametric fields

Setting

- $(k,|\cdot|)$ - a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k,|x+y| \leqslant \max (|x|,|y|))$

Analytic functions and complete ultrametric fields

Setting

- $(k,|\cdot|)$ - a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k,|x+y| \leqslant \max (|x|,|y|))$
- Examples: $\mathbb{Q}_{p}, \mathbb{C}_{p}, K((t))$ endowed with the t-adic valuation, any field K endowed with the trivial norm $0 \mapsto 0,0 \neq x \mapsto 1$.

Analytic functions and complete ultrametric fields

Setting

- $(k,|\cdot|)$ - a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k,|x+y| \leqslant \max (|x|,|y|))$
- Examples: $\mathbb{Q}_{p}, \mathbb{C}_{p}, K((t))$ endowed with the t-adic valuation, any field K endowed with the trivial norm $0 \mapsto 0,0 \neq x \mapsto 1$.
- $(k,|\cdot|)$ is totally disconnected,

Analytic functions and complete ultrametric fields

Setting

- $(k,|\cdot|)$ - a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k,|x+y| \leqslant \max (|x|,|y|))$
- Examples: $\mathbb{Q}_{p}, \mathbb{C}_{p}, K((t))$ endowed with the t-adic valuation, any field K endowed with the trivial norm $0 \mapsto 0,0 \neq x \mapsto 1$.
- $(k,|\cdot|)$ is totally disconnected,
- why we can't define analytic functions as over \mathbb{C} :

$$
f(x)= \begin{cases}0, & |x| \leq 1 \\ 1, & |x|>1\end{cases}
$$

Analytic functions and complete ultrametric fields

Setting

- $(k,|\cdot|)$ - a complete ultrametric field (i.e. a complete normed field such that $\forall x, y \in k,|x+y| \leqslant \max (|x|,|y|))$
- Examples: $\mathbb{Q}_{p}, \mathbb{C}_{p}, K((t))$ endowed with the t-adic valuation, any field K endowed with the trivial norm $0 \mapsto 0,0 \neq x \mapsto 1$.
- $(k,|\cdot|)$ is totally disconnected,
- why we can't define analytic functions as over \mathbb{C} :

$$
f(x)= \begin{cases}0, & |x| \leq 1 \\ 1, & |x|>1\end{cases}
$$

Ways to avoid the problem:
(1) Tate's rigid geometry;
(2) Raynaud's approach using formal schemes and models;
(3) Berkovich's analytic geometry;
(9) Huber's adic spaces.

Berkovich spaces: general properties

(1) Some advantages:

Berkovich spaces: general properties

(1) Some advantages: good topological properties, analogy with classical complex setting and schemes;

Berkovich spaces: general properties

(1) Some advantages: good topological properties, analogy with classical complex setting and schemes;
(2) There is an analytification functor $X \rightsquigarrow X^{\text {an }}$: X a locally f.t. scheme, $X^{\text {an }}$ its Berkovich analytification

Berkovich spaces: general properties

(1) Some advantages: good topological properties, analogy with classical complex setting and schemes;
(2) There is an analytification functor $X \rightsquigarrow X^{\text {an }}$: X a locally f.t. scheme, $X^{\text {an }}$ its Berkovich analytification

- GAGA-type theorems

Berkovich spaces: general properties

(1) Some advantages: good topological properties, analogy with classical complex setting and schemes;
(2) There is an analytification functor $X \rightsquigarrow X^{\text {an }}$: X a locally f.t. scheme, $X^{\text {an }}$ its Berkovich analytification

- GAGA-type theorems
\star A proper analytic curve is algebraic.

