Invariants in restriction of admissible representations of *p*-adic groups

Kwangho Choiy

Southern Illinois University, Carbondale, IL, USA

France-Korea IRL webinar in Number Theory

December 20, 2021

Insertframenavigationsymbol

Outline

Part I:

Objective - conjectural statements in LLC for *p*-adic groups

Part II:

Methodology – restriction and lifting in a certain pair (G, H)

Achievements – successful cases (G, H)

Part III: <u>Obstacles</u> – issues towards general cases (G, H)

Some recent developments - resolutions of some obstacles

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 少 Q (や)

Objective - conjectural statements in LLC for *p*-adic groups

Insertframenavigationsymbol < 茎 ▶ < 茎 ▶ 目 の Q ()</p>

- F is a *p*-adic field of characteristic 0.
- W_F is the Weil group of F, and Γ is the absolute Galois group Gal (\overline{F}/F) .
- G is a connected, reductive, linear, algebraic group over F.

$${}^{L}G := \widehat{G} \rtimes \Gamma.$$

= nar

∢ 長 ⊁ ∢ 渡 ⊁

- F is a *p*-adic field of characteristic 0.
- W_F is the Weil group of F, and Γ is the absolute Galois group Gal (\overline{F}/F) .
- G is a connected, reductive, linear, algebraic group over F.

$$I G := \widehat{G} \rtimes \Gamma.$$

o a)	G	GLn	$GL_m(D)$	SLn	$SL_m(D)$	SO _{2n+1}	SO _{2n}]
e.g.)	Ĝ	$GL_n(\mathbb{C})$	$GL_{md}(\mathbb{C})$	$PSL_n(\mathbb{C})$	$PSL_{md}(\mathbb{C})$	$Sp_{2n}(\mathbb{C})$	$SO_{2n}(\mathbb{C})$]

= nar

∢ 長 ⊁ ∢ 渡 ⊁

- Irr_{temp}(G) is the set of equivalence classes of irreducible, tempered, complex representations of G(F).
- $\Phi_{\text{temp}}(G)$ is the set of \widehat{G} -conjugacy classes of tempered *L*-parameters (an *L*-parameter $\varphi : W_F \times SL_2(\mathbb{C}) \to {}^LG$ is tempered if $\varphi(W_F)$ is bounded).

◆□ ▶ insertframenavigationsymbol ◆ 星 ▶ ◆ 星 ▶ 夏 少 Q (~

- Irr_{temp}(G) is the set of equivalence classes of irreducible, tempered, complex representations of G(F).
- $\Phi_{\text{temp}}(G)$ is the set of \widehat{G} -conjugacy classes of tempered *L*-parameters (an *L*-parameter $\varphi : W_F \times SL_2(\mathbb{C}) \to {}^LG$ is tempered if $\varphi(W_F)$ is bounded).

Tempered local Langlands conjecture of *p*-adic groups

There is a surjective, finite-to-one map

 $\mathscr{L}_{\mathsf{temp}} : \mathsf{Irr}_{\mathsf{temp}}(G) \longrightarrow \Phi_{\mathsf{temp}}(G).$

This map is supposed to satisfy a number of natural properties. \mathscr{L}_{temp} preserves γ -factors, *L*-factors, and ε -factors, if they are available in both sides

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ □ 臣 · ⑦ ♀ (~)

$$\mathscr{L}_{\mathsf{temp}} : \mathsf{Irr}_{\mathsf{temp}}(\mathsf{GL}_2) \overset{\textit{bijection}}{\longrightarrow} \Phi_{\mathsf{temp}}(\mathsf{GL}_2).$$

More precisely, given $[F : \mathbb{Q}_p] < \infty$, $G = GL_2$, $Art_F : F^{\times} \xrightarrow{\simeq} W_F^{ab}$, and $\chi, \chi_i \in Hom_{cont}(F^{\times}, \mathbb{C}^{\times})$, the above bijection provides:

$$\begin{split} \chi \circ \det &\longleftrightarrow (\chi |\cdot|_F^{1/2} \circ Art_F^{-1}) \oplus (\chi |\cdot|^{-1/2} \circ Art_F^{-1}) \\ i_B^G(\chi_1 \otimes \chi_2) &\longleftrightarrow (\chi_1 \circ Art_F^{-1}) \oplus (\chi_2 \circ Art_F^{-1}) \end{split}$$

. . .

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ 《 臣 ▶ 臣 ● ⑦ ♀ (○)

For any $\varphi_G \in \Phi_{\text{temp}}(G)$, $\Pi_{\varphi_G}(G) := \mathscr{L}_{\text{temp}}^{-1}(\varphi_G)$ denotes a **tempered** *L*-packet.

< □ ▶ insertframenavigationsymbol < 差 ▶ < 差 ▶ 三 のへで

Internal Structure of *L*-packets

• For any $\varphi_G \in \Phi_{temp}(G)$, $\Pi_{\varphi_G}(G) := \mathscr{L}_{temp}^{-1}(\varphi_G)$ denotes a **tempered** *L*-packet.

Irr(S_{φ,sc}(G), ζ_G) denotes the set of irreducible representations of S_{φ,sc}(G) whose restriction to Z_{φ,sc}(G) equals ζ_G. Here, S_{φ,sc}(G) fits into a central extension (the version of discrete φ)

$$1 \longrightarrow \widehat{Z}_{\varphi, \mathsf{sc}}(G) \longrightarrow \mathscr{S}_{\varphi, \mathsf{sc}}(\widehat{G}) \longrightarrow \mathscr{S}_{\varphi}(\widehat{G}) \longrightarrow 1,$$

where

$$\begin{split} \mathscr{S}_{\varphi}(\widehat{\mathbf{G}}) &:= \pi_{0}(S_{\varphi}(\widehat{\mathbf{G}})), \\ \mathscr{S}_{\varphi,\mathrm{sc}}(\widehat{\mathbf{G}}) &:= \pi_{0}(S_{\varphi,\mathrm{sc}}(\widehat{\mathbf{G}})), \\ \widehat{Z}_{\varphi,\mathrm{sc}}(\mathbf{G}) &:= Z(\widehat{\mathbf{G}}_{\mathrm{sc}})/(Z(\widehat{\mathbf{G}}_{\mathrm{sc}}) \cap S_{\varphi,\mathrm{sc}}(\widehat{\mathbf{G}})^{\circ}), \end{split}$$

◆□ ▶ insertframenavigationsymbol ◆ ヨ ▶ ◆ ヨ ▶ □ ヨ · ク Q (>)

Internal structure of L-packets (Arthur version)

Fixing a Whittaker datum, there is a one-to-one correspondence

$$\Pi_{\varphi}(G) \stackrel{1-1}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi_G,\mathsf{sc}}(\widehat{G}),\zeta_G)$$

along with endoscopic character identity.

