Rational approximation to real points on quadratic hypersurfaces

Anthony Poëls (joint work with Damien Roy)

France-Korea IRL webinar in Number Theory

5th December 2022

Université Claude Bernard (v®) Lyon 1

Introduction

Dirichlet's Theorem (in dimension 1)

For each $\xi \in \mathbb{R}$ and each $X>1$, there exists $(p, q) \in \mathbb{Z}^{2}$ such that

$$
1 \leq q \leq X \quad \text { and } \quad|q \xi-p| \leq \frac{1}{X}
$$

Introduction

Dirichlet's Theorem (in dimension 1)

For each $\xi \in \mathbb{R}$ and each $X>1$, there exists $(p, q) \in \mathbb{Z}^{2}$ such that

$$
1 \leq q \leq X \quad \text { and } \quad|q \xi-p| \leq \frac{1}{X}
$$

Corollary : There are infinitely many (p, q) such that $\left|\xi-\frac{p}{q}\right| \leq \frac{1}{q^{2}}$.

Introduction

Dirichlet's Theorem (in dimension 1)

For each $\xi \in \mathbb{R}$ and each $X>1$, there exists $(p, q) \in \mathbb{Z}^{2}$ such that

$$
1 \leq q \leq X \quad \text { and } \quad|q \xi-p| \leq \frac{1}{X}
$$

Corollary : There are infinitely many (p, q) such that $\left|\xi-\frac{p}{q}\right| \leq \frac{1}{q^{2}}$.
Dirichlet's simultaneous approximation Theorem (in dimension n)
Let $n \geq 2$ be an integer and let $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$. For each $X>1$ there is an integer point $\mathbf{x}=\left(q, p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}^{n+1}$ such that

$$
1 \leq q \leq X \quad \text { and } \quad \max _{1 \leq i \leq n}\left|q \xi_{i}-p_{i}\right| \leq X^{-1 / n}
$$

Exponents of simultaneous rational approximation

Definition

We define $\hat{\lambda}(\boldsymbol{\xi})$ (resp. $\lambda(\boldsymbol{\xi}))$ as the supremum of all $\lambda \in \mathbb{R}$ s.t. for each $X>1$ large enough (resp. for arb. large X), there is $\mathrm{x} \in \mathbb{Z}^{n+1}$ satisfying

$$
1 \leq q \leq X \quad \text { and } \quad \max _{1 \leq i \leq n}\left|q \xi_{i}-p_{i}\right| \leq X^{-\lambda}
$$

Exponents of simultaneous rational approximation

Definition

We define $\hat{\lambda}(\boldsymbol{\xi})$ (resp. $\lambda(\boldsymbol{\xi})$) as the supremum of all $\lambda \in \mathbb{R}$ s.t. for each $X>1$ large enough (resp. for arb. large X), there is $\mathrm{x} \in \mathbb{Z}^{n+1}$ satisfying

$$
1 \leq q \leq X \quad \text { and } \quad \max _{1 \leq i \leq n}\left|q \xi_{i}-p_{i}\right| \leq X^{-\lambda}
$$

- (dimension 1) $\hat{\lambda}(\xi)=1$ and $\lambda(\xi)+1=$ irrationality exponent of ξ for each $\xi \in \mathbb{R} \backslash \mathbb{Q}$.

Exponents of simultaneous rational approximation

Definition

We define $\hat{\lambda}(\boldsymbol{\xi})$ (resp. $\lambda(\boldsymbol{\xi})$) as the supremum of all $\lambda \in \mathbb{R}$ s.t. for each $X>1$ large enough (resp. for arb. large X), there is $\mathrm{x} \in \mathbb{Z}^{n+1}$ satisfying

$$
1 \leq q \leq X \quad \text { and } \quad \max _{1 \leq i \leq n}\left|q \xi_{i}-p_{i}\right| \leq X^{-\lambda}
$$

- (dimension 1) $\hat{\lambda}(\xi)=1$ and $\lambda(\xi)+1=$ irrationality exponent of ξ for each $\xi \in \mathbb{R} \backslash \mathbb{Q}$.
- We have $\frac{1}{n} \leq \hat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi}) \leq \infty$ for each $\boldsymbol{\xi} \in \mathbb{R}^{n}$.