Berkovich spaces: general properties

(1) Some advantages: good topological properties, analogy with classical complex setting and schemes;
(2) There is an analytification functor $X \rightsquigarrow X^{\text {an }}$: X a locally f.t. scheme, $X^{\text {an }}$ its Berkovich analytification

- GAGA-type theorems
\star A proper analytic curve is algebraic.
- A sheaf of meromorphic functions \mathscr{M} can be defined

Berkovich spaces: general properties

(1) Some advantages: good topological properties, analogy with classical complex setting and schemes;
(2) There is an analytification functor $X \rightsquigarrow X^{\text {an }}$:
X a locally f.t. scheme, $X^{\text {an }}$ its Berkovich analytification

- GAGA-type theorems
\star A proper analytic curve is algebraic.
- A sheaf of meromorphic functions \mathscr{M} can be defined

GAGA theorem for \mathscr{M}
If X / k-normal irreducible projective algebraic curve, then $\kappa(X)=\mathscr{M}\left(X^{\text {an }}\right)$.

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

($k,|\cdot|$) - a complete ultrametric field

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

($k,|\cdot|$) - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, a n}$ over k is

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

($k,|\cdot|)$ - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, a n}$ over k is

- the set of multiplicative semi-norms on $k[T]$ which extend the norm on k

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

$(k,|\cdot|)$ - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, a n}$ over k is

- the set of multiplicative semi-norms on $k[T]$ which extend the norm on k
- examples: $a \in k, r \geqslant 0, \eta_{a, r} \in \mathbb{A}_{k}^{1, \text { an }}$, where

$$
\begin{aligned}
\eta_{a, r} & : k[T] \rightarrow \mathbb{R} \geqslant 0 \\
& P(T) \mapsto \sup _{|b-a| \leq r}|P(b)|,
\end{aligned}
$$

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

($k,|\cdot|$) - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, a n}$ over k is

- the set of multiplicative semi-norms on $k[T]$ which extend the norm on k
- examples: $a \in k, r \geqslant 0, \eta_{a, r} \in \mathbb{A}_{k}^{1, \text { an }}$, where

$$
\begin{aligned}
\eta_{a, r} & : k[T] \rightarrow \mathbb{R} \geqslant 0 \\
P(T) & \mapsto \sup _{|b-a| \leq r}|P(b)|,
\end{aligned}
$$

- $\eta_{a, r}$ is uniquely determined by the closed disc $B(a, r)$,

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

($k,|\cdot|$) - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, a n}$ over k is

- the set of multiplicative semi-norms on $k[T]$ which extend the norm on k
- examples: $a \in k, r \geqslant 0, \eta_{a, r} \in \mathbb{A}_{k}^{1, \text { an }}$, where

$$
\begin{aligned}
& \eta_{a, r}: k[T] \\
& \rightarrow \mathbb{R}_{\geqslant 0} \\
& P(T) \mapsto \sup _{|b-a| \leq r}|P(b)|
\end{aligned}
$$

- $\eta_{a, r}$ is uniquely determined by the closed disc $B(a, r)$,
- $r=0, k \hookrightarrow \mathbb{A}_{k}^{1, \mathrm{an}}$;

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

$(k,|\cdot|)$ - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$ over k is

- the set of multiplicative semi-norms on $k[T]$ which extend the norm on k
- examples: $a \in k, r \geqslant 0, \eta_{a, r} \in \mathbb{A}_{k}^{1, \text { an }}$, where

$$
\begin{aligned}
\eta_{a, r} & : k[T] \\
& \rightarrow \mathbb{R} \geqslant 0 \\
P(T) & \mapsto \sup _{|b-a| \leq r}|P(b)|,
\end{aligned}
$$

- $\eta_{a, r}$ is uniquely determined by the closed disc $B(a, r)$,
- $r=0, k \hookrightarrow \mathbb{A}_{k}^{1, \text { an }} ;$
- topological properties: locally compact, connected, contractible;

An instructive example: the analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$

($k,|\cdot|)$ - a complete ultrametric field
The analytic affine line $\mathbb{A}_{k}^{1, \text { an }}$ over k is

- the set of multiplicative semi-norms on $k[T]$ which extend the norm on k
- examples: $a \in k, r \geqslant 0, \eta_{a, r} \in \mathbb{A}_{k}^{1, \text { an }}$, where

$$
\begin{aligned}
& \eta_{a, r}: k[T] \rightarrow \mathbb{R}_{\geqslant 0} \\
& P(T) \mapsto \sup _{|b-a| \leq r}|P(b)|,
\end{aligned}
$$

- $\eta_{a, r}$ is uniquely determined by the closed disc $B(a, r)$,
- $r=0, k \hookrightarrow \mathbb{A}_{k}^{1, \mathrm{an}} ;$
- topological properties: locally compact, connected, contractible;
- analytic functions: formal power series over k convergent somewhere.

