Wasserstein estimates and convergence to equilibrium for an evolutionary biology model

Gaël Raoul

June 26, 2022

Centre de mathématiques appliquées, CNRS & Ecole Polytechnique, Paris, France. Dynamics of a kinetic model from evolutionary biology

The model

Population Genetics' approach: Gaussian approximation

A macroscopic limit to the ODE model

Exponential convergence to a steady-state

Raoul, G., 2021. Exponential convergence to a steady-state for a population genetics model with sexual reproduction and selection. *arXiv preprint* arXiv:2104.06089.

An example of a Phenotypic trait

Figure: growth rate of a given E-coli strain for different temperatures¹

The phenotypic trait $x \sim 37$ is the temperature to which the strain is best adapted to.

¹Bronikowski et al, *Evolution*, 2001.

Local adaptation

Figure: Common garden experiment on natural populations.

Adaptation to a given fitness landscape: evolutionary rescue

Figure: Evolutionary rescue: E-coli in a new changing environment²

²Roi, *Biotechnol Bioengineering*, 2019.

Adaptation to a given fitness landscape: evolutionary rescue

The origin of population genetics: artificial selection

Figure: Long term artificial selection experiment.³

³S. Moose team, Department of Crop Sciences; University of Illinois; Urbana-Champaign

Sexual reproduction and recombination

Infinitesimal model

Alleles $p^i \in \{\pm 1\}$ for $i \in \{1, \ldots, N\}$, traits

$$y_* = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} p_*^i, \quad y_*' = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} p_*^{i'},$$

such that $\frac{1}{N}\sum_{i=1}^{N} p_*^i \sim 0$ and $\frac{1}{N}\sum_{i=1}^{N} p_*^{i\,\prime} \sim 0$. We then define the trait of the offspring by

$$y = rac{1}{\sqrt{N}} \sum_{i=1}^{N} \left(p^i_* \delta_i + p^{i\prime}_* (1-\delta_i)
ight),$$

with δ_i Bernouilly random variables. In the large N limit⁴, the law of y is

$$y\mapsto \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\left(y-\frac{y_{*}+y_{*}'}{2}\right)^{2}}{2\sigma^{2}}}$$

⁴Fisher, *Earth Environ. Sci. Trans. R. Soc. Edinb.*, 1919. Barton, Etheridge, Véber, *Theor. popul. biol*, (2017).

Infinitesimal model

For $n, m \in \mathcal{P}_2(\mathbb{R})$, we define the infinitesimal operator

$$T(n,m)(y) = \int \int \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(y - \frac{y_* + y'_*}{2}\right)^2}{2\sigma^2}} n(y_*)m(y'_*) \, dy * dy'_*,$$

and T(n) := T(n, n).

Properties:

•
$$\int T(n)(x)x \, dx = \int n(x)x \, dx$$
,
• $T(\Gamma_{2\sigma^2}) = \Gamma_{2\sigma^2}$, where $\Gamma_{2\sigma^2} = \frac{1}{2\sqrt{\pi}\sigma} e^{-\frac{\left(\cdot - \frac{y_* + y'_*}{2}\right)^2}{4\sigma^2}}$.

The model

The model we will focus on is

$$\partial_t n(t, y) = \int \int \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(y - \frac{y_* + y'_*}{2}\right)^2}{2\sigma^2}} (1 + \alpha a(y_*)) n(y_*) (1 + \alpha a(y'_*)) n(y'_*) \, dy * dy'_*$$

$$-\left(1+\alpha\int a(x)n(t,x)\,dx\right)^2n(t,y).$$

An equivalent ecology model

The fixed population size assumption can be relaxed, as shown in the following model:

$$\partial_t f(t,x) = \int \int \Gamma_{\sigma^2} \left(x - \frac{y_* + y'_*}{2} \right) (1 + \alpha a(y_*)) f(t,y_*) (1 + \alpha a(y'_*)) \frac{f(t,y'_*)}{\int f(t,y) \, dy} \, dy_* \, dy'_* - \left(\int \mathcal{K}(y) f(t,y) \, dy \right) f(t,x).$$

Then $n(t,x) := \frac{f(t,x)}{\int f(t,y) dy}$ is a probability measure and satisfies our main model.