Exponents of simultaneous rational approximation

Definition

We define $\hat{\lambda}(\boldsymbol{\xi})$ (resp. $\lambda(\boldsymbol{\xi})$) as the supremum of all $\lambda \in \mathbb{R}$ s.t. for each $X>1$ large enough (resp. for arb. large X), there is $\mathrm{x} \in \mathbb{Z}^{n+1}$ satisfying

$$
1 \leq q \leq X \quad \text { and } \quad \max _{1 \leq i \leq n}\left|q \xi_{i}-p_{i}\right| \leq X^{-\lambda}
$$

- (dimension 1) $\hat{\lambda}(\xi)=1$ and $\lambda(\xi)+1=$ irrationality exponent of ξ for each $\xi \in \mathbb{R} \backslash \mathbb{Q}$.
- We have $\frac{1}{n} \leq \hat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi}) \leq \infty$ for each $\boldsymbol{\xi} \in \mathbb{R}^{n}$.
- $\lambda(\boldsymbol{\xi})=\hat{\lambda}(\boldsymbol{\xi})=1 / n$ for almost every $\boldsymbol{\xi} \in \mathbb{R}^{n}$ (w.r.t. Lebesgue measure)

Spectra and relation between $\hat{\lambda}$ and λ

LI condition

We denote by $\mathbb{R}_{\mathrm{li}}^{n}$ the set of $\boldsymbol{\xi} \in \mathbb{R}^{n}$ such that $1, \xi_{1}, \ldots, \xi_{n}$ are linearly independent over \mathbb{Q}.

Question: Describe the set of values that $\hat{\lambda}$ and λ take when $\boldsymbol{\xi}$ runs through all points of $\mathbb{R}_{1 \mathrm{i}}^{n}$?

Spectra and relation between $\hat{\lambda}$ and λ

LI condition

We denote by $\mathbb{R}_{\mathrm{li}}^{n}$ the set of $\boldsymbol{\xi} \in \mathbb{R}^{n}$ such that $1, \xi_{1}, \ldots, \xi_{n}$ are linearly independent over \mathbb{Q}.

Question: Describe the set of values that $\hat{\lambda}$ and λ take when $\boldsymbol{\xi}$ runs through all points of $\mathbb{R}_{1 \mathrm{i}}^{n}$?

$$
\hat{\lambda}\left(\mathbb{R}_{\mathrm{li}}^{n}\right)=\left[\frac{1}{n}, 1\right] \quad \text { and } \quad \lambda\left(\mathbb{R}_{\mathrm{li}}^{n}\right)=\left[\frac{1}{n},+\infty\right] .
$$

Spectra and relation between $\hat{\lambda}$ and λ

LI condition

We denote by $\mathbb{R}_{\mathrm{li}}^{n}$ the set of $\boldsymbol{\xi} \in \mathbb{R}^{n}$ such that $1, \xi_{1}, \ldots, \xi_{n}$ are linearly independent over \mathbb{Q}.

Question : Describe the set of values that $\hat{\lambda}$ and λ take when $\boldsymbol{\xi}$ runs through all points of $\mathbb{R}_{1 \mathrm{l}}^{n}$?

$$
\hat{\lambda}\left(\mathbb{R}_{\mathrm{li}}^{n}\right)=\left[\frac{1}{n}, 1\right] \quad \text { and } \quad \lambda\left(\mathbb{R}_{\mathrm{li}}^{n}\right)=\left[\frac{1}{n},+\infty\right] .
$$

Question : joint spectrum of $(\hat{\lambda}, \lambda)$?

Spectra and relation between $\hat{\lambda}$ and λ

LI condition

We denote by $\mathbb{R}_{1 \mathrm{i}}^{n}$ the set of $\boldsymbol{\xi} \in \mathbb{R}^{n}$ such that $1, \xi_{1}, \ldots, \xi_{n}$ are linearly independent over \mathbb{Q}.

