French-Korean Number Theory Webinar

18th October 2021

Richard GRIFFON
Université Clermont-Auvergne

Isogenies of elliptic curves over function fields

(joint with Fabien Pazuki)

Introduction

Variation of modular height over NF

Let E_{1}, E_{2} be two isogenous elliptic curves over a number field F, and $\varphi: E_{1} \rightarrow E_{2}$ be an isogeny between them.

Theorem A (Pazuki - '19)

$$
\left|h t\left(j\left(E_{1}\right)\right)-h t\left(j\left(E_{2}\right)\right)\right| \leq 10+12 \log \operatorname{deg} \varphi,
$$

where $h t: \overline{\mathbb{Q}} \rightarrow \mathbb{R}_{\geq 0}$ is the Weil height.

Remarks

\square One ingredient:

Theorem (Faltings - '80's)

$$
\left|h_{F}\left(E_{1} / F\right)-h_{F}\left(E_{2} / F\right)\right| \leq \frac{1}{2} \log \operatorname{deg} \varphi,
$$

where $h_{F}($.$) is the Faltings' height.$
\square Theorem A is almost optimal (Szpiro-Ullmo).
\square Application (Habbegger). Given $E / \overline{\mathbb{Q}}$ with no $C M$, and $B>0$, $\left\{j\left(E^{\prime}\right) \in \overline{\mathbb{Q}}: E^{\prime}\right.$ is isogenous to E and $\left.h t\left(j\left(E^{\prime}\right)\right) \leq B\right\}$ is finite.

Isogeny estimate for elliptic curves over NF

Let E_{1}, E_{2} be two isogenous elliptic curves over a number field F.

Theorem B ("Isogeny estimate")

There exists an isogeny $\varphi_{0}: E_{1} \rightarrow E_{2}$ with

$$
\operatorname{deg} \varphi_{0} \leq c_{0}(F) \max \left\{1, h t\left(j\left(E_{1}\right)\right), h t\left(j\left(E_{2}\right)\right)\right\}^{2},
$$

where $c_{0}(F)$ is a constant depending at most on (the degree of) F.
\square Several successive improvements: Masser-Wüstholz (90's), Pellarin ('01), Gaudron-Rémond ('14).
\square Conjecture: uniform isogeny estimate? (Similar to Uniform torsion bound, Merel - '94)
\square Theorem B has numerous applications in Diophantine geometry.

Goal

There are versions of Theorem A and Theorem B for isogenous Drinfeld modules (Breuer-Pazuki-Razafinjatovo, and David-Denis). It is natural to wonder:

Question

Can one formulate analogues of Theorems A and B in the context of elliptic curves over function fields?

Yes to both, as I'll explain.

Elliptic curves over function fields

Function field setting

Setting

Let \mathbb{F} be a perfect field, and C / \mathbb{F} a smooth projective geometrically irreducible curve. Write $K=\mathbb{F}(C)$ for the function field of C. We let $p=\operatorname{char}(\mathbb{F}) \geq 0$.

Arithmetic of K (and finite extensions of K) is analogous to that of a number field.
\square Height on \bar{K} : There is a "Weil height" on \bar{K},

$$
h t_{k}: \bar{K} \rightarrow \mathbb{Q}_{\geq 0}
$$

For any $f \in K^{\times}, f$ may be viewed as a morphism $f: C \rightarrow \mathbb{P}^{1}$ and

$$
h t_{k}(f)=\operatorname{deg}(f)
$$

Note: For $f \in \bar{K}, h t_{k}(f)=0$ if and only if $f \in \overline{\mathbb{F}}$ (f is constant).

