Arithmetic Moduli of Elliptic Surfaces

Jun-Yong Park
Max-Planck-Institut für Mathematik
French-Korean IRL in Mathematics
Webinar in Number Theory

Counting number fields

Q: How many number fields are there?

Counting number fields

Q: How many number fields are there?
A: Since there are so many, it is natural to refine the question.

Counting number fields

Q: How many number fields are there?
A: Since there are so many, it is natural to refine the question.
Q: How many number fields are there of degree d over \mathbb{Q} and discriminant $\Delta \leq \mathcal{B}$?

Counting number fields

Q: How many number fields are there?
A: Since there are so many, it is natural to refine the question.
Q: How many number fields are there of degree d over \mathbb{Q} and discriminant $\Delta \leq \mathcal{B}$?

A: The classical theorem of Hermite-Minkowski shows finiteness.

Counting number fields

Q: How many number fields are there?
A: Since there are so many, it is natural to refine the question.
Q: How many number fields are there of degree d over \mathbb{Q} and discriminant $\Delta \leq \mathcal{B}$?

A: The classical theorem of Hermite-Minkowski shows finiteness.
It leads us to fix the extension degree d and try to understand the counting function with respect to \mathcal{B} (a positive real number) which is the bounded norm of Δ (i.e., the bounded "height" of Δ). Many remarkable results giving the upper bounds as in Schmidt, Ellenberg-Venkatesh and Couveignes.

Counting number fields

Q: How many number fields are there?
A: Since there are so many, it is natural to refine the question.
Q: How many number fields are there of degree d over \mathbb{Q} and discriminant $\Delta \leq \mathcal{B}$?

A: The classical theorem of Hermite-Minkowski shows finiteness.
It leads us to fix the extension degree d and try to understand the counting function with respect to \mathcal{B} (a positive real number) which is the bounded norm of Δ (i.e., the bounded "height" of Δ). Many remarkable results giving the upper bounds as in Schmidt, Ellenberg-Venkatesh and Couveignes.

One could consider a one-dimensional higher analogue which is,

Shafarevich's conjecture for algebraic curves

Q: How many algebraic curves are there?

Shafarevich's conjecture for algebraic curves

Q: How many algebraic curves are there?
A: Since there are so many, it is natural to refine the question.

Shafarevich's conjecture for algebraic curves

Q: How many algebraic curves are there?
A: Since there are so many, it is natural to refine the question.
Q: Let S be a finite set of prime ideals in \mathcal{O}_{K} the ring of integers of the number field K. How many distinct K-isomorphism classes of algebraic curves X / K are there, of genus g and possessing good reduction at all primes $P \notin S$?

Shafarevich's conjecture for algebraic curves

Q: How many algebraic curves are there?
A: Since there are so many, it is natural to refine the question.
Q: Let S be a finite set of prime ideals in \mathcal{O}_{K} the ring of integers of the number field K. How many distinct K-isomorphism classes of algebraic curves X / K are there, of genus g and possessing good reduction at all primes $P \notin S$?

A: This is the influential Shafarevich's conjecture for algebraic curves first called to attention by Igor R. Shafarevich in his 1962 address at the International Congress in Stockholm.

Finiteness principle for algebraic curves

'Shafarevich's conjecture' is the assertion that there is only a finite number for any given (K, g, S).

Finiteness principle for algebraic curves

'Shafarevich's conjecture' is the assertion that there is only a finite number for any given (K, g, S).
Remarkably, by the work of A. N. Parshin, Shafarevich's finiteness implies Mordell's conjecture on the finiteness of the number of rational points on curves $g \geq 2$ in both the function field and the number field case through the Parshin's covering construction.

Finiteness principle for algebraic curves

'Shafarevich's conjecture' is the assertion that there is only a finite number for any given (K, g, S).

Remarkably, by the work of A. N. Parshin, Shafarevich's finiteness implies Mordell's conjecture on the finiteness of the number of rational points on curves $g \geq 2$ in both the function field and the number field case through the Parshin's covering construction.

