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Introduction



Varia on of modular height over NF
Let E1, E2 be two isogenous elliptic curves over a number field F,
and φ : E1 → E2 be an isogeny between them.

Theorem A (Pazuki - ’19)

|ht(j(E1))− ht(j(E2))| ≤ 10 + 12 log degφ,

where ht : Q → R≥0 is the Weil height.

Remarks
□ One ingredient:

Theorem (Faltings - ’80’s)

|hF(E1/F)− hF(E2/F)| ≤
1

2
log degφ,

where hF(.) is the Faltings’ height.

□ Theorem A is almost optimal (Szpiro–Ullmo).
□ Application (Habbegger). Given E/Q with no CM, and B > 0,{

j(E′) ∈ Q : E′ is isogenous to E and ht(j(E′)) ≤ B
}
is finite.
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Isogeny es mate for ellip c curves over NF

Let E1, E2 be two isogenous elliptic curves over a number field F.

Theorem B (“Isogeny estimate”)
There exists an isogeny φ0 : E1 → E2 with

degφ0 ≤ c0(F)max{1,ht(j(E1)),ht(j(E2))}2,

where c0(F) is a constant depending at most on (the degree of) F.

□ Several successive improvements:
Masser–Wüstholz (90’s), Pellarin (’01), Gaudron–Rémond (’14).

□ Conjecture: uniform isogeny estimate?
(Similar to Uniform torsion bound, Merel - ’94)

□ Theorem B has numerous applications in Diophantine geometry.
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Goal

There are versions of Theorem A and Theorem B for isogenous
Drinfeld modules (Breuer–Pazuki–Razafinjatovo, and David–Denis).
It is natural to wonder:

Question
Can one formulate analogues of Theorems A and B in the context of
elliptic curves over function fields?

Yes to both, as I’ll explain.

5



Elliptic curves
over function fields



Func on field se ng

Setting
Let F be a perfect field,
and C/F a smooth projective geometrically irreducible curve.
Write K = F(C) for the function field of C. We let p = char(F) ≥ 0.

Arithmetic of K (and finite extensions of K) is analogous to that of a number
field.

□ Height on K: There is a “Weil height” on K,

htK : K→ Q≥0.

For any f ∈ K×, f may be viewed as a morphism f : C→ P1 and

 htK(f) = deg(f).

Note: For f ∈ K, htK(f) = 0 if and only if f ∈ F  (f is constant).
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Ellip c curves over a func on field

Let K′/K be a finite extension. One can write K′ = F′(C′).
Let E be an elliptic curve over K′.
E has a j-invariant j(E) ∈ K′, computed by the usual formulas.

□ Isotriviality: We say that E is non-isotrivial if j(E) ∈ K∖ F.
We focus only on non-isotrivial elliptic curves.
(Isotrivial elliptic curves are better studied as elliptic curves over F).
Arithmetic of non-isotrivial elliptic curves over K′ is analogous to
that of elliptic curves over a number field.
Note: a non-isotrivial elliptic curve E “has no CM”, that is: End(E) ≃ Z.

□ Inseparability degree: For a non-isotrivial elliptic curve E over K′,
we let

δi(E) := degins(j(E)) = [K′ : F′(j(E))]insep.

(δi(E) = 1 if K has characteristic 0).
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Height(s) of ellip c curves

Let K′/K be a finite extension, write K′ = F′(C′) as before.
Let E be an elliptic curve over K′.

□ Modular height: Define the modular height of E to be

hmod(E) := htK(j(E)) ∈ Q≥0.

Note: hmod(E) = 0 iff E is isotrivial.

□ Differential height: Let ∆(E/K′) ∈ Div(C′) be the minimal
discriminant divisor of E. The differential height of E/K′ is

hdiff(E/K′) :=
deg(∆(E/K′))
12 · [K′ : K] ∈ Q≥0.

Analogue of Faltings’ height for elliptic curves over a NF.
Note: hdiff(E/K′) = 0 iff E has good reduction everywhere over K′.
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Isogenies of ellip c curves

Let E1, E2 be two non-isotrivial elliptic curves over K′.
An isogeny φ : E1 → E2 is a non-constant algebraic group morphism.

□ Degrees: Let φ : E1 → E2 be an isogeny. Then

degφ = degsep(φ) · degins(φ).

Then degsep(φ) = |(kerφ)(K)|, and degins(φ) = 1 or a power of p.

□ Dual: an isogeny φ : E1 → E2 has a dual φ̂ : E2 → E1 which has the
same degree.

□ Biseparable isogenies: An isogeny φ : E1 → E2 is biseparable if
both φ and its dual φ̂ are separable.
□ Automatic if char(K) = 0,
□ Equivalent to degφ coprime to p = char(K) if p > 0.
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Frobenius/Verschiebung isogenies

Assume that K has positive characteristic p.

Let E be an elliptic curve over K. For any power q of p,
write E(q) for the q-th Frobenius twist of E.

We have j(E(q)) = j(E)q.

