Phase-space and Optimal Transport formulation of the Einstein equations in vacuum

Yann Brenier, CNRS,
LMO, Orsay, Université Paris-Saclay (just moving from DMA-ENS Paris)

Webinar Kinetic and Fluid equations, 17 Dec 2021
French-Korean IRL in Mathematics

General Relativity (in vacuum)

'Free fall' follows geodesic curves $s \in \mathbb{R} \rightarrow x(s) \in \mathbb{R}^{4}$
i.e. critical points of $\int g_{i j}(x(s)) \frac{d x^{i}(s)}{d s} \frac{d x^{j}(s)}{d s} d s$
where g is a Lorentzian metric over \mathbb{R}^{4},

General Relativity (in vacuum)

'Free fall' follows geodesic curves $s \in \mathbb{R} \rightarrow x(s) \in \mathbb{R}^{4}$
i.e. critical points of $\int g_{i j}(x(s)) \frac{d x^{i}(s)}{d s} \frac{d x^{j}(s)}{d s} d s$
where g is a Lorentzian metric over \mathbb{R}^{4}, which reads

$$
\begin{gathered}
\frac{d x^{i}(s)}{d s}=\xi^{i}(s), \quad \frac{d \xi^{i}(s)}{d s}=-\Gamma_{j k}^{i}(x(s)) \xi^{j}(s) \xi^{k}(s) \\
2 g_{m i} \Gamma_{j k}^{i}+\partial_{m} g_{j k}-\partial_{j} g_{m k}-\partial_{k} g_{m j}=0
\end{gathered}
$$

General Relativity (in vacuum)

'Free fall' follows geodesic curves $s \in \mathbb{R} \rightarrow x(s) \in \mathbb{R}^{4}$
i.e. critical points of $\int g_{i j}(x(s)) \frac{d x^{i}(s)}{d s} \frac{d x^{j}(s)}{d s} d s$
where g is a Lorentzian metric over \mathbb{R}^{4}, which reads

$$
\begin{gathered}
\frac{d x^{i}(s)}{d s}=\xi^{i}(s), \quad \frac{d \xi^{i}(s)}{d s}=-\Gamma_{j k}^{j}(x(s)) \xi^{j}(s) \xi^{k}(s), \\
2 g_{m i} \Gamma_{j k}^{j}+\partial_{m} g_{j k}-\partial_{j} g_{m k}-\partial_{k} g_{m j}=0 .
\end{gathered}
$$

Einstein equations in vacuum just means that g has zero Ricci curvature.

Phase-space formulation of the Ricci curvature

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$,

Phase-space formulation of the Ricci curvature

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$, so that the Riemann and the Ricci curvatures just read as commutators:
$R_{j k m}^{n}(x) \xi^{m}=\left(\left(\partial_{x^{k}}+V_{k}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{j}^{n}-\left(\partial_{x^{j}}+V_{j}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{k}^{n}\right)(x, \xi)$

Phase-space formulation of the Ricci curvature

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$, so that the Riemann and the Ricci curvatures just read as commutators:
$R_{j k m}^{n}(x) \xi^{m}=\left(\left(\partial_{x^{k}}+V_{k}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{j}^{n}-\left(\partial_{x j}+V_{j}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{k}^{n}\right)(x, \xi)$

$$
=\partial_{x^{k}} V_{j}^{n}+\partial_{\xi^{\prime}}\left(V_{k}^{\gamma} V_{\gamma}^{n}\right)-\partial_{x^{j}} V_{k}^{n}-\partial_{\xi^{k}}\left(V_{i}^{\gamma} V_{\gamma}^{n}\right),
$$

Phase-space formulation of the Ricci curvature

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$, so that the Riemann and the Ricci curvatures just read as commutators:

$$
\begin{gathered}
R_{j k m}^{n}(x) \xi^{m}=\left(\left(\partial_{x^{k}}+V_{k}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{j}^{n}-\left(\partial_{x^{j}}+V_{j}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{k}^{n}\right)(x, \xi) \\
=\partial_{x^{k}} V_{j}^{n}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{n}\right)-\partial_{x^{j}} V_{k}^{n}-\partial_{\xi^{k}}\left(V_{i}^{\gamma} V_{\gamma}^{n}\right),
\end{gathered}
$$

$$
R_{k m}(x) \xi^{m}=\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right) .
$$

The main result

Theorem: Let (g, Γ) be a smooth solution to the Einstein equations in vacuum. Let us define

$$
\begin{gathered}
V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}, \quad(x, \xi) \in \mathbb{R}^{8}, \\
C_{k}^{j}(x, \xi)=\partial_{\xi^{\wedge}} A^{j}(x, \xi)-\partial_{\xi^{q}} A^{q}(x, \xi) \delta_{k}^{j}, \\
A^{j}(x, \xi)=\xi^{j} \operatorname{det} g(x) \cos \left(\frac{g_{\alpha \beta}(x) \xi^{\alpha} \xi^{\beta}}{2}\right) .
\end{gathered}
$$

