French-Korean Number Theory Webinar

18th October 2021

Richard GRIFFON Université Clermont-Auvergne

Isogenies of elliptic curves over function fields

(joint with Fabien Pazuki)

Introduction

Variation of modular height over NF

Let E_1, E_2 be two isogenous elliptic curves over a number field F, and $\varphi: E_1 \to E_2$ be an isogeny between them.

Theorem A (Pazuki - '19)

```
|ht(j(E_1)) - ht(j(E_2))| \le 10 + 12\log \deg \varphi,
```

where $ht: \overline{\mathbb{Q}} \to \mathbb{R}_{\geq 0}$ is the Weil height.

Remarks

□ One ingredient:

Theorem (Faltings - '80's)

$$|h_F(E_1/F) - h_F(E_2/F)| \le \frac{1}{2} \log \deg \varphi,$$

where $h_F(.)$ is the Faltings' height.

- □ Theorem A is almost optimal (Szpiro–Ullmo).
- □ Application (Habbegger). Given $E/\overline{\mathbb{Q}}$ with no CM, and B > 0, $\{j(E') \in \overline{\mathbb{Q}} : E' \text{ is isogenous to } E \text{ and } ht(j(E')) \leq B\}$ is finite.

Isogeny estimate for elliptic curves over NF

Let E_1, E_2 be two isogenous elliptic curves over a number field F.

Theorem B ("Isogeny estimate")

There exists an isogeny $\varphi_0: E_1 \rightarrow E_2$ with

 $\deg \varphi_0 \le c_0(F) \max\{1, ht(j(E_1)), ht(j(E_2))\}^2,\$

where $c_0(F)$ is a constant depending at most on (the degree of) F.

- Several successive improvements: Masser–Wüstholz (90's), Pellarin ('01), Gaudron–Rémond ('14).
- Conjecture: uniform isogeny estimate?
 (Similar to Uniform torsion bound, Merel '94)
- □ Theorem B has numerous applications in Diophantine geometry.

Goal

There are versions of Theorem A and Theorem B for isogenous Drinfeld modules (Breuer–Pazuki–Razafinjatovo, and David–Denis). It is natural to wonder:

Question

Can one formulate analogues of Theorems A and B in the context of elliptic curves over function fields?

Yes to both, as I'll explain.

Elliptic curves over function fields

Function field setting

Setting

Let \mathbb{F} be a perfect field, and C/\mathbb{F} a smooth projective geometrically irreducible curve. Write $K = \mathbb{F}(C)$ for the function field of C. We let $p = \operatorname{char}(\mathbb{F}) \ge 0$.

Arithmetic of *K* (and finite extensions of *K*) is analogous to that of a number field.

 \Box Height on \overline{K} : There is a "Weil height" on \overline{K} ,

 $ht_{K}:\overline{K}\to\mathbb{Q}_{\geq0}.$

For any $f \in K^{\times}$, f may be viewed as a morphism $f : C \to \mathbb{P}^1$ and

 $ht_{\kappa}(f) = \deg(f).$

Note: For $f \in \overline{K}$, $ht_{K}(f) = 0$ if and only if $f \in \overline{\mathbb{F}}$ (f is constant).

Elliptic curves over a function field

Let K'/K be a finite extension. One can write $K' = \mathbb{F}'(C')$. Let *E* be an elliptic curve over *K'*.

E has a *j*-invariant $j(E) \in K'$, computed by the usual formulas.

□ **Isotriviality:** We say that *E* is **non-isotrivial** if $j(E) \in \overline{K} \setminus \overline{\mathbb{F}}$.

We focus only on non-isotrivial elliptic curves.

(Isotrivial elliptic curves are better studied as elliptic curves over $\overline{\mathbb{F}}$).

Arithmetic of non-isotrivial elliptic curves over *K'* is analogous to that of elliptic curves over a number field.

Note: a non-isotrivial elliptic curve *E* "has no CM", that is: $End(E) \simeq \mathbb{Z}$.