Question : Describe the set of values that $\hat{\lambda}$ and λ take when $\boldsymbol{\xi}$ runs through all points of $\mathbb{R}_{1 \mathrm{i}}^{n}$?

$$
\hat{\lambda}\left(\mathbb{R}_{\mathrm{li}}^{n}\right)=\left[\frac{1}{n}, 1\right] \quad \text { and } \quad \lambda\left(\mathbb{R}_{\mathrm{li}}^{n}\right)=\left[\frac{1}{n},+\infty\right] .
$$

Question : joint spectrum of $(\hat{\lambda}, \lambda)$? General case conjectured by Schmidt-Summerer (2013) and proved by Marnat-Moshchevitin (2020) :

$$
\hat{\lambda}(\boldsymbol{\xi})+\frac{\hat{\lambda}(\boldsymbol{\xi})^{2}}{\lambda(\xi)}+\cdots+\frac{\hat{\lambda}(\boldsymbol{\xi})^{n}}{\lambda(\xi)^{n-1}} \leq 1 \quad\left(n \geq 2, \boldsymbol{\xi} \in \mathbb{R}_{1 \mathrm{l}}^{n}\right) .
$$

Approximation to real points of a subset Z

Problem

Study of $\lambda(\boldsymbol{\xi})$ and $\hat{\lambda}(\boldsymbol{\xi})$ when $\boldsymbol{\xi}$ belongs to a fixed "interesting" subset of \mathbb{R}^{n} ?

Approximation to real points of a subset Z

Problem

Study of $\lambda(\boldsymbol{\xi})$ and $\hat{\lambda}(\boldsymbol{\xi})$ when $\boldsymbol{\xi}$ belongs to a fixed "interesting" subset of \mathbb{R}^{n} ? Set of values?

Approximation to real points of a subset Z

Problem

Study of $\lambda(\boldsymbol{\xi})$ and $\hat{\lambda}(\boldsymbol{\xi})$ when $\boldsymbol{\xi}$ belongs to a fixed "interesting" subset of \mathbb{R}^{n} ? Set of values? Maximal value taken?

Approximation to real points of a subset Z

Problem

Study of $\lambda(\boldsymbol{\xi})$ and $\hat{\lambda}(\boldsymbol{\xi})$ when $\boldsymbol{\xi}$ belongs to a fixed "interesting" subset of \mathbb{R}^{n} ? Set of values? Maximal value taken?

Definition

Let $Z \subseteq \mathbb{R}^{n}$ be such that $Z \cap \mathbb{R}_{1 \mathrm{i}}^{n} \neq \emptyset$. We define

$$
\hat{\lambda}(Z):=\sup \left\{\hat{\lambda}(\xi) \mid \boldsymbol{\xi} \in Z \cap \mathbb{R}_{\mathrm{li}}^{n}\right\} \in[1 / n, 1] .
$$

Approximation to real points of a subset Z

Problem

Study of $\lambda(\boldsymbol{\xi})$ and $\hat{\lambda}(\boldsymbol{\xi})$ when $\boldsymbol{\xi}$ belongs to a fixed "interesting" subset of \mathbb{R}^{n} ? Set of values? Maximal value taken?

Definition

Let $Z \subseteq \mathbb{R}^{n}$ be such that $Z \cap \mathbb{R}_{1 i}^{n} \neq \emptyset$. We define

$$
\hat{\lambda}(Z):=\sup \left\{\hat{\lambda}(\xi) \mid \boldsymbol{\xi} \in Z \cap \mathbb{R}_{\mathrm{li}}^{n}\right\} \in[1 / n, 1] .
$$

Classical example : $\mathcal{V}_{n}:=\left\{\left(\xi, \xi^{2}, \ldots, \xi^{n}\right) \mid \xi \in \mathbb{R}\right\}$ (Veronese curve).

Approximation to real points of a subset Z

Problem

Study of $\lambda(\boldsymbol{\xi})$ and $\hat{\lambda}(\boldsymbol{\xi})$ when $\boldsymbol{\xi}$ belongs to a fixed "interesting" subset of \mathbb{R}^{n} ? Set of values? Maximal value taken?

Definition

Let $Z \subseteq \mathbb{R}^{n}$ be such that $Z \cap \mathbb{R}_{1 \mathrm{i}}^{n} \neq \emptyset$. We define

$$
\hat{\lambda}(Z):=\sup \left\{\hat{\lambda}(\boldsymbol{\xi}) \mid \boldsymbol{\xi} \in Z \cap \mathbb{R}_{\mathrm{li}}^{n}\right\} \in[1 / n, 1] .
$$

Classical example : $\mathcal{V}_{n}:=\left\{\left(\xi, \xi^{2}, \ldots, \xi^{n}\right) \mid \xi \in \mathbb{R}\right\}$ (Veronese curve).
Motivation : related to approximation of ξ by algebraic numbers (resp. algebraic integers) of degree $\leq n$ (resp. $\leq n+1$).

