On the arithmetic-geometric complexity of the Grunwald problem

Joachim König (KNUE, Cheongju)

France-Korea Number Theory Webinar, Oct.17th 2022

2 Notions of (arithmetic and geometric) complexity in Galois theory

3 Main results: Parameterizing solutions to Grunwald problems

Ideas of proof

5 Application: "Parametric dimension"

- 2 Notions of (arithmetic and geometric) complexity in Galois theory
- 3 Main results: Parameterizing solutions to Grunwald problems
- 4 Ideas of proof
- 5 Application: "Parametric dimension"

G-extensions and coverings

• For G a finite group, by a G-extension of a field K, we mean a Galois extension L/K of étale algebras (= a direct product of isomorphic Galois extensions of fields) with Galois group G.

(Informally, one may think of a Galois extension of K whose Galois group embeds into G.)

• By a *G*-**Galois cover**, we mean a finite ramified Galois covering $f : X \to Y$ of (smooth, quasiprojective, irreducible) varieties *X*, *Y* over *K*, whose Galois group is isomorphic to *G* (equivalently, its function field extension E/F is a Galois extension with group *G*.)

Specialization

For a cover f : X → Y and for each K-point p of Y away from the ramification locus of f, the specialization of f at p is the residue extension K(f⁻¹(p))/K, and is a G-extension in the étale algebra sense.
(When Y = P^d and f is given by a polynomial F(t₁,..., t_d, X), specialization ("mostly") simply corresponds to evaluating the variables t₁,..., t_d.)

A central question

When specializing a fixed G-Galois cover as above, which G-extensions can you actually get?

E.g., over a number field K, G-Galois covers f : X → P^d_K with X absolutely irreducible always specialize to infinitely many distinct G-extensions of K (Hilbert's irreducibility theorem).

Grunwald problems

- K a number field, G a finite group.
- Pick a finite set S of primes of K, and for each p a Galois extension L^p/K_p (of the completion K_p) with group embedding into G.
- The **Grunwald problem** associated to $(G, S, (L^p/K_p)_{p \in S})$ is the question whether there exists a Galois extension of K with group G whose completions at p are isomorphic to L^p/K_p for all $p \in S$.
- **Grunwald-Wang theorem**: When G is cyclic, there always exists a finite set S_0 of primes of K such that all Grunwald problems for G away from the set S_0 have a solution. However, when 8||G|, the conclusion would become false upon dropping the set S_0 .
- Nowadays, similar conclusions are known for much larger classes of groups, notably **supersolvable groups** (Harpaz-Wittenberg), or groups possessing a "generic extension" over *K* (Saltman).

Theorem (Dèbes-Ghazi, 2012)

Let K be a number field and $f : X \to \mathbb{P}^1$ be a regular G-cover over K. Then there exists an (explicitly describable) finite set S_0 of primes of K such that any **unramified** Grunwald problem $(G, S, (L^p/K_p)_{p \in S})$ for G with S disjoint from S_0 has a solution among the set of specializations of f.

Later results by Dèbes and Motte: \rightarrow asymptotic lower bound for solutions to given unramified Grunwald problem among specializations of f (e.g., when ordered by discriminant).

Hilbert–Grunwald property for a group G (general case)

- **Obvious observation**: In general, given a Galois cover $f : X \to \mathbb{P}^1$ (with group G) one cannot hope to solve *all* Grunwald problems for G via specializations of f (e.g., depending on the precise branch point locus, some primes may be unramified in all specializations, etc.)
- ⇒ A better question: Given G and (a number field) K, does there exist a G-cover f : X → P¹ (over K) whose K-specializations yield solutions to all Grunwald problems away from some finite set of primes (depending on G)?

Definition (Hilbert-Grunwald property)

Let us say that G has the Hilbert-Grunwald property over K if there exists $f: X \to \mathbb{P}^1$ as above.

