
Introduction Main results Strategy of proof

Hydrodynamic limit for granular gases: from Boltzmann
equation to some modified Navier-Stokes-Fourier system

Bertrand Lods
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Scope of the talk

Provide a (first) rigorous derivation of suitable Navier-Stokes hydrodynamic
model from rapid granular flows described by the Boltzmann equation with
inelastic hard spheres.

This is done by establishing
• A suitable Cauchy theory for close-to-equilibrium solutions for the

Boltzmann equation with inelastic interactions.
• Identify the exact regime of weak inelasticity.
• Obtain estimates for the solutions which are uniform with respect to the

Knudsen number (including exponential stability).
• Derive a new Navier-Stokes-Fourier system with self-consistent forcing

terms and subject to Boussinesq relation. Model seems new in this
context.
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Granular gases
A granular material is a substance made of grains (!!), i.e. system of discrete
particles characterized by the following features:

• Grains are macroscopic particles described by the rules of classical
mechanics;

• the grains interaction (with each other or some background, boundaries...)
are dissipative: friction is always a relevant phenomena and collisions are
inelastic.

• Rapid granular flows described by suitable modifications of the
Boltzmann equation which takes into account the inelasticity of collisions.

I Because of the frictional nature of granular gases, only hard-spheres
interactions are physically relevant.

Ref.: I. Goldhirsch (1999), Pöschel & Brilliantov (2004), Garzò (2014)
No consensus on the limiting system that can derived from Boltzmann equation
in the physics community.

“the context of the hydrodynamic equations remains uncertain. What
are the relevant space and time scales? How much inelasticity can be
described in this way?” Brey & Dufty (2005).
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Microscopic description of inelastic collisions

Binary collision (v , v∗)→ (v ′, v ′∗)

During the collision, a part of the normal relative velocity is dissipated while
the tangential relative velocity is conserved, the loss of normal relative velocity
is measured through the so-called restitution coefficient

u′ · n = − (u · n) e, e ∈ (0, 1]

(e = 1 corresponding to elastic collision, in dotted line in the above figure).
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Inelastic collisions

Then, the post-collisional velocities v ′, v ′∗ can be expressed as

v ′ = v − 1 + e
2 (u · n) n v ′∗ = v∗ + 1 + e

2 (u · n) n

which satisfies the conservation of momentum

v + v∗ = v ′ + v ′∗.

However, microscopic kinetic energy is dissipated since

|v ′|2 + |v ′∗|2 − |v |2 − |v∗|2 = −1− e2

2 |u · n|2 6 0.
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Restitution coefficient

The restitution coefficient encodes all the microscopic properties of the
inelastic collision mechanism. There are mainly two kinds of coefficients used in
the mathematical and physics literature

• Constant restitution coefficient: e does not depend on the impact velocity

e = α ∈ (0, 1].

• Variable restitution coefficent: e depends on the (normal) relative velocity:

e = e(|u · n|)

for some suitable function

e : R+ 7→ e(r) ∈ (0, 1].

A particularly relevant example is the one of “visco-elastic hard-spheres” for
which

e(r) + a r 1/5e(r)3/5 = 1 ∀r > 0.
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Boltzmann collision operator for inelastic hard spheres

In weak-form∫
Rd
Qα(g , f )(v)ψ(v)dv = 1

2

∫
R2d

f (v) g(v∗) |v − v∗|Aα[ψ](v , v∗)dv∗dv ,

where

Aα[ψ](v , v∗) =
∫
Sd−1

(ψ(v ′) + ψ(v ′∗)− ψ(v)− ψ(v∗))b(σ · û)dσ,

and the post-collisional velocities (v ′, v ′∗) are given by

v ′ = v + 1 + α

4 (|u|σ − u), v ′∗ = v∗ −
1 + α

4 (|u|σ − u),

where u = v − v∗, û = u
|u| .



Introduction Main results Strategy of proof

The Boltzmann equation

We consider here the (freely cooling) Boltzmann equation for inelastic
collisions:

∂t F (t, x , v) + v · ∇x F (t, x , v) = Qα(F ,F )

supplemented with initial condition F (0, x , v) = Fin(x , v).