Dynamics of a kinetic model from evolutionary biology

The model

Population Genetics' approach: Gaussian approximation

A macroscopic limit to the ODE model

Exponential convergence to a steady-state

References

Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Oxford, UK: Clarendon Press. "The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time"

MG Bulmer, The mathematical theory of quantitative genetics. Oxford, UK: Clarendon Press (1980).

Mirrahimi, S. and R., G. Dynamics of sexual populations structured by a space variable and a phenotypical trait. *Theoretical population biology*, **84**, 87–103 (2013).

"Fundamental theorem of natural selection"⁵

⁵Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Oxford, UK: Clarendon Press. M. Alfaro, R. Carles, Replicator-mutator equations with quadratic fitness, Proc. Amer. Math. Soc. 145 (2017), 5315–5327.

Gaussian approximation

It is classical to assume that phenotypic traits of individuals in a population are distributed normally:

$$n(t,x) \sim \Gamma_{2\sigma^2}(y-Z(t)).$$

We can then estimate:

$$Z'(t) = \frac{d}{dt} \int xn(t,x) dx$$

= $\alpha (1 + \alpha I_n(t)) \left(\int xa(x)n(t,x) dx - I_n(t) \int xn(t,x) dx \right)$
~ $\alpha F(Z(t)),$

where $I_n(t) = \int a(x)n(t,x) dx$ and

$$F(Y) := \int (x - Y)a(x)\Gamma_{2\sigma^2}(x - Y) dx$$

Gaussian approximation

 $\alpha=1$ for the structured population model.

Dynamics of a kinetic model from evolutionary biology

The model

Population Genetics' approach: Gaussian approximation

A macroscopic limit to the ODE model

Exponential convergence to a steady-state

Magal, P. and Raoul, G., 2015. Dynamics of a kinetic model describing protein exchanges in a cell population. *arXiv preprint arXiv:1511.02665*.

Patout, F., 2020. The Cauchy problem for the infinitesimal model in the regime of small variance. *arXiv preprint arXiv:2001.04682*.

Wasserstein estimate on the reproduction operator

Proposition (Tanaka-type contraction estimate) If $n, m \in \mathcal{P}_2(\mathbb{R})$ and $Z_n = \int xn(x) dx = \int xm(x) dx = Z_m$, then

$$W_2(T(n),T(m)) \leq \frac{1}{\sqrt{2}}W_2(n,m).$$

Wasserstein distance: For $n, m \in \mathcal{P}_2(\mathbb{R})$,

$$W_2(n,m) = \left(\inf_{\pi \in \Pi} \int \int |x-y|^2 d\pi(x,y)\right)^{1/2},$$

where $\Pi = \{\pi \in \mathcal{P}_2(\mathbb{R}); \pi_1 = n, \pi_2 = m\}$. Dual formula:

$$W_2(n,m)^2 = \max \left\{ \int \phi(y)n(y) \, dy + \int \psi(Y)m(Y) \, dY; \ \phi(y) + \psi(Y) \leq |y-Y|^2
ight\}.$$

Sketch of proof for the Tanaka-type contraction estimate

Theorem

If $\alpha > 0$ is small enough and under some assumptions on the initial condition,

$$\forall t \in [-C \ln \alpha / \alpha, \infty), \quad W_2(n(t, \cdot), \Gamma_{2\sigma^2}(\cdot - Z_n(t))) \le C\alpha, \quad (1)$$

and

$$\forall t \in [0,\infty), \quad |Z_n(t) - Y(t/\alpha)| \leq \frac{C}{-\ln \alpha},$$
 (2)

where Y is the solution of Y' = F(Y) with initial data $Z^0 = \int xn^0(x) dx$.