Famous work of G. Faltings in 1983 proved the Mordell's conjecture on number fields as a direct corollary of Shafarevich's conjecture.

Finiteness principle for algebraic curves

'Shafarevich's conjecture' is the assertion that there is only a finite number for any given (K, g, S).

Remarkably, by the work of A. N. Parshin, Shafarevich's finiteness implies Mordell's conjecture on the finiteness of the number of rational points on curves $g \geq 2$ in both the function field and the number field case through the Parshin's covering construction.

Famous work of G. Faltings in 1983 proved the Mordell's conjecture on number fields as a direct corollary of Shafarevich's conjecture. In all the results, effective finiteness remains a big open problem.

Finiteness principle for algebraic curves

'Shafarevich's conjecture' is the assertion that there is only a finite number for any given (K, g, S).

Remarkably, by the work of A. N. Parshin, Shafarevich's finiteness implies Mordell's conjecture on the finiteness of the number of rational points on curves $g \geq 2$ in both the function field and the number field case through the Parshin's covering construction.

Famous work of G. Faltings in 1983 proved the Mordell's conjecture on number fields as a direct corollary of Shafarevich's conjecture. In all the results, effective finiteness remains a big open problem.

Question

How many exactly are there?

Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric Shafarevich's conjecture where the number field \mathbb{Q} is replaced by the global function field $\mathbb{F}_{q}(t)$.

Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric Shafarevich's conjecture where the number field \mathbb{Q} is replaced by the global function field $\mathbb{F}_{q}(t)$.

Define the height of the discriminant Δ over $\mathbb{F}_{q}(t)$ to be $h t(\Delta):=q^{\operatorname{deg} \Delta}$

Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric Shafarevich's conjecture where the number field \mathbb{Q} is replaced by the global function field $\mathbb{F}_{q}(t)$.

Define the height of the discriminant Δ over $\mathbb{F}_{q}(t)$ to be $h t(\Delta):=q^{\operatorname{deg} \Delta}$

- Elliptic case: $\operatorname{Deg}(\Delta)=12 n \Longrightarrow h t(\Delta)=q^{12 n}$

Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric Shafarevich's conjecture where the number field \mathbb{Q} is replaced by the global function field $\mathbb{F}_{q}(t)$.

Define the height of the discriminant Δ over $\mathbb{F}_{q}(t)$ to be $h t(\Delta):=q^{\operatorname{deg} \Delta}$

- Elliptic case: $\operatorname{Deg}(\Delta)=12 n \Longrightarrow h t(\Delta)=q^{12 n}$

In joint works with Dori Bejleri (Harvard) and Matthew Satriano (Waterloo), we show the following.

Counting elliptic curves with additive reductions

Let $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$, we consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}):=$
$\mid\left\{\right.$ Elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $0<h t(\Delta) \leq \mathcal{B}$ and one Γ reduction $\} \mid$

Counting elliptic curves with additive reductions

Let $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2$, 3 , we consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}):=$
$\mid\left\{\right.$ Elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $0<h t(\Delta) \leq \mathcal{B}$ and one Γ reduction $\} \mid$
Theorem (Dori-Matthew-June)
The counting $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B})$, which counts the number of elliptic curves with one additive reduction of Γ type and the rest of the potential bad reductions are strictly multiplicative reductions, satisfies

Counting elliptic curves with additive reductions

Let $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2$, 3 , we consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}):=$
$\mid\left\{\right.$ Elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $0<h t(\Delta) \leq \mathcal{B}$ and one Γ reduction $\} \mid$
Theorem (Dori-Matthew-June)
The counting $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B})$, which counts the number of elliptic curves with one additive reduction of Γ type and the rest of the potential bad reductions are strictly multiplicative reductions, satisfies

$$
\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}) \leq a_{q} \cdot \mathcal{B}^{\frac{5}{6}}+b_{q} \cdot \mathcal{B}^{\frac{1}{3}}+c_{q}, \Gamma=\mathrm{II}, \mathrm{II}^{*}, \mathrm{IV}, \mathrm{IV}^{*} \text { or } \mathrm{I}_{0}^{*} \text { with } j=0
$$

