Incompressible Navier-Stokes limit of the Boltzmann equation

Isabelle Tristani
CNRS, École Normale Supérieure with I. Gallagher

Webinar Kinetic and fluid equations for collective behavior
French-Korean IRL in Mathematics
25th June 2021

1) Introduction
2) Main result and known results
3) Ideas of the proof

Description of a system of particles

Different scales to describe a system composed by a large number of indistinguishable components such as gases:

Microscopic

Individual behavior of each component?
Newton's equations

Mesoscopic

Evolution of the density of particles? Boltzmann, Landau, Fokker-Planck... equations

Macroscopic

Evolution of observable quantities? Euler, Navier-Stokes... equations

Kinetic theory

- System described by the evolution of the density of particles $f=f(t, x, v) \geq 0, t \in \mathbb{R}^{+}$the time, $x \in \Omega=\mathbb{T}^{d}$ or \mathbb{R}^{d} the position and $v \in \mathbb{R}^{d}$ the velocity.

$$
\begin{gathered}
f(t, x, v) \mathrm{d} x \mathrm{~d} v=\text { quantity of particules in the volume } \\
\text { element } \mathrm{d} x \mathrm{~d} v \text { centered in }(x, v) \in \Omega \times \mathbb{R}^{d} .
\end{gathered}
$$

- No external force or interaction: Free transport equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=0 .
$$

- If interaction between particles or with a background medium, equation of kind

$$
\partial_{t} f+v \cdot \nabla_{x} f=\underbrace{\mathcal{C}(f)} .
$$

collision term

- Maxwell (1867), Boltzmann (1872): Boltzmann collision operator for neutral particles (gaz).

The Boltzmann equation

Boltzmann equation

$$
\begin{equation*}
\partial_{t} f+v \cdot \nabla_{x} f=Q(f, f) \tag{B}
\end{equation*}
$$

$$
\underbrace{\left(v^{\prime}, v_{*}^{\prime}\right)}_{\text {before collision }} \rightleftarrows \underbrace{\left(v, v_{*}\right)}_{\text {after collision }}
$$

- Conservation of momentum and energy:

$$
v+v_{*}=v^{\prime}+v_{*}^{\prime}, \quad|v|^{2}+\left|v_{*}\right|^{2}=\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2} .
$$

- Parametrization of $\left(v^{\prime}, v_{*}^{\prime}\right)$ by an element $\sigma \in \mathbf{S}^{d-1}$.

$$
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma, \quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma, \quad \sigma \in \mathbf{S}^{d-1} .
$$

- Boltzmann collision operator for hard spheres:

$$
Q(g, f)(v)=\int_{\mathbf{R}^{d} \times \mathbf{S}^{d-1}} \underbrace{\left|v-v_{*}\right|}_{\text {collision kernel }}(\underbrace{f\left(v^{\prime}\right) g\left(v_{*}^{\prime}\right)}_{\text {"appearing" }}-\underbrace{f(v) g\left(v_{*}\right)}_{\text {"disappearing" }}) \mathrm{d} \sigma \mathrm{~d} v_{*} .
$$

Basic properties

For $\phi=\phi(v)$ a test function,

$$
\begin{aligned}
& \int_{\mathbf{R}^{d}} Q(f, f) \phi \mathrm{d} v= \\
& \frac{1}{2} \int_{\mathbf{R}^{d} \times \mathbf{R}^{d} \times \mathbf{S}^{d-1}}\left|v-v_{*}\right| f f_{*}\left(\phi^{\prime}+\phi_{*}^{\prime}-\phi-\phi_{*}\right) \mathrm{d} \sigma \mathrm{~d} v_{*} \mathrm{~d} v .
\end{aligned}
$$

- Conservation of mass, momentum and energy:

$$
\int_{\mathbf{R}^{d}} Q(f, f)(v)\left(1, v_{i},|v|^{2}\right) \mathrm{d} v=0 .
$$

- Entropy inequality (H-Theorem):

$$
\begin{gathered}
D(f):=-\int_{\mathrm{R}^{d}} Q(f, f)(v) \log f(v) \mathrm{d} v \geq 0 \\
D(f)=0 \Leftrightarrow f=\mu=\text { Maxwellian (Gaussian in } v) \quad(\text { s.t. } Q(\mu, \mu)=0)
\end{gathered}
$$

Rescaling and linearization

- Rescaling in time and space: $(t, x, v) \rightarrow\left(t / \varepsilon^{2}, x / \varepsilon, v\right)$ where ε is the Knudsen number.
- We fix the following centered and normalized Maxwellian:

$$
M(v):=(2 \pi)^{-d / 2} e^{-|v|^{2} / 2} .
$$

- Linearization around M of order $\varepsilon: f^{\varepsilon}=M+\varepsilon \sqrt{M} g^{\varepsilon}$.