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.
Problem : Do we have $\hat{\lambda}\left(\mathcal{V}_{n}\right) \neq\{1 / n\}$? In other words, can we find $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}$ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.
Problem : Do we have $\hat{\lambda}\left(\mathcal{V}_{n}\right) \neq\{1 / n\}$? In other words, can we find $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}$ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Summary $(\xi \in \mathbb{R} \backslash \mathbb{Q})$

- $1 / 2 \leq \hat{\lambda}\left(\xi, \xi^{2}\right) \leq 1 / \gamma=0.618 \cdots(D S, 1969)$

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.
Problem : Do we have $\hat{\lambda}\left(\mathcal{V}_{n}\right) \neq\{1 / n\}$? In other words, can we find $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}$ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Summary $(\xi \in \mathbb{R} \backslash \mathbb{Q})$

- $1 / 2 \leq \hat{\lambda}\left(\xi, \xi^{2}\right) \leq 1 / \gamma=0.618 \cdots(D S, 1969)$
- Conjecture $\leq 2000: \hat{\lambda}\left(\xi, \xi^{2}\right)=1 / 2$.

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.
Problem : Do we have $\hat{\lambda}\left(\mathcal{V}_{n}\right) \neq\{1 / n\}$? In other words, can we find $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}$ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Summary $(\xi \in \mathbb{R} \backslash \mathbb{Q})$

- $1 / 2 \leq \hat{\lambda}\left(\xi, \xi^{2}\right) \leq 1 / \gamma=0.618 \cdots$ (DS, 1969)
- Conjecture $\leq 2000: \hat{\lambda}\left(\xi, \xi^{2}\right)=1 / 2$. FALSE
- $\hat{\lambda}\left(\mathcal{V}_{2}\right)=1 / \gamma$ (Roy, 2004)

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.
Problem : Do we have $\hat{\lambda}\left(\mathcal{V}_{n}\right) \neq\{1 / n\}$? In other words, can we find $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}$ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Summary $(\xi \in \mathbb{R} \backslash \mathbb{Q})$

- $1 / 2 \leq \hat{\lambda}\left(\xi, \xi^{2}\right) \leq 1 / \gamma=0.618 \cdots$ (DS, 1969)
- Conjecture $\leq 2000: \hat{\lambda}\left(\xi, \xi^{2}\right)=1 / 2$. FALSE
- $\hat{\lambda}\left(\mathcal{V}_{2}\right)=1 / \gamma$ (Roy, 2004)
- $(n \geq 3)$ Does it exist ξ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Veronese curve \mathcal{V}_{2} (in dimension 2)

Remarks :

- We have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ almost everywhere.
- We also have $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)=1 / n$ for each $\xi \in \overline{\mathbb{Q}}$ of degree at least $n+1$.
Problem : Do we have $\hat{\lambda}\left(\mathcal{V}_{n}\right) \neq\{1 / n\}$? In other words, can we find $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}$ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$?

Summary $(\xi \in \mathbb{R} \backslash \mathbb{Q})$

- $1 / 2 \leq \hat{\lambda}\left(\xi, \xi^{2}\right) \leq 1 / \gamma=0.618 \cdots$ (DS, 1969)
- Conjecture $\leq 2000: \hat{\lambda}\left(\xi, \xi^{2}\right)=1 / 2$. FALSE
- $\hat{\lambda}\left(\mathcal{V}_{2}\right)=1 / \gamma$ (Roy, 2004)
- $(n \geq 3)$ Does it exist ξ such that $\hat{\lambda}\left(\xi, \ldots, \xi^{n}\right)>1 / n$? OPEN

Quadratic hypersurface

Let $q \in \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]_{2}$ be a rational quadratic form $\neq 0$ on \mathbb{R}^{n+1}.