Counting elliptic curves with additive reductions

Let $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$, we consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}):=$
$\mid\left\{\right.$ Elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $0<h t(\Delta) \leq \mathcal{B}$ and one Γ reduction $\} \mid$

Theorem (Dori-Matthew-June)

The counting $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B})$, which counts the number of elliptic curves with one additive reduction of Γ type and the rest of the potential bad reductions are strictly multiplicative reductions, satisfies
$\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}) \leq a_{q} \cdot \mathcal{B}^{\frac{5}{6}}+b_{q} \cdot \mathcal{B}^{\frac{1}{3}}+c_{q}, \Gamma=\mathrm{II}, \mathrm{II}^{*}, \mathrm{IV}, \mathrm{IV}^{*}$ or I_{0}^{*} with $j=0$
$\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\ulcorner }(\mathcal{B}) \leq a_{q} \cdot \mathcal{B}^{\frac{5}{6}}+b_{q} \cdot \mathcal{B}^{\frac{1}{2}}+c_{q}, \Gamma=$ III, III * or I_{0}^{*} with $j=1728$

Counting elliptic curves with additive reductions

Let $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2$, 3 , we consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}):=$
$\mid\left\{\right.$ Elliptic curves over the $\mathbb{P}_{\mathbb{P}_{q}}^{1}$ with $0<h t(\Delta) \leq \mathcal{B}$ and one Γ reduction $\} \mid$

Theorem (Dori-Matthew-June)

The counting $\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B})$, which counts the number of elliptic curves with one additive reduction of Γ type and the rest of the potential bad reductions are strictly multiplicative reductions, satisfies
$\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}) \leq a_{q} \cdot \mathcal{B}^{\frac{5}{6}}+b_{q} \cdot \mathcal{B}^{\frac{1}{3}}+c_{q}, \Gamma=\mathrm{II}, \mathrm{II}^{*}, \mathrm{IV}, \mathrm{IV}^{*}$ or I_{0}^{*} with $j=0$
$\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\ulcorner }(\mathcal{B}) \leq a_{q} \cdot \mathcal{B}^{\frac{5}{6}}+b_{q} \cdot \mathcal{B}^{\frac{1}{2}}+c_{q}, \Gamma=$ III, III * or I_{0}^{*} with $j=1728$
$\mathcal{Z}_{\mathbb{F}_{q}(t)}^{\Gamma}(\mathcal{B}) \leq a_{q} \cdot \mathcal{B}^{\frac{5}{6}}+b_{q} \cdot \mathcal{B}^{\frac{1}{2}}+c_{q} \cdot \mathcal{B}^{\frac{1}{3}}+d_{q}, \Gamma=\mathrm{I}_{k>0}^{*}$ or I_{0}^{*} with $j \neq 0,1728$
which are the sharp enumerations with the non-constant lower order terms $\mathcal{B}^{\frac{1}{2}}$ or $\mathcal{B}^{\frac{1}{3}}$.

Unstable/Semistable contrast of lower order terms

For strictly multiplicative reductions case, consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B}):=$
$\mid\left\{\right.$ Semistable elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $\left.0<h t(\Delta) \leq \mathcal{B}\right\} \mid$

Unstable/Semistable contrast of lower order terms

For strictly multiplicative reductions case, consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B}):=$ $\mid\left\{\right.$ Semistable elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $\left.0<h t(\Delta) \leq \mathcal{B}\right\} \mid$

Theorem (Changho Han-June)
The counting $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B})$ by $h t(\Delta)=q^{12 n} \leq \mathcal{B}$ satisfies

$$
\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B}) \leq 2 \cdot \frac{\left(q^{11}-q^{9}\right)}{\left(q^{10}-1\right)} \cdot\left(\mathcal{B}^{\frac{5}{6}}-1\right)
$$

which is the sharp enumeration with the constant lower order term.