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ 《 臣 ▶ 臣 ● ⑦ ♀ (○)

Internal structure of *L*-packets (Arthur version)

Fixing a Whittaker datum, there is a one-to-one correspondence

$$\Pi_{\varphi}(G) \stackrel{1-1}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi_G,\mathsf{sc}}(\widehat{G}),\zeta_G)$$

along with endoscopic character identity.

<u>Note:</u> Originally formulated by Arthur / **Refined** by Kaletha **using a slightly different** group than $\mathscr{S}_{\varphi_{G,sc}}(\hat{G})$, and there is a **bijection between two formulations**.

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ 《 臣 ▶ 臣 ● ⑦ ♀ (○)

$$\begin{split} G &= \mathrm{GL}_1(D), \ D \text{ a quaternion division algebra over } \mathbb{Q}_p \\ 1 &\longrightarrow \widehat{Z}_{\varphi_G,\mathrm{sc}}(G) = \mu_2(\mathbb{C}) \longrightarrow \mathscr{S}_{\varphi_{\mathrm{sc}}}(\widehat{G}) \simeq \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathscr{S}_{\varphi_G}(\widehat{G}) = \pi_0(\operatorname{Cent}(\varphi_G, \widehat{G})/Z(\widehat{G})^{\Gamma}) = 1 \longrightarrow 1. \end{split}$$

 $Hom(\mu_2(\mathbb{C}), \mathbb{C}^{\times}) = \{1, sgn\}$

- $G = GL_2, \zeta_{GL_2} = 1$

 $\Pi_{\varphi_{G}}(GL_{2}(F)) \stackrel{1-1}{\longleftrightarrow} \operatorname{Irr}(\mu_{2}(\mathbb{C}), \mathbb{1}) = \{\mathbb{1}\}.$

- $G = GL_1(D), \zeta_{GL_2} = \operatorname{sgn}$

 $\Pi_{\varphi_G}(GL_1(D)) \stackrel{1-1}{\longleftrightarrow} \operatorname{Irr}(\mu_2(\mathbb{C}), \operatorname{sgn}) = \{\operatorname{sgn}\}.$

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 の Q (9/35)

- GL_n (Harris-Taylor 2000, Henniart 2003, Scholze 2013);
- SL_n (Gelbart-Knapp 1982);
- non-quasi-split F-inner forms of GL_n and SL_n (Labesse-Langlands 1979, Hiraga-Saito 2012);
- GSp₄, Sp₄ (Gan-Takeda 2010,2011);
- non-quasi-split F-inner form GSp_{1,1} of GSp₄ (Gan-Tantono 2014);
- Sp_{2n}, SO_n, SO_{2n} (Arthur 2013);
- U_n (Rogawski 1990, Mok 2015), non quasi-split *F*-inner forms of U_n (Rogawski 1990, Kaletha-Minguez-Shin-White 2014);
- non-quasi-split F-inner form Sp_{1,1} of Sp₄ (C. 2017);
- GSpin₄, GSpin₆ and their inner forms (Asgari-C. 2017);
- GSp_{2n}, GO_{2n} (Xu 2017).
- ...

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 ∽ へ ○

Known Cases

- GL_n (Harris-Taylor 2000, Henniart 2003, Scholze 2013);
- SL_n (Gelbart-Knapp 1982);
- non-quasi-split F-inner forms of GL_n and SL_n (Labesse-Langlands 1979, Hiraga-Saito 2012);
- GSp₄, Sp₄ (Gan-Takeda 2010,2011);
- non-quasi-split F-inner form GSp_{1.1} of GSp₄ (Gan-Tantono 2014);
- Sp_{2n}, SO_n, SO^{*}_{2n} (Arthur 2013);
- U_n (Rogawski 1990, Mok 2015), non quasi-split *F*-inner forms of U_n (Rogawski 1990, Kaletha-Minguez-Shin-White 2014);
- non-quasi-split F-inner form Sp_{1,1} of Sp₄ (C. 2017);
- GSpin₄, GSpin₆ and their inner forms (Asgari-C. 2017);
- GSp_{2n}, GO_{2n} (Xu 2017).
- ...

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 ∽ へ ○

Methodology – restriction and lifting in a certain pair (G, H)

Achievements - successful cases (G, H)

Insertframenavigationsymbol

= 990

G connected reductive group over a *p*-adic field *F*.

H closed F-subgroup of G such that

$$H_{der} = G_{der} \subseteq H \subseteq G.$$

e.g.)	G	GL	GL(D)	GSp	GSO	U	
	Н	SL	SL(D)	Sp	SO	SU	1

• F-Levi subgroups: $M_G \subseteq G$ and $M_H = M_G \cap H \subseteq H$

$$\Rightarrow (M_H)_{der} = (M_G)_{der} \subseteq M_H \subseteq M_G.$$

< E ▶ < E

p-adic group/Representation side:

< □ ▶ insertframenavigationsymbol < 茎 ▶ < 茎 ▶ 茎 の Q (?)

Big Picture

p-adic group/Representation side:

Big Picture

p-adic group/Representation side:

L-group/Galois/L-parameter side:

Big Picture

p-adic group/Representation side:

L-group/Galois/L-parameter side:

$$\Phi(G) \twoheadrightarrow \Phi(H)$$

LLC for $G \Rightarrow$ LLC for H

Recall(LLC for \Box):

$\mathscr{L}_{temp}:Irr_{temp}(\Box)$	$\mathbb{D}) \longrightarrow \Phi_{temp}(\Box)$
---------------------------------------	---

Insertframenavigationsymbol

∃ - 2 Q (P

 $\mathsf{Recall}(\mathsf{LLC} \text{ for } \Box):$

$$\mathscr{L}_{\mathsf{temp}}:\mathsf{Irr}_{\mathsf{temp}}(\Box) \longrightarrow \Phi_{\mathsf{temp}}(\Box)$$

• Given $\sigma \in Irr(H)$, there is a lifting $\tilde{\sigma} \in Irr(G)$ such that

 $\sigma \hookrightarrow \mathsf{Res}^G_H(\widetilde{\sigma}),$

due to: Labesse-Langlands, Gelbart-Knapp, Tadić, and others.

• LLC for $G, \mathscr{L}_G : \operatorname{Irr}(G) \twoheadrightarrow \Phi(G)$, assigns an *L*-parameter $\mathscr{L}_G(\widetilde{\sigma})$.

3

< E > < E >

Due to Weil, Henniart, Labesse:

$$\Phi(G) \twoheadrightarrow \Phi(H)$$

Under a surjective map Ĝ → Ĥ,
 We define:

$$egin{array}{rcl} \mathscr{L}_{\mathcal{H}} : {\sf Irr}(\mathcal{H}) & \longrightarrow & \varPhi(\mathcal{H}) \ & \sigma & \longmapsto & \it{pr} \circ \mathscr{L}_{\mathcal{G}}(\widetilde{\sigma}). \end{array}$$

 $\Rightarrow \mathscr{L}_{H}$ is finite-to-one, surjective as desired for *H*.