Quadratic hypersurface

Let $q \in \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]_{2}$ be a rational quadratic form $\neq 0$ on \mathbb{R}^{n+1}. Quadratic hypersurface associated to q :

$$
Z_{q}:=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid q\left(1, \xi_{1}, \ldots, \xi_{n}\right)=0\right\} \subset \mathbb{R}^{n}
$$

Quadratic hypersurface

Let $q \in \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]_{2}$ be a rational quadratic form $\neq 0$ on \mathbb{R}^{n+1}. Quadratic hypersurface associated to q :

$$
Z_{q}:=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid q\left(1, \xi_{1}, \ldots, \xi_{n}\right)=0\right\} \subset \mathbb{R}^{n}
$$

The (rational) Witt index m_{q} of q is the integer m such that any maximal totally isotropic subspace of \mathbb{R}^{n+1} defined over \mathbb{Q} has dimension $m+\operatorname{dim} \operatorname{ker}(q)$. Recall that $W \subset \mathbb{R}^{n+1}$ is totally isotropic iff $q_{\mid W}=0$.

Examples

- $\mathcal{V}_{2}=\left\{\left(\xi, \xi^{2}\right) \mid \xi \in \mathbb{R}\right\}=Z_{q} \subset \mathbb{R}^{2}$ with $q\left(x_{0}, x_{1}, x_{2}\right)=x_{0} x_{2}-x_{1}^{2}$ (here $m_{q}=1$).

Quadratic hypersurface

Let $q \in \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]_{2}$ be a rational quadratic form $\neq 0$ on \mathbb{R}^{n+1}. Quadratic hypersurface associated to q :

$$
Z_{q}:=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid q\left(1, \xi_{1}, \ldots, \xi_{n}\right)=0\right\} \subset \mathbb{R}^{n}
$$

The (rational) Witt index m_{q} of q is the integer m such that any maximal totally isotropic subspace of \mathbb{R}^{n+1} defined over \mathbb{Q} has dimension $m+\operatorname{dim} \operatorname{ker}(q)$. Recall that $W \subset \mathbb{R}^{n+1}$ is totally isotropic iff $q_{\mid W}=0$.

Examples

- $\mathcal{V}_{2}=\left\{\left(\xi, \xi^{2}\right) \mid \xi \in \mathbb{R}\right\}=Z_{q} \subset \mathbb{R}^{2}$ with $q\left(x_{0}, x_{1}, x_{2}\right)=x_{0} x_{2}-x_{1}^{2}$ (here $m_{q}=1$).
- More generally: Quadratic hypersurface in $\mathbb{R}^{2}=$ conic (in that case $\left.m_{q} \leq 1\right)$.

Quadratic hypersurface

Let $q \in \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]_{2}$ be a rational quadratic form $\neq 0$ on \mathbb{R}^{n+1}. Quadratic hypersurface associated to q :

$$
Z_{q}:=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid q\left(1, \xi_{1}, \ldots, \xi_{n}\right)=0\right\} \subset \mathbb{R}^{n}
$$

The (rational) Witt index m_{q} of q is the integer m such that any maximal totally isotropic subspace of \mathbb{R}^{n+1} defined over \mathbb{Q} has dimension $m+\operatorname{dim} \operatorname{ker}(q)$. Recall that $W \subset \mathbb{R}^{n+1}$ is totally isotropic iff $q_{\mid W}=0$.

Examples

- $\mathcal{V}_{2}=\left\{\left(\xi, \xi^{2}\right) \mid \xi \in \mathbb{R}\right\}=Z_{q} \subset \mathbb{R}^{2}$ with $q\left(x_{0}, x_{1}, x_{2}\right)=x_{0} x_{2}-x_{1}^{2}$ (here $m_{q}=1$).
- More generally: Quadratic hypersurface in $\mathbb{R}^{2}=$ conic (in that case $\left.m_{q} \leq 1\right)$.
- Sphere $S^{n-1} \subset \mathbb{R}^{n}$ with $q\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{2}-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$.

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (Kleinbock-Moshchevitin, 2019)

Let q be a rational non-degenerate quadratic form on \mathbb{R}^{n+1} such that $Z_{q} \cap \mathbb{R}_{1 \mathrm{i}}^{n} \neq \emptyset$ and $m_{q} \leq 1$. Then

$$
\frac{1}{n} \leq \hat{\lambda}\left(Z_{q}\right) \leq 1 / \rho_{n}
$$

where $\rho_{n} \in(1,2)$ is the only positive root of $x^{n}-\left(x^{n-1}+\cdots+x+1\right)$.

