Invariants in restriction of admissible representations of p-adic groups

Kwangho Choiy

Southern Illinois University, Carbondale, IL, USA

France-Korea IRL webinar in Number Theory

December 20, 2021

Part I:
Objective - conjectural statements in LLC for p-adic groups

Part II:
Methodology - restriction and lifting in a certain pair (G, H)

Achievements - successful cases (G, H)

Part III:
Obstacles - issues towards general cases (G, H)

Some recent developments - resolutions of some obstacles

Part I

Objective - conjectural statements in LLC for p-adic groups

LLC for tempered representations of p-adic groups

- F is a p-adic field of characteristic 0 .
- W_{F} is the Weil group of F, and Γ is the absolute Galois group $\operatorname{Gal}(\bar{F} / F)$.
- G is a connected, reductive, linear, algebraic group over F.
- ${ }^{L} G:=\widehat{G} \rtimes \Gamma$.

LLC for tempered representations of p-adic groups

- F is a p-adic field of characteristic 0 .
- W_{F} is the Weil group of F, and Γ is the absolute Galois group $\operatorname{Gal}(\bar{F} / F)$.
- G is a connected, reductive, linear, algebraic group over F.
- ${ }^{L} G:=\widehat{G} \rtimes \Gamma$.

e.g. $)$	G	$G L_{n}$	$G L_{m}(D)$	$S L_{n}$	$S L_{m}(D)$	$S O_{2 n+1}$
	\hat{G}	$G L_{n}(\mathbb{C})$	$G L_{m d}(\mathbb{C})$	$P S L_{n}(\mathbb{C})$	$P S L_{m d}(\mathbb{C})$	$S p_{2 n}(\mathbb{C})$
	$S O_{2 n}(\mathbb{C})$					

- $\operatorname{Irr}_{\text {temp }}(G)$ is the set of equivalence classes of irreducible, tempered, complex representations of $G(F)$.
- $\Phi_{\text {temp }}(G)$ is the set of \widehat{G}-conjugacy classes of tempered L-parameters (an L-parameter $\varphi: W_{F} \times S L_{2}(\mathbb{C}) \rightarrow{ }^{L} G$ is tempered if $\varphi\left(W_{F}\right)$ is bounded).
- $\operatorname{Irr}_{\text {temp }}(G)$ is the set of equivalence classes of irreducible, tempered, complex representations of $G(F)$.
- $\Phi_{\text {temp }}(G)$ is the set of \widehat{G}-conjugacy classes of tempered L-parameters (an L-parameter $\varphi: W_{F} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow{ }^{L} G$ is tempered if $\varphi\left(W_{F}\right)$ is bounded).

Tempered local Langlands conjecture of p-adic groups

There is a surjective, finite-to-one map

$$
\mathscr{L}_{\text {temp }}: \operatorname{Irr} r_{\text {temp }}(G) \longrightarrow \Phi_{\text {temp }}(G) .
$$

This map is supposed to satisfy a number of natural properties. $\mathscr{L}_{\text {temp }}$ preserves γ factors, L-factors, and ε-factors, if they are available in both sides

Example $G=\mathrm{GL}_{2}(F)$

$$
\mathscr{L}_{\text {temp }}: \operatorname{Irr} \text { temp }\left(G L_{2}\right) \xrightarrow{\text { bijection }} \Phi_{\text {temp }}\left(G L_{2}\right) .
$$

More precisely, given $\left[F: \mathbb{Q}_{p}\right]<\infty, G=G L_{2}$, Art $_{F}: F^{\times} \xrightarrow{\sim} W_{F}^{a b}$, and $\chi, \chi_{i} \in \operatorname{Hom}_{\text {cont }}\left(F^{\times}, \mathbb{C}^{\times}\right)$, the above bijection provides:

$$
\begin{gathered}
\chi \circ \operatorname{det} \longleftrightarrow\left(\chi|\cdot|_{F}^{1 / 2} \circ \operatorname{Art}_{F}^{-1}\right) \oplus\left(\chi|\cdot|^{-1 / 2} \circ \operatorname{Art}_{F}^{-1}\right) \\
i_{B}^{G}\left(\chi_{1} \otimes \chi_{2}\right) \longleftrightarrow\left(\chi_{1} \circ \operatorname{Art}_{F}^{-1}\right) \oplus\left(\chi_{2} \circ \operatorname{Art}_{F}^{-1}\right)
\end{gathered}
$$

Internal Structure of L-packets

- For any $\varphi_{G} \in \Phi_{\text {temp }}(G), \Pi_{\varphi_{G}}(G):=\mathscr{L}_{\text {temp }}^{-1}\left(\varphi_{G}\right)$ denotes a tempered L-packet.

Internal Structure of L-packets

- For any $\varphi_{G} \in \Phi_{\text {temp }}(G), \Pi_{\varphi_{G}}(G):=\mathscr{L}_{\text {temp }}^{-1}\left(\varphi_{G}\right)$ denotes a tempered L-packet.
- $\operatorname{Irr}\left(\mathscr{S}_{\varphi, s c}(\widehat{G}), \zeta_{G}\right)$ denotes the set of irreducible representations of $\mathscr{S}_{\varphi, \text { sc }}(\widehat{G})$ whose restriction to $\widehat{Z}_{\varphi, s c}(G)$ equals ζ_{G}. Here, $\mathscr{S}_{\varphi, \text { sc }}(\widehat{G})$ fits into a central extension (the version of discrete φ)

$$
1 \longrightarrow \widehat{Z}_{\varphi, \mathrm{sc}}(G) \longrightarrow \mathscr{S}_{\varphi, \mathrm{sc}}(\widehat{G}) \longrightarrow \mathscr{S}_{\varphi}(\widehat{G}) \longrightarrow 1
$$

where

$$
\begin{aligned}
\mathscr{S}_{\varphi}(\widehat{\mathbf{G}}) & :=\pi_{0}\left(S_{\varphi}(\widehat{\mathbf{G}})\right), \\
\mathscr{S}_{\varphi, \mathrm{sc}}(\widehat{\mathbf{G}}) & :=\pi_{0}\left(S_{\varphi, \mathrm{sc}}(\widehat{\mathbf{G}})\right), \\
\widehat{Z}_{\varphi, s \mathrm{sc}}(\mathbf{G}) & :=Z\left(\widehat{\mathbf{G}}_{\mathrm{sc}}\right) /\left(Z\left(\widehat{\mathbf{G}}_{\mathrm{sc}}\right) \cap S_{\varphi, \mathrm{sc}}(\widehat{\mathbf{G}})^{\circ}\right),
\end{aligned}
$$

Internal structure of L-packets (Arthur version)

Fixing a Whittaker datum, there is a one-to-one correspondence

$$
\Pi_{\varphi}(G) \stackrel{1-1}{\longleftrightarrow} \operatorname{lrr}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}(\hat{G}), \zeta_{G}\right)
$$

along with endoscopic character identity.

Internal structure of L-packets (Arthur version)

Fixing a Whittaker datum, there is a one-to-one correspondence

$$
\Pi_{\varphi}(G) \stackrel{1-1}{\longleftrightarrow} \operatorname{lrr}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}(\hat{G}), \zeta_{G}\right)
$$

along with endoscopic character identity.

Note: Originally formulated by Arthur / Refined by Kaletha using a slightly different group than $\mathscr{S}_{\varphi_{G}, \mathrm{sc}}(\widehat{G})$, and there is a bijection between two formulations.