Elliptic curves over a function field

Let K^{\prime} / K be a finite extension. One can write $K^{\prime}=\mathbb{F}^{\prime}\left(C^{\prime}\right)$. Let E be an elliptic curve over K^{\prime}.
E has a j-invariant $j(E) \in K^{\prime}$, computed by the usual formulas.
\square Isotriviality: We say that E is non-isotrivial if $j(E) \in \bar{K} \backslash \overline{\mathbb{F}}$.
We focus only on non-isotrivial elliptic curves. (Isotrivial elliptic curves are better studied as elliptic curves over $\overline{\mathbb{F}}$). Arithmetic of non-isotrivial elliptic curves over K^{\prime} is analogous to that of elliptic curves over a number field.
Note: a non-isotrivial elliptic curve E "has no $C M$ ", that is: $\operatorname{End}(E) \simeq \mathbb{Z}$.
\square Inseparability degree: For a non-isotrivial elliptic curve E over K^{\prime}, we let

$$
\delta_{i}(E):=\operatorname{deg}_{\text {ins }}(j(E))=\left[K^{\prime}: \mathbb{F}^{\prime}(j(E))\right]_{\text {insep }}
$$

$\left(\delta_{i}(E)=1\right.$ if K has characteristic 0$)$.

Let K^{\prime} / K be a finite extension, write $K^{\prime}=\mathbb{F}^{\prime}\left(C^{\prime}\right)$ as before. Let E be an elliptic curve over K^{\prime}.
\square Modular height: Define the modular height of E to be

$$
\mathrm{h}_{\bmod }(E):=h t_{\kappa}(j(E)) \in \mathbb{Q}_{\geq 0} .
$$

Note: $\mathrm{h}_{\bmod }(E)=0$ iff E is isotrivial.
\square Differential height: Let $\Delta\left(E / K^{\prime}\right) \in \operatorname{Div}\left(C^{\prime}\right)$ be the minimal discriminant divisor of E. The differential height of E / K^{\prime} is

$$
h_{\text {diff }}\left(E / K^{\prime}\right):=\frac{\operatorname{deg}\left(\Delta\left(E / K^{\prime}\right)\right)}{12 \cdot\left[K^{\prime}: K\right]} \in \mathbb{Q}_{\geq 0}
$$

Analogue of Faltings' height for elliptic curves over a NF. Note: $h_{\text {diff }}\left(E / K^{\prime}\right)=0$ iff E has good reduction everywhere over K^{\prime}.

Let E_{1}, E_{2} be two non-isotrivial elliptic curves over K^{\prime}.
An isogeny $\varphi: E_{1} \rightarrow E_{2}$ is a non-constant algebraic group morphism.
\square Degrees: Let $\varphi: E_{1} \rightarrow E_{2}$ be an isogeny. Then

$$
\operatorname{deg} \varphi=\operatorname{deg}_{\text {sep }}(\varphi) \cdot \operatorname{deg}_{\mathrm{ins}}(\varphi) .
$$

Then $\operatorname{deg}_{\text {sep }}(\varphi)=|(\operatorname{ker} \varphi)(\bar{K})|$, and $\operatorname{deg}_{\text {ins }}(\varphi)=1$ or a power of p.
\square Dual: an isogeny $\varphi: E_{1} \rightarrow E_{2}$ has a dual $\widehat{\varphi}: E_{2} \rightarrow E_{1}$ which has the same degree.
\square Biseparable isogenies: An isogeny $\varphi: E_{1} \rightarrow E_{2}$ is biseparable if both φ and its dual $\hat{\varphi}$ are separable.
\square Automatic if $\operatorname{char}(K)=0$,
\square Equivalent to deg φ coprime to $p=\operatorname{char}(K)$ if $p>0$.

Frobenius/Verschiebung isogenies

Assume that K has positive characteristic p.
Let E be an elliptic curve over \bar{K}. For any power q of p, write $E^{(q)}$ for the q-th Frobenius twist of E.

We have $j\left(E^{(q)}\right)=j(E)^{q}$.

The q-th power Frobenius is the isogeny $F_{q}: E \rightarrow E^{(q)}$.
Its dual is called the q-th power Verschiebung isogeny $V_{q}: E^{(q)} \rightarrow E$.

Fact: If E is non-isotrivial, F_{q} is purely inseparable of degree q, and V_{q} is separable of degree q.