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (Kleinbock-Moshchevitin, 2019)

Let q be a rational non-degenerate quadratic form on \mathbb{R}^{n+1} such that $Z_{q} \cap \mathbb{R}_{1 \mathrm{i}}^{n} \neq \emptyset$ and $m_{q} \leq 1$. Then

$$
\frac{1}{n} \leq \hat{\lambda}\left(Z_{q}\right) \leq 1 / \rho_{n}
$$

where $\rho_{n} \in(1,2)$ is the only positive root of $x^{n}-\left(x^{n-1}+\cdots+x+1\right)$.
Example : sphere $S^{n-1} \subset \mathbb{R}^{n}\left(\right.$ with $q\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{2}-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$).

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (Kleinbock-Moshchevitin, 2019)

Let q be a rational non-degenerate quadratic form on \mathbb{R}^{n+1} such that $Z_{q} \cap \mathbb{R}_{1 \mathrm{i}}^{n} \neq \emptyset$ and $m_{q} \leq 1$. Then

$$
\frac{1}{n} \leq \hat{\lambda}\left(Z_{q}\right) \leq 1 / \rho_{n}
$$

where $\rho_{n} \in(1,2)$ is the only positive root of $x^{n}-\left(x^{n-1}+\cdots+x+1\right)$.
Example : sphere $S^{n-1} \subset \mathbb{R}^{n}\left(\right.$ with $\left.q\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{2}-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\right)$.

- $1 / \rho_{2}=1 / \gamma=0.6180 \cdots$
- $1 / \rho_{3}=0.5436 \ldots$
- $1 / \rho_{4}=0.5187 \cdots$
- $\left(\rho_{n}\right)_{n \geq 2}$ is increasing and tends to 2 as $n \rightarrow \infty$.

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (P.-Roy, 2021)

Let $q \neq 0$ be a rational quadratic form on \mathbb{R}^{n+1} s.t. $Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \neq \emptyset$. Then

$$
\hat{\lambda}\left(Z_{q}\right)= \begin{cases}1 / \rho_{n} & \text { if } m_{q} \leq 1 \\ 1 & \text { else }\end{cases}
$$

Moreover, the set $\left\{\boldsymbol{\xi} \in Z_{q} \cap \mathbb{R}_{1 \mathrm{i}}^{n} \mid \hat{\lambda}(\boldsymbol{\xi})=\hat{\lambda}\left(Z_{q}\right)\right\}$ is countably infinite if $m_{q} \leq 1$, and uncountable otherwise.

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (P.-Roy, 2021)

Let $q \neq 0$ be a rational quadratic form on \mathbb{R}^{n+1} s.t. $Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \neq \emptyset$. Then

$$
\hat{\lambda}\left(Z_{q}\right)= \begin{cases}1 / \rho_{n} & \text { if } m_{q} \leq 1 \\ 1 & \text { else }\end{cases}
$$

Moreover, the set $\left\{\boldsymbol{\xi} \in Z_{q} \cap \mathbb{R}_{1 \mathrm{i}}^{n} \mid \hat{\lambda}(\boldsymbol{\xi})=\hat{\lambda}\left(Z_{q}\right)\right\}$ is countably infinite if $m_{q} \leq 1$, and uncountable otherwise.

Remarks.

- ($n=2$) $\left(\xi, \xi^{2}\right)$ and conics : proved by Roy (in 2004 and 2012 resp.)

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (P.-Roy, 2021)

Let $q \neq 0$ be a rational quadratic form on \mathbb{R}^{n+1} s.t. $Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \neq \emptyset$. Then

$$
\hat{\lambda}\left(Z_{q}\right)= \begin{cases}1 / \rho_{n} & \text { if } m_{q} \leq 1 \\ 1 & \text { else }\end{cases}
$$

Moreover, the set $\left\{\boldsymbol{\xi} \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \mid \hat{\lambda}(\boldsymbol{\xi})=\hat{\lambda}\left(Z_{q}\right)\right\}$ is countably infinite if $m_{q} \leq 1$, and uncountable otherwise.

Remarks.

- ($n=2$) $\left(\xi, \xi^{2}\right)$ and conics : proved by Roy (in 2004 and 2012 resp.)
- q can be degenerate.

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (P.-Roy, 2021)

Let $q \neq 0$ be a rational quadratic form on \mathbb{R}^{n+1} s.t. $Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \neq \emptyset$. Then

$$
\hat{\lambda}\left(Z_{q}\right)= \begin{cases}1 / \rho_{n} & \text { if } m_{q} \leq 1 \\ 1 & \text { else }\end{cases}
$$

Moreover, the set $\left\{\boldsymbol{\xi} \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \mid \hat{\lambda}(\boldsymbol{\xi})=\hat{\lambda}\left(Z_{q}\right)\right\}$ is countably infinite if $m_{q} \leq 1$, and uncountable otherwise.