Slow-fast structure:

- Slow manifold: Gaussian distributions $\{\Gamma_{2\sigma^2}(\cdot Z), Z \in \mathbb{R}\}$.
- Fast dynamics: $W_2(n(t, \cdot), \Gamma_{2\sigma^2}(\cdot Z_n(t)))$
- **Slow dynamics**: $Z_n(t)$, with speed $\sim \alpha$

Sketch of proof

Step 1: $n(t, \cdot)$ is close to a Gaussian distribution.

$$n(t,x) = n(0,x)e^{-\int_0^t (1+\alpha I_n(s))^2 ds} + \int_0^t (1+\alpha I_n(s))^2 T\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha I_n(s)}\right)(x)e^{-\int_s^t (1+\alpha I_n(\tau))^2 d\tau} ds,$$

while

$$\begin{split} \Gamma_{2\sigma^{2}}(x - Z_{n}(t)) &= \Gamma_{2\sigma^{2}}(x - Z_{n}(t))e^{-\int_{0}^{t}(1 + \alpha I_{n}(s))^{2} ds} \\ &+ \int_{0}^{t}(1 + \alpha I_{n}(s))^{2} \Gamma_{2\sigma^{2}}(\cdot - Z_{n}(t))(x)e^{-\int_{s}^{t}(1 + \alpha I_{n}(\tau))^{2} d\tau} ds \\ &= \Gamma_{2\sigma^{2}}(x - Z_{n}(t))e^{-\int_{0}^{t}(1 + \alpha I_{n}(s))^{2} ds} \\ &+ \int_{0}^{t}(1 + \alpha I_{n}(s))^{2} T \left(\Gamma_{2\sigma^{2}}(\cdot - Z_{n}(t))\right)(x)e^{-\int_{s}^{t}(1 + \alpha I_{n}(\tau))^{2} d\tau} ds. \end{split}$$

Sketch of proof

$$\begin{split} W_{2}\left(n(t,x),\Gamma_{2\sigma^{2}}(x-Z_{n}(t))\right) &= W_{2}\left(n(0,x),\Gamma_{2\sigma^{2}}(x-Z_{n}(t))\right)e^{-\int_{0}^{t}(1+\alpha I_{n}(s))^{2}\,ds} \\ &+ \int_{0}^{t}\left(1+\alpha I_{n}(s)\right)^{2}e^{-\int_{s}^{t}(1+\alpha I_{n}(\tau))^{2}\,d\tau} \\ &W_{2}\left(T\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha I_{n}(s)}\right),T\left(\Gamma_{2\sigma^{2}}(\cdot-Z_{n}(t))\right)\right)ds, \end{split}$$

and

$$W_{2}\left(T\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha l_{n}(s)}\right), T\left(\Gamma_{2\sigma^{2}}(\cdot-Z_{n}(t))\right)\right)$$

$$\leq \frac{1}{\sqrt{2}}W_{2}\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha l_{n}(s)}, \Gamma_{2\sigma^{2}}(\cdot-Z_{n}(t))\right)$$

$$+\mathcal{O}(\alpha)(1+|t-s|).$$

Sketch of proof

Step 2:
$$Z_n(t) := \int xn(t,x) dx$$
 satisfies $Z'_n(t) \sim F(Z_n(t))$
 $Z'_n(t) = \alpha I_n(t)(1 + \alpha I_n(t)) \left[\int y \frac{a(y)n(t,y)}{I_n(t)} dy - Z_n(t) \right]$

$$= \alpha I_n(t)(1+\alpha I_n(t)) \left[\int y \frac{a(y) \Gamma_{2\sigma^2}(y-Z_n(t))}{I_n(t)} \, dy - Z_n(t) \right]$$

+
$$\mathcal{O}(\alpha)W_2(n(t,\cdot-\Gamma_{2\sigma^2}(\cdot-Z_n(t)))),$$

and then

$$Z'_n(t) = \alpha F(Z_n(t)) + \mathcal{O}(\alpha),$$

which yields

$$|Z_n(t) - Y(t/\alpha)| \leq C\alpha t e^t.$$

Dynamics of a kinetic model from evolutionary biology

The model

Population Genetics' approach: Gaussian approximation

A macroscopic limit to the ODE model

Exponential convergence to a steady-state

References and alternative analysis ideas

T. Bourgeron, V. Calvez, J. Garnier, T. Lepoutre, Existence of recombination-selection equilibria for sexual populations. *arXiv* preprint arXiv:1703.09078 (2017).