Unstable/Semistable contrast of lower order terms

For strictly multiplicative reductions case, consider $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B}):=$ $\mid\left\{\right.$ Semistable elliptic curves over the $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with $\left.0<h t(\Delta) \leq \mathcal{B}\right\} \mid$

Theorem (Changho Han-June)
The counting $\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B})$ by $h t(\Delta)=q^{12 n} \leq \mathcal{B}$ satisfies

$$
\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B}) \leq 2 \cdot \frac{\left(q^{11}-q^{9}\right)}{\left(q^{10}-1\right)} \cdot\left(\mathcal{B}^{\frac{5}{6}}-1\right)
$$

which is the sharp enumeration with the constant lower order term.

Stability of moduli loci \& Nature of lower order terms

Deligne-Mumford stack $\overline{\mathcal{M}}_{1,1}$ of stable elliptic curves

Let us recall that $\overline{\mathcal{M}}_{1,1}$ is a smooth proper Deligne-Mumford stack of stable elliptic curves with a coarse moduli space $\bar{M}_{1,1} \cong \mathbb{P}^{1}$. This \mathbb{P}^{1} parametrizes the j-invariants of elliptic curves.

Deligne-Mumford stack $\overline{\mathcal{M}}_{1,1}$ of stable elliptic curves

Let us recall that $\overline{\mathcal{M}}_{1,1}$ is a smooth proper Deligne-Mumford stack of stable elliptic curves with a coarse moduli space $\bar{M}_{1,1} \cong \mathbb{P}^{1}$. This \mathbb{P}^{1} parametrizes the j-invariants of elliptic curves.

Deligne-Mumford stack $\overline{\mathcal{M}}_{1,1}$ of stable elliptic curves

Let us recall that $\overline{\mathcal{M}}_{1,1}$ is a smooth proper Deligne-Mumford stack of stable elliptic curves with a coarse moduli space $\bar{M}_{1,1} \cong \mathbb{P}^{1}$. This \mathbb{P}^{1} parametrizes the j-invariants of elliptic curves.

When the characteristic of the field K is not equal to 2 or 3 , $\left(\overline{\mathcal{M}}_{1,1}\right)_{K} \cong\left[\left(\operatorname{Spec} K\left[a_{4}, a_{6}\right]-(0,0)\right) / \mathbb{G}_{m}\right]=: \mathcal{P}_{K}(4,6)$ through the short Weierstrass equation: $Y^{2}=X^{3}+a_{4} X+a_{6}$

Deligne-Mumford stack $\overline{\mathcal{M}}_{1,1}$ of stable elliptic curves

Let us recall that $\overline{\mathcal{M}}_{1,1}$ is a smooth proper Deligne-Mumford stack of stable elliptic curves with a coarse moduli space $\bar{M}_{1,1} \cong \mathbb{P}^{1}$. This \mathbb{P}^{1} parametrizes the j-invariants of elliptic curves.

When the characteristic of the field K is not equal to 2 or 3 , $\left(\overline{\mathcal{M}}_{1,1}\right)_{K} \cong\left[\left(\operatorname{Spec} K\left[a_{4}, a_{6}\right]-(0,0)\right) / \mathbb{G}_{m}\right]=: \mathcal{P}_{K}(4,6)$ through the short Weierstrass equation: $Y^{2}=X^{3}+a_{4} X+a_{6}$

Stabilizers are the orbifold points [1:0] \& [0:1] with $\mu_{4} \& \mu_{6}$ respectively and the generic stacky points such as $[1: 1]$ with μ_{2}

Moduli stack of stable elliptic fibrations

The fine moduli $\overline{\mathcal{M}}_{1,1}$ comes with universal family $p: \overline{\mathcal{E}}_{1,1} \rightarrow \overline{\mathcal{M}}_{1,1}$ of stable elliptic curves. Thus, a stable elliptic fibration $g: Y \rightarrow \mathbb{P}^{1}$ is induced from a morphism $\varphi_{f}: \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}_{1,1}$ and vice versa.