□ **Inseparability degree:** For a non-isotrivial elliptic curve *E* over *K'*, we let

$$\delta_i(E) := \deg_{ins}(j(E)) = [K' : \mathbb{F}'(j(E))]_{insep}.$$

 $(\delta_i(E) = 1$ if K has characteristic 0).

Height(s) of elliptic curves

Let K'/K be a finite extension, write $K' = \mathbb{F}'(C')$ as before. Let *E* be an elliptic curve over *K'*.

□ Modular height: Define the modular height of *E* to be

 $h_{\text{mod}}(E) := ht_{K}(j(E)) \in \mathbb{Q}_{\geq 0}.$

Note: $h_{mod}(E) = 0$ iff E is isotrivial.

□ **Differential height:** Let $\Delta(E/K') \in \text{Div}(C')$ be the minimal discriminant divisor of *E*. The differential height of E/K' is

$$h_{\text{diff}}(E/K') := \frac{\text{deg}(\Delta(E/K'))}{12 \cdot [K':K]} \in \mathbb{Q}_{\geq 0}.$$

Analogue of Faltings' height for elliptic curves over a NF. Note: $h_{diff}(E/K') = 0$ iff *E* has good reduction everywhere over *K*'.

Isogenies of elliptic curves

Let E_1, E_2 be two non-isotrivial elliptic curves over K'. An isogeny $\varphi: E_1 \rightarrow E_2$ is a non-constant algebraic group morphism.

 \Box **Degrees:** Let $\varphi: E_1 \rightarrow E_2$ be an isogeny. Then

$$\deg \varphi = \deg_{\mathrm{sep}}(\varphi) \cdot \deg_{\mathrm{ins}}(\varphi).$$

Then $\deg_{sep}(\varphi) = |(\ker \varphi)(\overline{K})|$, and $\deg_{ins}(\varphi) = 1$ or a power of p.

Dual: an isogeny $\varphi: E_1 \to E_2$ has a dual $\widehat{\varphi}: E_2 \to E_1$ which has the same degree.

Biseparable isogenies: An isogeny $\varphi : E_1 \to E_2$ is **biseparable** if both φ and its dual $\hat{\varphi}$ are separable.

- \Box Automatic if char(K) = 0,
- \Box Equivalent to deg φ coprime to p = char(K) if p > 0.

Frobenius/Verschiebung isogenies

Assume that *K* has positive characteristic *p*.

Let *E* be an elliptic curve over \overline{K} . For any power *q* of *p*, write $E^{(q)}$ for the *q*-th Frobenius twist of *E*.

We have $j(E^{(q)}) = j(E)^q$.

The *q*-th power Frobenius is the isogeny $F_q : E \to E^{(q)}$. Its dual is called the *q*-th power Verschiebung isogeny $V_q : E^{(q)} \to E$.

Fact: If *E* is non-isotrivial, F_q is purely inseparable of degree *q*, and V_q is separable of degree *q*.

Variation of modular height in an isogeny class

Known results

Let E_1, E_2 be two non-isotrivial elliptic curves over a finite extension K' of K. Assume there is an isogeny $\varphi: E_1 \to E_2$.

□ Variation of differential height

Theorem (? - 80's)

If φ is biseparable (i.e. has degree coprime to p), then

 $h_{diff}(E_1/K') = h_{diff}(E_2/K').$

□ Comparison differential/modular heights

Lemma (G. & Pazuki - '21)

There exists a finite extension K_{ss} of K such that

 $h_{\rm mod}(E_i) = 12 \, h_{\rm diff}(E_i/K_{\rm ss}).$

If char(K) = 0, we are done (all isogenies are biseparable).

Positive characteristic: Frobenius/Verschiebung

Let E/K' be a non-isotrivial elliptic curve. For any power q of p, there are two isogenies of degree q

 $F_q: E \to E^{(q)}$ and $V_q: E^{(q)} \to E$.

which are dual to each other.