Variation of modular height in an isogeny class

Known results

Let E_{1}, E_{2} be two non-isotrivial elliptic curves over a finite extension K^{\prime} of K. Assume there is an isogeny $\varphi: E_{1} \rightarrow E_{2}$.

Variation of differential height

Theorem (? - 80's)

If φ is biseparable (i.e. has degree coprime to p), then

$$
\mathrm{h}_{\text {diff }}\left(E_{1} / K^{\prime}\right)=\mathrm{h}_{\text {diff }}\left(E_{2} / K^{\prime}\right) .
$$

\square Comparison differential/modular heights

Lemma (G. \& Pazuki - '21)

There exists a finite extension $K_{\text {ss }}$ of K such that

$$
h_{\bmod }\left(E_{i}\right)=12 h_{\text {diff }}\left(E_{i} / K_{s s}\right) .
$$

If $\operatorname{char}(K)=0$, we are done (all isogenies are biseparable).

Positive characteristic: Frobenius/Verschiebung

Let E / K^{\prime} be a non-isotrivial elliptic curve. For any power q of p, there are two isogenies of degree q

$$
F_{q}: E \rightarrow E^{(q)} \quad \text { and } \quad V_{q}: E^{(q)} \rightarrow E
$$

which are dual to each other.

Since $j\left(E^{(q)}\right)=j(E)^{q}$, we have $h_{\text {mod }}\left(E^{(q)}\right)=q \cdot h_{\text {mod }}(E)$.

Observations

$\square F_{q}$ multiplies $h_{\bmod }(E)$ by $q=\operatorname{deg} F_{q}=\operatorname{deg}_{\text {ins }} F_{q}$.
$\square \mathrm{V}_{q}$ divides $\mathrm{h}_{\text {mod }}\left(E^{(q)}\right)$ by $q=\operatorname{deg} \mathrm{V}_{q}=\operatorname{deg}_{\text {ins }} \widehat{\mathrm{F}_{q}}$.
\square Biseparable φ 's preserve $h_{\text {diff, }}$ which is related to $h_{\text {mod }}$.

Decomposition lemma

To conclude, we prove

Decomposition Lemma (G. \& Pazuki - '21)

An isogeny $\varphi: E_{1} \rightarrow E_{2}$ between non-isotrivial elliptic curves decomposes as

$$
E_{1} \xrightarrow{F_{q}} E_{1}^{(q)} \xrightarrow{\psi} E_{2}^{\left(q^{\prime}\right)} \xrightarrow{V_{q^{\prime}}} E_{2},
$$

where $q=\operatorname{deg}_{\text {ins }}(\varphi), \psi$ is biseparable, $q^{\prime}=\operatorname{deg}_{\text {ins }}(\widehat{\varphi})$.
Then note that

$$
\frac{\mathrm{h}_{\bmod }\left(E_{2}\right)}{\mathrm{h}_{\bmod }\left(E_{1}\right)}=\underbrace{\frac{\mathrm{h}_{\bmod }\left(E_{1}^{(q)}\right)}{\mathrm{h}_{\bmod }\left(E_{1}\right)}}_{=q} \cdot \underbrace{\frac{\mathrm{~h}_{\bmod }\left(E_{2}^{\left(q^{\prime}\right)}\right)}{\mathrm{h}_{\bmod }\left(E_{1}^{(q)}\right)}}_{=1} \cdot \underbrace{\frac{\mathrm{~h}_{\bmod }\left(E_{2}\right)}{\mathrm{h}_{\bmod }\left(E_{2}^{\left(q^{\prime}\right)}\right)}}_{=1 / q^{\prime}}=\frac{q}{q^{\prime}} .
$$

Where $q / q^{\prime}=\operatorname{deg}_{\text {ins }}(\varphi) / \operatorname{deg}_{\text {ins }}(\widehat{\varphi})$.