• F (t, x , v) density of granular particles having position x ∈ Td
` and velocity

v ∈ Rd at time t > 0 and d > 2.
• We consider the case of flat torus

Td
` = Rd/(2π `Z)d

for some typical length-scale ` > 0.



Introduction Main results Strategy of proof

Conservation of mass and momentum implies

d
dt R(t) := d

dt

∫
Rd×Td

`

F (t, x , v)dvdx = 0,

d
dt U(t) := d

dt

∫
Rd×Td

`

vF (t, x , v)dvdx = 0 .

No loss of generality in assuming that
R(t) = R(0) = 1, U(t) = U(0) = 0 ∀t > 0.

The granular temperature

T (t) := 1
|Td
` |

∫
Rd×Td

`

|v |2F (t, x , v)dvdx

is constantly decreasing
d
dt T (t) = −(1− α2)Dα(F (t),F (t)) 6 0 , ∀t > 0.

Here Dα(g , g) denotes the normalised energy dissipation associated to Qα
given by

Dα(g , g) := γb

4

∫
Td
`

dx
|Td
` |

∫
Rd×Rd

g(x , v)g(x , v∗)|v − v∗|3dvdv∗



Introduction Main results Strategy of proof

Main consequences

• Cooling of the gas:
lim

t→∞
T (t) = 0

with some precise rate to be determined (Haff law) (S. Mischler, C.
Mouhot, 2006–2009).

• No non trivial steady to the (spatially homogoneous) Boltzmann equation

lim
t→∞

F (t, v) = δ0(v).

• The temperature is the only known Lyapunov functional associated to the
equation.
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Navier-Stokes scaling

To capture some hydrodynamic behaviour of the gas, we need to write the
above equation in nondimensional form introducing the dimensionless Knudsen
number

ε := mean free path
spatial length-scale

which is assumed to be small. Re-scaled density

Fε(t, x , v) = F
( t
ε2 ,

x
ε
, v
)
, t > 0.

In this case, we choose for simplicity ` = ε, i.e.

Fε : R+ × Td × Rd → R

with Td = Td
1 .
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ε2∂t Fε(t, x , v) + ε v · ∇x Fε(t, x , v) = Qα(Fε,Fε), (x , v) ∈ Td × Rd ,

supplemented with initial condition

Fε(0, x , v) = F εin(x , v) = Fin( x
ε
, v) .

Conservation of mass and density is preserved under this scaling whereas the
cooling of the granular gas is now given by the equation

d
dt Tε(t) = −1− α2

ε2 Dα(Fε(t),Fε(t)),

where
Tε(t) =

∫
Rd×Td

|v |2Fε(t, x , v)dvdx .
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Self-similar variables

ε2∂t Fε(t, x , v) + ε v · ∇x Fε(t, x , v) = Qα(Fε,Fε), (x , v) ∈ Td × Rd ,

supplemented with initial condition

Fε(0, x , v) = F εin(x , v) = Fin( x
ε
, v) .

Introduce the ansatz

Fε(t, x , v) = Vε(t)d fε
(
τε(t), x ,Vε(t)v

)
,

with

τε(t) := 1
cε

log(1 + cε t) , Vε(t) = (1 + cε t) , t > 0, cε = 1− α
ε2 > 0 .

we can prove that fε satisfies

ε2∂t fε(t, x , v) + εv · ∇x fε(t, x , v) + κα∇v · (vfε(t, x , v)) = Qα(fε, fε) ,

Here,
κα = 1− α ∈ (0, 1)

I drift term κα∇v · (vf (t, x , v)) acts as an energy supply which prevents the
total cooling down of the gas.
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Self-similar profile

Theorem (Mischler-Mouhot (2006–2009))
For α ∈ (α0, 1), there exists a unique solution Gα to the spatially homogeneous
steady equation

κα∇v · (vGα(v)) = Qα(Gα,Gα) ,

with unit mass and zero bulk velocity. Moreover,

lim
α→1−

‖Gα −M‖L1(〈v〉2) = 0 ,

where M is the Maxwellian distribution

M(v) = G1(v) = (2πϑ1)−
d
2 exp

(
−|v |

2

2ϑ1

)
, v ∈ Rd ,

for some explicit temperature ϑ1 > 0.
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The problem at stake

Rescaled Boltzmann equation in self-similar variables

∂t fε(t, x , v) + ε−1v · ∇x fε(t, x , v) + ε−2κα∇v · (vfε(t, x , v)) = ε−2Qα(fε, fε) ,

Questions:
1. Well-posedness of the BE.

a) In which sense ? (renormalized solutions ?, close-to-equilibrium solutions?)
b) Estimates on the solution uniform with respect to ε.