Rescaled Boltzmann equation

$$
\partial_{t} g^{\varepsilon}+\frac{1}{\varepsilon} v \cdot \nabla_{x} g^{\varepsilon}=\frac{1}{\varepsilon^{2}} L g^{\varepsilon}+\frac{1}{\varepsilon} \Gamma\left(g^{\varepsilon}, g^{\varepsilon}\right)
$$

with

$$
\Gamma\left(f_{1}, f_{2}\right):=\frac{1}{2 \sqrt{M}}\left(Q\left(\sqrt{M} f_{1}, \sqrt{M} f_{2}\right)+Q\left(\sqrt{M} f_{2}, \sqrt{M} f_{1}\right)\right)
$$

and

$$
L f:=\Gamma(\sqrt{M}, f) .
$$

Formal convergence

$-\mathrm{x} \varepsilon^{2}$ and $\varepsilon \rightarrow 0: L g=0$.

- We deduce that

$$
\begin{aligned}
g \in \operatorname{Ker} L & =\operatorname{Span}\left\{\sqrt{M}, v_{1} \sqrt{M}, \ldots, v_{d} \sqrt{M},|v|^{2} \sqrt{M}\right\} \\
\Leftrightarrow & g(x, v)
\end{aligned}=\sqrt{M(v)}\left(\rho_{g}(x)+u_{g}(x) \cdot v+\frac{1}{2}\left(|v|^{2}-d\right) \theta_{g}(x)\right) .
$$

with

$$
\begin{array}{r}
\rho_{g}(x):=\int_{\mathbf{R}^{d}} g(x, v) \sqrt{M(v)} \mathrm{d} v, \quad u_{g}(x):=\int_{\mathbf{R}^{d}} v g(x, v) \sqrt{M(v)} \mathrm{d} v, \\
\theta_{g}(x):=\frac{1}{d} \int_{\mathbf{R}^{d}}\left(|v|^{2}-d\right) g(x, v) \sqrt{M(v)} \mathrm{d} v .
\end{array}
$$

- Local conservation laws (equations satisfied by $\rho_{g^{\varepsilon}}, u_{g^{\varepsilon}}$ and $\left.\theta_{g^{\varepsilon}}\right)$ and then $\varepsilon \rightarrow 0$.
- For example, the first local conservation law gives:

$$
\partial_{t} \rho_{g^{\varepsilon}}+\frac{1}{\varepsilon} \nabla_{X} \cdot u_{g^{\varepsilon}}=0 \leadsto \nabla_{X} \cdot u_{g}=0 .
$$

Fluid system - I

Incompressible Navier-Stokes-Fourier system

$$
\left\{\begin{align*}
\partial_{t} u+u \cdot \nabla u-v_{1} \Delta u & =-\nabla p \tag{NSF}\\
\partial_{t} \theta+u \cdot \nabla \theta-v_{2} \Delta \theta & =0 \\
\nabla \cdot u & =0 \\
\nabla(\rho+\theta) & =0
\end{align*}\right.
$$

with $(\rho, u, \theta, p)=$ (mass, velocity, temperature, pressure) and v_{i} the viscosity coefficients fully determined by L.

Fluid system - II

Theorem

For $\left(\rho_{\text {in }}, u_{\text {in }}, \theta_{\text {in }}\right) \in H^{\frac{d}{2}-1}(\Omega), \exists!$ maximal time $T^{*}>0$,

$$
\exists!(\rho, u, \theta) \in L^{\infty}\left([0, T], H^{\frac{d}{2}-1}(\Omega)\right) \cap L^{2}\left([0, T], H^{\frac{d}{2}}(\Omega)\right)
$$

solution to (NSF) for all times $T<T^{*}$. It satisfies

$$
\begin{aligned}
&\|(\rho, u, \theta)\|_{\tilde{L}^{\infty}\left([0, T], H^{\frac{d}{2}-1}(\Omega)\right)}\left.+\|(\nabla \rho, \nabla u, \nabla \theta)\|_{L^{2}\left([0, T], H^{\frac{d}{2}-1}(\Omega)\right)}\right) \\
& \leqslant C\left(\left\|\left(\rho_{\text {in }}, u_{\text {in }}, \theta_{\text {in }}\right)\right\|_{H^{\frac{d}{2}-1}(\Omega)}\right)
\end{aligned}
$$

Leray, Fujita-Kato, Chemin, Chemin-Lerner, Bahouri-CheminDanchin etc...