Moduli stack of stable elliptic fibrations

The fine moduli $\overline{\mathcal{M}}_{1,1}$ comes with universal family $p: \overline{\mathcal{E}}_{1,1} \rightarrow \overline{\mathcal{M}}_{1,1}$ of stable elliptic curves. Thus, a stable elliptic fibration $g: Y \rightarrow \mathbb{P}^{1}$ is induced from a morphism $\varphi_{f}: \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}_{1,1}$ and vice versa.

Moduli stack of stable elliptic fibrations

The fine moduli $\overline{\mathcal{M}}_{1,1}$ comes with universal family $p: \overline{\mathcal{E}}_{1,1} \rightarrow \overline{\mathcal{M}}_{1,1}$ of stable elliptic curves. Thus, a stable elliptic fibration $g: Y \rightarrow \mathbb{P}^{1}$ is induced from a morphism $\varphi_{f}: \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}_{1,1}$ and vice versa.

X is the non-singular semistable elliptic surface; Y is the stable elliptic fibration; $\nu: X \rightarrow Y$ is the minimal resolution.

Moduli stack of stable elliptic fibrations

The fine moduli $\overline{\mathcal{M}}_{1,1}$ comes with universal family $p: \overline{\mathcal{E}}_{1,1} \rightarrow \overline{\mathcal{M}}_{1,1}$ of stable elliptic curves. Thus, a stable elliptic fibration $g: Y \rightarrow \mathbb{P}^{1}$ is induced from a morphism $\varphi_{f}: \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}_{1,1}$ and vice versa.

X is the non-singular semistable elliptic surface; Y is the stable elliptic fibration; $\nu: X \rightarrow Y$ is the minimal resolution.
The moduli stack $\mathcal{L}_{1,12 n}$ of stable elliptic fibrations over the \mathbb{P}^{1} with $12 n$ nodal singular fibers and section is the Hom stack $\operatorname{Hom}_{n}\left(\mathbb{P}^{1}, \overline{\mathcal{M}}_{1,1}\right)$ where $\varphi_{f}^{*} \mathcal{O}_{\overline{\mathcal{M}}_{1,1}}(1) \cong \mathcal{O}_{\mathbb{P}^{1}}(n)$ for $n \in \mathbb{Z}_{\geq 1}$.

Moduli stack of stable elliptic fibrations

The fine moduli $\overline{\mathcal{M}}_{1,1}$ comes with universal family $p: \overline{\mathcal{E}}_{1,1} \rightarrow \overline{\mathcal{M}}_{1,1}$ of stable elliptic curves. Thus, a stable elliptic fibration $g: Y \rightarrow \mathbb{P}^{1}$ is induced from a morphism $\varphi_{f}: \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}_{1,1}$ and vice versa.

X is the non-singular semistable elliptic surface; Y is the stable elliptic fibration; $\nu: X \rightarrow Y$ is the minimal resolution.
The moduli stack $\mathcal{L}_{1,12 n}$ of stable elliptic fibrations over the \mathbb{P}^{1} with $12 n$ nodal singular fibers and section is the Hom stack $\operatorname{Hom}_{n}\left(\mathbb{P}^{1}, \overline{\mathcal{M}}_{1,1}\right)$ where $\varphi_{f}^{*} \mathcal{O}_{\overline{\mathcal{M}}_{1,1}}(1) \cong \mathcal{O}_{\mathbb{P}^{1}}(n)$ for $n \in \mathbb{Z}_{\geq 1}$.
There is a canonical equivalence of groupoids between $\mathcal{L}_{1,12 n}(K)$ and the groupoid of semistable elliptic surfaces over K.