2. Convergence of fε whenever ε→ 0.
Do we have, at the limit

fε(t, x , v) ' Gα(v) + εΦ (v , %(t, x), u(t, x), θ(t, x))

for some universal profile Φ and where

%(t, x), θ(t, x) ∈ R, u(t, x) ∈ Rd

are macroscopic quantities satisfies some hydrodynamic equations.
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In the elastic case α = 1, well-known answers to this problem.

1. Well-posedness established in several frameworks. Ukai (1974), Di Perna
& Lions (1989)

2. The hydrodynamic limit is well-understood and

ε−1 (fε(t, x , v)−M(v)) ' %(t, x)
(2πθ(t, x)) d

2
exp
(
−|v − u(t, x)|2

2θ(t, x)

)
with %, u, θ solutions to the Navier-Stokes-Fourier system with Boussinesq
relation. De Masi, Esposito & Lebowitz (1989), Bardos & Ukai (1991),
Bardos, Golse, Levermore (1991), Golse, Saint-Raymond (2004,2009),
Levermore & Masmoudi (2010), Briant (2015).....
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To answer these questions, we need to assume that α depends on ε to avoid
the explosion of the term 1−α

ε2 .

Assumption (Nearly elastic assumption)
The restitution coefficient α(·) is a continuously decreasing function of the
Knudsen number ε satisfying the optimal scaling behaviour

α = 1− λ0ε
2 + o(ε2)

with λ0 > 0.

Case 1: If λ0 = 0 The elastic regime occurs faster than the hydrodynamic
convergence.

Case 2: If 0 < λ0 <∞, This is the interesting case in which the elastic and
hydrodynamic regimes work at the same pace and the limiting equation
keeps track of the inelasticity through λ0.
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Cauchy Theory

Theorem (Existence and estimates – R. Alonso, I. Tristani, B.L. (2021))
One can construct two suitable Banach spaces X1 ⊂ X such that, for ε, λ0 and
η0 sufficiently small with respect to the initial mass and energy, if

‖F εin − Gα(ε)‖X 6 ε η0

then the inelastic Boltzmann equation has a unique solution

fε ∈ C
(

[0,∞); X
)
∩ L1([0,∞); X1

)
satisfying ∥∥fε(t)− Gα(ε)

∥∥
X
6 Cεη0 exp

(
−λε t

)
, ∀t > 0

for some positive constant C > 0 independent of ε and −λε < 0 is the
“energy” eigenvalue of the linearized operator, λε ' 1−α

ε2 .
X = Wk,1

v Wm,2
x (〈v〉q), X1 = Wk,1

v Wm,2
x (〈v〉q+1) with q > 3,m > d , m − 1 > k > 0.
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Hydrodynamic limit

Under the previous assumptions, set

fε(t, x , v) = Gα + ε hε(t, x , v) ,

with hε(0, x , v) = hεin(x , v) = ε−1 (F εin − Gα) such that

lim
ε→0
‖π0hεin − h0‖L1

vW
m,2
x

= 0 ,

where π0 stands for the projection over the kernel of the elastic linearized
Boltzmann operator

π0h =
d+2∑
i=1

(∫
Rd

h Ψi dv
)

ΨiM Ψd+2(v) = |v |
2 − dϑ1

ϑ1
√

2d

h0(x , v) =
(
%0(x) + u0(x) · v + 1

2θ0(x)(|v |2 − dϑ1)
)
M(v) ,

with M being the Maxwellian distribution (with temperature ϑ1) and

(%0, u0, θ0) ∈
[
Wm,2

x (Td )
]d+2
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Hydrodynamic limit