The main result

Theorem: Let (g, Γ) be a smooth solution to the Einstein equations in vacuum. Let us define

$$
\begin{gathered}
V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}, \quad(x, \xi) \in \mathbb{R}^{8} \\
C_{k}^{j}(x, \xi)=\partial_{\xi^{k}} A^{j}(x, \xi)-\partial_{\xi^{q}} A^{q}(x, \xi) \delta_{k}^{j} \\
A^{j}(x, \xi)=\xi^{j} \operatorname{det} g(x) \cos \left(\frac{g_{\alpha \beta}(x) \xi^{\alpha} \xi^{\beta}}{2}\right) .
\end{gathered}
$$

Then (C, V) is a solution of the following generalized matrix-valued optimal transport problem:

Find a pair $(C, V)(x, \xi)$ of 4×4 matrix-valued fields over the 'phase-space' $(x, \xi) \in \mathbb{R}^{8}$ critical point of

$$
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi
$$

Find a pair $(C, V)(x, \xi)$ of 4×4 matrix-valued fields over the 'phase-space' $(x, \xi) \in \mathbb{R}^{8}$ critical point of

$$
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi
$$

subject to the 'generalized continuity equation'

$$
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0
$$

Find a pair $(C, V)(x, \xi)$ of 4×4 matrix-valued fields over the 'phase-space' $(x, \xi) \in \mathbb{R}^{8}$ critical point of

$$
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi
$$

subject to the 'generalized continuity equation'

$$
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0
$$

and the linear symmetry constraints $\quad \partial_{\xi^{i}} V_{j}^{k}=\partial_{\xi^{j}} V_{i}^{k}$,

$$
\partial_{\xi^{m}} \boldsymbol{C}_{\gamma}^{\gamma} \delta_{k}^{j}-3 \partial_{\xi^{m}} \boldsymbol{C}_{k}^{j}=\partial_{\xi^{k}} \boldsymbol{C}_{\gamma}^{\gamma} \delta_{m}^{j}-3 \partial_{\xi^{k}} C_{m}^{j}
$$

ref: https://hal.archives-ouvertes.fr/hal-03311171

Relation with the (quadratic) Monge OT problem

$$
\text { Monge }_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{\mathbb{R}^{d}}|T(x)-x|^{2} \rho_{0}(x) d x
$$ for all Borel maps T for which $\rho_{1}(y) d y$ is the image by $y=T(x)$ of $\rho_{0}(x) d x$.

Relation with the (quadratic) Monge OT problem

$$
\text { Monge }_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{\mathbb{R}^{d}}|T(x)-x|^{2} \rho_{0}(x) d x
$$

for all Borel maps T for which $\rho_{1}(y) d y$ is the image by $y=T(x)$ of $\rho_{0}(x) d x$.
Then, one can show:
Monge $_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{0}^{1} d t \int_{\mathbb{R}^{d}} \rho(t, x)|v(t, x)|^{2} d x$, where (ρ, v) is subject to $\partial_{t} \rho+\nabla \cdot(\rho v)=0, \quad \rho(0, \cdot)=\rho_{0} \quad \rho(1, \cdot)=\rho_{1}$.
(Benamou-B. 2000, see also Otto 2001, Ambrosio-Gigli-Savaré 2005.)

Relation with the (quadratic) Monge OT problem

$$
\text { Monge }_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{\mathbb{R}^{d}}|T(x)-x|^{2} \rho_{0}(x) d x
$$

for all Borel maps T for which $\rho_{1}(y) d y$ is the image by $y=T(x)$ of $\rho_{0}(x) d x$.
Then, one can show:
Monge $_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{0}^{1} d t \int_{\mathbb{R}^{d}} \rho(t, x)|v(t, x)|^{2} d x$, where (ρ, v) is subject to $\partial_{t} \rho+\nabla \cdot(\rho v)=0, \quad \rho(0, \cdot)=\rho_{0} \rho(1, \cdot)=\rho_{1}$.
(Benamou-B. 2000, see also Otto 2001, Ambrosio-Gigli-Savaré 2005.)
N.B. Optimality equations read: $v=\nabla \phi, \quad \partial_{t} v+\nabla\left(|v|^{2} / 2\right)=0$.

General Relativity GR and Optimal Transport OT

Recent works linking GR and OT:
A. Mondino, S. Suhr arXiv:1810.13309, 2018,
R. McCann, Camb. J. Math. 2020, based on Lott-Sturm-Villani OT definition of Ricci curvature.

