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Counting number fields

Q: How many number fields are there?

A: Since there are so many, it is natural to refine the question.

Q: How many number fields are there of degree d over Q and
discriminant ∆ ≤ B ?

A: The classical theorem of Hermite–Minkowski shows finiteness.

It leads us to fix the extension degree d and try to understand
the counting function with respect to B (a positive real
number) which is the bounded norm of ∆ (i.e., the bounded
“height” of ∆). Many remarkable results giving the upper
bounds as in Schmidt, Ellenberg–Venkatesh and Couveignes.

One could consider a one-dimensional higher analogue which is,
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Shafarevich’s conjecture for algebraic curves

Q: How many algebraic curves are there?

A: Since there are so many, it is natural to refine the question.

Q: Let S be a finite set of prime ideals in OK the ring of integers
of the number field K . How many distinct K -isomorphism
classes of algebraic curves X/K are there, of genus g and
possessing good reduction at all primes P /∈ S ?

A: This is the influential Shafarevich’s conjecture for algebraic
curves first called to attention by Igor R. Shafarevich in his
1962 address at the International Congress in Stockholm.
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Finiteness principle for algebraic curves

‘Shafarevich’s conjecture’ is the assertion that there is only a finite
number for any given (K , g , S).

Remarkably, by the work of A. N. Parshin, Shafarevich’s finiteness
implies Mordell’s conjecture on the finiteness of the number of
rational points on curves g ≥ 2 in both the function field and the
number field case through the Parshin’s covering construction.

Famous work of G. Faltings in 1983 proved the Mordell’s conjecture
on number fields as a direct corollary of Shafarevich’s conjecture.

In all the results, effective finiteness remains a big open problem.

Question
How many exactly are there?
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Counting curves with bounded bad reductions

Through the global fields analogy, we consider the geometric
Shafarevich’s conjecture where the number field Q is replaced by
the global function field Fq(t) .

Define the height of the discriminant ∆ over Fq(t) to be
ht(∆) := qdeg∆

▶ Elliptic case: Deg(∆) = 12n =⇒ ht(∆) = q12n

In joint works with Dori Bejleri (Harvard) and Matthew
Satriano (Waterloo), we show the following.
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Counting elliptic curves with additive reductions
Let char(Fq) ̸= 2, 3, we consider Z Γ

Fq(t)
(B) :=

|{Elliptic curves over the P1
Fq

with 0 < ht(∆) ≤ B and one Γ reduction}|

Theorem (Dori–Matthew–June)

The counting Z Γ
Fq(t)

(B), which counts the number of elliptic curves
with one additive reduction of Γ type and the rest of the potential
bad reductions are strictly multiplicative reductions, satisfies

Z Γ
Fq(t)

(B) ≤ aq·B
5
6+bq·B

1
3+cq, Γ = II, II∗, IV, IV∗ or I

∗
0 with j = 0

Z Γ
Fq(t)

(B) ≤ aq · B
5
6 +bq · B

1
2 + cq, Γ = III, III∗ or I

∗
0 with j = 1728

Z Γ
Fq(t)

(B) ≤ aq·B
5
6+bq·B

1
2+cq·B

1
3+dq, Γ = I

∗
k>0 or I

∗
0 with j ̸= 0, 1728

which are the sharp enumerations with the non-constant lower

order terms B
1
2 or B

1
3 .
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Unstable/Semistable contrast of lower order terms

For strictly multiplicative reductions case, consider ZFq(t)(B) :=

|{Semistable elliptic curves over the P1
Fq

with 0 < ht(∆) ≤ B}|

Theorem (Changho Han–June)

The counting ZFq(t)(B) by ht(∆) = q12n ≤ B satisfies

ZFq(t)(B) ≤ 2 · (q
11 − q9)

(q10 − 1)
·
(
B

5
6 − 1

)
which is the sharp enumeration with the constant lower order term.

Stability of moduli loci & Nature of lower order terms
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Deligne–Mumford stack M1,1 of stable elliptic curves

Let us recall that M1,1 is a smooth proper Deligne-Mumford stack
of stable elliptic curves with a coarse moduli space M1,1

∼= P1 .
This P1 parametrizes the j–invariants of elliptic curves.

When the characteristic of the field K is not equal to 2 or 3,
(M1,1)K ∼= [(Spec K [a4, a6]− (0, 0))/Gm] =: PK (4, 6) through
the short Weierstrass equation: Y 2 = X 3 + a4X + a6

Stabilizers are the orbifold points [1 : 0] & [0 : 1] with µ4 & µ6

respectively and the generic stacky points such as [1 : 1] with µ2
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Moduli stack of stable elliptic fibrations
The fine moduli M1,1 comes with universal family p : E1,1 → M1,1

of stable elliptic curves. Thus, a stable elliptic fibration g : Y → P1

is induced from a morphism φf : P1 → M1,1 and vice versa.