Since $j(E^{(q)}) = j(E)^q$, we have $h_{mod}(E^{(q)}) = q \cdot h_{mod}(E)$.

Observations

- \Box F_q multiplies h_{mod}(E) by q = deg F_q = deg_{ins}F_q.
- \Box V_q divides h_{mod}($E^{(q)}$) by $q = \deg V_q = \deg_{ins} \widehat{F_q}$.
- \Box Biseparable φ 's preserve h_{diff}, which is related to h_{mod}.

Decomposition lemma

To conclude, we prove

Decomposition Lemma (G. & Pazuki - '21)

An isogeny $\varphi: E_1 \to E_2$ between non-isotrivial elliptic curves decomposes as

$$\mathsf{E}_1 \xrightarrow{\mathsf{F}_q} \mathsf{E}_1^{(q)} \xrightarrow{\psi} \mathsf{E}_2^{(q')} \xrightarrow{\mathsf{V}_{q'}} \mathsf{E}_2,$$

where $q = \deg_{ins}(\varphi)$, ψ is biseparable, $q' = \deg_{ins}(\widehat{\varphi})$.

Then note that

$$\frac{h_{\text{mod}}(E_2)}{h_{\text{mod}}(E_1)} = \underbrace{\frac{h_{\text{mod}}(E_1^{(q)})}{h_{\text{mod}}(E_1)}}_{=q} \cdot \underbrace{\frac{h_{\text{mod}}(E_2^{(q')})}{h_{\text{mod}}(E_1^{(q)})}}_{=1} \cdot \underbrace{\frac{h_{\text{mod}}(E_2)}{h_{\text{mod}}(E_2^{(q')})}}_{=1/q'} = \frac{q}{q'}.$$

Where $q/q' = \deg_{ins}(\varphi)/\deg_{ins}(\widehat{\varphi})$.

Our result

Theorem A (G. & Pazuki - '21)

Let $\varphi: E_1 \to E_2$ be an isogeny between two non-isotrivial elliptic curves over \overline{K} . Then

$$h_{\text{mod}}(E_2) = \frac{\text{deg}_{\text{ins}}(\varphi)}{\text{deg}_{\text{ins}}(\widehat{\varphi})} \cdot h_{\text{mod}}(E_1).$$

Comments:

 \Box If char(K) = 0: isogenies preserve the modular height!

- Differences with Theorem A in the NF case: exact relation between heights (not upper bound on the difference), involves inseparability degrees (not degrees).
- \Box An example: Let $K = \mathbb{F}(t)$ with characteristic $\neq 2$,

$$E_1/K: y^2 = x(x+1)(x+t)$$
 and $E_2/K: y^2 = x^3 + tx + 1.$

Then $h_{mod}(E_1) = 6$ and $h_{mod}(E_2) = 3$. Hence E_1 and E_2 are not isogenous.

A surprising consequence

Recall from the first slide:

Number field case (Habegger)

Let *E* be a non CM elliptic curve over $\overline{\mathbb{Q}}$. Consider the set

 $\{j(E') \in \overline{\mathbb{Q}} : E' \text{ is isogenous to } E \text{ and } ht(j(E')) \leq B\}$

For any $B \ge 0$, this set is **finite**.

With our result, one can study

Function field case

Let E/\overline{K} be a non-isotrivial elliptic curve. Consider

 $J_{bs}(E,B) = \left\{ j(E') \in \overline{K} : \begin{array}{c} E' \text{ is biseparably isogenous to } E \\ and h_{mod}(E') \leq B \end{array} \right\}$

For $B \ge h_{mod}(E)$, the set $J_{bs}(E, B)$ is **infinite**.

An isogeny estimate for elliptic curves

Isogeny estimate

Setting is the same as before: $K = \mathbb{F}(C)$ is a function field. We let g(K) denote the genus of C.

Let E_1, E_2 be non-isotrivial isogenous elliptic curves defined over K.

Question

Can one find a "small" isogeny between E_1 and E_2 ? "Small" = degree controlled in terms of invariants of E_1, E_2 and K.