Example $G=\mathrm{GL}_{1}(D), \mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$

$G=\mathrm{GL}_{1}(D), D$ a quaternion division algebra over \mathbb{Q}_{p}

$$
1 \longrightarrow \widehat{Z}_{\varphi_{G}, s c}(G)=\mu_{2}(\mathbb{C}) \longrightarrow \mathscr{S}_{\varphi, s c}(\widehat{G}) \simeq \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathscr{S}_{\varphi_{G}}(\widehat{G})=\pi_{0}\left(\operatorname{Cent}\left(\varphi_{G}, \widehat{G}\right) / Z(\widehat{G})^{\Gamma}\right)=1 \longrightarrow 1 .
$$

$\operatorname{Hom}\left(\mu_{2}(\mathbb{C}), \mathbb{C}^{\times}\right)=\{\mathbb{1}, \operatorname{sgn}\}$
$-G=G L_{2}, \zeta_{G L_{2}}=\mathbb{1}$

$$
\Pi_{\varphi_{G}}\left(G L_{2}(F)\right) \stackrel{1-1}{\longleftrightarrow} \operatorname{lrr}\left(\mu_{2}(\mathbb{C}), \mathbb{1}\right)=\{\mathbb{1}\} .
$$

$-G=G L_{1}(D), \zeta_{G L_{2}}=\operatorname{sgn}$

$$
\Pi_{\varphi_{G}}\left(G L_{1}(D)\right) \stackrel{1-1}{\longrightarrow} \operatorname{lrr}\left(\mu_{2}(\mathbb{C}), \mathrm{sgn}\right)=\{\mathrm{sgn}\} .
$$

- GL_{n} (Harris-Taylor 2000, Henniart 2003, Scholze 2013);
- SL $_{n}$ (Gelbart-Knapp 1982);
- non-quasi-split F-inner forms of GL_{n} and SL_{n} (Labesse-Langlands 1979, Hiraga-Saito 2012);
- GSp_{4}, Sp_{4} (Gan-Takeda 2010,2011);
- non-quasi-split F-inner form $\mathrm{GSp}_{1,1}$ of GSp_{4} (Gan-Tantono 2014);
- $\mathrm{Sp}_{2 n}, \mathrm{SO}_{n}, \mathrm{SO}_{2 n}^{*}$ (Arthur 2013);
- U_{n} (Rogawski 1990, Mok 2015), non quasi-split F-inner forms of U_{n} (Rogawski 1990, Kaletha-Minguez-Shin-White 2014);
- non-quasi-split F-inner form $\mathrm{Sp}_{1,1}$ of Sp_{4} (C. 2017);
- GSpin $_{4}$, GSpin $_{6}$ and their inner forms (Asgari-C. 2017);
- $\mathrm{GSp}_{2 n}, \mathrm{GO}_{2 n}$ (Xu 2017).
- ...
- GL_{n} (Harris-Taylor 2000, Henniart 2003, Scholze 2013);
- SL $_{n}$ (Gelbart-Knapp 1982);
- non-quasi-split F-inner forms of GL_{n} and SL_{n} (Labesse-Langlands 1979, Hiraga-Saito 2012);
- $\mathrm{GSp}_{4}, \mathrm{Sp}_{4}$ (Gan-Takeda 2010,2011);
- non-quasi-split F-inner form $\mathrm{GSp}_{1,1}$ of GSp_{4} (Gan-Tantono 2014);
- $\mathrm{Sp}_{2 n}, \mathrm{SO}_{n}, \mathrm{SO}_{2 n}^{*}$ (Arthur 2013);
- U_{n} (Rogawski 1990, Mok 2015), non quasi-split F-inner forms of U_{n} (Rogawski 1990, Kaletha-Minguez-Shin-White 2014);
- non-quasi-split F-inner form $\mathrm{Sp}_{1,1}$ of Sp_{4} (C. 2017);
- GSpin $_{4}$, GSpin $_{6}$ and their inner forms (Asgari-C. 2017);
- $\mathrm{GSp}_{2 n}, \mathrm{GO}_{2 n}$ (Xu 2017).
- ...

Methodology - restriction and lifting in a certain pair (G, H)

Achievements - successful cases (G, H)

Restriction and lifting in a certain pair (G, H)

- G connected reductive group over a p-adic field F.
- H closed F-subgroup of G such that

$$
H_{\mathrm{der}}=G_{\mathrm{der}} \subseteq H \subseteq G .
$$

e.g.) | G | $G L$ | $G L(D)$ | $G S p$ | $G S O$ | U |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | H | $S L$ | $S L(D)$ | $S p$ | $S O$ |

(. F-Levi subgroups: $M_{G} \subseteq G$ and $M_{H}=M_{G} \cap H \subseteq H$

$$
\Rightarrow\left(M_{H}\right)_{\mathrm{der}}=\left(M_{G}\right)_{\mathrm{der}} \subseteq M_{H} \subseteq M_{G}
$$

Big Picture

$\underline{p-a d i c}$ group/Representation side:

Big Picture

p-adic group/Representation side:

Big Picture

p-adic group/Representation side:

L-group/Galois/L-parameter side:

Big Picture

p-adic group/Representation side:

L-group/Galois/L-parameter side:

$$
\Phi(G) \rightarrow \Phi(H)
$$

LLC for $G \Rightarrow$ LLC for H

Recall(LLC for \square):

$$
\mathscr{L}_{\text {temp }}: \operatorname{Irr}_{\text {temp }}(\square) \longrightarrow \Phi_{\text {temp }}(\square)
$$

LLC for $G \Rightarrow$ LLC for H

Recall(LLC for \square):

$$
\mathscr{L}_{\text {temp }}: \operatorname{Irr} \text { temp }(\square) \longrightarrow \Phi_{\text {temp }}(\square)
$$

- Given $\sigma \in \operatorname{Irr}(H)$, there is a lifting $\tilde{\sigma} \in \operatorname{Irr}(G)$ such that

$$
\sigma \hookrightarrow \operatorname{Res}_{H}^{G}(\widetilde{\sigma}),
$$

due to: Labesse-Langlands, Gelbart-Knapp, Tadić, and others.

- LLC for $G, \mathscr{L}_{G}: \operatorname{Irr}(G) \rightarrow \Phi(G)$, assigns an L-parameter $\mathscr{L}_{G}(\widetilde{\sigma})$.
- Due to Weil, Henniart, Labesse:

$$
\Phi(G) \rightarrow \Phi(H)
$$

- Under a surjective map $\widehat{G} \rightarrow \widehat{H}$, We define:

$$
\begin{aligned}
\mathscr{L}_{H}: \operatorname{lrr}(H) & \longrightarrow \Phi(H) \\
\sigma & \longmapsto p r \circ \mathscr{L}_{G}(\widetilde{\sigma}) .
\end{aligned}
$$

$\Rightarrow \mathscr{L}_{H}$ is finite-to-one, surjective as desired for H.

- Due to Weil, Henniart, Labesse:

$$
\Phi(G) \rightarrow \Phi(H)
$$

- Under a surjective map $\widehat{G} \rightarrow \widehat{H}$, We define:

$$
\begin{aligned}
\mathscr{L}_{H}: \operatorname{lrr}(H) & \longrightarrow \Phi(H) \\
\sigma & \longmapsto p r \circ \mathscr{L}_{G}(\widetilde{\sigma}) .
\end{aligned}
$$

$\Rightarrow \mathscr{L}_{H}$ is finite-to-one, surjective as desired for H.