Arithmetic invariants over finite fields

Then, by recognizing $\overline{\mathcal{M}}_{1,1} \cong \mathcal{P}(4,6)$ over any field K of characteristic $\neq 2,3$, we conclude the following:

Arithmetic invariants over finite fields

Then, by recognizing $\overline{\mathcal{M}}_{1,1} \cong \mathcal{P}(4,6)$ over any field K of characteristic $\neq 2,3$, we conclude the following:

Theorem (Changho Han-June)
Grothendieck class in $K_{0}\left(\operatorname{Stck}_{K}\right)$ with $\operatorname{char}(K) \neq 2,3$,

$$
\left\{\mathcal{L}_{1,12 n}\right\}=\mathbb{L}^{10 n+1}-\mathbb{L}^{10 n-1}
$$

Arithmetic invariants over finite fields

Then, by recognizing $\overline{\mathcal{M}}_{1,1} \cong \mathcal{P}(4,6)$ over any field K of characteristic $\neq 2,3$, we conclude the following:

Theorem (Changho Han-June)
Grothendieck class in $K_{0}\left(\operatorname{Stck}_{K}\right)$ with $\operatorname{char}(K) \neq 2,3$,

$$
\left\{\mathcal{L}_{1,12 n}\right\}=\mathbb{L}^{10 n+1}-\mathbb{L}^{10 n-1}
$$

Weighted point count over \mathbb{F}_{q} with $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$,

$$
\#_{q}\left(\mathcal{L}_{1,12 n}\right)=q^{10 n+1}-q^{10 n-1}
$$

Arithmetic invariants over finite fields

Then, by recognizing $\overline{\mathcal{M}}_{1,1} \cong \mathcal{P}(4,6)$ over any field K of characteristic $\neq 2,3$, we conclude the following:

Theorem (Changho Han-June)
Grothendieck class in $K_{0}\left(\operatorname{Stck}_{K}\right)$ with $\operatorname{char}(K) \neq 2,3$,

$$
\left\{\mathcal{L}_{1,12 n}\right\}=\mathbb{L}^{10 n+1}-\mathbb{L}^{10 n-1}
$$

Weighted point count over \mathbb{F}_{q} with $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$,

$$
\#_{q}\left(\mathcal{L}_{1,12 n}\right)=q^{10 n+1}-q^{10 n-1}
$$

The exact number of \mathbb{F}_{q}-isomorphism classes with $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$,

$$
\left|\mathcal{L}_{1,12 n}\left(\mathbb{F}_{q}\right) / \sim\right|=2 \cdot\left(q^{10 n+1}-q^{10 n-1}\right)
$$

Arithmetic invariants over finite fields

Then, by recognizing $\overline{\mathcal{M}}_{1,1} \cong \mathcal{P}(4,6)$ over any field K of characteristic $\neq 2,3$, we conclude the following:

Theorem (Changho Han-June)
Grothendieck class in $K_{0}\left(\operatorname{Stck}_{K}\right)$ with $\operatorname{char}(K) \neq 2,3$,

$$
\left\{\mathcal{L}_{1,12 n}\right\}=\mathbb{L}^{10 n+1}-\mathbb{L}^{10 n-1}
$$

Weighted point count over \mathbb{F}_{q} with $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$,

$$
\#_{q}\left(\mathcal{L}_{1,12 n}\right)=q^{10 n+1}-q^{10 n-1}
$$

The exact number of \mathbb{F}_{q}-isomorphism classes with $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$,

$$
\begin{gathered}
\left|\mathcal{L}_{1,12 n}\left(\mathbb{F}_{q}\right) / \sim\right|=2 \cdot\left(q^{10 n+1}-q^{10 n-1}\right) \\
\mathcal{Z}_{\mathbb{F}_{q}(t)}(\mathcal{B})=\sum_{n=1}^{\left\lfloor\frac{\log _{q} \mathcal{B}}{12}\right\rfloor}\left|\mathcal{L}_{1,12 n}\left(\mathbb{F}_{q}\right) / \sim\right| \leq 2 \cdot \frac{\left(q^{11}-q^{9}\right)}{\left(q^{10}-1\right)} \cdot\left(\mathcal{B}^{\frac{5}{6}}-1\right)
\end{gathered}
$$