Theorem (R. Alonso, I. Tristani, B. L. (2021))
Under these assumptions on the initial datum, for any T > 0, {hε}ε converges
in some weak sense to a limit h = h(t, x , v) which is such that

h(t, x , v) =
(
%(t, x) + u(t, x) · v + 1

2θ(t, x)(|v |2 − dϑ1)
)
M(v) ,

where

(%, u, θ) ∈ C
(

[0,T ];
[
Wm−2,2

x (Td )
]d+2

)
∩ L1

(
(0,T );

[
Wm,2

x (Td )
]d+2

)
,

is solution to the following incompressible Navier-Stokes-Fourier system with
forcing 

∂t u − ν
ϑ1

∆x u + ϑ1 u · ∇x u +∇x p = λ0u ,

∂t θ − γ

ϑ2
1

∆xθ+ϑ1 u · ∇xθ = λ0 c̄
2(d + 2)

√
ϑ1 θ ,

divx u = 0, %+ ϑ1 θ = 0 ,
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The above system is subject to initial conditions (%in, uin, θin) related to
(%0, u0, θ0). The viscosity ν > 0 and heat conductivity γ > 0 are explicit and
λ0 > 0 is the parameter appearing in our nearly elastic assumption. The
parameter c̄ > 0 is depending on the collision kernel b(·).

Remark
• If λ0 = 0, then one recovers the classical Navier-Stokes-Fourier system.

This confirms that, in this case, the elastic limit first occurs and then the
hydrodynamic behaviour of the granular gas is that of a classical one.

• If λ0 > 0, the systems maintains the memory of the inelasticity parameter
α through limε→0

1−α
ε2 .
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Comments

1. Our result is, seemingly, the first result capturing the hydrodynamical limit
for granular gases.

2. New Navier-Stokes-Fourier system derived in this context.
3. Approach is perturbative in many aspects.

Main features of the proof
• Doubly pertubative approach: close-to-equilibrium & close-to-elastic.
• Special role played by spectral theory of the linearized Boltzman model.
• Technical nonlinear estimates.
• Hydrodynamic limit in some perturbative regime.
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Strategy of proof

Three steps
1. Spectral analysis of the full linearized Boltzmann operator.
2. Nonlinear estimates for small fluctuations.
3. Passage to the limit.
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Study of fluctuations

Introducing
fε(t, x , v) = Gα(v) + ε hε(t, x , v) ,

the fluctuation hε satisfies ∂t hε(t, x , v) + 1
ε

v · ∇x hε(t, x , v)− 1
ε2 Lαhε(t, x , v) = 1

ε
Qα(hε, hε)(t, x , v) ,

hε(0, x , v) = hin
ε (x , v) ,

where Lα is the linearized collision operator (local in the x -variable) defined as

Lαh = Qα(h,Gα) +Qα(Gα, h)− κα∇v · (vh) ,

Elastic case: L1 the usual linearized operator around G1 =M

L1(h) = Q1(M, h) +Q1(h,M).
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The (full) linearized operator is then

Gα,εh = ε−2Lα(h)− ε−1v · ∇x h

and the Botlzmann equation is re-written as a quasi-linear equation

∂t hε = Gα,εhε + 1
ε
Qα(hε, hε).

Question: Properties of Gα,ε ? Spectrum, C0-semigroup generation ?
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The elastic case

For α = 1, properties of G1,ε are well-known. In a large class of Banach spaces,
G1,ε is the generator of a C0-semigroup and admits a spectral gap.

• Well-known facts in spaces with Maxwellian weights based upon L2
v (M− 1

2 )
(on which L1 is self-adjoint).

• Careful study of the spectrum due to Ellis & Pinsky (1975). Crucial brick
in the study of the Navier-Stokes limit by Bardos & Ukai (1991).
Extended recently by Gallagher, Tristani (2020).

• Results extended to smaller spaces Gualdani, Mischler, Mouhot (2017),
Guo (2006), Gervais (2021).