$\mathbb{A}_{k}^{1, a n}$'s tree-like structure

$\mathbb{A}_{k}^{1, \text { an }}$'s tree-like structure

$\mathbb{A}_{k}^{1, \text { an }}$'s tree-like structure

$\mathbb{A}_{k}^{1, \text { an }}$'s tree-like structure

$\mathbb{A}_{k}^{1, \text { an }}$'s tree-like structure

Analytic curves

- The projective analytic line: $\mathbb{P}_{k}^{1, \text { an }}=\mathbb{A}_{k}^{1, \text { an }} \cup\{\infty\}$.

Analytic curves

- The projective analytic line: $\mathbb{P}_{k}^{1, \text { an }}=\mathbb{A}_{k}^{1, \text { an }} \cup\{\infty\}$.
- Properties: compact, contractible, $\mathscr{M}\left(\mathbb{P}_{k}^{1, \mathrm{an}}\right)=k(T)$.

Analytic curves

- The projective analytic line: $\mathbb{P}_{k}^{1, \text { an }}=\mathbb{A}_{k}^{1, \text { an }} \cup\{\infty\}$.
- Properties: compact, contractible, $\mathscr{M}\left(\mathbb{P}_{k}^{1, \text { an }}\right)=k(T)$.
- $\mathbb{P}_{k}^{1, \text { an }}$ and $\mathbb{A}_{k}^{1, \text { an }}$ are good representatives of analytic curves

Analytic curves

- The projective analytic line: $\mathbb{P}_{k}^{1, \text { an }}=\mathbb{A}_{k}^{1, \text { an }} \cup\{\infty\}$.
- Properties: compact, contractible, $\mathscr{M}\left(\mathbb{P}_{k}^{1, \text { an }}\right)=k(T)$.
- $\mathbb{P}_{k}^{1, \text { an }}$ and $\mathbb{A}_{k}^{1, \text { an }}$ are good representatives of analytic curves
- All analytic curves have a graph-like structure with infinite branching.

LGP- \mathscr{M}_{x} and consequences

Theorem (LGP- \mathscr{M}_{x})

Let k be a complete ultrametric field. Let C / k be a normal irreducible projective curve. Let F denote its function field. Suppose V / F is a "homogeneous" variety over a rational linear algebraic group G / F. Then $F=\mathscr{M}\left(C^{\text {an }}\right)$, where $C^{\text {an }}$ - Berkovich analytification of C, and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }}
$$

LGP- \mathscr{M}_{x} and consequences

Theorem (LGP- \mathscr{M}_{x})

Let k be a complete ultrametric field. Let C / k be a normal irreducible projective curve. Let F denote its function field. Suppose V / F is a "homogeneous" variety over a rational linear algebraic group G / F. Then $F=\mathscr{M}\left(C^{\mathrm{an}}\right)$, where $C^{\mathrm{an}}-$ Berkovich analytification of C, and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }} .
$$

- \mathscr{M}_{x} has nice algebraic properties (e.g. it is a Henselian valued field);

LGP- \mathscr{M}_{x} and consequences

Theorem (LGP- \mathscr{M}_{x})

Let k be a complete ultrametric field. Let C / k be a normal irreducible projective curve. Let F denote its function field. Suppose V / F is a "homogeneous" variety over a rational linear algebraic group G / F. Then $F=\mathscr{M}\left(C^{\text {an }}\right)$, where $C^{\text {an }}$ - Berkovich analytification of C, and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }} .
$$

- \mathscr{M}_{x} has nice algebraic properties (e.g. it is a Henselian valued field);
- LGP- \mathscr{M}_{x} is applicable to quadratic forms when char $k \neq 2$.