We prove

Theorem B (G. & Pazuki - '21)

There exists an isogeny $\varphi_0: E_1 \rightarrow E_2$ with

$$\deg \varphi_0 \le 49 \max\{1, g(\mathcal{K})\} \cdot \max\left\{\frac{\delta_i(\mathcal{E}_1)}{\delta_i(\mathcal{E}_2)}, \frac{\delta_i(\mathcal{E}_2)}{\delta_i(\mathcal{E}_1)}\right\}.$$

Here $\delta_i(E_k)$ is the inseparability degree of $j(E_k) \in K$.

Comments

Theorem B (G. & Pazuki - '21)

Let E_1, E_2 be isogenous non-isotrivial elliptic curves defined over K. There exists an isogeny $\varphi_0: E_1 \to E_2$ with

$$\deg \varphi_0 \leq \underbrace{49 \max\{1, g(\mathcal{K})\}}_{c_0(\mathcal{K})} \cdot \max\left\{\frac{\delta_i(\mathcal{E}_1)}{\delta_i(\mathcal{E}_2)}, \frac{\delta_i(\mathcal{E}_2)}{\delta_i(\mathcal{E}_1)}\right\}.$$

 \Box If char(K) = 0, this is a **uniform isogeny estimate**.

- □ If char(K) > 0, one cannot hope for a uniform statement. (In that setting, the dependence on E_1, E_2 is optimal).
- □ The value of the constant can sometimes be improved. For g(K) = 0, one can replace $c_0(K)$ by 25.
- $\hfill\square$ Proof is different from the NF case.

Sketch of proof: reduction step

Let E_1, E_2 be isogenous non-isotrivial elliptic curves defined over K. Goal: show that there is a "small" isogeny $\varphi_0 : E_1 \to E_2$.

□ Step 1: Reduction to a "biseparable situation"

Lemma (G. & Pazuki - '21)

There are suitable Frobenius twists E'_1 of E_1 and E'_2 of E_2 such that E'_1 is biseparably isogenous to E'_2 .

Actually,
$$E'_1 = E_1^{(q)}$$
 and $E'_2 = E_2^{(q')}$ with

$$q,q' \leq \max\left\{\frac{\delta_i(E_1)}{\delta_i(E_2)}, \frac{\delta_i(E_2)}{\delta_i(E_1)}\right\}.$$

New goal: show that there is a "small" biseparable isogeny $E'_1 \rightarrow E'_2$. (Then "untwist" E'_1 and E'_2 to get an isogeny $E_1 \rightarrow E_2$)

Sketch of proof: minimisation

□ Step 2: Minimise degree of a biseparable isogeny

Among all biseparable isogenies $E'_1 \rightarrow E'_2$, let $\varphi': E'_1 \rightarrow E'_2$ be of minimal degree.

Since E'_1 has no CM, one shows that

- φ' has cyclic kernel $H' = (\ker \varphi')(\overline{K}) \subset E'_1(\overline{K})$,
- $|H'| = \deg \varphi'$ is coprime to p,
- and H' is $Gal(\overline{K}/K)$ -stable.

And $E'_2 \simeq E'_1/H'$.

We have a pair (E'_1, H') where

- E'_1 is a non-isotrivial elliptic curve over K,
- *H'* is a cyclic $Gal(\overline{K}/K)$ -stable subgroup of E'_1 , |H'| coprime to *p*.

Sketch of proof: the crucial step

□ Step 3: Bound the degree of a cyclic biseparable isogeny We have a pair (E'_1, H') where

- E'_1 is a non-isotrivial elliptic curve over K,
- H' is a cyclic Gal(\overline{K}/K)-stable subgroup of E'_1 , |H'| coprime to p.

Letting N = |H'|, such pairs are parametrised (up to \overline{K} -isomorphism) by non-cuspidal *K*-rational points on the modular curve $X_0(N)$.

From the data (E'_1, H') , we thus get a *K*-rational point on $X_0(N)$.