Insertframenavigationsymbol < \(\Equiv \Lefta\) = </p>

∃ - 2 Q (P

Due to Weil, Henniart, Labesse:

$$\Phi(G) \twoheadrightarrow \Phi(H)$$

Under a surjective map G → H,
 We define:

$$egin{array}{rcl} \mathscr{L}_{H} : {\sf Irr}(H) & \longrightarrow & \varPhi(H) \ & \sigma & \longmapsto & {\it pr} \circ \mathscr{L}_{G}(\widetilde{\sigma}). \end{array}$$

 $\Rightarrow \mathscr{L}_{H}$ is finite-to-one, surjective as desired for *H*.

Remarks:

- It is independent of the choice of the lifting σ̃.
- This is a case of the (local) principal of functoriality, as we had $\widehat{G} \rightarrow \widehat{H}$.

Insertframenavigationsymbol

Internal structure of *L*-packets for $G \Rightarrow$ that for *H*

Recall(Internal structure of *L*-packets for \Box):

 $\varPi_{\varphi}(\Box) \stackrel{\mathsf{1-1}}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi_{\Box},\mathsf{sc}}(\widehat{\Box}),\zeta_{\Box})$

Insertframenavigationsymbol < Ξ > < Ξ >

∃ - 2 Q (P

Internal structure of *L*-packets for $G \Rightarrow$ that for *H*

Recall(Internal structure of *L*-packets for \Box):

 $\varPi_{\varphi}(\Box) \stackrel{\mathsf{1-1}}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi_{\Box},\mathsf{sc}}(\widehat{\Box}),\zeta_{\Box})$

We consider:

$$\{a \in H^1(W_F, \widehat{(G/H)}) : a\varphi_G \simeq \varphi_G \text{ in } \widehat{G}\} / \operatorname{Im} \left(Z(\widehat{H})^{\Gamma} \to H^1(W_F, \widehat{G/H}) \right)$$

Denote it by $X(\varphi_G)$.

<□ ▶ insertframenavigationsymbol < 臣 ▶ < 臣 ▶ 臣 のへで

Internal structure of *L*-packets for $G \Rightarrow$ that for *H*

Recall(Internal structure of *L*-packets for \Box):

 $\varPi_{\varphi}(\Box) \stackrel{\mathsf{1-1}}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi_{\Box},\mathsf{sc}}(\widehat{\Box}),\zeta_{\Box})$

We consider:

$$\{a \in H^1(W_F, \widehat{(G/H)}) : a\varphi_G \simeq \varphi_G \text{ in } \widehat{G}\} / \operatorname{Im} (Z(\widehat{H})^{\Gamma} \to H^1(W_F, \widehat{G/H}))$$

Denote it by $X(\varphi_G)$.

Observe:

• $X(\varphi_G)$ is a finite abelian group.

Insertframenavigationsymbol

E - 20 €

An exact sequence of finite groups

 $\mathbf{1} \longrightarrow \mathscr{S}_{\varphi_{\boldsymbol{G}}, \mathrm{sc}} \longrightarrow \mathscr{S}_{\varphi_{\boldsymbol{H}}, \mathrm{sc}} \longrightarrow \boldsymbol{X}(\varphi_{\boldsymbol{G}}) \longrightarrow \mathbf{1},$

equipped in the following commutative diagram:

- $G = GL_n$, $H = SL_n$ (Gelbart-Knapp 1982);
- $G = GL_m(D), H = SL_m(D)$ (Labesse-Langlands 1979, Hiraga-Saito 2012);
- $G = GSp_4$, $H = Sp_4$ (Gan-Takeda 2010,2011);
- $G = GSp_{1,1}, H = Sp_{1,1}$ (C. 2017);
- $G = GL_2 \times GL_2$, $H = GSpin_4$; $G = GL_4 \times GL_1$, $H = GSpin_6$, and their inner forms (Asgari-C. 2017),

Insertframenavigationsymbol

۰

 $\mathscr{S}_{\varphi_H}(\widehat{H}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, 1, \quad |\Pi_{\varphi}(H)| = 1, 2, 4.$

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 少 Q (や)

۲

$$\mathscr{S}_{\varphi_H}(\widehat{H}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, 1, \ |\Pi_{\varphi}(H)| = 1, 2, 4.$$

• For $\varphi_G \in \Phi(G)$ dihedral with respect to three quadratic extensions:

$$\mathscr{S}_{\varphi_{G}}(\widehat{\mathsf{GL}_{2}}) = \{1\}, \quad \mathscr{S}_{\varphi_{H}}(\widehat{\mathsf{SL}_{2}}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},$$
$$\Pi_{\varphi_{G}}(\mathsf{GL}_{2}) = \{\widetilde{\sigma}\}, \quad \mathsf{Res}_{\mathsf{SL}_{2}}^{\mathsf{GL}_{2}}(\widetilde{\sigma}) = \Pi_{\varphi_{H}}(\mathsf{SL}_{2}) = \{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\}.$$

• Thus,

٠

۰

$$\Pi_{\varphi} \stackrel{1-1}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi}(\widehat{\mathsf{SL}_2}), \mathbb{1}) = \{\chi_1, \chi_2, \chi_3, \chi_4\}$$

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 ∽ ♀ ♀

$G = GL_1(D), H = SL_1(D)$ (Labesse-Langlands 1979, Hiraga-Saito 2012)

D quaternion division algebra over F

۲

$$\mathscr{S}_{\varphi_H, \mathrm{sc}}(\widehat{H}) \simeq Q_8, \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, \ |\Pi_{\varphi_H}(H)| = 1, 2, 4.$$

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 ∽ ♀ ♀

$G = GL_1(D), H = SL_1(D)$ (Labesse-Langlands 1979, Hiraga-Saito 2012)

D quaternion division algebra over F

$$\mathscr{S}_{\phi_H,sc}(\widehat{H})\simeq Q_8, \ \mathbb{Z}/2\mathbb{Z} imes\mathbb{Z}/2\mathbb{Z}, \ \ \mathbb{Z}/2\mathbb{Z}, \ \ |\Pi_{\phi_H}(H)|=1,2,4.$$

• For $\varphi_G \in \Phi(G)$ dihedral with respect to three quadratic extensions:

• $1 \longrightarrow \mu_2(\mathbb{C}) \longrightarrow \mathscr{S}_{\varphi_{\mathcal{H}}, \mathrm{sc}}(\widehat{\mathrm{SL}_1(D)}) \simeq Q_8 \longrightarrow \mathscr{S}_{\varphi_{\mathcal{H}}}(\widehat{\mathrm{SL}_1(D)}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \longrightarrow 1,$

where Q_8 denotes the quaternion group of order 8.