LGP- \mathscr{M}_{x} and consequences

Theorem (LGP- \mathscr{M}_{x})

Let k be a complete ultrametric field. Let C / k be a normal irreducible projective curve. Let F denote its function field. Suppose V / F is a "homogeneous" variety over a rational linear algebraic group G / F. Then $F=\mathscr{M}\left(C^{\text {an }}\right)$, where $C^{\text {an }}$ - Berkovich analytification of C, and

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }} .
$$

- \mathscr{M}_{x} has nice algebraic properties (e.g. it is a Henselian valued field);
- LGP- \mathscr{M}_{x} is applicable to quadratic forms when char $k \neq 2$.

Corollary (Parimala-Suresh '09, HHK '09, M. '19)

Any quadratic form of dimension $\geqslant 9$ defined over $\mathbb{Q}_{p}(T), p \neq 2$, has a non-trivial zero over $\mathbb{Q}_{p}(T)$.

What is patching?

What is patching?

What is patching?

G / F - linear algebraic group

> Patching property (PP)
> $\forall g \in G\left(F_{0}\right), \exists g_{i} \in G\left(F_{i}\right), i=1,2$, s.t. $g=g_{1} \cdot g_{2}$ in $G\left(F_{0}\right)$

What is patching?

$$
G / F \text { - linear algebraic group }
$$

$$
\begin{aligned}
& \text { Patching property }(P P) \\
& \forall g \in G\left(F_{0}\right), \exists g_{i} \in G\left(F_{i}\right), i=1,2 \text {, s.t. } \\
& g=g_{1} \cdot g_{2} \text { in } G\left(F_{0}\right)
\end{aligned}
$$

Question

Under what conditions on $F, F_{i}, i=0,1,2$, and G is (PP) satisfied?

What is patching?

$$
G / F \text { - linear algebraic group }
$$

$$
\begin{aligned}
& \text { Patching property }(P P) \\
& \forall g \in G\left(F_{0}\right), \exists g_{i} \in G\left(F_{i}\right), i=1,2 \text {, s.t. } \\
& g=g_{1} \cdot g_{2} \text { in } G\left(F_{0}\right)
\end{aligned}
$$

Question

Under what conditions on $F, F_{i}, i=0,1,2$, and G is (PP) satisfied?

- G / F is rational, i.e. birationally equivalent to some \mathbb{P}_{F}^{n};

What is patching?

$$
G / F \text { - linear algebraic group }
$$

$$
\begin{aligned}
& \text { Patching property }(P P) \\
& \forall g \in G\left(F_{0}\right), \exists g_{i} \in G\left(F_{i}\right), i=1,2 \text {, s.t. } \\
& g=g_{1} \cdot g_{2} \text { in } G\left(F_{0}\right)
\end{aligned}
$$

Question

Under what conditions on $F, F_{i}, i=0,1,2$, and G is (PP) satisfied?

- G / F is rational, i.e. birationally equivalent to some \mathbb{P}_{F}^{n};
- Some conditions on $F, F_{i}, i=0,1,2$:

What is patching?

G / F - linear algebraic group

$$
\begin{aligned}
& \text { Patching property }(P P) \\
& \forall g \in G\left(F_{0}\right), \exists g_{i} \in G\left(F_{i}\right), i=1,2 \text {, s.t. } \\
& g=g_{1} \cdot g_{2} \text { in } G\left(F_{0}\right)
\end{aligned}
$$

Question

Under what conditions on $F, F_{i}, i=0,1,2$, and G is (PP) satisfied?

- G / F is rational, i.e. birationally equivalent to some \mathbb{P}_{F}^{n};
- Some conditions on $F, F_{i}, i=0,1,2$:
- satisfied in HHK's setting,

What is patching?