Remarks:

- It is independent of the choice of the lifting $\tilde{\sigma}$.
- This is a case of the (local) principal of functoriality, as we had $\widehat{G} \rightarrow \widehat{H}$.

Internal structure of L-packets for $G \Rightarrow$ that for H

Recall(Internal structure of L-packets for \square):

$$
\Pi_{\varphi}(\square) \stackrel{1-1}{\rightleftarrows} \operatorname{rr}\left(\mathscr{S}_{\varphi_{\square}, \mathrm{sc}}(\widehat{\square}), \zeta_{\square}\right)
$$

Internal structure of L-packets for $G \Rightarrow$ that for H

Recall(Internal structure of L-packets for \square):

$$
\Pi_{\varphi}(\square) \stackrel{1-1}{\rightleftarrows} \operatorname{rr}\left(\mathscr{S}_{\varphi_{\square}, \mathrm{sc}}(\widehat{\square}), \zeta_{\square}\right)
$$

We consider:

$$
\left\{a \in H^{1}\left(W_{F}, \widehat{(G / H)}\right): a \varphi_{G} \simeq \varphi_{G} \text { in } \widehat{G}\right\} / \operatorname{Im}\left(Z(\widehat{H})^{\Gamma} \rightarrow H^{1}\left(W_{F}, \widehat{G / H}\right)\right)
$$

Denote it by $\boldsymbol{X}\left(\varphi_{G}\right)$.

Internal structure of L-packets for $G \Rightarrow$ that for H

Recall(Internal structure of L-packets for \square):

$$
\Pi_{\varphi}(\square) \stackrel{1-1}{\rightleftarrows} \operatorname{rr}\left(\mathscr{S}_{\varphi_{\square}, \mathrm{sc}}(\widehat{\square}), \zeta_{\square}\right)
$$

We consider:

$$
\left\{a \in H^{1}\left(W_{F}, \widehat{(G / H)}\right): a \varphi_{G} \simeq \varphi_{G} \text { in } \widehat{G}\right\} / \operatorname{Im}\left(Z(\widehat{H})^{\Gamma} \rightarrow H^{1}\left(W_{F}, \widehat{G / H}\right)\right)
$$

Denote it by $\boldsymbol{X}\left(\varphi_{G}\right)$.

Observe:

- $\boldsymbol{X}\left(\varphi_{G}\right)$ is a finite abelian group.
- An exact sequence of finite groups

$$
\mathbf{1} \longrightarrow \mathscr{S}_{\varphi_{G}, \mathrm{sc}} \longrightarrow \mathscr{S}_{\varphi_{H}, \mathrm{sc}} \longrightarrow \boldsymbol{X}\left(\varphi_{G}\right) \longrightarrow \mathbf{1}
$$

equipped in the following commutative diagram:

Successful cases (G, H)

- $G=\mathrm{GL}_{n}, H=\mathrm{SL}_{n}$ (Gelbart-Knapp 1982);
- $G=\mathrm{GL}_{m}(D), H=\mathrm{SL}_{m}(D)$ (Labesse-Langlands 1979, Hiraga-Saito 2012);
- $G=\mathrm{GSp}_{4}, H=\mathrm{Sp}_{4}$ (Gan-Takeda 2010,2011);
- $G=\mathrm{GSp}_{1,1}, H=\mathrm{Sp}_{1,1}$ (C. 2017);
- $G=\mathrm{GL}_{2} \times \mathrm{GL}_{2}, H=\mathrm{GSpin}_{4} ; G=\mathrm{GL}_{4} \times \mathrm{GL}_{1}, H=\mathrm{GSpin}_{6}$, and their inner forms (Asgari-C. 2017),

$G=\mathrm{GL}_{2}, H=\mathrm{SL}_{2}$ (Gelbart-Knapp 1982)

-

$$
\mathscr{S}_{\varphi_{H}}(\widehat{H}) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z}, 1, \quad\left|\Pi_{\varphi}(H)\right|=1,2,4
$$

$G=\mathrm{GL}_{2}, H=\mathrm{SL}_{2}$ (Gelbart-Knapp 1982)

-

$$
\mathscr{S}_{\varphi_{H}}(\widehat{H}) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z}, 1, \quad\left|\Pi_{\varphi}(H)\right|=1,2,4 .
$$

- For $\varphi_{G} \in \Phi(G)$ dihedral with respect to three quadratic extensions:
-

$$
\mathscr{S}_{\varphi_{G}}\left(\widehat{\mathrm{GL}} \mathrm{~L}_{2}\right)=\{1\}, \quad \mathscr{S}_{\varphi_{H}}\left(\widehat{\mathrm{SL}_{2}}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

-

$$
\Pi_{\varphi_{G}}\left(\mathrm{GL}_{2}\right)=\{\tilde{\sigma}\}, \quad \operatorname{Res}_{\mathrm{SL}_{2}}^{\mathrm{GL}_{2}}(\tilde{\sigma})=\Pi_{\varphi_{H}}\left(\mathrm{SL}_{2}\right)=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}
$$

- Thus,

$$
\Pi_{\varphi} \stackrel{1-1}{\longleftrightarrow} \operatorname{lrr}\left(\mathscr{S}_{\varphi}\left(\widehat{\mathrm{SL}_{2}}\right), \mathbb{1}\right)=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\}
$$

$G=\mathrm{GL}_{1}(D), H=\mathrm{SL}_{1}(D)$ (Labesse-Langlands 1979, Hiraga-Saito 2012)

D quaternion division algebra over F
-

$$
\mathscr{S}_{\varphi_{H}, s c}(\widehat{H}) \simeq Q_{8}, \quad \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z}, \quad\left|\Pi_{\varphi_{H}}(H)\right|=1,2,4 .
$$

$G=\mathrm{GL}_{1}(D), H=\mathrm{SL}_{1}(D)$ (Labesse-Langlands 1979, Hiraga-Saito 2012)

D quaternion division algebra over F
-

$$
\mathscr{S}_{\varphi_{H}, \mathrm{sc}}(\widehat{H}) \simeq Q_{8}, \quad \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z}, \quad\left|\Pi_{\varphi_{H}}(H)\right|=1,2,4 .
$$

- For $\varphi_{G} \in \Phi(G)$ dihedral with respect to three quadratic extensions:
-

$$
1 \longrightarrow \mu_{2}(\mathbb{C}) \longrightarrow \mathscr{S}_{\varphi_{H}, \mathrm{sc}}(\widehat{\mathrm{SL}(D)}) \simeq Q_{8} \longrightarrow \mathscr{S}_{\varphi_{H}}(\widehat{\mathrm{SL}(D)}) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 1
$$

where Q_{8} denotes the quaternion group of order 8.

$$
\operatorname{Irr}\left(Q_{8}\right)=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \rho^{\prime}\right\}
$$

where χ_{i} 's are distinct 1-dimensional representations, and ρ^{\prime} is the 2 -dimensional representation of Q_{8}.
-

$$
\Pi_{\varphi_{G}}\left(\mathrm{GL}_{1}(D)\right)=\left\{\tilde{\sigma}^{\prime}\right\}, \quad \operatorname{Res}_{\mathrm{SL}_{1}(D)}^{\mathrm{GL}_{1}(D)}\left(\tilde{\sigma}^{\prime}\right)=\Pi_{\varphi}\left(\mathrm{SL}_{1}(D)\right)=\left\{\sigma^{\prime}\right\}
$$

- Thus,

$$
\Pi_{\varphi}\left(\mathrm{SL}_{1}(D)\right) \stackrel{1-1}{\longleftrightarrow} \operatorname{lrr}\left(\mathscr{S}_{\varphi, \mathrm{sc}}(\widehat{\mathrm{SL}(D)}), \mathrm{sgn}\right)=\left\{\rho^{\prime}\right\}
$$

where we correspond $\sigma^{\prime} \leftrightarrow \rho^{\prime}$.