۰

۲

$$Irr(Q_8) = \{\chi_1, \chi_2, \chi_3, \chi_4, \rho'\},\$$

where χ_i 's are distinct 1-dimensional representations, and ρ' is the 2-dimensional representation of Q_8 .

۲

$$\Pi_{\varphi_{G}}(\mathsf{GL}_{1}(D)) = \{\widetilde{\sigma}'\}, \ \mathsf{Res}_{\mathsf{SL}_{1}(D)}^{\mathsf{GL}_{1}(D)}(\widetilde{\sigma}') = \Pi_{\varphi}(\mathsf{SL}_{1}(D)) = \{\sigma'\},$$

• Thus,

$$\varPi_{\varphi}(\mathsf{SL}_1(D)) \stackrel{1-1}{\longleftrightarrow} \mathsf{Irr}(\mathscr{S}_{\varphi,\mathsf{sc}}(\widehat{\mathsf{SL}_1(D)}),\mathsf{sgn}) = \{\rho'\},$$

where we correspond $\sigma' \leftrightarrow \rho'$.

▲ 문 ▶ ▲ 문 ▶

I SQA

$G = GSp_{1,1}, H = Sp_{1,1}$ (C.2017)

The group $\mathscr{S}_{\varphi,sc}(\widehat{\mathsf{Sp}}_{1,1})$ is isomorphic to one of the following **seven** groups:

- $\textcircled{0} \ \mathbb{Z}/2\mathbb{Z},$
- $\textcircled{2} (\mathbb{Z}/2\mathbb{Z})^2,$
- $\textcircled{3} \ \mathbb{Z}/4\mathbb{Z},$
- $\textcircled{0} \ \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z},$
- (a) the dihedral group \mathcal{D}_8 of order 8,
- **(**) the Pauli group $\{\pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ\}$, where $i = \sqrt{-1}$,

$$I = I_{2\times 2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \text{ and } Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

(2) the central product of \mathcal{D}_8 and the quaternion group of order 8.

By-product: *L*-packet size $|\Pi_{\varphi}(Sp_{1,1})| = 1, 2, 4$.

▲□ ▶ insertframenavigationsymbol ▲ 臣 ▶ ▲ 臣 ▶ 臣 少へで

$G = GSp_{1,1}, H = Sp_{1,1}$ (C.2017)

Consider $\varphi_G = \varphi_0 \oplus (\varphi_0 \otimes \chi) \in \Phi(\mathsf{GSp}_4)$

- χ is a quadratic character,
- $\varphi_0 \in \Phi(GL_2)$ is primitive (i.e., $\varphi_0 \neq \operatorname{Ind}_{W_F}^{W_F} \rho$ for a finite extension E/F and some irreducible ρ)
- $\varphi_0 \not\simeq \varphi_0 \otimes \chi$.
- The projection φ of φ_G onto $\widehat{\mathsf{Sp}_4} = \mathsf{SO}_5(\mathbb{C})$ is

Obstacles – issues towards general cases (G, H)

Some recent developments - resolutions of some obstacles

Insertframenavigationsymbol

= 990

Empirical Knowledge from SL_n

 $M \ (\simeq \mathsf{SL}_n \cap \prod \mathsf{GL}_{n_i}), \sigma \in \Pi_{\mathsf{disc}}(M), \Pi_{\varphi}(M) = \{\tau \subset \operatorname{Res}_{M_{\mu}}^{M_G}(\operatorname{Res}_{M_{\mu}}^{M_G}\widetilde{\sigma})\}/\simeq$

Definition of Multiplicity in restriction

- F a p-adic field of characteristic 0
- G a connected reductive group over F
- *H* a closed *F*-subgroup of *G* such that $H_{der} = G_{der} \subseteq H \subseteq G$.

◆ 差 ▶ ◆ 差 ▶

Definition of Multiplicity in restriction

- F a p-adic field of characteristic 0
- G a connected reductive group over F
- I a closed *F*-subgroup of *G* such that $H_{der} = G_{der} \subseteq H \subseteq G$.

Given irreducible smooth representations $\sigma \in Irr(H)$ and $\pi \in Irr(G)$, the multiplicity $\langle \sigma, \pi \rangle_H$ of σ in the restriction $\operatorname{Res}_{H}^{G}(\pi)$ of π to H is defined as follows:

 $\langle \sigma, \pi \rangle_{H} := \dim_{\mathbb{C}} \operatorname{Hom}_{H}(\sigma, \operatorname{Res}_{H}^{G}(\pi)) \in \mathbb{N} \cup \{0\}.$

e.g.) $G = GL_n, H = SL_n$, any $\pi \in Irr(H), \sigma \in Irr(H)$, we have $\langle \sigma, \pi \rangle_H = 0$, or 1.

< E > < E >

Definition of Multiplicity in restriction

- F a p-adic field of characteristic 0
- G a connected reductive group over F
- I a closed *F*-subgroup of *G* such that $H_{der} = G_{der} \subseteq H \subseteq G$.

Given irreducible smooth representations $\sigma \in Irr(H)$ and $\pi \in Irr(G)$, the multiplicity $\langle \sigma, \pi \rangle_H$ of σ in the restriction $\operatorname{Res}_H^G(\pi)$ of π to H is defined as follows:

 $\langle \sigma, \pi \rangle_{\mathcal{H}} := \dim_{\mathbb{C}} \operatorname{Hom}_{\mathcal{H}}(\sigma, \operatorname{Res}_{\mathcal{H}}^{\mathcal{G}}(\pi)) \in \mathbb{N} \cup \{0\}.$

e.g.) $G = GL_n, H = SL_n$, any $\pi \in Irr(H), \sigma \in Irr(H)$, we have $\langle \sigma, \pi \rangle_H = 0$, or 1.

• *H* a subgroup of a finite group \tilde{H}

Given $\tilde{\delta} \in Irr(G)$ and $\gamma \in Irr(H)$, the multiplicity $\langle \tilde{\delta}, \gamma \rangle_H$ of γ in the restriction $\operatorname{Res}_H^G(\tilde{\delta})$ of γ to H is defined as follows:

 $\langle \tilde{\delta}, \gamma \rangle_{\boldsymbol{H}} := \dim_{\mathbb{C}} \operatorname{Hom}_{\boldsymbol{H}}(\tilde{\delta}, \operatorname{Res}_{\boldsymbol{H}}^{\boldsymbol{G}}(\gamma)) \in \mathbb{N} \cup \{\mathbf{0}\}.$

 $\textbf{e.g.)} \ H < G \ \text{with index 2, any} \ \tilde{\delta} \in \mathrm{Irr}(G), \gamma \in \mathrm{Irr}(H), \ \text{we have} \ \langle \tilde{\delta}, \gamma \rangle_H = 0, \ or \ 1, \ or \ 2.$

□ ▶ insertframenavigationsymbol ◀ 들 ▶ ◀ 들 ▶

(Labesse-Langlands, Shelstad 1979)

- G = GL(1, D), H = SL(1, D), D is the quaternion division algebra over F.