Our result

Theorem A (G. \& Pazuki - '21)

Let $\varphi: E_{1} \rightarrow E_{2}$ be an isogeny between two non-isotrivial elliptic curves over \bar{K}. Then

$$
\mathrm{h}_{\text {mod }}\left(E_{2}\right)=\frac{\operatorname{deg}_{\text {ins }}(\varphi)}{\operatorname{deg}_{\text {ins }}(\widehat{\varphi})} \cdot \mathrm{h}_{\text {mod }}\left(E_{1}\right) .
$$

Comments:

\square If char $(K)=0$: isogenies preserve the modular height!
\square Differences with Theorem A in the NF case: exact relation between heights (not upper bound on the difference), involves inseparability degrees (not degrees).
\square An example: Let $K=\mathbb{F}(t)$ with characteristic $\neq 2$,

$$
E_{1} / K: y^{2}=x(x+1)(x+t) \quad \text { and } \quad E_{2} / K: y^{2}=x^{3}+t x+1 .
$$

Then $\mathrm{h}_{\text {mod }}\left(E_{1}\right)=6$ and $\mathrm{h}_{\text {mod }}\left(E_{2}\right)=3$.
Hence E_{1} and E_{2} are not isogenous.

A surprising consequence
Recall from the first slide:

Number field case (Habegger)

Let E be a non CM elliptic curve over $\overline{\mathbb{Q}}$. Consider the set

$$
\left\{j\left(E^{\prime}\right) \in \overline{\mathbb{Q}}: E^{\prime} \text { is isogenous to } E \text { and } h t\left(j\left(E^{\prime}\right)\right) \leq B\right\}
$$

For any $B \geq 0$, this set is finite.
With our result, one can study

Function field case

Let E / \bar{K} be a non-isotrivial elliptic curve. Consider

$$
J_{b s}(E, B)=\left\{j\left(E^{\prime}\right) \in \bar{K}: \begin{array}{c}
E^{\prime} \text { is biseparably isogenous to } E \\
\text { and } h_{\bmod }\left(E^{\prime}\right) \leq B
\end{array}\right\}
$$

For $B \geq h_{\bmod }(E)$, the set $J_{b s}(E, B)$ is infinite.

An isogeny estimate for elliptic curves

Isogeny estimate

Setting is the same as before: $K=\mathbb{F}(C)$ is a function field. We let $g(K)$ denote the genus of C.

Let E_{1}, E_{2} be non-isotrivial isogenous elliptic curves defined over K.

Question

Can one find a "small" isogeny between E_{1} and E_{2} ? "Small" $=$ degree controlled in terms of invariants of E_{1}, E_{2} and K.

We prove

Theorem B (G. \& Pazuki - '21)

There exists an isogeny $\varphi_{0}: E_{1} \rightarrow E_{2}$ with

$$
\operatorname{deg} \varphi_{0} \leq 49 \max \{1, g(K)\} \cdot \max \left\{\frac{\delta_{i}\left(E_{1}\right)}{\delta_{i}\left(E_{2}\right)}, \frac{\delta_{i}\left(E_{2}\right)}{\delta_{i}\left(E_{1}\right)}\right\} .
$$

Here $\delta_{i}\left(E_{k}\right)$ is the inseparability degree of $j\left(E_{k}\right) \in K$.

Comments

Theorem B (G. \& Pazuki - '21)

Let E_{1}, E_{2} be isogenous non-isotrivial elliptic curves defined over K. There exists an isogeny $\varphi_{0}: E_{1} \rightarrow E_{2}$ with

$$
\operatorname{deg} \varphi_{0} \leq \underbrace{49 \max \{1, g(K)\}}_{c_{0}(K)} \cdot \max \left\{\frac{\delta_{i}\left(E_{1}\right)}{\delta_{i}\left(E_{2}\right)}, \frac{\delta_{i}\left(E_{2}\right)}{\delta_{i}\left(E_{1}\right)}\right\}
$$

\square If $\operatorname{char}(K)=0$, this is a uniform isogeny estimate.
\square If char $(K)>0$, one cannot hope for a uniform statement. (In that setting, the dependence on E_{1}, E_{2} is optimal).
\square The value of the constant can sometimes be improved. For $g(K)=0$, one can replace $c_{0}(K)$ by 25 .
\square Proof is different from the NF case.