$G=\mathrm{GSp}_{1,1}, H=\mathrm{Sp}_{1,1}(\mathrm{C} .2017)$

The group $\mathscr{S}_{\varphi, s \mathrm{c}}\left(\widehat{\mathrm{Sp}_{1,1}}\right)$ is isomorphic to one of the following seven groups:
(1) $\mathbb{Z} / 2 \mathbb{Z}$,
(2) $(\mathbb{Z} / 2 \mathbb{Z})^{2}$,
(3) $\mathbb{Z} / 4 \mathbb{Z}$,
(9) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$,
(6) the dihedral group \mathscr{D}_{8} of order 8 ,
(6) the Pauli group $\{ \pm I, \pm i l, \pm X, \pm i X, \pm Y, \pm i Y, \pm Z, \pm i Z\}$, where $i=\sqrt{-1}$,

$$
I=I_{2 \times 2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(1) the central product of \mathscr{D}_{8} and the quaternion group of order 8 .

By-product: L-packet size $\left|\Pi_{\varphi}\left(\mathrm{Sp}_{1,1}\right)\right|=1,2,4$.

$G=\mathrm{GSp}_{1,1}, H=\mathrm{Sp}_{1,1}(\mathrm{C} .2017)$

Consider $\varphi_{G}=\varphi_{0} \oplus\left(\varphi_{0} \otimes \chi\right) \in \Phi\left(\mathrm{GSp}_{4}\right)$

- χ is a quadratic character,
- $\varphi_{0} \in \Phi\left(\mathrm{GL}_{2}\right)$ is primitive (i.e., $\varphi_{0} \neq \operatorname{Ind}_{W_{E}}^{W_{F}} \rho$ for a finite extension E / F and some irreducible ρ)
- $\varphi_{0} \nsim \varphi_{0} \otimes \chi$.
- The projection φ of φ_{G} onto $\widehat{\mathrm{Sp}_{4}}=\mathrm{SO}_{5}(\mathbb{C})$ is

$$
\varphi=\mathbb{1} \oplus \chi \oplus A d\left(\varphi_{0}\right) \chi \in \Phi\left(\mathrm{Sp}_{4}\right)
$$

$$
\Pi_{\varphi}\left(\mathrm{Sp}_{1,1}\right)=\left\{\sigma^{\prime}\right\} \stackrel{1-1}{\longleftrightarrow} \operatorname{Irr}\left(\mathscr{S}_{\varphi, \mathrm{sc}}\left(\widehat{\mathrm{Sp}_{1,1}}\right), \mathrm{sgn}\right)=\operatorname{lrr}\left(\mathscr{D}_{8}, \mathrm{sgn}\right)
$$

Obstacles - issues towards general cases (G, H)

Some recent developments - resolutions of some obstacles

Empirical Knowledge from SL $_{n}$

$$
\begin{gathered}
\mathrm{GL}_{n}, \Pi_{\varphi_{G}}(G)=\left\{\operatorname{Ind}_{M_{G}}^{G} \tilde{\sigma}\right\} \\
\mathrm{SL}_{n}, \Pi_{\varphi}\left(\mathrm{SL}_{n}\right)=\left\{\pi \subset \operatorname{Res}_{\mathrm{SL}_{n}}^{\mathrm{GL}}\left(\ln d_{M_{G}}^{G} \tilde{\sigma}\right)\right\} / \simeq \\
\operatorname{Res}_{\mathrm{SL}_{n}}^{\mathrm{GL}}\left(\operatorname{Ind} M_{M_{G}}^{G} \tilde{\sigma}\right) \\
M\left(\simeq \operatorname{SL}_{n} \cap \Pi \operatorname{lin}_{n_{i}}\right), \sigma \in \Pi_{\text {disc }}(M)
\end{gathered}
$$

"compatible" $\mathbb{\imath}$

$$
\begin{aligned}
& G L_{n} \\
& \mathrm{SL}_{n}, \Pi_{\varphi}\left(\mathrm{SL}_{n}\right)=\left\{\text { irred. const. of } I n d_{M}^{\mathrm{SL}}(\tau) \mid \tau \in \Pi_{\varphi}(M)\right\} / \simeq \quad M_{G}\left(\simeq \prod_{\mathrm{GL}_{n_{i}}}\right), \Pi_{\varphi_{G}}\left(M_{G}\right)=\{\widetilde{\sigma}\} \\
& R_{\tau} \text { known } \mathrm{Ind}_{M}^{\mathrm{SL}_{n}} \quad \operatorname{Res}_{M_{H}}^{M_{G}} \text { Multiplicity }=1 \\
& M\left(\simeq \mathrm{SL}_{n} \cap \Pi \mathrm{GL}_{n_{i}}\right), \sigma \in \Pi_{\text {disc }}(M), \Pi_{\varphi}(M)=\left\{\tau \subset \operatorname{Res}_{M_{H}}^{M_{G}}\left(\operatorname{Res}_{M_{H}}^{M_{G}} \widetilde{\sigma}\right)\right\} / \simeq
\end{aligned}
$$

Definition of Multiplicity in restriction

- Fap-adic field of characteristic 0
- G a connected reductive group over F
- H a closed F-subgroup of G such that $H_{\text {der }}=G_{\text {der }} \subseteq H \subseteq G$.

Definition of Multiplicity in restriction

- Fap-adic field of characteristic 0
- G a connected reductive group over F
- H a closed F-subgroup of G such that $H_{\text {der }}=G_{\text {der }} \subseteq H \subseteq G$.

Given irreducible smooth representations $\sigma \in \operatorname{Irr}(H)$ and $\pi \in \operatorname{Irr}(G)$, the multiplicity $\langle\sigma, \pi\rangle_{H}$ of σ in the restriction $\operatorname{Res}_{H}^{G}(\pi)$ of π to H is defined as follows:

$$
\langle\sigma, \pi\rangle_{H}:=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{H}\left(\sigma, \operatorname{Res}_{H}^{G}(\pi)\right) \in \mathbb{N} \cup\{0\} .
$$

e.g.) $G=G L_{n}, H=S L_{n}$, any $\pi \in \operatorname{Irr}(H), \sigma \in \operatorname{lrr}(H)$, we have $\langle\sigma, \pi\rangle_{H}=0$, or 1 .

Definition of Multiplicity in restriction

- F a p-adic field of characteristic 0
- G a connected reductive group over F
- H a closed F-subgroup of G such that $H_{\text {der }}=G_{\text {der }} \subseteq H \subseteq G$.