• Estimates uniform with respect to ε obtained very recently by Briant,
Merino-Aceituno, Mouhot (2019).∥∥V1,ε(t) [h − P0h]

∥∥
Ws,1

v W`,2x (〈v〉q)

6 C0 exp(−µ?t) ‖h − P0h‖Ws,1
v W`,2x (〈v〉q) , ∀ t > 0 ,

with V1,ε(t) = exp (tG1,ε), ` > s > 0, q > q?.
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P0 is the spectral projection onto Ker(G1,ε) = Ker(L1) which is independent
of ε

P0h = π0

(∫
Td

hdx
)
.

In the elastic case, the nonlinear dynamics occurs on Range(I− P0).

P0Q1(h, h) = 0

So, Duhamel formula says that

hε(t) = V1,ε(t)hin + 1
ε

∫ t

0
V1,ε(t − s)(I− P0)Q1(hε(s), hε(s))ds

In the inelastic case, we do not know what could be the equivalent of the
spectral projection P0 and, more importantly, we do not expect Qα,ε(h, h) to
stay on the kernel of this spectral projection.
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Perturbing the elastic case

Goal: exploit this to deduce properties of Gα,ε.
Crucial point

‖Gα,ε − G1,ε‖ = O
(1− α

ε2

)
.

I This is not a standard pertubation argument (in the sense of Kato, say)
because the domain of Lα is much smaller than that of L1.

Not enough to deduce directly any kind of spectral structure.
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Theorem (In Ws,1
v W`,2

x (〈v〉q) ` ∈ N, s > 0, ` > s, q > q?)
For µ? − µ > 0 sufficiently small and ε small enough

S(Gα,ε) ∩ {z ∈ C ; Rez > −µ} = {λ1(ε), . . . , λd+2(ε)} ,

where λ1(ε) = 0, λj (ε) = ε−2κα > 0, j = 2, . . . , d + 1 , and

λd+2(ε) = −λε = −1− α
ε2 + O(ε2) , for ε ' 0

are eigenvalues of Gα,ε with |λj (ε)| < µ? − µ.

• These eigenvalues are actually associated to the (spatially homogenous)
collision operator.

• The negative eigenvalue −λε will be enough to get the asymptotic
stability.

• The difficulty is to prove that, for ε small enough, there is nothing more
than these eigenvalues.
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Nonlinear equation

We solve the equation

∂t hε = Gα,εhε + 1
ε
Qα(hε, hε), h = hε ∈ E = Wk,1

v Wm,2
x (〈v〉q).

Main ideas
• The projection Pε associated to the above set of eigenvalues does not kill

the collision operator. No nice energy estimates (no symmetry space).
• Splitting of the linearized operator (Gualdani, Mischler, Mouhot (2017)

and introduced by Tristani (2016) for granular gases).

Gα,ε = 1
ε2A+ Bα,ε

with A regularizing in velocity and

Bα,ε + ε−2ν0 (hypo)-dissipative

• Important: typically, Aα maps continuously L1
v into any Sobolev space

Wk,p
v ($q) for any k, p, q. No regularizing effect in spatial variable.
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• Important: typically, Aα maps continuously L1
v into any Sobolev space

Wk,p
v ($q) for any k, p, q. No regularizing effect in spatial variable.

• One writes

∂t hε = Bα,εhε + 1
ε

(Qα(hε, hε)−Q1(hε, hε)) + 1
ε
Q1(hε, hε) + 1

ε2Ahε

The first term is nicely dissipative, the second is not as stiff as expected in
the regime we investigate

‖Qα(hε, hε)−Q1(hε, hε)‖ = O(1− α).

The last two terms are purely elastic ! Even if they are stiff.
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We use an approach borrowed from Briant, Merino-Aceituno, Mouhot (2019)
and splits our solution

hε = h0
ε + h1

ε
∂t h0 = Bα,εh0 + ε−1Qα(h0, h0) + ε−1

[
Qα(h0, h1) +Qα(h1, h0)

]
+
[
Gα,εh1 − G1,εh1

]
+ ε−1

[
Qα(h1, h1)−Q1(h1, h1)

]
,

h0(0) = hεin ∈ E .
and {

∂t h1 = G1,εh1 + ε−1Q1(h1, h1) + ε−2Ah0 ,

h1(0) = 0 .