Sketch of proof: reduction step

Let E_{1}, E_{2} be isogenous non-isotrivial elliptic curves defined over K.
Goal: show that there is a "small" isogeny $\varphi_{0}: E_{1} \rightarrow E_{2}$.
\square Step 1: Reduction to a "biseparable situation"
Lemma (G. \& Pazuki - '21)
There are suitable Frobenius twists E_{1}^{\prime} of E_{1} and E_{2}^{\prime} of E_{2} such that E_{1}^{\prime} is biseparably isogenous to E_{2}^{\prime}.
Actually, $E_{1}^{\prime}=E_{1}^{(q)}$ and $E_{2}^{\prime}=E_{2}^{\left(q^{\prime}\right)}$ with

$$
q, q^{\prime} \leq \max \left\{\frac{\delta_{i}\left(E_{1}\right)}{\delta_{i}\left(E_{2}\right)}, \frac{\delta_{i}\left(E_{2}\right)}{\delta_{i}\left(E_{1}\right)}\right\}
$$

New goal: show that there is a "small" biseparable isogeny $E_{1}^{\prime} \rightarrow E_{2}^{\prime}$. (Then "untwist" E_{1}^{\prime} and E_{2}^{\prime} to get an isogeny $E_{1} \rightarrow E_{2}$)

Sketch of proof: minimisation
\square Step 2: Minimise degree of a biseparable isogeny
Among all biseparable isogenies $E_{1}^{\prime} \rightarrow E_{2}^{\prime}$,
let $\varphi^{\prime}: E_{1}^{\prime} \rightarrow E_{2}^{\prime}$ be of minimal degree.

Since E_{1}^{\prime} has no $C M$, one shows that

- φ^{\prime} has cyclic kernel $H^{\prime}=\left(\operatorname{ker} \varphi^{\prime}\right)(\bar{K}) \subset E_{1}^{\prime}(\bar{K})$,
- $\left|H^{\prime}\right|=\operatorname{deg} \varphi^{\prime}$ is coprime to p,
- and H^{\prime} is Gal (\bar{K} / K)-stable.

And $E_{2}^{\prime} \simeq E_{1}^{\prime} / H^{\prime}$.

We have a pair $\left(E_{1}^{\prime}, H^{\prime}\right)$ where

- E_{1}^{\prime} is a non-isotrivial elliptic curve over K,
- H^{\prime} is a cyclic Gal (\bar{K} / K)-stable subgroup of $E_{1}^{\prime},\left|H^{\prime}\right|$ coprime to p.

Sketch of proof: the crucial step
\square Step 3: Bound the degree of a cyclic biseparable isogeny We have a pair $\left(E_{1}^{\prime}, H^{\prime}\right)$ where

- E_{1}^{\prime} is a non-isotrivial elliptic curve over K,
- H^{\prime} is a cyclic Gal($\left.\bar{K} / K\right)$-stable subgroup of $E_{1}^{\prime},\left|H^{\prime}\right|$ coprime to p. Letting $N=\left|H^{\prime}\right|$, such pairs are parametrised (up to \bar{K}-isomorphism) by non-cuspidal K-rational points on the modular curve $X_{0}(N)$.

From the data $\left(E_{1}^{\prime}, H^{\prime}\right)$, we thus get a K-rational point on $X_{0}(N)$.
Since $K=\mathbb{F}(C)$, we deduce a morphism $s: C \rightarrow X_{0}(N)_{/ \mathbb{F}}$.
Fits in the commutative diagram

In particular, s:C $\rightarrow X_{0}(N)_{/ \mathbb{F}}$ is not constant.