Given irreducible smooth representations $\sigma \in \operatorname{Irr}(H)$ and $\pi \in \operatorname{Irr}(G)$, the multiplicity $\langle\sigma, \pi\rangle_{\boldsymbol{H}}$ of σ in the restriction $\operatorname{Res}_{H}^{G}(\pi)$ of π to H is defined as follows:

$$
\langle\sigma, \pi\rangle_{\boldsymbol{H}}:=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{H}\left(\sigma, \operatorname{Res}_{H}^{G}(\pi)\right) \in \mathbb{N} \cup\{0\} .
$$

e.g.) $G=G L_{n}, H=S L_{n}$, any $\pi \in \operatorname{Irr}(H), \sigma \in \operatorname{Irr}(H)$, we have $\langle\sigma, \pi\rangle_{H}=0$, or 1 .

- H a subgroup of a finite group \widetilde{H}

Given $\tilde{\delta} \in \operatorname{lrr}(G)$ and $\gamma \in \operatorname{Irr}(H)$, the multiplicity $\langle\tilde{\delta}, \gamma\rangle_{H}$ of γ in the restriction $\operatorname{Res}_{H}^{G}(\tilde{\delta})$ of γ to H is defined as follows:

$$
\langle\tilde{\delta}, \gamma\rangle_{H}:=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{H}\left(\tilde{\delta}, \operatorname{Res}_{H}^{G}(\gamma)\right) \in \mathbb{N} \cup\{0\}
$$

e.g.) $H<G$ with index 2 , any $\tilde{\delta} \in \operatorname{Irr}(G), \gamma \in \operatorname{Irr}(H)$, we have $\langle\tilde{\delta}, \gamma\rangle_{H}=0$, or 1 , or 2.

Example in $\mathrm{SL}(1, D)$

(Labesse-Langlands, Shelstad 1979)

- $G=\operatorname{GL}(1, D), H=\operatorname{SL}(1, D), D$ is the quaternion division algebra over F.
- $\varphi: W_{F} \times S L(2, \mathbb{C}) \rightarrow \widehat{H}=\operatorname{PGL}(2, \mathbb{C})$ is an L-parameter for H and $\Pi_{\varphi}(H)$ is the L-packet.
- For any $\sigma \in \operatorname{Irr}(H)$ and $\pi \in \operatorname{Irr}(G)$,

$$
\langle\sigma, \pi\rangle_{H}= \begin{cases}2, & \text { if } \sigma \in \Pi_{\varphi}(H), \operatorname{pr} \circ \varphi_{\pi}=\varphi, \operatorname{Cent}(\varphi, \widehat{H}) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\ 1, & \text { if } \sigma \in \Pi_{\varphi}(H), \operatorname{pr} \circ \varphi_{\pi}=\varphi, \operatorname{Cent}(\varphi, \widehat{H}) \nsucceq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\ 0, & \text { otherwise }\end{cases}
$$

Definition of three R-groups

- $P=M N$: a standard F-parabolic subgroup of G.
- A_{M} : the split component of M.
- $W(G, M)=N_{G}\left(A_{M}\right) / Z_{G}\left(A_{M}\right)$.
- $\Phi\left(P, A_{M}\right)$: the set of reduced roots of P with respect to A_{M}.
- Given $\sigma \in \Pi_{\text {disc }}(M), W(\sigma):=\left\{w \in W(G, M):{ }^{w} \sigma \simeq \sigma\right\}$
- W_{σ}° is the subgroup of $W(\sigma)$ generated by the reflections in the roots of $\left\{\alpha \in \Phi\left(P, A_{M}\right): \mu_{\alpha}(\sigma)=0\right\}$, where $\mu_{\alpha}(\sigma)$ is the rank one Plancherel measure for σ attached to α.

Definition of three R-groups

- $P=M N$: a standard F-parabolic subgroup of G.
- A_{M} : the split component of M.
- $W(G, M)=N_{G}\left(A_{M}\right) / Z_{G}\left(A_{M}\right)$.
- $\Phi\left(P, A_{M}\right)$: the set of reduced roots of P with respect to A_{M}.
- Given $\sigma \in \Pi_{\text {disc }}(M), W(\sigma):=\left\{w \in W(G, M):{ }^{w} \sigma \simeq \sigma\right\}$
- W_{σ}° is the subgroup of $W(\sigma)$ generated by the reflections in the roots of $\left\{\alpha \in \Phi\left(P, A_{M}\right): \mu_{\alpha}(\sigma)=0\right\}$, where $\mu_{\alpha}(\sigma)$ is the rank one Plancherel measure for σ attached to α.

Let $\sigma \in \Pi_{\text {disc }}(M)$ be given. The Knapp-Stein R-group is defined by

$$
\boldsymbol{R}_{\sigma}:=W(\sigma) / W_{\sigma}^{\circ}
$$

Definition of three R-groups

- $P=M N$: a standard F-parabolic subgroup of G.
- A_{M} : the split component of M.
- $W(G, M)=N_{G}\left(A_{M}\right) / Z_{G}\left(A_{M}\right)$.
- $\Phi\left(P, A_{M}\right)$: the set of reduced roots of P with respect to A_{M}.
- Given $\sigma \in \Pi_{\text {disc }}(M), W(\sigma):=\left\{w \in W(G, M):{ }^{w} \sigma \simeq \sigma\right\}$
- W_{σ}° is the subgroup of $W(\sigma)$ generated by the reflections in the roots of
$\left\{\alpha \in \Phi\left(P, A_{M}\right): \mu_{\alpha}(\sigma)=0\right\}$, where $\mu_{\alpha}(\sigma)$ is the rank one Plancherel measure for σ attached to α.

Let $\sigma \in \Pi_{\text {disc }}(M)$ be given. The Knapp-Stein R-group is defined by

$$
\boldsymbol{R}_{\sigma}:=W(\sigma) / W_{\sigma}^{\circ} .
$$

Note (Knapp-Stein (1972); Silberger (1978)) :

- $\operatorname{End}_{G}\left(i_{G, M}(\sigma)\right) \simeq \mathbb{C}\left[R_{\sigma}\right]_{\eta}$ as algebras, where $\eta \in H^{2}\left(R_{\sigma}, \mathbb{C}^{\times}\right)$.
\Rightarrow Reducibility of the parabolic induction $i_{M}^{G}(\sigma)$
$\leftrightarrow m$ Knapp-Stein R-group $\subset W(G, M)$
$\leftrightarrow \rightarrow$ Tempered non-discrete spectra and L-packets

Let $\phi: W_{F} \times S L_{2}(\mathbb{C}) \rightarrow \widehat{M} \hookrightarrow \widehat{G}$ be an elliptic tempered L-parameter for M.

- $C_{\phi}(\widehat{G})$ is the centralizer of the image of ϕ in \widehat{G} and $C_{\phi}(\widehat{G})^{\circ}$ is its identity component.
- T_{ϕ} is a fixed maximal torus in $C_{\phi}(\widehat{G})^{\circ}$.