The q-th power Frobenius is the isogeny Fq : E→ E(q).
Its dual is called the q-th power Verschiebung isogeny Vq : E(q) → E.

Fact: If E is non-isotrivial, Fq is purely inseparable of degree q,
and Vq is separable of degree q.
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Variation of modular height
in an isogeny class



Known results
Let E1, E2 be two non-isotrivial elliptic curves over a finite
extension K′ of K. Assume there is an isogeny φ : E1 → E2.
□ Variation of differential height

Theorem (? - 80’s)
If φ is biseparable (i.e. has degree coprime to p), then

hdiff(E1/K′) = hdiff(E2/K′).

□ Comparison differential/modular heights

Lemma (G. & Pazuki - ’21)
There exists a finite extension Kss of K such that

hmod(Ei) = 12hdiff(Ei/Kss).

If char(K) = 0, we are done (all isogenies are biseparable).
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Posi ve characteris c: Frobenius/Verschiebung

Let E/K′ be a non-isotrivial elliptic curve. For any power q of p, there
are two isogenies of degree q

Fq : E→ E(q) and Vq : E(q) → E.

which are dual to each other.

Since j(E(q)) = j(E)q, we have hmod(E(q)) = q · hmod(E).

Observations

□ Fq multiplies hmod(E) by q = deg Fq = deginsFq.
□ Vq divides hmod(E(q)) by q = deg Vq = deginsF̂q.
□ Biseparable φ’s preserve hdiff, which is related to hmod.

14



Decomposi on lemma
To conclude, we prove

Decomposition Lemma (G. & Pazuki - ’21)
An isogeny φ : E1 → E2 between non-isotrivial elliptic curves
decomposes as

E1
Fq−−−→ E(q)1

ψ−−−→ E(q
′)

2

Vq′−−−−→ E2,

where q = degins(φ), ψ is biseparable, q′ = degins(φ̂).

Then note that

hmod(E2)
hmod(E1)

=
hmod(E(q)1 )

hmod(E1)︸ ︷︷ ︸
=q

· hmod(E
(q′)
2 )

hmod(E(q)1 )︸ ︷︷ ︸
=1

· hmod(E2)
hmod(E(q

′)
2 )︸ ︷︷ ︸

=1/q′

=
q
q′ .

Where q/q′ = degins(φ)/degins(φ̂).
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Our result

Theorem A (G. & Pazuki - ’21)
Let φ : E1 → E2 be an isogeny between two non-isotrivial elliptic
curves over K. Then

hmod(E2) =
degins(φ)
degins(φ̂)

· hmod(E1).

Comments:
□ If char(K) = 0: isogenies preserve the modular height!
□ Differences with Theorem A in the NF case:
exact relation between heights (not upper bound on the
difference), involves inseparability degrees (not degrees).

□ An example: Let K = F(t) with characteristic ̸= 2,

E1/K : y2 = x(x+ 1)(x+ t) and E2/K : y2 = x3 + tx+ 1.

Then hmod(E1) = 6 and hmod(E2) = 3.
Hence E1 and E2 are not isogenous.
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A surprising consequence
Recall from the first slide:

Number field case (Habegger)
Let E be a non CM elliptic curve over Q. Consider the set{

j(E′) ∈ Q : E′ is isogenous to E and ht(j(E′)) ≤ B
}

For any B ≥ 0, this set is finite.

With our result, one can study

Function field case
Let E/K be a non-isotrivial elliptic curve. Consider

Jbs(E,B) =
{
j(E′) ∈ K :

E′ is biseparably isogenous to E
and hmod(E′) ≤ B

}
For B ≥ hmod(E), the set Jbs(E,B) is infinite.
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An isogeny estimate
for elliptic curves



Isogeny es mate
Setting is the same as before: K = F(C) is a function field.
We let g(K) denote the genus of C.

Let E1, E2 be non-isotrivial isogenous elliptic curves defined over K.

Question
Can one find a “small” isogeny between E1 and E2?
“Small” = degree controlled in terms of invariants of E1, E2 and K.

We prove

Theorem B (G. & Pazuki - ’21)
There exists an isogeny φ0 : E1 → E2 with

degφ0 ≤ 49max{1,g(K)} ·max
{
δi(E1)
δi(E2)

,
δi(E2)
δi(E1)

}
.

Here δi(Ek) is the inseparability degree of j(Ek) ∈ K.
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Comments

Theorem B (G. & Pazuki - ’21)
Let E1, E2 be isogenous non-isotrivial elliptic curves defined over K.
There exists an isogeny φ0 : E1 → E2 with

degφ0 ≤ 49max{1,g(K)}︸ ︷︷ ︸
c0(K)

·max
{
δi(E1)
δi(E2)

,
δi(E2)
δi(E1)

}
.

□ If char(K) = 0, this is a uniform isogeny estimate.
□ If char(K) > 0, one cannot hope for a uniform statement.
(In that setting, the dependence on E1, E2 is optimal).