G / F - linear algebraic group

$$
\begin{aligned}
& \text { Patching property }(P P) \\
& \forall g \in G\left(F_{0}\right), \exists g_{i} \in G\left(F_{i}\right), i=1,2 \text {, s.t. } \\
& g=g_{1} \cdot g_{2} \text { in } G\left(F_{0}\right)
\end{aligned}
$$

Question

Under what conditions on $F, F_{i}, i=0,1,2$, and G is (PP) satisfied?

- G / F is rational, i.e. birationally equivalent to some \mathbb{P}_{F}^{n};
- Some conditions on $F, F_{i}, i=0,1,2$:
- satisfied in HHK's setting,
- realised geometrically by Berkovich curves.

Patching and Berkovich curves

$C^{\text {an }}$

Patching and Berkovich curves

U_{1}, U_{2} - compact analytic domains in $C^{\text {an }}$ (building blocks of the analytic structure)

Patching and Berkovich curves

U_{1}, U_{2} - compact analytic domains in $C^{\text {an }}$ (building blocks of the analytic structure)

Patching and Berkovich curves

U_{1}, U_{2} - compact analytic domains in $C^{\text {an }}$ (building blocks G / F-rational lin. alg. group of the analytic structure)

Patching and Berkovich curves

U_{1}, U_{2} - compact analytic domains in $C^{\text {an }}$ (building blocks of the analytic structure)
G / F-rational lin. alg. group $\forall g, \exists g_{1}, g_{2}$ such that $g=g_{1} \cdot g_{2}$

Patching and Berkovich curves

U_{1}, U_{2} - compact analytic domains in $C^{\text {an }}$ (building blocks of the analytic structure)
G / F-rational lin. alg. group
$\forall g, \exists g_{1}, g_{2}$ such that $g=g_{1} \cdot g_{2}$

Proposition (\star)

$\forall g \in G(\mathscr{M}(\{\eta\})), \exists g_{i} \in G\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$, such that $g=g_{1} \cdot g_{2}$

Patching and proof of LGP- \mathscr{M}_{x}

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :
(1) $x_{i} \in V\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$.

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :
(1) $x_{i} \in V\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$.

(2) Action of G :
$\exists g \in G(\mathscr{M}(\{\eta\}))$ s.t. $x_{1}=g \cdot x_{2} \in$ $V(\mathscr{M}(\{\eta\}))$.

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :
(1) $x_{i} \in V\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$.

(2) Action of G :
$\exists g \in G(\mathscr{M}(\{\eta\}))$ s.t. $x_{1}=g \cdot x_{2} \in$ $V(\mathscr{M}(\{\eta\}))$.
(3) Proposition (\star): $\exists g_{i} \in G\left(\mathscr{M}\left(U_{i}\right)\right)$, $i=1,2$, s.t. $g=g_{1} \cdot g_{2}$.

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :
(1) $x_{i} \in V\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$.
(2) Action of G :
$\exists g \in G(\mathscr{M}(\{\eta\}))$ s.t. $x_{1}=g \cdot x_{2} \in$ $V(\mathscr{M}(\{\eta\}))$.
(3) Proposition (\star): $\exists g_{i} \in G\left(\mathscr{M}\left(U_{i}\right)\right)$, $i=1,2$, s.t. $g=g_{1} \cdot g_{2}$.
(3) $x_{1}^{\prime}:=g_{1}^{-1} \cdot x_{1} \in V\left(\mathscr{M}\left(U_{1}\right)\right)$,
$x_{2}^{\prime}:=g_{2} \cdot x_{2} \in V\left(\mathscr{M}\left(U_{2}\right)\right)$.

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :
(1) $x_{i} \in V\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$.