Set $W_{\phi}^{\circ}:=N_{C_{\phi}(\hat{G})^{\circ}}\left(T_{\phi}\right) / Z_{C_{\phi}(\hat{G})^{\circ}}\left(T_{\phi}\right), \quad W_{\phi}:=N_{C_{\phi}(\hat{G})}\left(T_{\phi}\right) / Z_{C_{\phi}(\hat{G})}\left(T_{\phi}\right)$.
Note that W_{ϕ} can be identified with a subgroup of $W(G, M)$.
The endoscopic R-group R_{ϕ} is defined by

$$
R_{\phi}:=W_{\phi} / W_{\phi}^{\circ}
$$

Given $\sigma \in \Pi_{\phi}(M)$, the L-packet associated to the L-parameter ϕ,
Set $W_{\phi, \sigma}^{\circ}:=W_{\phi}^{\circ} \cap W(\sigma), \quad W_{\phi, \sigma}:=W_{\phi} \cap W(\sigma)$.
The Arthur R-group $R_{\phi, \sigma}$ is defined by

$$
R_{\phi, \sigma}:=W_{\phi, \sigma} / W_{\phi, \sigma}^{\circ} \hookrightarrow R_{\phi} .
$$

Let $\phi: W_{F} \times S L_{2}(\mathbb{C}) \rightarrow \widehat{M} \hookrightarrow \widehat{G}$ be an elliptic tempered L-parameter for M.

- $C_{\phi}(\widehat{G})$ is the centralizer of the image of ϕ in \widehat{G} and $C_{\phi}(\widehat{G})^{\circ}$ is its identity component.
- T_{ϕ} is a fixed maximal torus in $C_{\phi}(\widehat{G})^{\circ}$.

Set $W_{\phi}^{\circ}:=N_{C_{\phi}(\hat{G})^{\circ}}\left(T_{\phi}\right) / Z_{C_{\phi}(\hat{G})^{\circ}}\left(T_{\phi}\right), \quad W_{\phi}:=N_{C_{\phi}(\hat{G})}\left(T_{\phi}\right) / Z_{C_{\phi}(\hat{G})}\left(T_{\phi}\right)$.
Note that W_{ϕ} can be identified with a subgroup of $W(G, M)$.
The endoscopic R-group R_{ϕ} is defined by

$$
R_{\phi}:=W_{\phi} / W_{\phi}^{\circ}
$$

Given $\sigma \in \Pi_{\phi}(M)$, the L-packet associated to the L-parameter ϕ,
Set $W_{\phi, \sigma}^{\circ}:=W_{\phi}^{\circ} \cap W(\sigma), \quad W_{\phi, \sigma}:=W_{\phi} \cap W(\sigma)$.
The Arthur R-group $R_{\phi, \sigma}$ is defined by

$$
R_{\phi, \sigma}:=W_{\phi, \sigma} / W_{\phi, \sigma}^{\circ} \hookrightarrow R_{\phi} .
$$

Arthur Conjecture for R-groups : For $\sigma \in \Pi_{\phi}(M)$, we have

$$
R_{\sigma} \simeq R_{\phi, \sigma} \hookrightarrow R_{\phi} .
$$

Example in $S L\left(2, \mathbb{Q}_{p}\right)$

- $F=\mathbb{Q}_{p}$, where p is a prime number.
- $G(F)=S L\left(2, \mathbb{Q}_{p}\right), M(F)=\left\{\left(\begin{array}{ll}a & o \\ o & a^{-1}\end{array}\right): x \in \mathbb{Q}_{p}^{\times}\right\}$.
- $\sigma=\chi$: a unitary unramified character on $M(F)$ given by

$$
\chi\left(\begin{array}{cc}
a & o \\
o & a^{-1}
\end{array}\right)=|a|_{p}^{\pi \sqrt{-1} / \log p} .
$$

- $\phi: W_{\mathbb{Q}_{p}} \longrightarrow \mathbb{C}^{1}$ is given by χ from the local class field theory.

Then, we have

- $W(G, M)=\left\{I,\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\}=W_{\phi}=W_{\phi, \chi}$.
- $W_{\chi}^{\circ}=\{I\}=W_{\phi}^{\circ}=W_{\phi, \chi}^{\circ}$.

Therefore,

$$
R_{\chi} \simeq R_{\phi} \simeq R_{\phi, \chi} \simeq \mathbb{Z} / 2 \mathbb{Z}
$$

Some obstacles towards general (G, H)

Among many obstacles, we here single out the following:
(1) How to control the case of $\sigma_{G, 1}, \sigma_{G, 2} \in \Pi_{\varphi_{G}}(G)$ such that

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G, 1}\right) \simeq \operatorname{Res}_{H}^{G}\left(\sigma_{G, 2}\right) ?
$$

e.g.) $\left(G S p_{1,1}, S_{p 1,1}\right)(C .2017),\left(U_{n}, S U_{n}\right)$ (Adler-Prasad 2019), etc.

Some obstacles towards general (G, H)

Among many obstacles, we here single out the following:
(1) How to control the case of $\sigma_{G, 1}, \sigma_{G, 2} \in \Pi_{\varphi_{G}}(G)$ such that

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G, 1}\right) \simeq \operatorname{Res}_{H}^{G}\left(\sigma_{G, 2}\right) ?
$$

e.g.) $\left(G S p_{1,1}, S_{p 1,1}\right)(C .2017),\left(U_{n}, S U_{n}\right)$ (Adler-Prasad 2019), etc.
(2) How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_{G} \in \Pi_{\varphi_{G}}(G)$,

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G}\right) \simeq m \bigoplus_{\tau_{H} \in \Pi_{\sigma_{G}}(H)} \tau_{H} ?
$$

Here $\Pi_{\sigma_{G}}(H):=\left\{\tau_{H} \subset \operatorname{Res}_{H}^{G}\left(\sigma_{G}\right)\right\} / \simeq$.
e.g.) $\left(\mathrm{GL}_{m}(D), \mathrm{SL}_{m}(D)\right)$ (Labesse-Langlands 1979, Hiraga-Saito 2011), etc.

Some obstacles towards general (G, H)

Among many obstacles, we here single out the following:
(1) How to control the case of $\sigma_{G, 1}, \sigma_{G, 2} \in \Pi_{\varphi_{G}}(G)$ such that

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G, 1}\right) \simeq \operatorname{Res}_{H}^{G}\left(\sigma_{G, 2}\right) ?
$$

e.g.) $\left(G S p_{1,1}, S_{p 1,1}\right)(C .2017),\left(U_{n}, S U_{n}\right)$ (Adler-Prasad 2019), etc.
(2) How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_{G} \in \Pi_{\varphi_{G}}(G)$,

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G}\right) \simeq m \bigoplus_{\tau_{H} \in \Pi_{\sigma_{G}}(H)} \tau_{H} ?
$$

Here $\Pi_{\sigma_{G}}(H):=\left\{\tau_{H} \subset \operatorname{Res}_{H}^{G}\left(\sigma_{G}\right)\right\} / \simeq$.
e.g.) $\left(\mathrm{GL}_{m}(D), \mathrm{SL}_{m}(D)\right)$ (Labesse-Langlands 1979, Hiraga-Saito 2011), etc.
(3. Is there any way to characterize $\Pi_{\sigma_{G}}(H)$?
e.g.) $\left(\mathrm{GL}_{n}, \mathrm{SL}_{n}\right)$ (Gelbart-Knapp 1982), etc.