- φ : $W_F \times SL(2,\mathbb{C}) \rightarrow \widehat{H} = PGL(2,\mathbb{C})$ is an *L*-parameter for *H* and $\Pi_{\varphi}(H)$ is the *L*-packet.

- For any $\sigma \in Irr(H)$ and $\pi \in Irr(G)$,

$$\langle \sigma, \pi \rangle_{H} = \begin{cases} 2, & \text{if } \sigma \in \Pi_{\varphi}(H), \text{pr} \circ \varphi_{\pi} = \varphi, \text{Cent}(\varphi, \widehat{H}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \\ 1, & \text{if } \sigma \in \Pi_{\varphi}(H), \text{pr} \circ \varphi_{\pi} = \varphi, \text{Cent}(\varphi, \widehat{H}) \not\simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \\ 0, & \text{otherwise.} \end{cases}$$

Insertframenavigationsymbol

Definition of three R-groups

- P = MN: a standard *F*-parabolic subgroup of *G*.
- $\bigcirc A_M : \text{the split component of } M.$
- $W(G,M) = N_G(A_M)/Z_G(A_M).$
- $\Phi(P, A_M)$: the set of reduced roots of P with respect to A_M .
- W_{σ}° is the subgroup of $W(\sigma)$ generated by the reflections in the roots of $\{\alpha \in \Phi(P, A_M) : \mu_{\alpha}(\sigma) = 0\}$, where $\mu_{\alpha}(\sigma)$ is the rank one Plancherel measure for σ attached to α .

Insertframenavigationsymbol

E 990

Definition of three R-groups

- P = MN: a standard *F*-parabolic subgroup of *G*.
- $\bigcirc A_M : \text{the split component of } M.$
- $W(G,M) = N_G(A_M)/Z_G(A_M).$
- $\Phi(P, A_M)$: the set of reduced roots of P with respect to A_M .
- Given $\sigma \in \Pi_{\text{disc}}(M)$, $W(\sigma) := \{ w \in W(G, M) : {}^{w}\sigma \simeq \sigma \}$
- W_{σ}° is the subgroup of $W(\sigma)$ generated by the reflections in the roots of $\{\alpha \in \Phi(P, A_M) : \mu_{\alpha}(\sigma) = 0\}$, where $\mu_{\alpha}(\sigma)$ is the rank one Plancherel measure for σ attached to α .
- Let $\sigma \in \Pi_{disc}(M)$ be given. The Knapp-Stein *R*-group is defined by

 $\boldsymbol{R}_{\sigma} := \boldsymbol{W}(\sigma) / \boldsymbol{W}_{\sigma}^{\circ}.$

▲□ ▶ insertframenavigationsymbol ▲ 臣 ▶ ▲ 臣 ▶ 臣 ⑦ Q @

Definition of three R-groups

- P = MN: a standard *F*-parabolic subgroup of *G*.
- A_M : the split component of M.
- $W(G,M) = N_G(A_M)/Z_G(A_M).$
- $\Phi(P, A_M)$: the set of reduced roots of P with respect to A_M .
- W_{σ}° is the subgroup of $W(\sigma)$ generated by the reflections in the roots of $\{\alpha \in \Phi(P, A_M) : \mu_{\alpha}(\sigma) = 0\}$, where $\mu_{\alpha}(\sigma)$ is the rank one Plancherel measure for σ attached to α .
- Let $\sigma \in \Pi_{disc}(M)$ be given. The Knapp-Stein *R*-group is defined by

 $\boldsymbol{R}_{\sigma} := \boldsymbol{W}(\sigma) / \boldsymbol{W}_{\sigma}^{\circ}.$

Note (Knapp-Stein (1972); Silberger (1978)) :

- $\operatorname{End}_{G}(i_{G,M}(\sigma)) \simeq \mathbb{C}[R_{\sigma}]_{\eta}$ as algebras, where $\eta \in H^{2}(R_{\sigma}, \mathbb{C}^{\times})$.
- \Rightarrow Reducibility of the parabolic induction $i_{M}^{G}(\sigma)$
 - \leftrightarrow Knapp-Stein *R*–group $\subset W(G, M)$
 - **www Tempered non-discrete spectra and** *L***-packets**

▲□ ▶ insertframenavigationsymbol ▲ 臣 ▶ ▲ 臣 ▶ 臣 ⑦ Q ()

Let $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{M} \hookrightarrow \widehat{G}$ be an *elliptic tempered L*-parameter for *M*.

- C_φ(Ĝ) is the centralizer of the image of φ in Ĝ and C_φ(Ĝ)° is its identity component.
- T_{ϕ} is a fixed maximal torus in $C_{\phi}(\widehat{G})^{\circ}$.

Set $W_{\phi}^{\circ} := N_{C_{\phi}(\widehat{G})^{\circ}}(T_{\phi})/Z_{C_{\phi}(\widehat{G})^{\circ}}(T_{\phi}), \quad W_{\phi} := N_{C_{\phi}(\widehat{G})}(T_{\phi})/Z_{C_{\phi}(\widehat{G})}(T_{\phi}).$ Note that W_{ϕ} can be identified with a subgroup of W(G, M). The **endoscopic** *R*-group R_{ϕ} is defined by

 $R_{\phi} := W_{\phi} / W_{\phi}^{\circ}.$

Given $\sigma \in \Pi_{\phi}(M)$, the *L*-packet associated to the *L*-parameter ϕ , Set $W^{\circ}_{\phi,\sigma} := W^{\circ}_{\phi} \cap W(\sigma)$, $W_{\phi,\sigma} := W_{\phi} \cap W(\sigma)$. The **Arthur** *R*-group $R_{\phi,\sigma}$ is defined by

 $R_{\phi,\sigma} := W_{\phi,\sigma}/W_{\phi,\sigma}^{\circ} \hookrightarrow R_{\phi}.$

□ ▶ insertframenavigationsymbol ◀ 콜 ▶ ◀ 콜 ▶

= 200

Let $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{M} \hookrightarrow \widehat{G}$ be an *elliptic tempered L*-parameter for *M*.

- C_φ(Ĝ) is the centralizer of the image of φ in Ĝ and C_φ(Ĝ)° is its identity component.
- T_{ϕ} is a fixed maximal torus in $C_{\phi}(\widehat{G})^{\circ}$.