(2) Action of G :
$\exists g \in G(\mathscr{M}(\{\eta\}))$ s.t. $x_{1}=g \cdot x_{2} \in$ $V(\mathscr{M}(\{\eta\}))$.
(3) Proposition (\star): $\exists g_{i} \in G\left(\mathscr{M}\left(U_{i}\right)\right)$, $i=1,2$, s.t. $g=g_{1} \cdot g_{2}$.
(1) $x_{1}^{\prime}:=g_{1}^{-1} \cdot x_{1} \in V\left(\mathscr{M}\left(U_{1}\right)\right)$,
$x_{2}^{\prime}:=g_{2} \cdot x_{2} \in V\left(\mathscr{M}\left(U_{2}\right)\right)$.
(5) By construction $x_{1 \mid\{\eta\}}^{\prime}=x_{2 \mid\{\eta\}}^{\prime}$, so they can be glued to give $x \in$ $V\left(\mathscr{M}\left(U_{1} \cup U_{2}\right)\right)$.

Patching and proof of LGP- \mathscr{M}_{x}

Key idea of proof of LGP- \mathscr{M}_{x} :
(1) $x_{i} \in V\left(\mathscr{M}\left(U_{i}\right)\right), i=1,2$.

(2) Action of G :

$$
\exists g \in G(\mathscr{M}(\{\eta\})) \text { s.t. } x_{1}=g \cdot x_{2} \in
$$ $V(\mathscr{M}(\{\eta\}))$.

(3) Proposition (\star): $\exists g_{i} \in G\left(\mathscr{M}\left(U_{i}\right)\right)$,

$$
i=1,2, \text { s.t. } g=g_{1} \cdot g_{2}
$$

(1) $x_{1}^{\prime}:=g_{1}^{-1} \cdot x_{1} \in V\left(\mathscr{M}\left(U_{1}\right)\right)$,
$x_{2}^{\prime}:=g_{2} \cdot x_{2} \in V\left(\mathscr{M}\left(U_{2}\right)\right)$.
(6) By construction $x_{1 \mid\{\eta\}}^{\prime}=x_{2 \mid\{\eta\}}^{\prime}$, so they can be glued to give $x \in$ $V\left(\mathscr{M}\left(U_{1} \cup U_{2}\right)\right)$.

Goal: Generalize Proposition (\star) to more complicated covers.

Patching and proof of LGP- \mathscr{M}_{x}

For any open cover of $C^{\text {an }}$, there exists a "nice" refinement

Patching and proof of LGP- \mathscr{M}_{x}

For any open cover of $C^{\text {an }}$, there exists a "nice" refinement

Patching and proof of LGP- \mathscr{M}_{x}

For any open cover of $C^{\text {an }}$, there exists a "nice" refinement

for which $\forall g_{i} \in G(\mathscr{M}(\bullet))$,

Patching and proof of LGP- \mathscr{M}_{x}

For any open cover of $C^{\text {an }}$, there exists a "nice" refinement

for which $\forall g_{i} \in G(\mathscr{M}(\bullet)), \exists h_{j} \in G(\mathscr{M}(\bigcirc))$ s.t. for example:

Patching and proof of LGP- \mathscr{M}_{x}

For any open cover of $C^{\text {an }}$, there exists a "nice" refinement

for which $\forall g_{i} \in G(\mathscr{M}(\bullet)), \exists h_{j} \in G(\mathscr{M}(\bigcirc))$ s.t. for example:

$$
\begin{aligned}
& g_{1}=h_{1} \cdot h_{2} \\
& g_{2}=h_{3} \cdot h_{2} \\
& g_{3}=h_{4} \cdot h_{2}
\end{aligned}
$$

Patching and proof of LGP- \mathscr{M}_{x}

For any open cover of $C^{\text {an }}$, there exists a "nice" refinement

for which $\forall g_{i} \in G(\mathscr{M}(\bullet)), \exists h_{j} \in G(\mathscr{M}(\bigcirc))$ s.t. for example:

$$
\begin{aligned}
& g_{1}=h_{1} \cdot h_{2} \\
& g_{2}=h_{3} \cdot h_{2} \\
& g_{3}=h_{4} \cdot h_{2}
\end{aligned}
$$

$$
\begin{aligned}
& g_{1}=h_{1} \cdot h_{2} \\
& g_{2}=h_{1} \cdot h_{2}
\end{aligned}
$$