Some easy examples

- E.g., f: P¹ → P¹, f(x) = x² very obviously has this property for G = C₂; more generally, if G is a group with a **one-parameter generic extension** over K, then G has the Hilbert-Grunwald property over K.
- Groups with one parameter generic extensions are very rare, but other examples also occur (e.g., cyclic groups of prime order over all number fields)!

Grunwald problems and specializations: the ramified case

Theorem (K.-Legrand-Neftin, 2019)

Let G be a finite group containing a non-cyclic abelian subgroup. Let E/K(t) be a Galois extension with group G. Then there are infinitely many primes p of K, and for each p at least one Galois extension L^p/K_p with group embedding into G such that L^p/K_p is not a specialization of E/K(t). In particular, G does not have the Hilbert-Grunwald property over K.

2 Notions of (arithmetic and geometric) complexity in Galois theory

3 Main results: Parameterizing solutions to Grunwald problems

Ideas of proof

5 Application: "Parametric dimension"

Varieties parameterizing Galois extensions

General question

Given field K, a finite group G and a set S of Galois extensions F/L with group $\leq G$ (and $L \supseteq K$), what is the smallest dimension of varieties X, Y over K allowing a Galois cover $f : X \to Y$ with group G and such that all extensions in S occur as specializations of f?

For example, in the (extreme) case where S is the set of all *G*-extensions of all overfields of *K*, this is called the **essential dimension** of *G* (over *K*).

"Hilbert-Grunwald dimension"

Definition (Hilbert-Grunwald dimension)

The Hilbert-Grunwald dimension $hgd_{K}(G)$ is the smallest integer d such that the following holds: There exists a Galois cover (of group G) $f : X \to Y$ over K of d-dimensional varieties such that every Grunwald problem $(K, G, S, (F^{(p)})_{p \in S})$ with S disjoint from some finite set S_0 of primes of K (depending only on G) has a solution in the set of K-specializations of f.

Local dimension

Definition (Local dimension)

The local dimension $Id_{K}(G)$ of G over K is the smallest integer d such that there exist finitely many Galois covers $f_{i} : X_{i} \to Y_{i}$ with group G over K and such that, for all but finitely many primes p of K, every G-extension of K_{p} is a K_{p} -specialization of some f_{i} .

• From the definitions, obviously $Id_{\mathcal{K}}(G) \leq hgd_{\mathcal{K}}(G)$.

2 Notions of (arithmetic and geometric) complexity in Galois theory

3 Main results: Parameterizing solutions to Grunwald problems

Ideas of proof

5 Application: "Parametric dimension"

Results on hgd

Theorem (K.-Neftin, '22)

 $ld_{K}(G) \leq 2$ for every finite group G and number field K. If furthermore G has a generic extension over K, then $hgd_{K}(G) \leq 2$.

Remarks:

- "Generic extension" ⇔ ∃Galois cover f; X → P^d_K with Galois group G, specializing to all G-extensions of K (for some d ∈ N). Above theorem means that, in order to solve Grunwald problems for G, it suffices to restrict f to a suitable cover of surfaces.
- Groups with generic extensions include symmetric groups, abelian groups of odd order etc. But there are also known examples of groups without a generic extension.
- Bounding hgd_K(G) from above for arbitrary groups is much harder, since even hgd_K(G) < ∞ implies that G is a Galois group over K.

Groups of local dimension 1 over \mathbb{Q}

Theorem (K., Neftin (to appear))

The following are equivalent:

- G has the Hilbert-Grunwald property over Q. I.e., there exists a G-cover f : X → P¹_Q providing solutions to all Grunwald problems for G away from some finite set of primes (depending on G).
- 2) $Id_{\mathbb{Q}}(G) = 1.$
- 3) G is either cyclic of odd prime power order or of order 2, or a semi-direct product (with faithful action) of two such groups.