Set $W_{\phi}^{\circ} := N_{C_{\phi}(\widehat{G})^{\circ}}(T_{\phi})/Z_{C_{\phi}(\widehat{G})^{\circ}}(T_{\phi}), \quad W_{\phi} := N_{C_{\phi}(\widehat{G})}(T_{\phi})/Z_{C_{\phi}(\widehat{G})}(T_{\phi}).$ Note that W_{ϕ} can be identified with a subgroup of W(G, M). The **endoscopic** *R*-group R_{ϕ} is defined by

 $R_{\phi} := W_{\phi} / W_{\phi}^{\circ}.$

Given $\sigma \in \Pi_{\phi}(M)$, the *L*-packet associated to the *L*-parameter ϕ , Set $W_{\phi,\sigma}^{\circ} := W_{\phi}^{\circ} \cap W(\sigma)$, $W_{\phi,\sigma} := W_{\phi} \cap W(\sigma)$. The **Arthur** *R*-group $R_{\phi,\sigma}$ is defined by

 $R_{\phi,\sigma} := W_{\phi,\sigma} / W_{\phi,\sigma}^{\circ} \hookrightarrow R_{\phi}.$

Arthur Conjecture for *R*-groups : For $\sigma \in \Pi_{\phi}(M)$, we have

 $R_{\sigma} \simeq R_{\phi,\sigma} \hookrightarrow R_{\phi}.$

Insertframenavigationsymbol < 差ト < 差ト 差 の へ (?)</p>

Example in $SL(2, \mathbb{Q}_p)$

- $F = \mathbb{Q}_p$, where *p* is a prime number.
- $G(F) = SL(2, \mathbb{Q}_p), M(F) = \left\{ \begin{pmatrix} a & o \\ o & a^{-1} \end{pmatrix} : x \in \mathbb{Q}_p^{\times} \right\}.$
- $\sigma = \chi$: a unitary unramified character on M(F) given by

$$\chi\left(\begin{smallmatrix}a&o\\o&a^{-1}\end{smallmatrix}\right)=|a|_{\rho}^{\pi\sqrt{-1}/\log\rho}$$

• $\phi: W_{\mathbb{Q}_p} \longrightarrow \mathbb{C}^1$ is given by χ from the local class field theory.

Then, we have

$$- W(G,M) = \{I, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\} = W_{\phi} = W_{\phi,\chi}$$

- $W^{\circ}_{\chi} = \{I\} = W^{\circ}_{\phi} = W^{\circ}_{\phi,\chi}.$

Therefore,

$$R_\chi \simeq R_\phi \simeq R_{\phi,\chi} \simeq \mathbb{Z}/2\mathbb{Z}.$$

Insertframenavigationsymbol

E - 20 €

Among many obstacles, we here single out the following:

$$\mathsf{Res}_H^G(\sigma_{G,1}) \simeq \mathsf{Res}_H^G(\sigma_{G,2})$$
 ?

e.g.) $(GSp_{1,1}, Sp_{1,1})$ (C. 2017), (U_n, SU_n) (Adler-Prasad 2019), etc.

Insertframenavigationsymbol < Ξ > < Ξ >

3

Among many obstacles, we here single out the following:

• How to control the case of $\sigma_{G,1}, \sigma_{G,2} \in \Pi_{\varphi_G}(G)$ such that

$$\mathsf{Res}_{H}^{G}(\sigma_{G,1}) \simeq \mathsf{Res}_{H}^{G}(\sigma_{G,2})$$
 ?

e.g.) (*GSp*_{1,1}, Sp_{1,1}) (C. 2017), (U_n, SU_n) (Adler-Prasad 2019), etc.

a How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_G \in \Pi_{\varphi_G}(G)$,

$$\mathsf{Res}^G_H(\sigma_G) \simeq \mathop{m}\limits_{\tau_H \in \Pi_{\sigma_G}(H)} \mathop{\oplus}\limits_{\tau_H} ?$$

 $\begin{array}{l} \mbox{Here }\Pi_{\sigma_G}(H):=\{\tau_H\subset {\sf Res}^H_H(\sigma_G)\}/\simeq.\\ \mbox{e.g.} \; ({\sf GL}_m(D),{\sf SL}_m(D)) \; ({\sf Labesse-Langlands} \; 1979, \mbox{Hiraga-Saito} \; 2011), \mbox{etc.} \end{array}$

□ ▶ insertframenavigationsymbol ◀ \= ▶ ◀ \= ▶

-

Among many obstacles, we here single out the following:

• How to control the case of $\sigma_{G,1}, \sigma_{G,2} \in \Pi_{\varphi_G}(G)$ such that

$$\mathsf{Res}_{H}^{G}(\sigma_{G,1}) \simeq \mathsf{Res}_{H}^{G}(\sigma_{G,2})$$
 ?

e.g.) (*GSp*_{1,1}, Sp_{1,1}) (C. 2017), (U_n, SU_n) (Adler-Prasad 2019), etc.

a How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_G \in \Pi_{\varphi_G}(G)$,

$$\mathsf{Res}^G_H(\sigma_G) \simeq \mathop{m}\limits_{\tau_H \in \Pi_{\sigma_G}(H)} \mathop{\oplus}\limits_{\tau_H} ?$$

 $\begin{array}{l} \mbox{Here }\Pi_{\sigma_G}(H):=\{\tau_H\subset {\sf Res}^H_H(\sigma_G)\}/\simeq.\\ \mbox{e.g.} \; ({\sf GL}_m(D),{\sf SL}_m(D)) \; ({\sf Labesse-Langlands} \; 1979, \mbox{Hiraga-Saito} \; 2011), \mbox{etc.} \end{array}$

Is there any way to characterize Π_{σ_G}(H)?
 e.g.) (GL_n, SL_n) (Gelbart-Knapp 1982), etc.

Insertframenavigationsymbol

-

Among many obstacles, we here single out the following:

• How to control the case of $\sigma_{G,1}, \sigma_{G,2} \in \Pi_{\varphi_G}(G)$ such that

$$\mathsf{Res}_{H}^{G}(\sigma_{G,1}) \simeq \mathsf{Res}_{H}^{G}(\sigma_{G,2})$$
 ?

e.g.) (*GSp*_{1,1}, Sp_{1,1}) (C. 2017), (U_n, SU_n) (Adler-Prasad 2019), etc.

Bow to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_G \in \Pi_{\varphi_G}(G)$,

$$\mathsf{Res}^G_H(\sigma_G) \simeq \mathop{m}\limits_{\tau_H \in \Pi_{\sigma_G}(H)} \mathop{\oplus}\limits_{\tau_H} ?$$

 $\begin{array}{l} \mbox{Here }\Pi_{\sigma_G}(H):=\{\tau_H\subset {\sf Res}^H_H(\sigma_G)\}/\simeq.\\ \mbox{e.g.} \; ({\sf GL}_m(D),{\sf SL}_m(D)) \; ({\sf Labesse-Langlands} \; 1979, \mbox{Hiraga-Saito} \; 2011), \mbox{etc.} \end{array}$

- Is there any way to characterize $\Pi_{\sigma_G}(H)$? e.g.) (GL_n, SL_n) (Gelbart-Knapp 1982), etc.
- In general, not canonical to find G and M_G with such "nice" properties. e.g.) $H = E_6$, etc.