LGP-val

$F=k(C), k, C$ as before, k non-trivially valued

LGP-val

$F=k(C), k, C$ as before, k non-trivially valued \mathcal{P}_{F} the set of non-trivial rank 1 valuations on F s.t. $v_{\mid k}$ is either trivial or the norm on k

LGP-val

$F=k(C), k, C$ as before, k non-trivially valued \mathcal{P}_{F} the set of non-trivial rank 1 valuations on F s.t. $v_{\mid k}$ is either trivial or the norm on k

Analytic curves and valuations

There exists a bijection $C^{\text {an }} \longleftrightarrow \mathcal{P}_{F}$, s.t. if $x \mapsto v_{x}$, then $\widehat{\mathscr{M}_{x}}=F_{v_{x}}$, where $F_{v_{x}}$ is the completion of F w.r.t. v_{x}.

LGP-val

$F=k(C), k, C$ as before, k non-trivially valued \mathcal{P}_{F} the set of non-trivial rank 1 valuations on F s.t. $v_{\mid k}$ is either trivial or the norm on k

Analytic curves and valuations

There exists a bijection $C^{\text {an }} \longleftrightarrow \mathcal{P}_{F}$, s.t. if $x \mapsto v_{x}$, then $\widehat{\mathscr{M}_{x}}=F_{v_{x}}$, where $F_{v_{x}}$ is the completion of F w.r.t. v_{x}.

Theorem (LGP-val, M. '19)
Let V/F be a "homogeneous" variety over a rational lin. alg. group. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \in \mathcal{P}_{F} .
$$

LGP-val

$F=k(C), k, C$ as before, k non-trivially valued \mathcal{P}_{F} the set of non-trivial rank 1 valuations on F s.t. $v_{\mid k}$ is either trivial or the norm on k

Analytic curves and valuations

There exists a bijection $C^{\text {an }} \longleftrightarrow \mathcal{P}_{F}$, s.t. if $x \mapsto v_{x}$, then $\widehat{\mathscr{M}_{x}}=F_{v_{x}}$, where $F_{v_{x}}$ is the completion of F w.r.t. v_{x}.

Theorem (LGP-val, M. '19)
Let V/F be a "homogeneous" variety over a rational lin. alg. group. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \in \mathcal{P}_{F} .
$$

If char $k \neq 2$, LGP-val applies to quadratic forms.

Can we restrict to discrete valuations in LGP-val?

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \text { - discrete. }
$$

Can we restrict to discrete valuations in LGP-val?

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \text { - discrete. }
$$

- It is shown to be true in some special cases (e.g. for quadratic forms).

Can we restrict to discrete valuations in LGP-val?

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \text { - discrete. }
$$

- It is shown to be true in some special cases (e.g. for quadratic forms).
- Let $S_{\text {disc }} \subset C^{\text {an }}$ correspond to the discrete valuations on F

Can we restrict to discrete valuations in LGP-val?

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \text { - discrete. }
$$

- It is shown to be true in some special cases (e.g. for quadratic forms).
- Let $S_{\text {disc }} \subset C^{\text {an }}$ correspond to the discrete valuations on F
- $S_{\text {dics }}$: can be well described, is dense in $C^{\text {an }}$

Can we restrict to discrete valuations in LGP-val?

Conjecture CTPS (Colliot-Thélène, Parimala, Suresh '09)

Suppose k is discretely valued. Then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(F_{v}\right) \neq \emptyset \forall v \text { - discrete. }
$$

- It is shown to be true in some special cases (e.g. for quadratic forms).
- Let $S_{\text {disc }} \subset C^{\text {an }}$ correspond to the discrete valuations on F
- $S_{\text {dics }}$: can be well described, is dense in $C^{\text {an }}$

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C / k a normal irreducible projective curve, $F=k(C), V$ a projective homogeneous variety over a connected lin. alg. group; then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\mathrm{disc}} \subset C^{\text {an }}
$$