General Relativity GR and Optimal Transport OT

Recent works linking GR and OT:
A. Mondino, S. Suhr arXiv:1810.13309, 2018,
R. McCann, Camb. J. Math. 2020, based on Lott-Sturm-Villani OT definition of Ricci curvature. Our approach is different and related to the hydrodynamical formulation of OT (Benamou-B. 2000).
ref: Y.B. CRAS 2021 (https://hal.archives-ouvertes.fr/hal-03311171).

A toy model : the Hamilton-Jacobi equation (1/4)

$$
\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0, \quad \phi=\phi(t, x), \quad x \in \mathbb{T}^{d}
$$

written as a 'conservation law' for $V=\nabla \phi$,

$$
\partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0, \quad V=V(t, x) \in \mathbb{R}^{d}, \quad x \in \mathbb{T}^{d}
$$

A toy model : the Hamilton-Jacobi equation (1/4)

$$
\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0, \quad \phi=\phi(t, x), \quad x \in \mathbb{T}^{d}
$$

written as a 'conservation law' for $V=\nabla \phi$,

$$
\partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0, \quad V=V(t, x) \in \mathbb{R}^{d}, \quad x \in \mathbb{T}^{d}
$$

Ignoring $B C$, let us look for critical points (A, V) of

$$
\int\left(-\partial_{t} A \cdot V-\frac{(\nabla \cdot A)|V|^{2}}{2}\right) d x d t, \quad A=A(t, x) \in \mathbb{R}^{d}
$$

A toy model : the Hamilton-Jacobi equation (2/4)

Critical points (A, V) of

$$
\begin{aligned}
& \mathcal{I}(A, V)=\int\left(-\partial_{t} A \cdot V-\frac{(\nabla \cdot A)|V|^{2}}{2}\right) d x d t . \\
& \partial_{A} \mathcal{I}(A, V)=0 \Rightarrow \text { (1) } \quad \partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0
\end{aligned}
$$

(as expected),

A toy model : the Hamilton-Jacobi equation (2/4)

Critical points (A, V) of

$$
\begin{aligned}
& \mathcal{I}(A, V)=\int\left(-\partial_{t} A \cdot V-\frac{(\nabla \cdot A)|V|^{2}}{2}\right) d x d t \\
& \partial_{A} \mathcal{I}(A, V)=0 \Rightarrow(1) \quad \partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0
\end{aligned}
$$

(as expected),

$$
\partial_{V} \mathcal{I}(A, V)=0 \Rightarrow \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0
$$

(additional information that we are now going to use).

A toy model : the Hamilton-Jacobi equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

A toy model : the Hamilton-Jacobi equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2).

A toy model : the Hamilton-Jacobi equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$.

A toy model : the Hamilton-Jacobi equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$. The corresponding optimality equations read:
$\partial_{B} \mathcal{L}(A, V, B)=0 \Rightarrow(2)$ (of course), $\partial_{V} \mathcal{L}(A, V, B)=0 \Rightarrow(\nabla \cdot A) V-B(\nabla \cdot A)=0$, $\partial_{A} \mathcal{L}(A, V, B)=0 \Rightarrow-\nabla\left(|V|^{2} / 2\right)+\partial_{t} B+\nabla(B \cdot V)=0$.

A toy model : the Hamilton-Jacobi equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$. The corresponding optimality equations read:
$\partial_{B} \mathcal{L}(A, V, B)=0 \Rightarrow(2)$ (of course), $\partial_{V} \mathcal{L}(A, V, B)=0 \Rightarrow(\nabla \cdot A) V-B(\nabla \cdot A)=0$, $\partial_{A} \mathcal{L}(A, V, B)=0 \Rightarrow-\nabla\left(|V|^{2} / 2\right)+\partial_{t} B+\nabla(B \cdot V)=0$.

Assuming that (A, V) is critical for $\mathcal{I}(A, V)$, we have
$\partial_{t} A+V(\nabla \cdot A)=0$ and $\partial_{t} V+\nabla\left(|V|^{2} / 2\right)=0$.

A toy model : the Hamilton-Jacobi equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2).

Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$. The corresponding optimality equations read:
$\partial_{B} \mathcal{L}(A, V, B)=0 \Rightarrow(2)$ (of course), $\partial_{V} \mathcal{L}(A, V, B)=0 \Rightarrow(\nabla \cdot A) V-B(\nabla \cdot A)=0$, $\partial_{A} \mathcal{L}(A, V, B)=0 \Rightarrow-\nabla\left(|V|^{2} / 2\right)+\partial_{t} B+\nabla(B \cdot V)=0$.