Theorem (Dori-Matthew-June)

Let $\operatorname{char}(K) \neq 2$, 3. Given a minimal rational map $\hat{\varphi}_{f}: C \rightarrow \overline{\mathcal{M}}_{1,1}$ with γ vanishing constraints there exists a unique morphism $\varphi_{f}: \mathcal{C} \rightarrow \overline{\mathcal{M}}_{1,1}$ with Γ cyclotomic twistings and vice versa.

Theorem (Dori-Matthew-June)

Let $\operatorname{char}(K) \neq 2,3$. Given a minimal rational map $\hat{\varphi}_{f}: C \rightarrow \overline{\mathcal{M}}_{1,1}$ with γ vanishing constraints there exists a unique morphism $\varphi_{f}: \mathcal{C} \rightarrow \overline{\mathcal{M}}_{1,1}$ with Γ cyclotomic twistings and vice versa.

More generally, let $\mathcal{P}(\vec{\lambda})$ be the N-dimensional weighted projective stack with the weight vector $\vec{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{N}\right)$. Then over a base field K with $\operatorname{char}(K) \nmid \lambda_{i}, \operatorname{Rat}_{n}^{\gamma}(C, \mathcal{P}(\vec{\lambda})) \cong \operatorname{Hom}_{n}^{\Gamma}(\mathcal{C}, \mathcal{P}(\vec{\lambda}))$.

Tate's correspondence

Theorem (Dori-Matthew-June)

Let $\operatorname{char}(K) \neq 2,3$ then we have the following correspondence between γ vanishing constraint and Γ cyclotomic twisting.

Reduction	j	$\gamma=\left(\nu\left(a_{4}\right), \nu\left(a_{6}\right)\right)$	$\Gamma=\chi(1) \Rightarrow \mu_{r}<\mu_{j}$
II	0	$(\geq 1,1)$	$1 \mapsto 1 \Rightarrow \mu_{6}<\mu_{6}$
IV	0	$(\geq 2,2)$	$1 \mapsto 2 \Rightarrow \mu_{3}<\mu_{6}$
I_{0}^{*}	0	$(\geq 3,3)$	$1 \mapsto 3 \Rightarrow \mu_{2}<\mu_{6}$
IV *	0	$(\geq 3,4)$	$1 \mapsto 4 \Rightarrow \mu_{3}<\mu_{6}$
II *	0	$(\geq 4,5)$	$1 \mapsto 5 \Rightarrow \mu_{6}<\mu_{6}$
III 2	1728	$(1, \geq 2)$	$1 \mapsto 1 \Rightarrow \mu_{4}<\mu_{4}$
I_{0}^{*}	1728	$(2, \geq 4)$	$1 \mapsto 2 \Rightarrow \mu_{2}<\mu_{4}$
III *	1728	$(3, \geq 5)$	$1 \mapsto 3 \Rightarrow \mu_{4}<\mu_{4}$
I_{0}^{*}	$\neq 0,1728$	$(2,3)$	$1 \mapsto 1 \Rightarrow \mu_{2}<\mu_{2}$
$\mathrm{I}_{k>0}^{*}$	∞		

Motives of minimal elliptic surfaces moduli stacks

Theorem (Dori-Matthew-June)
Let $\operatorname{char}(K) \neq 2,3$. The motives for the moduli stack of minimal elliptic surfaces over the parameterized \mathbb{P}^{1} with section and discriminant degree $12 n$ having one additive reduction of type Γ