Some obstacles towards general (G, H)

Among many obstacles, we here single out the following:
(1) How to control the case of $\sigma_{G, 1}, \sigma_{G, 2} \in \Pi_{\varphi_{G}}(G)$ such that

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G, 1}\right) \simeq \operatorname{Res}_{H}^{G}\left(\sigma_{G, 2}\right) ?
$$

e.g.) $\left(G S p_{1,1}, S_{p 1,1}\right)(C .2017),\left(U_{n}, S U_{n}\right)$ (Adler-Prasad 2019), etc.
(2) How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_{G} \in \Pi_{\varphi_{G}}(G)$,

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G}\right) \simeq m \bigoplus_{\tau_{H} \in \Pi_{\sigma_{G}}(H)} \tau_{H} ?
$$

Here $\Pi_{\sigma_{G}}(H):=\left\{\tau_{H} \subset \operatorname{Res}_{H}^{G}\left(\sigma_{G}\right)\right\} / \simeq$.
e.g.) $\left(\mathrm{GL}_{m}(D), \mathrm{SL}_{m}(D)\right)$ (Labesse-Langlands 1979, Hiraga-Saito 2011), etc.
(3. Is there any way to characterize $\Pi_{\sigma_{G}}(H)$?
e.g.) $\left(\mathrm{GL}_{n}, \mathrm{SL}_{n}\right)$ (Gelbart-Knapp 1982), etc.
(4. In general, not canonical to find G and M_{G} with such "nice" properties.
e.g.) $H=E_{6}$, etc.

Some obstacles towards general (G, H)

Among many obstacles, we here single out the following:
(1. How to control the case of $\sigma_{G, 1}, \sigma_{G, 2} \in \Pi_{\varphi_{G}}(G)$ such that

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G, 1}\right) \simeq \operatorname{Res}_{H}^{G}\left(\sigma_{G, 2}\right) ?
$$

e.g.) $\left(G S p_{1,1}, S_{p 1,1}\right)(C .2017),\left(U_{n}, S U_{n}\right)$ (Adler-Prasad 2019), etc.
(2) How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_{G} \in \Pi_{\varphi_{G}}(G)$,

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G}\right) \simeq m \bigoplus_{\tau_{H} \in \Pi_{\sigma_{G}}(H)} \tau_{H} ?
$$

Here $\Pi_{\sigma_{G}}(H):=\left\{\tau_{H} \subset \operatorname{Res}_{H}^{G}\left(\sigma_{G}\right)\right\} / \simeq$.
e.g.) $\left(\mathrm{GL}_{m}(D), \mathrm{SL}_{m}(D)\right)$ (Labesse-Langlands 1979, Hiraga-Saito 2011), etc.
(3. Is there any way to characterize $\Pi_{\sigma_{G}}(H)$?
e.g.) $\left(\mathrm{GL}_{n}, \mathrm{SL}_{n}\right)$ (Gelbart-Knapp 1982), etc.
(4. In general, not canonical to find G and M_{G} with such "nice" properties. e.g.) $H=E_{6}$, etc.
(3. In general, the structure of R-groups for p-adic groups remains open.
e.g.) $H=$ exceptional groups, etc.

Multiplicity Formulae in Restriction

Theorem (C. 2019)

- Assuming LLC for both G and H and further two technical arguments,
- Given $\varphi_{H} \in \Phi_{\text {temp }}(H), \varphi_{G} \in \Phi_{\text {temp }}(G)$ such that $\varphi_{H}=p r \circ \varphi_{G}$ with pr: $\widehat{G} \rightarrow \widehat{H}$,
- For any $\sigma_{H} \in \Pi_{\varphi_{H}}(H) \leftrightarrow \rho_{H} \in \operatorname{Irr}\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}}, \zeta_{H}\right)$ and $\sigma_{G} \in \Pi_{\varphi_{G}}(G) \leftrightarrow \rho_{G} \in \operatorname{Irr}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}, \zeta_{G}\right)$, we have

Multiplicity Formulae in Restriction

Theorem (C. 2019)

- Assuming LLC for both G and H and further two technical arguments,
- Given $\varphi_{H} \in \Phi_{\text {temp }}(H), \varphi_{G} \in \Phi_{\text {temp }}(G)$ such that $\varphi_{H}=p r \circ \varphi_{G}$ with pr : $\widehat{G} \rightarrow \widehat{H}$,
-For any $\sigma_{H} \in \Pi_{\varphi_{H}}(H) \leftrightarrow \rho_{H} \in \operatorname{Irr}\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}}, \zeta_{H}\right)$ and $\sigma_{G} \in \Pi_{\varphi_{G}}(G) \leftrightarrow \rho_{G} \in \operatorname{Irr}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}, \zeta_{G}\right)$, we have

$$
\left\langle\sigma_{H}, \sigma_{G}\right\rangle_{H}=\left\langle\rho_{G}, \rho_{H}\right\rangle_{\mathscr{S}_{G}, s \mathrm{sc}}
$$

and

$$
\left\langle\sigma_{H}, \sigma_{G}\right\rangle_{H}=\frac{\operatorname{dim} \rho_{H}}{\operatorname{dim} \rho_{G}} \cdot\left|\Pi_{\rho_{H}}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}\right)\right|^{-1}
$$

where $\Pi_{\rho_{H}}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}\right):=\left\{\delta \subset \operatorname{Res}_{\mathscr{S}_{\varphi_{G}, s \mathrm{sc}}}^{\mathscr{S}_{\varphi_{H}}, \mathrm{sc}} \rho_{H}\right\} / \simeq$.
Ideas of proof: some Galois cohomological arguments + Clifford theory for finite groups.

Multiplicity Formulae in Restriction

Theorem (C. 2019)

- Assuming LLC for both G and H and further two technical arguments,
- Given $\varphi_{H} \in \Phi_{\text {temp }}(H), \varphi_{G} \in \Phi_{\text {temp }}(G)$ such that $\varphi_{H}=p r \circ \varphi_{G}$ with pr: $\widehat{G} \rightarrow \widehat{H}$,
-For any $\sigma_{H} \in \Pi_{\varphi_{H}}(H) \leftrightarrow \rho_{H} \in \operatorname{Irr}\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}}, \zeta_{H}\right)$ and $\sigma_{G} \in \Pi_{\varphi_{G}}(G) \leftrightarrow \rho_{G} \in \operatorname{Irr}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}, \zeta_{G}\right)$, we have

$$
\left\langle\sigma_{H}, \sigma_{G}\right\rangle_{H}=\left\langle\rho_{G}, \rho_{H}\right\rangle_{\mathscr{S}_{G}, s \mathrm{sc}}
$$

and

$$
\left\langle\sigma_{H}, \sigma_{G}\right\rangle_{H}=\frac{\operatorname{dim} \rho_{H}}{\operatorname{dim} \rho_{G}} \cdot\left|\Pi_{\rho_{H}}\left(\mathscr{S}_{\varphi_{G}, s \mathrm{sc}}\right)\right|^{-1}
$$

where $\Pi_{\rho_{H}}\left(\mathscr{S}_{\varphi_{G}, \text { sc }}\right):=\left\{\delta \subset \operatorname{Res}_{\mathscr{S}_{\varphi_{G}, s c}^{s, s c}}^{\mathscr{S}_{\varphi_{H}}, s{ }_{s i}} \rho_{H}\right\} / \simeq$.
Ideas of proof: some Galois cohomological arguments + Clifford theory for finite groups. Remark: [Obstacle 2.] How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_{G} \in \Pi_{\varphi_{G}}(G)$,

$$
\operatorname{Res}_{H}^{G}\left(\sigma_{G}\right) \simeq m \bigoplus_{\tau_{H} \in \Pi_{\sigma_{G}}(H)} \tau_{H} ?
$$

by means of ingredients (all finite) in the parameter side.