V. Calvez, J. Garnier, F. Patout, Asymptotic analysis of a quantitative genetics model with nonlinear integral operator. *Journal de l'École polytechnique–Mathématiques*, **6**:537–579 (2019).

Calvez, V., Lepoutre, T. and Poyato, D., 2021. Ergodicity of the Fisher infinitesimal model with quadratic selection. *arXiv preprint arXiv:2107.00383*.

Recall

Slow-fast structure:

- Slow manifold: Gaussian distributions $\{\Gamma_{2\sigma^2}(\cdot Z), Z \in \mathbb{R}\}$.
- Fast dynamics: $W_2(n(t, \cdot), \Gamma_{2\sigma^2}(\cdot Z_n(t)))$
- Slow dynamics: $Z_n(t)$, with speed $\sim \alpha$

If the fast dynamics has a stable equilibrium, do we have a unique steady-state of the full model, when $\alpha>0$ is small ?

Pushing the analysis further

For n, m solutions, we estimate two quantities (slow and fast):

 $|Z_n(t)-Z_m(t)|,$

$$w(t) := W_2(n(t, \cdot - Z_n(t)), m(t, \cdot - Z_m(t))) \\= \min_{\xi} W_2(n(t, \cdot - \xi), m(t, \cdot)).$$

To estimate the second quantity, we consider

$$n(t,x) = n(0,x)e^{-\int_0^t (1+\alpha I_n(s))^2 ds} + \int_0^t (1+\alpha I_n(s))^2 T\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha I_n(s)}\right)(x)e^{-\int_s^t (1+\alpha I_n(\tau))^2 d\tau} ds,$$

and need to estimate

$$W_2\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha l_n(s)},\frac{(1+\alpha a)m(s,\cdot)}{1+\alpha l_m(s)}\right) \leq \mathcal{O}(\alpha)W_2(n(t,\cdot),m(t,\cdot)) + C|Z_n(t) - Z_m(t)|.$$

$$W_2\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha l_n(s)},\frac{(1+\alpha a)m(s,\cdot)}{1+\alpha l_m(s)}\right) \leq \mathcal{O}(\alpha)W_2(n(t,\cdot),m(t,\cdot)) + C|Z_n(t) - Z_m(t)|.$$

Monge-Kantorovich:

$$\left|\int f(x)n(s,x)\,dx-\int f(x)m(s,x)\,dx\right|\leq \|f'\|_{\infty}W_1(n(s,\cdot),m(s,\cdot)).$$

Ideas from non-convex granular media equations

Let $n, m \in \mathcal{P}_2(\mathbb{R})$ solutions of the following model:

$$\partial_t n - \Delta_x n = \nabla_x \cdot (n \nabla_x W *_x n + \nabla_x V),$$

where * is a convolution and W a long-range interaction potential. If W and V are convex, solutions do contract for the W_2 distance:

$$\frac{d}{dt}W_2(n(t,\cdot),m(t,\cdot)) \leq -\kappa W_2(n(t,\cdot),m(t,\cdot)).$$

If V is slightly non-convex close to the origin, this property persists⁶

⁶J. A. Carrillo, R. J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. *Arch. Ration. Mech. Anal.*, **179**(2):217–263 (2006).

F. Bolley, I. Gentil, A. Guillin, Convergence to equilibrium in wasserstein distance for fokker-planck equations. *J. Funct. Anal.*, **263**(8):2430-2457 (2012).

Ideas from non-convex granular media equations

The analysis relies on the convexity of the energy

$$E(n(t, \cdot)) = \int n(t, x) \log(n(t, x)) dx$$

+ $\frac{1}{2} \int \int W(x - y)n(t, x)n(t, y) dx dy + \int V(x)n(t, x) dx,$

along geodesics. The first part of this energy is always convex.