Reduction	j	$\left\{\operatorname{Rat}_{n}^{\gamma}\left(\mathbb{P}^{1}, \mathcal{P}(4,6)\right)\right\} /\left\{\mathrm{PGL}_{2}\right\}$
II	0	$\mathbb{L}^{10 n-3}-\mathbb{L}^{4 n-2}$
IV	0	$\mathbb{L}^{10 n-5}-\mathbb{L}^{4 n-3}$
I_{0}^{*}	0	$\mathbb{L}^{10 n-7}-\mathbb{L}^{4 n-4}$
IV^{*}	0	$\mathbb{L}^{10 n-8}-\mathbb{L}^{4 n-4}$
II^{*}	0	$\mathbb{L}^{10 n-10}-\mathbb{L}^{4 n-5}$
$\mathrm{III}^{10 n-4}-\mathbb{L}^{6 n-3}$		
I_{0}^{*}	1728	$\mathbb{L}^{10 n}$
III^{*}	1728	$\mathbb{L}^{10 n-7}-\mathbb{L}^{6 n-5}$
I_{0}^{*}	$\neq 0,1728$	$\mathbb{L}^{10 n-9}-\mathbb{L}^{6 n-6}$
$\mathrm{I}_{k>0}^{*}$	∞	$(\mathbb{L}-1) \cdot\left(\mathbb{L}^{10 n-7}-\mathbb{L}^{6 n-5}-\mathbb{L}^{4 n-4}\right)$

Heuristic through global fields analogy

Switching to the number field realm with $K=\mathbb{Q}$ and $\mathcal{O}_{K}=\mathbb{Z}$, we have the following conjecture.

Heuristic through global fields analogy

Switching to the number field realm with $K=\mathbb{Q}$ and $\mathcal{O}_{K}=\mathbb{Z}$, we have the following conjecture.
Conjecture (Dori-Matthew-June)
The function $\mathcal{Z}_{\mathbb{Q}}^{\Gamma}(\mathcal{B})$, which counts the number of elliptic curves over \mathbb{Z} with $0<h t(\Delta) \leq \mathcal{B}$, has the following asymptotic behavior:

$$
a \cdot \mathcal{B}^{\frac{5}{6}}+b \cdot \mathcal{B}^{\frac{1}{2}}+c \cdot \mathcal{B}^{\frac{1}{3}}+o\left(\mathcal{B}^{\frac{1}{3}}\right)
$$

with the main leading term $\mathcal{O}\left(\mathcal{B}^{\frac{5}{6}}\right)$, the secondary term $\mathcal{O}\left(\mathcal{B}^{\frac{1}{2}}\right)$ and the tertiary term $\mathcal{O}\left(\mathcal{B}^{\frac{1}{3}}\right)$.

Heuristic through global fields analogy

Switching to the number field realm with $K=\mathbb{Q}$ and $\mathcal{O}_{K}=\mathbb{Z}$, we have the following conjecture.
Conjecture (Dori-Matthew-June)
The function $\mathcal{Z}_{\mathbb{Q}}^{\Gamma}(\mathcal{B})$, which counts the number of elliptic curves over \mathbb{Z} with $0<h t(\Delta) \leq \mathcal{B}$, has the following asymptotic behavior:

$$
a \cdot \mathcal{B}^{\frac{5}{6}}+b \cdot \mathcal{B}^{\frac{1}{2}}+c \cdot \mathcal{B}^{\frac{1}{3}}+o\left(\mathcal{B}^{\frac{1}{3}}\right)
$$

with the main leading term $\mathcal{O}\left(\mathcal{B}^{\frac{5}{6}}\right)$, the secondary term $\mathcal{O}\left(\mathcal{B}^{\frac{1}{2}}\right)$ and the tertiary term $\mathcal{O}\left(\mathcal{B}^{\frac{1}{3}}\right)$.
The lower order term of the order $\mathcal{O}\left(\mathcal{B}^{\left(7-\frac{5}{27}+\epsilon\right) / 12}\right)$ was suggested by the work of S . Baier for stable elliptic curves. However, his proof relies on the assumption of the Riemann Hypothesis for Dirichlet L-functions.

The end

Thank you for listening!