We look for h1 ∈ H = Wm,2
v,x
(
M−1/2). Recall the regularizing effect to A!
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
∂t h0 = Bα,εh0 + ε−1Qα(h0, h0) + ε−1

[
Qα(h0, h1) +Qα(h1, h0)

]
+
[
Gα,εh1 − G1,εh1

]
+ ε−1

[
Qα(h1, h1)−Q1(h1, h1)

]
,

h0(0) = hεin ∈ E .

d
dt ‖h

0(t)‖E 6 −ε−2ν0‖h0(t)‖E1 + Cε−1(‖h0(t)‖E + ‖h1(t)‖E1

))
‖h0(t)‖E1

+ C(1− α)ε−2‖h1(t)‖E2 + C(1− α)ε−1‖h1(t)‖2
E2

with E2 ⊂ E1 ⊂ E . Choosing, for ε small enough,

ν0 − εC
(
‖h0(t)‖E + ‖h1(t)‖E1

)
> µ0 > 0

we obtain that

‖h0(t)‖E . ‖h0(0)‖E e−
µ0
ε2 t + λε

∫ t

0
e−

µ0
ε2 (t−s)‖h1(s)‖E2 ds

+ ελε

∫ t

0
e−

µ0
ε2 (t−s)‖h1(s)‖2

E2 ds .

with λε ' 1−α(ε)
ε2 .
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Estimating h1

Difficulty: how to apply the spectral projection Pε associated to the energy
eigenvalue −λε ?
We cheat a bit and apply the one associated to the elastic operator:

∂tP0h(t) = P0Gεh(t) + 1
ε

P0Qα(h, h)

with

P0 [Gεh(t)] ' −λεP0h(t) + O
(

1− α(ε)
ε2

)
‖(I− P0) h(t)‖E t > 0

and
‖P0Qα(h, h)‖E ' (1− α) |Dα(h, h)| ‖φ0‖E . (1− α)‖h‖2

E

Thus

‖P0h1(t)‖E . ‖P0h(0)‖Ee−λεt + ‖h0(t)‖E

+ ελε

∫ t

0
e−λε(t−s)

(
‖h1(s)‖2

E + ‖h0(s)‖2
E

)
ds

+ λε

∫ t

0
e−λε(t−s)

(∥∥h0(s)
∥∥
E

+
∥∥(I− P0) h1(s)

∥∥
E

)
ds.
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Estimating Ψ(t) = (I− P0)h1(t)

∂t Ψ = G1,εΨ + ε−1Q1(h1, h1) + ε−2(I− P0)Ah0 ,

Known estimates for the elastic semigroup on the “symmetric space” H

d
dt ‖Ψ(t)‖2

H 6 −c0‖Ψ(t)‖2
H1 +C‖h1(t)‖2

H ‖h1(t)‖2
H1 +ε−2‖Ψ(t)‖H ‖P⊥0 h0(t)‖H.

with H1 ⊂ H. Then, we conclude with a Gronwall argument, that for any
r ∈ (0, 1),

‖h1(t)‖2
H 6 C η0 exp (−2(1− r)λε t) , ∀ t > 0 .
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Hydrodynamic limit

Theorem (Peculiar weak convergence)
Fix T > 0, with the splitting hε = h0

ε + h1
ε ⊂ L1((0,T ); L1

vWm,2
x (〈v〉q)

)
, up to

extraction of a subsequence, one has
{

h0
ε

}
ε

converges to 0 strongly in L1((0,T ) ; E)

{
h1
ε

}
ε

converges to h weakly in L2
(

(0,T ) ; L2
vWm,2

x
(
M−

1
2
))

where h = π0(h). In particular, there exist

% ∈ L2 ((0,T ); Wm,2
x (Td )

)
, θ ∈ L2 ((0,T ); Wm,2

x (Td )
)
,

u ∈ L2
(

(0,T );
(
Wm,2

x (Td )
)d
)

such that

h(t, x , v) =
(
%(t, x) + u(t, x) · v + 1

2θ(t, x)(|v |2 − dϑ1)
)
M(v).



Introduction Main results Strategy of proof

Classical estimates
Average 〈

f
〉

=
∫
Rd

f (t, x , v)dv .

For any function ψ = ψ(v) such that |ψ(v)| . 〈v〉q(v) one has〈
ψ hε

〉
−→

〈
ψ h
〉
.