Since $K = \mathbb{F}(C)$, we deduce a morphism $s : C \to X_0(N)_{/\mathbb{F}}$. Fits in the commutative diagram

$$\begin{array}{cccc} C & \stackrel{\mathrm{s}}{\longrightarrow} & X_0(N)_{/\mathbb{F}} \\ & i(E_1') \downarrow & & \downarrow \\ & \mathbb{P}^1_{/\mathbb{F}} & \stackrel{\simeq}{\longrightarrow} & X_0(1)_{/\mathbb{F}} \end{array}$$

In particular, $s : C \to X_0(N)_{/\mathbb{F}}$ is not constant.

Sketch of proof: the crucial step (II)

□ Step 3: Bound the degree of a cyclic biseparable isogeny We have a pair (E'_1, H') where

- E'_1 is a non-isotrivial elliptic curve over K,
- H' is a cyclic Gal(\overline{K}/K)-stable subgroup of E'_1 , |H'| coprime to p.

Writing N = |H'|, we obtained a non-constant morphism

 $s: C \to X_0(N)_{/\mathbb{F}}.$

By Riemann–Hurwitz, we thus have $g(X_0(N)_{/\mathbb{F}}) \leq g(C) = g(K)$. But $g(X_0(N)_{/\mathbb{F}}) = g(X_0(N)_{/\mathbb{C}})$ grows linearly with N (Shimura). Hence N = |H'| is bounded! Precisely,

Proposition

Let E'_1 be a non-isotrivial elliptic curve over K. If E'_1 admits a subgroup H' as above. Then $|H'| \le 49 \max\{1, g(K)\}$.

Sketch of proof: conclusion

□ Step 4: Conclusion

Starting from isogenous elliptic curves E_1, E_2 over K, Step 1 yields Frobenius twists E'_1, E'_2 which are biseparably isogenous.

By **Steps 2&3**, there exists a biseparable isogeny $\varphi': E_1' \to E_2'$ with

$$\deg \varphi' \le 49 \max\{1, g(K)\} = c_0(K).$$

Now compose φ' with the suitable $V_q : E'_1 \to E_1$ or $V_{q'} : E'_2 \to E_2$ to get an isogeny $\varphi_0 : E_1 \to E_2$.

Recall from Step 1 that $q, q' \leq \max\left\{\frac{\delta_i(E_1)}{\delta_i(E_2)}, \frac{\delta_i(E_2)}{\delta_i(E_1)}\right\}$.

Finally, there exists an isogeny $\varphi_0: E_1 \rightarrow E_2$ with

$$\begin{split} \deg \varphi_0 &\leq \deg \varphi' \cdot \max\{q, q'\} \\ &\leq 49 \max\{1, g(K)\} \cdot \max\left\{\frac{\delta_i(E_1)}{\delta_i(E_2)}, \frac{\delta_i(E_2)}{\delta_i(E_1)}\right\}. \end{split}$$

A corollary

We go back to the situation studied before:

Let E/\overline{K} be a non-isotrivial elliptic curve. Consider

$$J_{bs}(E,B) = \begin{cases} j(E') \in \overline{K} : & E' \text{ is biseparably isogenous to } E \\ & \text{and } h_{mod}(E') \leq B \end{cases}$$

For $B \ge h_{mod}(E)$, the set $J_{bs}(E, B)$ is **infinite**.

With the help of Theorem B, we can prove

Proposition (G. & Pazuki '21)

Let E/\overline{K} be a non-isotrivial elliptic curve. For any $B \ge 0$ and $D \ge 1$, let

 $J_{bs}(E, B, D) = \left\{ j(E') \in \overline{K} : \begin{array}{c} E' \text{ is biseparably isogenous to } E \\ \text{with } h_{mod}(E') \leq B \text{ and } [K(j(E')) : K] \leq D \end{array} \right\}.$

This set is **finite**. Moreover $|J_{bs}(E, B, D)| \le D^2 h_{mod}(E)^2$.

Thank you for your attention!