Assuming that (A, V) is critical for $\mathcal{I}(A, V)$, we have
$\partial_{t} A+V(\nabla \cdot A)=0$ and $\partial_{t} V+\nabla\left(|V|^{2} / 2\right)=0$. Setting $B=V$, we are just in business!

A toy model : the Hamilton-Jacobi equation (4/4)

Let us now write everything in terms of $(\rho=\nabla \cdot A, V)$:

$$
\begin{aligned}
& \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0 \Rightarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
& \mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t \Rightarrow \int \frac{\rho|V|^{2}}{2} d x d t .
\end{aligned}
$$

A toy model : the Hamilton-Jacobi equation (4/4)

Let us now write everything in terms of $(\rho=\nabla \cdot A, V)$:

$$
\begin{aligned}
& \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0 \Rightarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0 \\
& \mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t \Rightarrow \int \frac{\rho|V|^{2}}{2} d x d t .
\end{aligned}
$$

So, we just find the usual quadratic optimal problem in its BB formulation (up to BC which are ignored here)!

BB formulation of General Relativity in vacuum

We now treat the zero-Ricci 'phase-space' equation

$$
\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{\prime}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right)=0
$$

just as the HJ equation with the following dictionary

BB formulation of General Relativity in vacuum

We now treat the zero-Ricci 'phase-space' equation

$$
\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{\prime}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right)=0
$$

just as the HJ equation with the following dictionary

$$
C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x)
$$

BB formulation of General Relativity in vacuum

We now treat the zero-Ricci 'phase-space' equation

$$
\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right)=0
$$

just as the HJ equation with the following dictionary

$$
\begin{gathered}
C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x) \\
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0
\end{gathered} \Leftarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, ~ \$
$$

BB formulation of General Relativity in vacuum

We now treat the zero-Ricci 'phase-space' equation

$$
\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right)=0
$$

just as the HJ equation with the following dictionary

$$
\begin{gathered}
C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x) \\
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{i}}(C V+V C)_{k}^{j}=0 \Leftarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi \Leftarrow \int \rho|V|^{2} d x d t
\end{gathered}
$$

BB formulation of General Relativity in vacuum

We now treat the zero-Ricci 'phase-space' equation

$$
\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right)=0
$$

just as the HJ equation with the following dictionary

$$
\begin{gathered}
C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x) \\
\partial_{x^{\prime}} C_{k}^{j}+\partial_{\xi^{\prime}}(C V+V C)_{k}^{j}=0 \Leftarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi \Leftarrow \int \rho|V|^{2} d x d t
\end{gathered}
$$

$$
\text { and subject to } \quad \partial_{\xi^{\prime}} V_{j}^{k}=\partial_{\xi^{j}} V_{i}^{k}, \quad \partial_{\xi^{m}} C_{\gamma}^{\gamma} \delta_{k}^{j}-3 \partial_{\xi^{m}} C_{k}^{j}=\partial_{\xi^{k}} C_{\gamma}^{\gamma} \delta_{m}^{j}-3 \partial_{\xi^{k}} C_{m}^{j} \text {. }
$$

Finally, we check that, whenever (g, Γ) is a smooth solution to the Einstein equations in vacuum, then

$$
\begin{gathered}
V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma} \\
C_{k}^{j}(x, \xi)=\partial_{\xi^{k}} A^{j}(x, \xi)-\partial_{\xi^{q}} A^{q}(x, \xi) \delta_{k}^{j} \\
A^{j}(x, \xi)=\xi^{j} \operatorname{det} g(x) \cos \left(\frac{g_{\alpha \beta}(x) \xi^{\alpha} \xi^{\beta}}{2}\right)
\end{gathered}
$$

defines a solution (C, V) to the BB-OT formulation. ref: https://hal.archives-ouvertes.fr/hal-03311171

Finally, we check that, whenever (g, Γ) is a smooth solution to the Einstein equations in vacuum, then

$$
\begin{gathered}
V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma} \\
C_{k}^{j}(x, \xi)=\partial_{\xi^{k}} A^{j}(x, \xi)-\partial_{\xi^{q}} A^{q}(x, \xi) \delta_{k}^{j} \\
A^{j}(x, \xi)=\xi^{j} \operatorname{det} g(x) \cos \left(\frac{g_{\alpha \beta}(x) \xi^{\alpha} \xi^{\beta}}{2}\right)
\end{gathered}
$$

defines a solution (C, V) to the BB-OT formulation.
ref: https://hal.archives-ouvertes.fr/hal-03311171
END OF PROOF!

THANKS FOR YOUR ATTENTION!

THANKS FOR YOUR ATTENTION!

Thanks to Bernard Julia and François-Xavier Vialart for their help!