X

f
��

ν // Y = φ∗
f (E1,1) //

g

��

E1,1

p

��

P1 P1 φf //M1,1

(1)

X is the non-singular semistable elliptic surface; Y is the stable
elliptic fibration; ν : X → Y is the minimal resolution.

The moduli stack L1,12n of stable elliptic fibrations over the P1

with 12n nodal singular fibers and section is the Hom stack
Homn(P1,M1,1) where φ∗

fOM1,1
(1) ∼= OP1(n) for n ∈ Z≥1 .

There is a canonical equivalence of groupoids between L1,12n(K )
and the groupoid of semistable elliptic surfaces over K .
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Arithmetic invariants over finite fields
Then, by recognizing M1,1

∼= P(4, 6) over any field K of
characteristic ̸= 2, 3, we conclude the following:

Theorem (Changho Han–June)

Grothendieck class in K0(StckK ) with char(K ) ̸= 2, 3,

{L1,12n} = L10n+1 − L10n−1

Weighted point count over Fq with char(Fq) ̸= 2, 3,

#q(L1,12n) = q10n+1 − q10n−1

The exact number of Fq–isomorphism classes with char(Fq) ̸= 2, 3,

|L1,12n(Fq)/ ∼ | = 2 · (q10n+1 − q10n−1)

ZFq(t)(B) =

⌊
logqB
12

⌋∑
n=1
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Theorem (Dori–Matthew–June)

Let char(K ) ̸= 2, 3. Given a minimal rational map φ̂f : C 99K M1,1

with γ vanishing constraints there exists a unique morphism
φf : C → M1,1 with Γ cyclotomic twistings and vice versa.

More generally, let P(λ⃗) be the N-dimensional weighted projective
stack with the weight vector λ⃗ = (λ0, . . . , λN). Then over a base
field K with char(K ) ∤ λi , Rat

γ
n(C ,P(λ⃗)) ∼= HomΓ

n(C,P(λ⃗)).
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Tate’s correspondence

Theorem (Dori–Matthew–June)

Let char(K ) ̸= 2, 3 then we have the following correspondence
between γ vanishing constraint and Γ cyclotomic twisting.

Reduction j γ = (ν(a4), ν(a6)) Γ = χ(1) ⇒ µr < µj

II 0 (≥ 1, 1) 1 7→ 1 ⇒ µ6 < µ6

IV 0 (≥ 2, 2) 1 7→ 2 ⇒ µ3 < µ6

I∗0 0 (≥ 3, 3) 1 7→ 3 ⇒ µ2 < µ6

IV∗ 0 (≥ 3, 4) 1 7→ 4 ⇒ µ3 < µ6

II∗ 0 (≥ 4, 5) 1 7→ 5 ⇒ µ6 < µ6

III 1728 (1,≥ 2) 1 7→ 1 ⇒ µ4 < µ4

I∗0 1728 (2,≥ 4) 1 7→ 2 ⇒ µ2 < µ4

III∗ 1728 (3,≥ 5) 1 7→ 3 ⇒ µ4 < µ4

I∗0 ̸= 0, 1728 (2, 3) 1 7→ 1 ⇒ µ2 < µ2

I∗k>0 ∞
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Motives of minimal elliptic surfaces moduli stacks

Theorem (Dori–Matthew–June)

Let char(K ) ̸= 2, 3. The motives for the moduli stack of minimal
elliptic surfaces over the parameterized P1 with section and
discriminant degree 12n having one additive reduction of type Γ

Reduction j {Ratγn(P1,P(4, 6))}/{PGL2}
II 0 L10n−3 − L4n−2

IV 0 L10n−5 − L4n−3

I∗0 0 L10n−7 − L4n−4

IV∗ 0 L10n−8 − L4n−4

II∗ 0 L10n−10 − L4n−5

III 1728 L10n−4 − L6n−3

I∗0 1728 L10n−7 − L6n−5

III∗ 1728 L10n−9 − L6n−6

I∗0 ̸= 0, 1728 (L− 1) · (L10n−7 − L6n−5 − L4n−4)

I∗k>0 ∞
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Heuristic through global fields analogy

Switching to the number field realm with K = Q and OK = Z, we
have the following conjecture.

Conjecture (Dori–Matthew–June)

The function Z Γ
Q (B), which counts the number of elliptic curves

over Z with 0 < ht(∆) ≤ B, has the following asymptotic behavior:

a · B
5
6 + b · B

1
2 + c · B

1
3 + o(B

1
3 )

with the main leading term O
(
B

5
6

)
, the secondary term O

(
B

1
2

)
and the tertiary term O

(
B

1
3

)
.

The lower order term of the order O
(
B(7− 5

27
+ϵ)/12

)
was suggested

by the work of S. Baier for stable elliptic curves. However, his
proof relies on the assumption of the Riemann Hypothesis for
Dirichlet L-functions.
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The end

Thank you for listening!
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