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Shafarevich’s conjecture for algebraic curves

Q: How many algebraic curves are there?
A: Since there are so many, it is natural to refine the question.

Q: Let S be a finite set of prime ideals in Ok the ring of integers
of the number field K. How many distinct K-isomorphism
classes of algebraic curves X /K are there, of genus g and
possessing good reduction at all primes P ¢ S 7

A: This is the influential Shafarevich's conjecture for algebraic
curves first called to attention by Igor R. Shafarevich in his
1962 address at the International Congress in Stockholm.
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implies Mordell's conjecture on the finiteness of the number of
rational points on curves g > 2 in both the function field and the
number field case through the Parshin’s covering construction.

Famous work of G. Faltings in 1983 proved the Mordell's conjecture
on number fields as a direct corollary of Shafarevich's conjecture.

In all the results, effective finiteness remains a big open problem.

Question
How many exactly are there?
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Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric
Shafarevich's conjecture where the number field Q is replaced by
the global function field Fq(t) .
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Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric
Shafarevich's conjecture where the number field Q is replaced by
the global function field Fq(t) .

Define the height of the discriminant A over Fy(t) to be
ht(A) := gqdee &

> Elliptic case: Deg(A) = 12n = ht(A) = ¢'2"

In joint works with Dori Bejleri (Harvard) and Matthew
Satriano (Waterloo), we show the following.
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Theorem (Dori-Matthew—June)

The counting ZFE(t)(B), which counts the number of elliptic curves
with one additive reduction of I type and the rest of the potential
bad reductions are strictly multiplicative reductions, satisfies

2y ) (B) < ag:Bi+bg B3 +¢q, T = ILII* IV, IV* or Tj with j = 0

2,7 (B) < aqBs + by B2 + ¢g, T = IILIII* or I with j = 1728

Z41)(B) < ag-B3+bg B2 +cq B3 +dg, T = T or I with j # 0,1728

which are the sharp enumerations with the non-constant lower

1 1
order terms B2 or B3 .
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For strictly multiplicative reductions case, consider Zy, (;)(B) ==

|{Semistable elliptic curves over the ]P’H:Eq with 0 < ht(A) < B}|

Theorem (Changho Han—June)
The counting Zg,(+)(B) by ht(A) = ¢'*" < B satisfies

1.9 s
Zry(0(B) < 2 ((i,m_ql)) (87-1)

which is the sharp enumeration with the constant lower order term.

Stability of moduli loci & Nature of lower order terms
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This P! parametrizes the j—invariants of elliptic curves.
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Deligne—-Mumford stack Mm of stable elliptic curves

Let us recall that My 1 is a smooth proper Deligne-Mumford stack
of stable elliptic curves with a coarse moduli space My 1 = P! .
This P! parametrizes the j—invariants of elliptic curves.

When the characteristic of the field K is not equal to 2 or 3,
(M1.1)k = [(Spec Klaa, as] — (0,0))/G ] =: Pk(4,6) through
the short Weierstrass equation: Y2 = X3+ aaX + ag

Stabilizers are the orbifold points [1: 0] & [0 : 1] with pa & pe
respectively and the generic stacky points such as [1 : 1] with uo
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Moduli stack of stable elliptic fibrations
The fine moduli ﬂl,l comes with universal family p: 31,1 — Mm
of stable elliptic curves. Thus, a stable elliptic fibration g : Y — P!
is induced from a morphism ¢y : P! — ﬂu and vice versa.
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The fine moduli ﬂl,l comes with universal family p: 31,1 — Mm
of stable elliptic curves. Thus, a stable elliptic fibration g : Y — P!
is induced from a morphism ¢y : Pl — ﬂl,l and vice versa.

X L> Y = 90?(3171) %gl,l

T

Ple—— P! % My,

X is the non-singular semistable elliptic surface; Y is the stable
elliptic fibration; v : X — Y is the minimal resolution.