Insertframenavigationsymbol

-

Among many obstacles, we here single out the following:

• How to control the case of $\sigma_{G,1}, \sigma_{G,2} \in \Pi_{\varphi_G}(G)$ such that

$$\mathsf{Res}_{H}^{G}(\sigma_{G,1}) \simeq \mathsf{Res}_{H}^{G}(\sigma_{G,2})$$
 ?

e.g.) (*GSp*_{1,1}, Sp_{1,1}) (C. 2017), (U_n, SU_n) (Adler-Prasad 2019), etc.

a How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_G \in \Pi_{\varphi_G}(G)$,

$$\mathsf{Res}^G_H(\sigma_G) \simeq \mathop{m}\limits_{\tau_H \in \Pi_{\sigma_G}(H)} \mathop{\oplus}\limits_{\tau_H} ?$$

 $\begin{array}{l} \mbox{Here }\Pi_{\sigma_G}(H):=\{\tau_H\subset {\sf Res}^H_H(\sigma_G)\}/\simeq.\\ \mbox{e.g.} \; ({\sf GL}_m(D),{\sf SL}_m(D)) \; ({\sf Labesse-Langlands} \; 1979, \mbox{Hiraga-Saito} \; 2011), \mbox{etc.} \end{array}$

- Is there any way to characterize $\Pi_{\sigma_G}(H)$? e.g.) (GL_n, SL_n) (Gelbart-Knapp 1982), etc.
- In general, not canonical to find *G* and M_G with such "nice" properties. e.g.) $H = E_6$, etc.
- In general, the structure of *R*-groups for *p*-adic groups remains open. e.g.) *H* = exceptional groups, etc.

Insertframenavigationsymbol

E 990

Multiplicity Formulae in Restriction

Theorem (C. 2019)

- Assuming LLC for both G and H and further two technical arguments,

- Given $\varphi_H \in \Phi_{temp}(H), \varphi_G \in \Phi_{temp}(G)$ such that $\varphi_H = pr \circ \varphi_G$ with $pr : \widehat{G} \twoheadrightarrow \widehat{H}$,

-For any $\sigma_H \in \Pi_{\varphi_H}(H) \leftrightarrow \rho_H \in Irr(\mathscr{S}_{\varphi_H,sc},\zeta_H)$ and $\sigma_G \in \Pi_{\varphi_G}(G) \leftrightarrow \rho_G \in Irr(\mathscr{S}_{\varphi_G,sc},\zeta_G)$, we have

- Assuming LLC for both G and H and further two technical arguments,
- Given $\varphi_H \in \Phi_{temp}(H), \varphi_G \in \Phi_{temp}(G)$ such that $\varphi_H = pr \circ \varphi_G$ with $pr : \widehat{G} \twoheadrightarrow \widehat{H}$,

-For any $\sigma_H \in \Pi_{\varphi_H}(H) \leftrightarrow \rho_H \in Irr(\mathscr{S}_{\varphi_H,sc},\zeta_H)$ and $\sigma_G \in \Pi_{\varphi_G}(G) \leftrightarrow \rho_G \in Irr(\mathscr{S}_{\varphi_G,sc},\zeta_G)$, we have

$$\langle \sigma_{H}, \sigma_{G} \rangle_{H} = \langle \rho_{G}, \rho_{H} \rangle_{\mathscr{S}_{\phi_{G}, \mathsf{sc}}}$$

and

$$\langle \sigma_H, \sigma_G \rangle_H = \frac{\dim \rho_H}{\dim \rho_G} \cdot \left| \Pi_{\rho_H} (\mathscr{S}_{\varphi_G, sc}) \right|^{-1}$$

where $\Pi_{
ho_{H}}(\mathscr{S}_{\varphi_{G},sc}) := \{\delta \subset \mathsf{Res}_{\mathscr{S}_{\varphi_{G},sc}}^{\mathscr{S}_{\varphi_{H},sc}} \rho_{H}\} / \simeq .$

Ideas of proof: some Galois cohomological arguments + Clifford theory for finite groups.

Insertframenavigationsymbol

E 990

- Assuming LLC for both G and H and further two technical arguments,
- Given $\varphi_H \in \Phi_{temp}(H), \varphi_G \in \Phi_{temp}(G)$ such that $\varphi_H = pr \circ \varphi_G$ with $pr : \widehat{G} \twoheadrightarrow \widehat{H}$,

-For any $\sigma_H \in \Pi_{\varphi_H}(H) \leftrightarrow \rho_H \in Irr(\mathscr{S}_{\varphi_H,sc},\zeta_H)$ and $\sigma_G \in \Pi_{\varphi_G}(G) \leftrightarrow \rho_G \in Irr(\mathscr{S}_{\varphi_G,sc},\zeta_G)$, we have

$$\langle \sigma_{H}, \sigma_{G} \rangle_{H} = \langle \rho_{G}, \rho_{H} \rangle_{\mathscr{S}_{\phi_{G}, \mathsf{sc}}}$$

and

$$\langle \sigma_H, \sigma_G \rangle_H = \frac{\dim \rho_H}{\dim \rho_G} \cdot \left| \Pi_{\rho_H} (\mathscr{S}_{\varphi_G, sc}) \right|^{-1}$$

where $\Pi_{\rho_H}(\mathscr{S}_{\varphi_G,sc}) := \{\delta \subset \mathsf{Res}^{\mathscr{S}_{\varphi_H,sc}}_{\mathscr{S}_{\varphi_G,sc}}\rho_H\}/\simeq$.

Ideas of proof: some Galois cohomological arguments + Clifford theory for finite groups. Remark: [Obstacle 2.] How to control the so-called multiplicity $m \in \mathbb{N}$ such that given $\sigma_G \in \Pi_{\varphi_G}(G)$,

$$\operatorname{\mathsf{Res}}^G_H(\sigma_G) \simeq \mathop{m}\limits_{ au_H \in \Pi_{\sigma_G}(H)} \oplus \tau_H ?$$

by means of ingredients (all finite) in the parameter side.