Globally well-posed in 2D, and in 3D for small data for example.

1) Introduction
2) Main result and known results
3) Ideas of the proof

Well prepared data (WP)

For $f=f(x, v)$, we define

$$
\begin{array}{r}
\rho_{f}(x)=\int_{\mathbf{R}^{d}} f(x, v) \sqrt{M(v)} \mathrm{d} v, \quad u_{f}(x)=\int_{\mathbf{R}^{d}} v f(x, v) \sqrt{M(v)} \mathrm{d} v \\
\theta_{f}(x)=\frac{1}{d} \int_{\mathbf{R}^{d}}\left(|v|^{2}-d\right) f(x, v) \sqrt{M(v)} \mathrm{d} v .
\end{array}
$$

$\left(\mathrm{WP}_{1}\right): f \in \operatorname{Ker} L$ i.e.

$$
f(x, v)=\sqrt{M(v)}\left(\rho_{f}(x)+u_{f}(x) \cdot v+\frac{1}{2}\left(|v|^{2}-d\right) \theta_{f}(x)\right)
$$

$\left(\mathrm{WP}_{2}\right): \nabla_{x} \cdot u_{f}=0$ and $\rho_{f}+\theta_{f}=0$.

Main result - I

- $\rho_{\text {in }}, u_{\text {in }}, \theta_{\text {in }} \in H^{\ell}(\Omega), \ell>d / 2$ satisfying $\left(\mathrm{WP}_{2}\right)$
$+\rho_{\text {in }}, u_{\text {in }}, \theta_{\text {in }} \in L^{1}(\Omega)$ if $\Omega=\mathbf{R}^{2}$,
$+\rho_{\text {in }}, u_{\text {in }}, \theta_{\text {in }}$ are mean free if $\Omega=\mathbf{T}^{d}$.
- Consider

$$
(\rho, u, \theta) \in L^{\infty}\left([0, T], H^{\ell}(\Omega)\right) \cap L^{2}\left([0, T], H^{\ell+1}(\Omega)\right)
$$

the unique solution to (NSF) associated with initial data ($\rho_{\text {in }}, u_{\text {in }}, \theta_{\text {in }}$) on a time interval $[0, T]$.

- Set

$$
g_{\mathrm{in}}(x, v):=\sqrt{M(v)}\left(\rho_{\mathrm{in}}(x)+u_{\mathrm{in}}(x) \cdot v+\frac{1}{2}\left(|v|^{2}-d\right) \theta_{\mathrm{in}}(x)\right)
$$

and define on $[0, T] \times \Omega \times \mathbf{R}^{d}$

$$
g(t, x, v):=\sqrt{M(v)}\left(\rho(t, x)+u(t, x) \cdot v+\frac{1}{2}\left(|v|^{2}-d\right) \theta(t, x)\right) .
$$

Main result - II

Theorem (WP data in the whole space or the torus)

$\exists \varepsilon_{0}>0$ s.t. $\forall \varepsilon \leq \varepsilon_{0}, \exists!g^{\varepsilon} \in L^{\infty}([0, T], X)$ solution to $\left(B_{\varepsilon}\right)$ with initial data $g_{\text {in }}$ and it satisfies

$$
\lim _{\varepsilon \rightarrow 0}\left\|g^{\varepsilon}-g\right\|_{L^{\infty}([0, T], X)}=0 .
$$

Moreover, if the solution (ρ, u, θ) to (NSF) is defined on \mathbf{R}^{+}, then ε_{0} depends only on the initial data and not on T and there holds

$$
\lim _{\varepsilon \rightarrow 0}\left\|g^{\varepsilon}-g\right\|_{L^{\infty}\left(\mathbf{R}^{+}, X\right)}=0
$$

$X:=L_{v}^{\infty} H_{x}^{\ell}\left(\langle v\rangle^{k}\right), k>d / 2+1$ defined by

$$
\|f\|_{X}:=\sup _{v \in \mathbf{R}^{d}}\langle v\rangle^{k}\|f(\cdot, v)\|_{H_{x}^{\ell}} .
$$

Known results

- Framework of weak solutions (DiPerna-Lions for Boltzmann equation and Leray for Navier-Stokes): Bardos-Golse-Levermore (90s), Lions, Masmoudi, Saint-Raymond etc...
"Obtain a theorem that only requires a priori estimates given by the physics: Mass, energy and entropy."
- Framework of strong solutions :
+ De Masi-Esposito-Lebowitz (90'), Bardos-Ukai (91'),
+ Guo (06'), Briant (15’), Briant-Merino-Mouhot (18') etc...