□ The value of the constant can sometimes be improved.
For g(K) = 0, one can replace c0(K) by 25.

□ Proof is different from the NF case.
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Sketch of proof: reduc on step

Let E1, E2 be isogenous non-isotrivial elliptic curves defined over K.

Goal: show that there is a “small” isogeny φ0 : E1 → E2.

□ Step 1: Reduction to a “biseparable situation”

Lemma (G. & Pazuki - ’21)
There are suitable Frobenius twists E′1 of E1 and E′2 of E2
such that E′1 is biseparably isogenous to E′2.

Actually, E′1 = E(q)1 and E′2 = E(q
′)

2 with 

 q,q′ ≤ max
{
δi(E1)
δi(E2)

,
δi(E2)
δi(E1)

}
.

New goal: show that there is a “small” biseparable isogeny E′1 → E′2.
(Then “untwist” E′1 and E′2 to get an isogeny E1 → E2)
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Sketch of proof: minimisa on

□ Step 2: Minimise degree of a biseparable isogeny
Among all biseparable isogenies E′1 → E′2,
let φ′ : E′1 → E′2 be of minimal degree.

Since E′1 has no CM, one shows that
• φ′ has cyclic kernel H′ = (kerφ′)(K) ⊂ E′1(K),
• |H′| = degφ′ is coprime to p,
• and H′ is Gal(K/K)-stable.

And E′2 ≃ E′1/H′.

We have a pair (E′1,H′) where
• E′1 is a non-isotrivial elliptic curve over K,
• H′ is a cyclic Gal(K/K)-stable subgroup of E′1, |H′| coprime to p.
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Sketch of proof: the crucial step

□ Step 3: Bound the degree of a cyclic biseparable isogeny
We have a pair (E′1,H′) where

• E′1 is a non-isotrivial elliptic curve over K,
• H′ is a cyclic Gal(K/K)-stable subgroup of E′1, |H′| coprime to p.

Letting N = |H′|, such pairs are parametrised (up to K-isomorphism)
by non-cuspidal K-rational points on the modular curve X0(N).
From the data (E′1,H′), we thus get a K-rational point on X0(N).

Since K = F(C), we deduce a morphism s : C→ X0(N)/F.
Fits in the commutative diagram

C s−−→ X0(N)/F

−−→j(E′1)

−−→

P1
/F

≃−−→ X0(1)/F

In particular, s : C→ X0(N)/F is not constant.
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Sketch of proof: the crucial step (II)

□ Step 3: Bound the degree of a cyclic biseparable isogeny
We have a pair (E′1,H′) where

• E′1 is a non-isotrivial elliptic curve over K,
• H′ is a cyclic Gal(K/K)-stable subgroup of E′1, |H′| coprime to p.

Writing N = |H′|, we obtained a non-constant morphism

s : C→ X0(N)/F.

By Riemann–Hurwitz, we thus have g(X0(N)/F) ≤ g(C) = g(K).

But g(X0(N)/F) = g(X0(N)/C) grows linearly with N (Shimura).

Hence N = |H′| is bounded! Precisely,

Proposition
Let E′1 be a non-isotrivial elliptic curve over K. If E′1 admits a
subgroup H′ as above. Then |H′| ≤ 49max{1,g(K)}.
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Sketch of proof: conclusion

□ Step 4: Conclusion
Starting from isogenous elliptic curves E1, E2 over K, Step 1 yields
Frobenius twists E′1, E′2 which are biseparably isogenous.
By Steps 2&3, there exists a biseparable isogeny φ′ : E′1 → E′2 with

degφ′ ≤ 49max{1,g(K)} = c0(K).

Now compose φ′ with the suitable Vq : E′1 → E1 or Vq′ : E′2 → E2 to get
an isogeny φ0 : E1 → E2.
Recall from Step 1 that  q,q′ ≤ max

{
δi(E1)
δi(E2) ,

δi(E2)
δi(E1)

}
.

Finally, there exists an isogeny φ0 : E1 → E2 with

degφ0 ≤ degφ′ ·max{q,q′}

≤ 49max{1,g(K)} ·max
{
δi(E1)
δi(E2)

,
δi(E2)
δi(E1)

}
.

□
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A corollary

We go back to the situation studied before:

Let E/K be a non-isotrivial elliptic curve. Consider

Jbs(E,B) =
{
j(E′) ∈ K :

E′ is biseparably isogenous to E
and hmod(E′) ≤ B

}
For B ≥ hmod(E), the set Jbs(E,B) is infinite.

With the help of Theorem B, we can prove

Proposition (G. & Pazuki ’21)
Let E/K be a non-isotrivial elliptic curve. For any B ≥ 0 and D ≥ 1, let

Jbs(E,B,D) =
{
j(E′) ∈ K :

E′ is biseparably isogenous to E
with hmod(E′) ≤ B and [K(j(E′)) : K] ≤ D

}
.

This set is finite. Moreover |Jbs(E,B,D)| ≤ D2 hmod(E)2.
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Thank you
for your attention!
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