Sketch of proof: the crucial step (II)
\square Step 3: Bound the degree of a cyclic biseparable isogeny We have a pair $\left(E_{1}^{\prime}, H^{\prime}\right)$ where

- E_{1}^{\prime} is a non-isotrivial elliptic curve over K,
- H^{\prime} is a cyclic Gal($\left.\bar{K} / K\right)$-stable subgroup of $E_{1}^{\prime},\left|H^{\prime}\right|$ coprime to p. Writing $N=\left|H^{\prime}\right|$, we obtained a non-constant morphism

$$
s: C \rightarrow X_{0}(N)_{\mathbb{F}} .
$$

By Riemann-Hurwitz, we thus have $g\left(X_{0}(N)_{\mathbb{F}}\right) \leq g(C)=g(K)$.
But $g\left(X_{0}(N)_{/ \mathbb{F}}\right)=g\left(X_{0}(N)_{/ \mathbb{C}}\right)$ grows linearly with N (Shimura). Hence $N=\left|H^{\prime}\right|$ is bounded! Precisely,

Proposition

Let E_{1}^{\prime} be a non-isotrivial elliptic curve over K. If E_{1}^{\prime} admits a subgroup H^{\prime} as above. Then $\left|H^{\prime}\right| \leq 49 \max \{1, g(K)\}$.

Sketch of proof: conclusion
\square Step 4: Conclusion
Starting from isogenous elliptic curves E_{1}, E_{2} over K, Step 1 yields Frobenius twists $E_{1}^{\prime}, E_{2}^{\prime}$ which are biseparably isogenous.
By Steps 2\&3, there exists a biseparable isogeny $\varphi^{\prime}: E_{1}^{\prime} \rightarrow E_{2}^{\prime}$ with

$$
\operatorname{deg} \varphi^{\prime} \leq 49 \max \{1, g(K)\}=c_{0}(K)
$$

Now compose φ^{\prime} with the suitable $V_{q}: E_{1}^{\prime} \rightarrow E_{1}$ or $V_{q^{\prime}}: E_{2}^{\prime} \rightarrow E_{2}$ to get an isogeny $\varphi_{0}: E_{1} \rightarrow E_{2}$.
Recall from Step 1 that $q, q^{\prime} \leq \max \left\{\frac{\delta_{i}\left(E_{1}\right)}{\delta_{i}\left(E_{2}\right)}, \frac{\delta_{i}\left(E_{2}\right)}{\delta_{i}\left(E_{1}\right)}\right\}$.
Finally, there exists an isogeny $\varphi_{0}: E_{1} \rightarrow E_{2}$ with

$$
\begin{aligned}
\operatorname{deg} \varphi_{0} & \leq \operatorname{deg} \varphi^{\prime} \cdot \max \left\{q, q^{\prime}\right\} \\
& \leq 49 \max \{1, g(K)\} \cdot \max \left\{\frac{\delta_{i}\left(E_{1}\right)}{\delta_{i}\left(E_{2}\right)}, \frac{\delta_{i}\left(E_{2}\right)}{\delta_{i}\left(E_{1}\right)}\right\} .
\end{aligned}
$$

A corollary

We go back to the situation studied before:

Let E / \bar{K} be a non-isotrivial elliptic curve. Consider

$$
J_{b s}(E, B)=\left\{j\left(E^{\prime}\right) \in \bar{K}: \begin{array}{c}
E^{\prime} \text { is biseparably isogenous to } E \\
\text { and } h_{\bmod }\left(E^{\prime}\right) \leq B
\end{array}\right\}
$$

For $B \geq h_{\bmod }(E)$, the set $J_{b s}(E, B)$ is infinite.
With the help of Theorem B, we can prove

Proposition (G. \& Pazuki '21)

Let E / \bar{K} be a non-isotrivial elliptic curve. For any $B \geq 0$ and $D \geq 1$, let
$J_{b s}(E, B, D)=\left\{j\left(E^{\prime}\right) \in \bar{K}: \quad \begin{array}{c}E^{\prime} \text { is biseparably isogenous to } E \\ \text { with } h_{\text {mod }}\left(E^{\prime}\right) \leq B \text { and }\left[K\left(j\left(E^{\prime}\right)\right): K\right] \leq D\end{array}\right\}$.
This set is finite. Moreover $\left|\|_{b s}(E, B, D)\right| \leq D^{2} h_{\bmod }(E)^{2}$.

Thank you
 for your attention!