- Tails: Far from the center of mass of the distribution, $W * n(t, \cdot) + V$ is convex.
- ▶ Core: Close to the center of mass, $n(t, \cdot)$ is bounded from below, so that $\int n(t, x) \log(n(t, x)) dx$ is strictly convex.

The convexity of the energy implies the contraction estimate.

Wasserstein estimate with a lower bound assumption

$$W_2\left(\frac{(1+\alpha a)n(s,\cdot)}{1+\alpha l_n(s)},\frac{(1+\alpha a)m(s,\cdot)}{1+\alpha l_m(s)}\right)$$

 $\leq \mathcal{O}(\alpha)W_2(\mathbf{n}(t,\cdot),\mathbf{m}(t,\cdot)) + C|Z_n(t) - Z_m(t)|.$

Tails: Since ∫ a(x)n(t, x) dx ≠ ∫ b(x)n(t, x) dx, large distance couplings appear. We take advantage of exponential tails estimates:

$$\forall x \geq R', \quad \partial_x n(t,x) \leq n(t,x).$$

▶ core: If a is compactly supported, $n(t, \cdot)$ is bounded away from 0 around supp $n(t, \cdot)$. Then,

$$W_2\left(\left(1-\alpha+\frac{\alpha a}{\int a(x) n(x) dx}\right)n, \left(1-\alpha+\frac{\alpha a}{\int a(x) m(x) dx}\right)m\right)$$

 $\leq \mathcal{O}(\alpha)W_2(n,m)+C|Z_n(t)-Z_m(t)|,$

${\sf Convergence}$

$$\begin{cases} \frac{d}{dt}w'(t) \leq -\left(\frac{\sqrt{2}-1}{\sqrt{2}} + C\sqrt{\alpha}\right)w(t) + C\alpha|Z_m(t) - Z_n(t)|,\\ \frac{d}{dt}|Z_m(t) - Z_n(t)| \leq C\alpha w(t) + \alpha \frac{F'(\bar{Z})}{2}|Z_m(t) - Z_n(t)|. \end{cases}$$

Then,

$$\begin{split} \frac{d}{dt} \left(\sqrt{\alpha} w(t) + |Z_n \circ \varphi_n(t) - Z_m \circ \varphi_m(t)| \right) \\ &\leq \left[-\sqrt{\alpha} \frac{\sqrt{2} - 1}{\sqrt{2}} + C\alpha \right] w(t) \\ &+ \left[\alpha \frac{F'(\bar{Z})}{2} + \sqrt{\alpha} C\alpha \right] |Z_m(t) - Z_n(t)| \\ &\leq \alpha \frac{F'(\bar{Z})}{3} \left(\sqrt{\alpha} w(t) + |Z_n \circ \varphi_n(t) - Z_m \circ \varphi_m(t)| \right). \end{split}$$

Convergence

We have shown that

$$\left(\sqrt{\alpha} w(t) + |Z_n \circ \varphi_n(t) - Z_m \circ \varphi_m(t)|\right) \leq C e^{\frac{F'(\bar{Z})}{3} \alpha t}$$

Then, in particular,

$$W_2(n(t,\cdot),m(t,\cdot)) \leq Ce^{\frac{F'(\bar{Z})}{3}\alpha t}$$

If we show that there exists a steady-state \bar{n} close to $\Gamma_{2\sigma^2}(\cdot - \bar{Z})$, and in particulat,

$$W_2(n(t,\cdot),\bar{n}) \leq Ce^{\frac{F'(\bar{Z})}{3}\alpha t}.$$

Perspectives

- (With B. Perthame and L. Kanzler) Intermediate distances between W₁ and W₂, inspired by Eberle⁷ and Hairer-Mattingly.
- > Consider other fitness landscapes, still with a small parameter,

 Considering other aggregation questions with a small parameter,

⁷A. Eberle, PTRF 2016.
 ⁸Degond et al, Séminaire Laurent Schwartz.

Thank you for your attention.