LGP-disc

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C / k a normal irreducible projective curve, $F=k(C), V$ a projective homogeneous variety over a connected lin. alg. group; then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\mathrm{disc}} \subset C^{\text {an }}
$$

LGP-disc

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C / k a normal irreducible projective curve, $F=k(C), V$ a projective homogeneous variety over a connected lin. alg. group; then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\text {disc }} \subset C^{\text {an }}
$$

- We study when:

$$
\begin{equation*}
V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\text {disc }} \Rightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }} \tag{1}
\end{equation*}
$$

LGP-disc

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C / k a normal irreducible projective curve, $F=k(C), V$ a projective homogeneous variety over a connected lin. alg. group; then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\text {disc }} \subset C^{\text {an }}
$$

- We study when:

$$
\begin{equation*}
V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\text {disc }} \Rightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }} \tag{1}
\end{equation*}
$$

- LGP-disc (M. '21): Property (1) (and consequently Conjecture CTPS) is true for proper varieties satisfying some strong smoothness conditions.

LGP-disc

Conjecture CTPS from an analytic viewpoint

k-complete discretely valued, C / k a normal irreducible projective curve, $F=k(C), V$ a projective homogeneous variety over a connected lin. alg. group; then

$$
V(F) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\text {disc }} \subset C^{\text {an }}
$$

- We study when:

$$
\begin{equation*}
V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in S_{\text {disc }} \Rightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in C^{\text {an }} \tag{1}
\end{equation*}
$$

- LGP-disc (M. '21): Property (1) (and consequently Conjecture CTPS) is true for proper varieties satisfying some strong smoothness conditions.
- LGP-disc can be applied to reprove Conjecture CTPS for quadratic forms.

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field
- the set of such b is dense in S

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field
- the set of such b is dense in S
- $\exists Z_{b}$ - a neighborhood of b s.t.

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field
- the set of such b is dense in S
- $\exists Z_{b}$ - a neighborhood of b s.t. we can patch on $\pi^{-1}\left(Z_{b}\right)$

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field
- the set of such b is dense in S
- $\exists Z_{b}$ - a neighborhood of b s.t. we can patch on $\pi^{-1}\left(Z_{b}\right)$

LGP- \mathscr{M}_{x}-hd (M. '20)

If $V / \mathscr{M}(C)$ is a "homogeneous" variety over a rational lin. alg. group G, then $V\left(\mathscr{M}\left(\pi^{-1}\left(Z_{b}\right)\right)\right) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in \pi^{-1}(b)$.

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field
- the set of such b is dense in S
- $\exists Z_{b}$ - a neighborhood of b s.t. we can patch on $\pi^{-1}\left(Z_{b}\right)$

LGP- \mathscr{M}_{x}-hd (M. '20)

If $V / \mathscr{M}(C)$ is a "homogeneous" variety over a rational lin. alg. group G, then $V\left(\mathscr{M}\left(\pi^{-1}\left(Z_{b}\right)\right)\right) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in \pi^{-1}(b)$.

- A LGP-val-hd can be obtained as a consequence;

Higher-dimensional patching

- $\pi: C \rightarrow S$ a proper relative analytic curve
- $b \in S$ such that \mathcal{O}_{b} a field
- the set of such b is dense in S
- $\exists Z_{b}$ - a neighborhood of b s.t. we can patch on $\pi^{-1}\left(Z_{b}\right)$

LGP- \mathscr{M}_{x}-hd (M. '20)

If $V / \mathscr{M}(C)$ is a "homogeneous" variety over a rational lin. alg. group G, then $V\left(\mathscr{M}\left(\pi^{-1}\left(Z_{b}\right)\right)\right) \neq \emptyset \Longleftrightarrow V\left(\mathscr{M}_{x}\right) \neq \emptyset \forall x \in \pi^{-1}(b)$.

- A LGP-val-hd can be obtained as a consequence;
- both these LGP-hd can be applied to quadratic forms.