1) Introduction
2) Main result and known results
3) Ideas of the proof

Rewriting the problem - Duhamel formula

- $U^{\varepsilon}(t)$ semigroup associated with $-\varepsilon^{-1} v \cdot \nabla_{x}+\varepsilon^{-2} L$.
- We rewrite the rescaled Boltzmann equation

$$
\partial_{t} g^{\varepsilon}+\frac{1}{\varepsilon} v \cdot \nabla_{x} g^{\varepsilon}=\frac{1}{\varepsilon^{2}} L g^{\varepsilon}+\frac{1}{\varepsilon} \Gamma\left(g^{\varepsilon}, g^{\varepsilon}\right)
$$

with Duhamel formula:

$$
g^{\varepsilon}(t)=U^{\varepsilon}(t) g_{\text {in }}+\underbrace{\frac{1}{\varepsilon} \int_{0}^{t} U^{\varepsilon}(t-s) \Gamma\left(g^{\varepsilon}, g^{\varepsilon}\right)(s) \mathrm{ds}}_{\psi^{\varepsilon}(t)\left(g^{\varepsilon}, g^{\varepsilon}\right)} .
$$

- In some sense, $U^{\varepsilon}(t) \rightarrow U(t)$ and $\Psi^{\varepsilon}(t) \rightarrow \Psi(t)$ so that the limit g writes

$$
g(t)=U(t) g_{\mathrm{in}}+\Psi(t)(g, g) .
$$

Rewriting the problem - Fixed point argument

- Introduction of $h^{\varepsilon}:=g^{\varepsilon}-g$.
- h^{ε} satisfies:

$$
\begin{gathered}
h^{\varepsilon}(t)=\underbrace{\left(U^{\varepsilon}(t)-U(t)\right) g_{\text {in }}+\left(\Psi^{\varepsilon}(t)-\Psi(t)\right)(g, g)}_{D^{\varepsilon}(t)=\text { source terms }} \\
\quad+\underbrace{2 \Psi^{\varepsilon}(t)\left(g, h^{\varepsilon}\right)}_{\mathcal{L}^{\varepsilon}(t) h^{\varepsilon}=\text { linear part }}+\underbrace{\psi^{\varepsilon}(t)\left(h^{\varepsilon}, h^{\varepsilon}\right)}_{\text {quadratic part }} \\
\\
\hookrightarrow \text { Fixed point argument? }
\end{gathered}
$$

E Banach space, $\mathcal{L} \in \mathscr{L}(E, E)$ and $\mathcal{B} \in \mathscr{B}\left(E^{2}, E\right)$. If $\|\mathcal{L}\|<1$, for any $x_{0} \in E$ small enough, the equation

$$
x=x_{0}+\mathcal{L} x+\mathcal{B}(x, x)
$$

has a unique solution in the ball $B\left(0, \frac{1-\|\mathcal{L}\|}{2\|\mathcal{B}\|}\right)$ and there exists a constant $C_{0}>0$ such that $\|x\| \leq C_{0}\left\|x_{0}\right\|$.

Ellis and Pinsky decomposition - estimates in $H_{x}^{\ell} L_{v}^{2}$

- Fourier transform in x of $-v \cdot \nabla_{x}+L: L_{\xi}:=L-i v \cdot \xi$.
- Decomposition of the semigroup $U^{1}(t)$:

$$
U^{1}(t, \xi)=\sum_{j=1}^{d+2} e^{t \lambda_{j}(\xi)} P_{j}(\xi)+U^{1 \#}(t, \xi)
$$

with Taylor expansion of the eigenvalues $\lambda_{j}(\xi)$.

- $U^{\varepsilon}(t, \xi)=U^{1}\left(\varepsilon^{-2} t, \varepsilon \xi\right) \leadsto$ decomposition of $U^{\varepsilon}(t)$.
- Decay estimates on $U^{\varepsilon}(t)$:

$$
\left\|\frac{1}{\varepsilon} U^{\varepsilon}(t)\left(I-\Pi_{L, 0}\right)\right\|_{H_{x}^{e} L_{v}^{2} \rightarrow H_{x}^{\ell} L_{v}^{2}} \leq \chi_{\Omega}(t) .
$$

Estimate on the linear part - contraction?