□ Insertframenavigationsymbol < E I < E I

= 900

Corollary (C. 2019)

Assume as in Theorem above, One can control $\Pi_{\sigma_G}(H) \subset \Pi_{\varphi_H}(H)$ in terms of \mathscr{S}_{φ_H} -groups or $\mathscr{S}_{\varphi_H,sc}$ -groups:

$$\Pi_{\sigma_{G}}(H) \stackrel{1-1}{\longleftrightarrow} (\mathscr{S}_{\varphi_{H}, \mathrm{sc}} / \mathscr{S}_{\varphi_{H}, \mathrm{sc}})^{\vee} \big/ \mathit{l}(\rho_{H}),$$

where

$$I(\rho_H) := \{ \chi \in (\mathscr{S}_{\varphi_H, \mathsf{sc}} / \mathscr{S}_{\varphi_G, \mathsf{sc}})^{\vee} : \rho_H \chi \simeq \rho_H \}.$$

Insertframenavigationsymbol く 差 ト く 差 ト 三 の Q ()

Corollary (C. 2019)

Assume as in Theorem above, One can control $\Pi_{\sigma_G}(H) \subset \Pi_{\phi_H}(H)$ in terms of \mathscr{S}_{ϕ_H} -groups or $\mathscr{S}_{\phi_H,sc}$ -groups:

$$\Pi_{\sigma_{G}}(H) \stackrel{1-1}{\longleftrightarrow} (\mathscr{S}_{\varphi_{H}, sc} / \mathscr{S}_{\varphi_{H}, sc})^{\vee} / I(\rho_{H}),$$

where

$$I(\rho_H) := \{ \chi \in (\mathscr{S}_{\varphi_H, \mathrm{sc}} / \mathscr{S}_{\varphi_G, \mathrm{sc}})^{\vee} : \rho_H \chi \simeq \rho_H \}.$$

Remark: [Obstacle 3.] Is there any way to characterize $\Pi_{\sigma_G}(H)$? by means of ingredients (all finite) in the parameter side.

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 ∽ ♀ ♀

Restriction in Pseudo-z-embedding

Following T. Kaletha 2018, given a connected reductive group G over a non-archmedean local field F, an embedding from G to another connected reductive group G_z over F is called to be **a pseudo-***z***-embedding** of G if:

- (1) the cokernel G_z/G is a torus;
- (2) the first cohomology $H^1(F, G_z/G)$ vanishes; and
- (3) the map $H^1(F, Z(G) \rightarrow H^1(F, Z(G_z))$ is bijective.

□ ▶ insertframenavigationsymbol ◀ 壹 ▶ ◀ 壹 ▶

3

Restriction in Pseudo-z-embedding

Following T. Kaletha 2018, given a connected reductive group G over a non-archmedean local field F, an embedding from G to another connected reductive group G_z over F is called to be **a pseudo-***z***-embedding** of G if:

- (1) the cokernel G_z/G is a torus;
- (2) the first cohomology $H^1(F, G_z/G)$ vanishes; and
- (3) the map $H^1(F, Z(G) \rightarrow H^1(F, Z(G_z))$ is bijective.

Basic Facts:

- Such embedding G_z always exists for any G.
- There is a bijection between *F*-Levi subgroups M_z of G_z and *M* of *G*, via $M = M_z \cap G$.
- $G_z(F) = Z(G)G(F)$ which yields

$$\operatorname{\mathsf{Res}}_G^{G_Z}(\sigma_Z) \in \operatorname{\mathsf{Irr}}(G).$$

• There exists a bijection:

$$\operatorname{Irr}(\mathscr{S}_{\varphi_{G_{z}},\operatorname{sc}},\zeta_{G_{z}}) \stackrel{1-1}{\longleftrightarrow} \operatorname{Irr}(\mathscr{S}_{\varphi_{G},\operatorname{sc}},\zeta_{G})$$

□ ▶ insertframenavigationsymbol ◀ 문 ▶ ◀ 문 ▶

E 990

Let G_z be a peudo-z-embedding of G. Given $\sigma_z \in \Pi_{disc}(M_z)$ and its irreducible restriction $\sigma \in \Pi_{disc}(M)$, we have

Insertframenavigationsymbol

= 990

Let G_z be a peudo-z-embedding of G. Given $\sigma_z \in \Pi_{disc}(M_z)$ and its irreducible restriction $\sigma \in \Pi_{disc}(M)$, we have

 $R_{\sigma_z} \simeq R_{\sigma}$

and

$$H^{2}(R_{\sigma_{z}},\mathbb{C}^{\times})=H^{2}(R_{\sigma},\mathbb{C}^{\times}).$$

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ 臣 ∽ ♀ ♀

Let G_z be a peudo-z-embedding of G. Given $\sigma_z \in \Pi_{disc}(M_z)$ and its irreducible restriction $\sigma \in \Pi_{disc}(M)$, we have

$$R_{\sigma_z} \simeq R_{\sigma}$$

and

$$H^2(R_{\sigma_z},\mathbb{C}^{\times})=H^2(R_{\sigma},\mathbb{C}^{\times}).$$

Ideas of proof:

۲

$$1 \rightarrow R_{\sigma_Z} \rightarrow R_{\sigma} \rightarrow \widehat{W(\sigma)} \rightarrow 1$$
,

where $\widehat{W(\sigma)} := \{\eta \in (M_z/M)^{\vee} : {}^w \sigma_z \simeq \sigma_z \eta \text{ for some } w \in W(\sigma) \}.$

۲

 $\widehat{W(\sigma)} \curvearrowright \{ \text{irred constituents of } Ind_{M_Z}^{G_Z}(\sigma_z) \} / \simeq$.

• Clifford theory for infinite groups $\widetilde{R}_{\sigma_Z} < \widetilde{R}_{\sigma}$ with finite index.

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ □ 臣 · ク へ (や)

Let G_z be a peudo-z-embedding of G. Given $\sigma_z \in \Pi_{disc}(M_z)$ and its irreducible restriction $\sigma \in \Pi_{disc}(M)$, we have

$$R_{\sigma_z} \simeq R_{\sigma}$$

and

$$H^2(R_{\sigma_z},\mathbb{C}^{\times})=H^2(R_{\sigma},\mathbb{C}^{\times}).$$

Ideas of proof:

۲

$$1 \rightarrow R_{\sigma_Z} \rightarrow R_{\sigma} \rightarrow \widehat{W(\sigma)} \rightarrow 1,$$

where $\widehat{W(\sigma)} := \{\eta \in (M_z/M)^{\vee} : {}^w \sigma_z \simeq \sigma_z \eta \text{ for some } w \in W(\sigma) \}.$

۲

 $\widehat{W(\sigma)} \curvearrowright \{ \text{irred constituents of } Ind_{M_Z}^{G_Z}(\sigma_z) \} / \simeq .$

• Clifford theory for infinite groups $\widetilde{R}_{\sigma_Z} < \widetilde{R}_{\sigma}$ with finite index.

Remark: [Obstacle 4.] In general, not easy to find G and M_G with such "nice" properties, by means of a setting with some cohomological conditions on groups.

◆□ ▶ insertframenavigationsymbol ◆ 臣 ▶ ◆ 臣 ▶ □ 臣 · ク へ (や)

Merry Christmas & Happy New Year!

Insertframenavigationsymbol < Ξ > < Ξ >

∃ 990