Remarks about other number fields

- The result (and proof) holds in the same way over many number fields, notably all real number fields without cyclotomic subextension.
- Over certain other number fields, the result obviously has to change; e.g., over K = Q(ζ_n), the group C_n has a generic extension K(t^{1/n})/K(t), and thus needs to be included.
- At least the implications "3) \Rightarrow 1) \Rightarrow 2)" hold over arbitrary number fields.

2 Notions of (arithmetic and geometric) complexity in Galois theory

3 Main results: Parameterizing solutions to Grunwald problems

Ideas of proof

5 Application: "Parametric dimension"

Three obstructions to the Hilbert-Grunwald property

Let's call a pair (I, D) of subgroups $I \leq D(\leq G)$ an **obstruction** to the assertion $Id_{K}(G) = 1$, if there exists no finite set of *G*-covers $f_i : X_i \to Y_i$ over *K* whose specializations contain all extensions of K_p with inertia group *I* and decomposition group *D*, f.a.a. primes *p* of *K*.

Lemma

The following pairs (I, D) are obstructions to " $Id_{K}(G) = 1$ " (and hence, to $hgd_{K}(G) = 1$) as soon as $D \leq G$.

a)
$$(I, D) = (C_p, C_p \times C_p)$$
 for any prime p.

b) If
$$\zeta_q \notin K(\zeta_p)$$
, then: $(I, D) = (C_p, C_{pq})$ for primes p, q .

c) If K has a real embedding, then $(I, D) = (C_2, C_4)$.

The point of the three obstructions: Proof of "2) \Rightarrow 3)"

- Note that *p*-groups without noncyclic abelian subgroups are necessarily cyclic or generalized quaternion. The latter groups contain C₄, so a group avoiding both obstructions 1) and 3) (over e.g. K = Q) has to be Sylow-cyclic.
- Sylow-cyclic groups G are known to be metacyclic. Now use additionally obstruction 2) to see that $G \cong C_P \rtimes C_Q$ with two coprime prime powers P, Q (with necessarily faithful action of C_Q).

Proof of obstruction b) for covers $X \to \mathbb{P}^1$

- Pick G-extension E/K(t).
- Crucial tool: Result on the possible ramified local behavior of specializations of Galois covers (K-Legrand-Neftin 2019).

Theorem ((Beckmann 1991;) K-Legrand-Neftin 2019)

Given a Galois extension E/K(t), the following holds for all but finitely many primes p of K:

Given any non-branch point t_0 of E/K(t), if p ramifies in the specialization E_{t_0}/K of E/K(t) at $t \mapsto t_0$, then there exists some (essentially unique) branch point $t \mapsto t_i$ of E/K(t) such that

- i) the ("arithmetic") inertia and decomposition group at p in E_{t_0}/K embed into the ("geometric") inertia and) decomposition group at $(t t_i)$ in $E(t_i)/K(t, t_i)$, and
- ii) Projection "modulo geometric inertia" maps the arithmetic decomposition group (at p in E_{t_0}/K) onto the decomposition group at (some prime extending) p in $E(t_i)_{t_i}/K(t_i)$.

Proof of obstruction b)

- Pick set S' of primes of K non-split in $K(\zeta_q)$ but split in $K(\zeta_p)$ (positive density set due to assumption).
- Reduce S' further to the subset of primes of residue degree coprime to q in **all** residue extensions at branch points of E/K(t) (still positive density set!).
- Assume existence of K_ℓ-specializations of E/K(t) (ℓ ∈ S) of ramification index p and inertia degree q.
- K-L-N2019 \Rightarrow this local behavior must be "inherited" from a branch point of E/K(t) of ram. index e and res.degree d, where p|e and pq|de.
- But also, def. of S implies that q|d would be "of no use", so necessarily pq|e.
- Then, necessarily ζ_q is in the residue extension at that branch point, and hence by def. of S, ℓ is of res.deg. d_ℓ not coprime to q-1 in that res.extension.
- K-L-N2019 \Rightarrow Any specialization of E/K(t) in which ℓ "inherits" its local behavior from this branch point has residue degree divisible by d_{ℓ} at ℓ , contradiction.