Depending on the norm of g, there is no reason for $\mathcal{L}^{\mathcal{E}}(t)$ to be a contraction!
\hookrightarrow Introduction of a "filter": For some fixed and well-chosen r,

$$
h_{\lambda}^{\varepsilon}(t):=h^{\varepsilon}(t) \exp \left(-\lambda \int_{0}^{t}\|g(\tau)\|^{r} \mathrm{~d} \tau\right), \quad \lambda>0
$$

so that

$$
h_{\lambda}^{\varepsilon}(t)=D_{\lambda}^{\varepsilon}(t)+\mathcal{L}_{\lambda}^{\varepsilon}(t) h_{\lambda}^{\varepsilon}+\psi_{\lambda}^{\varepsilon}(t)\left(h_{\lambda}^{\varepsilon}, h_{\lambda}^{\varepsilon}\right)
$$

with

$$
\psi_{\lambda}^{\varepsilon}(t)\left(f_{1}, f_{2}\right)=\frac{1}{\varepsilon} \int_{0}^{t} U^{\varepsilon}(t-s) \exp \left(-\lambda \int_{s}^{t}\|g\|^{r}\right) \Gamma\left(f_{1}, f_{2}\right)(s) \mathrm{d} s
$$

Estimate on the linear part - stability?

- The nonlinear collision operator Γ induces a loss of weight:

$$
\left\|\Gamma\left(f_{1}, f_{2}\right)\right\|_{L_{v}^{\infty}\left(\langle v\rangle^{k}\right)} \leqslant\left\|f_{1}\right\|_{L_{v}^{\infty}\left(\langle v\rangle^{k+1}\right)}\left\|f_{2}\right\|_{L_{v}^{\infty}\left(\langle v\rangle^{k+1}\right)}
$$

- Splitting of $L=\Gamma(\sqrt{M}, \cdot)$:

$$
\begin{array}{r}
L h=K h-v(v) h \quad \text { with } \quad v(v):=\int_{\mathbf{R}^{d} \times \mathbf{S}^{d-1}}\left|v-v_{*}\right| M\left(v_{*}\right) \mathrm{dv}_{*} \\
K: L_{v}^{2} \rightarrow L_{v}^{\infty} \quad \text { and } \quad K: L_{v}^{\infty}\left(\langle v\rangle^{j}\right) \rightarrow L_{v}^{\infty}\left(\langle v\rangle^{j+1}\right), \quad j \geq 0 .
\end{array}
$$

- Duhamel formula $\leadsto \rightarrow$ the problem boils down to perform estimates in $H_{x}^{\ell} L_{v}^{2}$.

Source terms - I

$$
D_{1}^{\varepsilon}(t):=\left(U^{\varepsilon}(t)-U(t)\right) g_{\text {in }} .
$$

Ellis and Pinsky decomposition gives:
$U^{\varepsilon}(t) g_{\text {in }}=\underbrace{U(t) g_{\text {in }}}_{\text {independent of } \varepsilon \text { "nice terms" }}+\underbrace{V^{\varepsilon}(t) g_{\text {in }}}_{0 \text { if }\left(W P_{1}\right)}+\underbrace{U_{\text {disp }}^{\varepsilon}(t) g_{\text {in }}}_{\text {small if }\left(W P_{2}\right)}+\underbrace{U^{\S \#}(t) g_{\text {in }}}$.

$$
\left\|\left(U^{\varepsilon}(t)-U(t)\right) g_{\text {in }}\right\|_{L_{t}^{\infty}(X)}^{\longrightarrow} \quad \text { if } g_{\text {in }} \text { is WP. }
$$

For ill-prepared data, we introduce $\tilde{g}^{\varepsilon}(t):=\left(U_{\text {disp }}^{\varepsilon}(t)+U^{\varepsilon \#}(t)\right) g_{\text {in }}$ and write the equation satisfied by $\tilde{h}^{\varepsilon}:=g^{\varepsilon}-g-\tilde{g}^{\varepsilon}$.

Source terms - II

$$
D_{2}^{\varepsilon}(t):=\left(\psi^{\varepsilon}(t)-\Psi(t)\right)(g, g) .
$$

Requires estimates on (ρ, u, θ) and on their derivatives of type $\tilde{L}_{t}^{\infty} H_{x}^{\ell}$ (Chemin-Lerner spaces), $L_{t}^{2} H_{x}^{\ell+1}$ etc... as well as pointwise decay estimates (Wiegner and Schonbek).

$$
\left\|D_{2}^{\varepsilon}(t)\right\|_{L_{t}^{\infty}(X)} \underset{\varepsilon \rightarrow 0}{ } 0
$$

Thank you for your attention!