Corollary (C. 2019)

Assume as in Theorem above, One can control $\Pi_{\sigma_{G}}(H) \subset \Pi_{\varphi_{H}}(H)$ in terms of $\mathscr{S}_{\varphi_{H}}$-groups or $\mathscr{S}_{\varphi_{H}, s c}$-groups:

$$
\Pi_{\sigma_{G}}(H) \stackrel{1-1}{\longleftrightarrow}\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}} / \mathscr{S}_{\varphi_{H}, \mathrm{sc}}\right)^{\vee} / I\left(\rho_{H}\right),
$$

where

$$
I\left(\rho_{H}\right):=\left\{\chi \in\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}} / \mathscr{S}_{\varphi_{G}, \mathrm{sc}}\right)^{\vee}: \rho_{H} \chi \simeq \rho_{H}\right\} .
$$

Corollary (C. 2019)

Assume as in Theorem above, One can control $\Pi_{\sigma_{G}}(H) \subset \Pi_{\varphi_{H}}(H)$ in terms of $\mathscr{S}_{\varphi_{H}}$-groups or $\mathscr{S}_{\varphi_{H}, s c}$-groups:

$$
\Pi_{\sigma_{G}}(H) \stackrel{1-1}{\longleftrightarrow}\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}} / \mathscr{S}_{\varphi_{H}, \mathrm{sc}}\right)^{\vee} / I\left(\rho_{H}\right)
$$

where

$$
I\left(\rho_{H}\right):=\left\{\chi \in\left(\mathscr{S}_{\varphi_{H}, \mathrm{sc}} / \mathscr{S}_{\varphi_{G}, \mathrm{sc}}\right)^{\vee}: \rho_{H} \chi \simeq \rho_{H}\right\} .
$$

Remark: [Obstacle 3.] Is there any way to characterize $\Pi_{\sigma_{G}}(H)$? by means of ingredients (all finite) in the parameter side.

Restriction in Pseudo-z-embedding

Following T. Kaletha 2018, given a connected reductive group G over a non-archmedean local field F, an embedding from G to another connected reductive group G_{z} over F is called to be a pseudo-z-embedding of G if:
(1) the cokernel G_{z} / G is a torus;
(2) the first cohomology $H^{1}\left(F, G_{z} / G\right)$ vanishes; and
(3) the map $H^{1}\left(F, Z(G) \rightarrow H^{1}\left(F, Z\left(G_{z}\right)\right)\right.$ is bijective.

Restriction in Pseudo-z-embedding

Following T. Kaletha 2018, given a connected reductive group G over a non-archmedean local field F, an embedding from G to another connected reductive group G_{z} over F is called to be a pseudo-z-embedding of G if:
(1) the cokernel G_{z} / G is a torus;
(2) the first cohomology $H^{1}\left(F, G_{z} / G\right)$ vanishes; and
(3) the map $H^{1}\left(F, Z(G) \rightarrow H^{1}\left(F, Z\left(G_{z}\right)\right)\right.$ is bijective.

Basic Facts:

- Such embedding G_{z} always exists for any G.
- There is a bijection between F-Levi subgroups M_{z} of G_{z} and M of G, via $M=M_{z} \cap G$.
- $G_{z}(F)=Z(G) G(F)$ which yields

$$
\operatorname{Res}_{G}^{G_{z}}\left(\sigma_{z}\right) \in \operatorname{lrr}(G) .
$$

- There exists a bijection:

$$
\operatorname{lrr}\left(\mathscr{S}_{\varphi_{G_{z}}, \mathrm{sc}}, \zeta_{G_{z}}\right) \stackrel{1-1}{\longleftrightarrow} \operatorname{lrr}\left(\mathscr{S}_{\varphi_{G}, \mathrm{sc}}, \zeta_{G}\right)
$$

Theorem (C. 2021)

Let G_{z} be a peudo-z-embedding of G. Given $\sigma_{z} \in \Pi_{\text {disc }}\left(M_{z}\right)$ and its irreducible restriction $\sigma \in \Pi_{\text {disc }}(M)$, we have

Theorem (C. 2021)

Let G_{z} be a peudo-z-embedding of G. Given $\sigma_{z} \in \Pi_{\text {disc }}\left(M_{z}\right)$ and its irreducible restriction $\sigma \in \Pi_{\text {disc }}(M)$, we have

$$
R_{\sigma_{z}} \simeq R_{\sigma}
$$

and

$$
H^{2}\left(R_{\sigma_{z}}, \mathbb{C}^{\times}\right)=H^{2}\left(R_{\sigma}, \mathbb{C}^{\times}\right)
$$

Theorem (C. 2021)

Let G_{z} be a peudo-z-embedding of G. Given $\sigma_{z} \in \Pi_{\text {disc }}\left(M_{z}\right)$ and its irreducible restriction $\sigma \in \Pi_{\text {disc }}(M)$, we have

$$
R_{\sigma_{z}} \simeq R_{\sigma}
$$

and

$$
H^{2}\left(R_{\sigma_{z}}, \mathbb{C}^{\times}\right)=H^{2}\left(R_{\sigma}, \mathbb{C}^{\times}\right)
$$

Ideas of proof:

-

$$
1 \rightarrow R_{\sigma_{z}} \rightarrow R_{\sigma} \rightarrow \widehat{W(\sigma)} \rightarrow 1,
$$

where $\widehat{W(\sigma)}:=\left\{\eta \in\left(M_{z} / M\right)^{\vee}:{ }^{w} \sigma_{z} \simeq \sigma_{z} \eta\right.$ for some $\left.w \in W(\sigma)\right\}$.
-

$$
\widehat{W(\sigma)} \curvearrowright\left\{\text { irred constituents of } I n d_{M_{z}}^{G_{z}}\left(\sigma_{z}\right)\right\} / \simeq .
$$

- Clifford theory for infinite groups $\widetilde{R}_{\sigma_{z}}<\widetilde{R}_{\sigma}$ with finite index.

Theorem (C. 2021)

Let G_{z} be a peudo-z-embedding of G. Given $\sigma_{z} \in \Pi_{\text {disc }}\left(M_{z}\right)$ and its irreducible restriction $\sigma \in \Pi_{\text {disc }}(M)$, we have

$$
R_{\sigma_{z}} \simeq R_{\sigma}
$$

and

$$
H^{2}\left(R_{\sigma_{z}}, \mathbb{C}^{\times}\right)=H^{2}\left(R_{\sigma}, \mathbb{C}^{\times}\right)
$$

Ideas of proof:

-

$$
1 \rightarrow R_{\sigma_{z}} \rightarrow R_{\sigma} \rightarrow \widehat{W(\sigma)} \rightarrow 1
$$

where $\widehat{W}(\sigma):=\left\{\eta \in\left(M_{z} / M\right)^{\vee}:{ }^{w} \sigma_{z} \simeq \sigma_{z} \eta\right.$ for some $\left.w \in W(\sigma)\right\}$.
-

$$
\widehat{W(\sigma)} \curvearrowright\left\{\text { irred constituents of } I n d_{M_{z}}^{G_{z}}\left(\sigma_{z}\right)\right\} / \simeq \text {. }
$$

- Clifford theory for infinite groups $\widetilde{R}_{\sigma_{z}}<\widetilde{R}_{\sigma}$ with finite index.

Remark: [Obstacle 4.] In general, not easy to find G and M_{G} with such "nice" properties, by means of a setting with some cohomological conditions on groups.

Merry Christmas \& Happy New Year!