The moduli stack £y 12, of stable elliptic fibrations over the P!
with 12n nodal singular fibers and section is the Hom stack
Hom, (P!, My,1) where 0505z, (1) = Opa(n) for n € Z>1 .

There is a canonical equivalence of groupoids between L1 12,(K)

and the groupoid of semistable elliptic surfaces over K.
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Then, by recognizing M1 = P(4,6) over any field K of
characteristic # 2, 3, we conclude the following:

Theorem (Changho Han—June)
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{El 12’_’} _ LlOn—i—l _ LlOn—l
Weighted point count over Fg with char(F,) # 2,3,
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The exact number of Fg—isomorphism classes with char(FFq) # 2,3,

’£1,12n(Fq)/ ~ ‘ =2. (q10n+1 o q10n—1)

logg B
12

11_ .9 5
Zr,0(B) = X Lraza(Fe)/ ~ <2 G - (BE - 1)

n=1
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Theorem (Dori-Matthew—June)

Let char(K) # 2,3. Given a minimal rational map ¢f: C --» le
with v vanishing constraints there exists a unique morphism
pr: C— My with T cyclotomic twistings and vice versa.
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Theorem (Dori-Matthew—June)

Let char(K) # 2,3. Given a minimal rational map ¢f: C --» ﬂl,l
with v vanishing constraints there exists a unique morphism

pr: C— My with T cyclotomic twistings and vice versa.

More generally, let P(X) be the N-dimensional weighted projective
stack with the weight vector A = (Ao, ..., An). Then over a base
field K with char(K) 1 \;, Rat(C,P()\)) = Hom' (C, P(X)).
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Tate’s correspondence

Theorem (Dori—-Matthew—June)

Let char(K) # 2,3 then we have the following correspondence
between ~ vanishing constraint and I' cyclotomic twisting.

Reduction J v = (v(asa), v(ae)) | T = x(1) = pr < 1
i 0 >1,1) 1 1= 16 < pie
v 0 (>2,2) 1 2= 13 < p1g
I 0 (>3,3) 1= 3= < ug
v* 0 (> 3,4) 1 4= j3 < pie
iR 0 (> 4,5) 1 5= 1 < fi6
T 1728 (1,>2) 1> 1= g < fia
Ip 1728 (2,>4) 1—=2= pup < pa
T 1728 (3,> 5) 1> 3= g < fia
Ip #0,1728 (2,3) 1—=1= pu < po
Tio o0
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Motives of minimal elliptic surfaces moduli stacks

Theorem (Dori-Matthew—June)

Let char(K) # 2,3. The motives for the moduli stack of minimal
elliptic surfaces over the parameterized P with section and
discriminant degree 12n having one additive reduction of type I'

Reduction J {Rat; (P, P(4,6))}/{PGLo}
10 0 LlOn—3 _ ]L4n—2
vV 0 LlOn—5 - ]L4n—3
16 0 LlOn—? _ ]L4n—4
IV* 0 LlOn—B - ]L4n—4
I 0 LlOn—lO _ L4n—5
111 1728 L1004 _ .6n=3
IS 1728 L10n77 _ L6n75
Ir* 1728 L10n=9 _6n-0b
16 75 07 1728 (L . 1) i (L10n77 . L6n75 - L4n74)
Lo 0
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Heuristic through global fields analogy

Switching to the number field realm with K = Q and Ok = Z, we
have the following conjecture.
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Conjecture (Dori—-Matthew—June)

The function ZQF(B), which counts the number of elliptic curves
over Z with 0 < ht(A) < B, has the following asymptotic behavior:

a-Bs+b-Bi+c-Bi+o(B3)

N

with the main leading term O (B%) the secondary term O (B
and the tertiary term O (B%) )

)

The lower order term of the order O (B(L%“)/u) was suggested

by the work of S. Baier for stable elliptic curves. However, his
proof relies on the assumption of the Riemann Hypothesis for
Dirichlet L-functions.
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The end

Thank you for listening!

15/15