From \mathbb{P}^1 to arbitrary base curve

- (Simplified) idea: Given G-cover f : X → Y over K, find "suitable" cover g : Y → P¹_K (i.e., find suitable function τ ∈ K(Y)) separating the branch point locus of f.
- Then, local behavior at branch points of *f* carries over "reasonably nicely" to local behavior at branch points of (the Galois closure of) *g* ◦ *f*, which is a cover of P¹_K. In particular, obstruction 1),2) or 3) for the latter cover implies the same kind of obstruction for *f*.

Proof of "3)⇒1)": Construction of covers with Hilbert-Grunwald property

- Note that all groups as in 3) are known to have generic extensions over any number field K. By a result of Saltman, one may then find G-extensions E/K(t) with any prescribed local behavior (in particular., prescribed pair of inertia and decomposition group) at finitely many (geometric!) primes ("solution of Grunwald problems over K(t)"!).
- This way, it suffices to check Hilbert-Grunwald property "one (1, D)-pair at a time".
- Crucial case in our setup is for D cyclic of prime power order d (and l ≤ D of order |l| =: e > 1).
- Easy to realize (I, D) over $K(\zeta_e)((t))$, and if $K(\zeta_e) \cap \mu_d = \mu_e$, then may even pick the unramified part of such an extension to be $K(\zeta_d)/K(\zeta_e)$.
- Suitable specialization of a function field extension with such a completion then realizes **all** *D*-extensions of K_p f.a.a. *p* which are totally split in $K(\zeta_e)/K$ and inert in $K(\zeta_d)/K(\zeta_e)$ on the other hand, those are all the relevant *p*!

2 Notions of (arithmetic and geometric) complexity in Galois theory

3 Main results: Parameterizing solutions to Grunwald problems

4 Ideas of proof

5 Application: "Parametric dimension"

Parametric dimension

Definition

The **parametric dimension** $pd_K(G)$ of a group G over a field K is the smallest number d for which there exist finitely many G-Galois covers $f_i : X_i \to Y_i$ (i = 1, ..., n) of varieties over K of dimension $\leq d$, such that **every** G-extension of K is the specialization of some f_i at some K-rational point of Y_i .

- Over number fields, one always has $pd_{K}(G) \ge ld_{K}(G)$.
- Conjecturally $pd_{\mathbb{Q}}(G) = 1$ only for the very small groups C_2, C_3 and S_3 (which even have generic dimension 1).

Combining our results on Hilbert-Grunwald property / local dimension with some earlier results on parametric dimension (K-Legrand, 2018), we get:

Theorem

If $pd_{\mathbb{Q}}(G) = 1$, then $G \cong C_p \rtimes C_d$ where p is prime and $d \leq 3$.

Open problems

- Note that the above theorem does give some cases in which $ld_{\mathbb{Q}}(G) = hgd_{\mathbb{Q}}(G) = 1 < pd_{\mathbb{Q}}(G)$. Are there also examples in which provably $pd_{\mathbb{Q}}(G) > 2$? (Conjecturally, yes!)
- We know *ld_K(G)* ≤ 2 for all (*G*, *K*). Does this also hold for *hgd*? I.e., can we solve (most) Grunwald problems via specializations of a suitable cover of surfaces?

References

- J.K., D. Neftin, *The Hilbert-Grunwald specialization property over number fields*. To appear in lsr. J. Math. https://arxiv.org/abs/2112.15467
- J.K., D. Neftin, *The local dimension of a finite group*. Trans. Amer. Math. Soc. 375(7) (2022), 4783-4808.
- J.K., D. Neftin, F. Legrand, On the local behavior of specializations of function field extensions. IMRN Vol.2019 (9), (2019), 2951–2980.