First consequences:
• incompressibility condition

divx u(t, x) = 0 , t ∈ (0,T ) ,

• Boussinesq relation
∇x (%+ ϑ1θ) = 0 .

Introducing

E(t) =
∫
Td
θ(t, x)dx , t ∈ (0,T ) ,

one has strengthened Boussinesq relation

%(t, x) + ϑ1 (θ(t, x)− E(t)) = 0 , for a.e. (t, x) ∈ (0,T )× Td .
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As in the classical elastic case, we write〈
v ⊗ v hε

〉
=
〈

A hε
〉

+ pεId, pε =
〈 1

d |v |
2 hε
〉
,

with the traceless tensor A = A(v) = v ⊗ v − 1
d |v |

2Id. One has

∂t

〈
hε
〉

+ 1
ε

divx

〈
v hε
〉

= 0 ,

∂t

〈
v hε
〉

+ 1
ε

Divx

〈
A hε

〉
+ 1
ε
∇x pε = κα

ε2

〈
v hε
〉
,

∂t

〈
1
2 |v |

2hε
〉

+ 1
ε

divx

〈
1
2 |v |

2v hε
〉

= 1
ε3 Jα(fε, fε) + 2κα

ε2

〈
1
2 |v |

2hε
〉
,

where
Jα(f , f ) =

∫
Rd

[Qα(f , f )−Qα(Gα,Gα)] |v |2dv .
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The LHS converges (in the distributional sense) as in the elastic case.

The RHS is treated as a source term which takes into account the drift term
and the dissipation of kinetic energy at the microscopic level.
It holds

1
ε3 Jα(fε, fε) −→ J0 in D ′t,x ,

where

J0(t, x) = −λ0 c̄ ϑ
3
2
1

(
%(t, x) + 3

4ϑ1 θ(t, x)
)

= −λ0 c̄ ϑ
5
2
1

(
E(t)− 1

4θ(t, x)
)
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The limit velocity u(t, x) satisfies

∂t u − ν

ϑ1
∆x u + ϑ1Divx (u ⊗ u) +∇x p = λ0u

while the limit temperature θ(t, x) satisfies

∂tθ −
γ

ϑ2
1

∆xθ+ϑ1 u · ∇xθ = 2
(d + 2)ϑ2

1
J0 + 2dλ0

d + 2 E(t) + 2
d + 2

d
dt E(t) ,

where
E(t) =

∫
Td
θ(t, x)dx , t > 0 .

One has
d
dt E(t) = 2

dϑ2
1

∫
Td
J0(t, x)dx + 2λ0E(t) = c̄0E(t)

and
E(0) = lim

ε→0

∫
Td

〈
1
2

(
|v |2 − (d + 2)ϑ1

)
hε
〉

dx = 0!

Thus, E(t) = 0 for any t > 0.
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This gives the final system

∂t u − ν
ϑ1

∆x u + ϑ1Divx (u ⊗ u) +∇x p = λ0u

∂t θ − γ

ϑ2
1

∆xθ + ϑ1 u · ∇xθ = λ0 c̄
2(d+2)

√
ϑ1 θ

divx u(t, x) = 0, %(t, x) + ϑ1θ(t, x) = 0 , x ∈ Td .
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Summary

• We proved the existence and uniqueness of close-to-equilibrum solution to
the BE for granular gases.

• Exponential stability of these solutions with decay rate prescribed by the
energy eigenvalue −λε.

• Prove the convergence of fluctuations to some limiting function h
depending on t, x only through macroscopic quantities solving a modified
incompressible Navier-Stokes-Fourier system.

• Results obtained in a nearly elastic regime and the limiting hydrodynamic
system keeps track of this regime.



Introduction Main results Strategy of proof

Open problems/Research projects

• Study the case of viscoelastic hard spheres. In this case, the nearly elastic
regime should emerge naturally with the scaling.

• Can one be more precise in the spectral description and derive the
equivalent of Ellis & Pinski (1975) result for granular gases ? This would
allow for instance to adapt the work of Bardos & Ukai (1991), Gallagher
& Tristani (2020).

• Other kinds of scalings (Euler).
• Understand the role of entropy for granular gases.
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