Remarks.

- ($n=2$) $\left(\xi, \xi^{2}\right)$ and conics : proved by Roy (in 2004 and 2012 resp.)
- q can be degenerate.
- Upper-bound $\hat{\lambda}\left(Z_{q}\right) \leq 1 / \rho_{n}$ based on Marnat-Moshchevitin (2020) (relation between $\hat{\lambda}$ and λ).

Quadratic hypersurface of $\mathbb{R}^{n}(n \geq 2)$

Theorem (P.-Roy, 2021)

Let $q \neq 0$ be a rational quadratic form on \mathbb{R}^{n+1} s.t. $Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \neq \emptyset$. Then

$$
\hat{\lambda}\left(Z_{q}\right)= \begin{cases}1 / \rho_{n} & \text { if } m_{q} \leq 1 \\ 1 & \text { else }\end{cases}
$$

Moreover, the set $\left\{\boldsymbol{\xi} \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n} \mid \hat{\lambda}(\boldsymbol{\xi})=\hat{\lambda}\left(Z_{q}\right)\right\}$ is countably infinite if $m_{q} \leq 1$, and uncountable otherwise.

Remarks.

- ($n=2$) $\left(\xi, \xi^{2}\right)$ and conics : proved by Roy (in 2004 and 2012 resp.)
- q can be degenerate.
- Upper-bound $\hat{\lambda}\left(Z_{q}\right) \leq 1 / \rho_{n}$ based on Marnat-Moshchevitin (2020) (relation between $\hat{\lambda}$ and λ).
- $Z_{q} \cap \mathbb{R}_{1 \mathrm{i}}^{n}=\emptyset$ for $q=x_{0}^{2}-x_{1}^{2}=\left(x_{0}-x_{1}\right)\left(x_{0}+x_{1}\right)$.

Construction - general principles

For any $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n}$ and $\mathbf{x} \in \mathbb{Z}^{n+1}$, we write

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max _{1 \leq i \leq n}\left|x_{0} \xi_{i}-x_{i}\right| .
$$

Summary of our strategy

Construct by induction a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ of points in $\mathbb{Z}^{n+1} \backslash\{0\}$ s.t. :

- $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ converges projectively to a point $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$ and $q\left(\mathbf{x}_{i}\right) /\left\|\mathbf{x}_{i}\right\|$ tends to 0 as $i \rightarrow \infty$.

Construction - general principles

For any $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n}$ and $\mathbf{x} \in \mathbb{Z}^{n+1}$, we write

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max _{1 \leq i \leq n}\left|x_{0} \xi_{i}-x_{i}\right| .
$$

Summary of our strategy

Construct by induction a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ of points in $\mathbb{Z}^{n+1} \backslash\{0\}$ s.t. :

- $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ converges projectively to a point $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$ and $q\left(\mathbf{x}_{i}\right) /\left\|\mathbf{x}_{i}\right\|$ tends to 0 as $i \rightarrow \infty$. Then $\xi \in Z_{q}$.

Construction - general principles

For any $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n}$ and $\mathbf{x} \in \mathbb{Z}^{n+1}$, we write

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max _{1 \leq i \leq n}\left|x_{0} \xi_{i}-x_{i}\right| .
$$

Summary of our strategy

Construct by induction a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ of points in $\mathbb{Z}^{n+1} \backslash\{0\}$ s.t. :

- $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ converges projectively to a point $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$ and $q\left(\mathbf{x}_{i}\right) /\left\|\mathbf{x}_{i}\right\|$ tends to 0 as $i \rightarrow \infty$. Then $\xi \in Z_{q}$.
- $(n+1)$ consecutive points $\mathbf{x}_{i}, \ldots, \mathbf{x}_{i+n}$ are always linearly independent.

Construction - general principles

For any $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n}$ and $\mathbf{x} \in \mathbb{Z}^{n+1}$, we write

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max _{1 \leq i \leq n}\left|x_{0} \xi_{i}-x_{i}\right|
$$

Summary of our strategy

Construct by induction a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ of points in $\mathbb{Z}^{n+1} \backslash\{0\}$ s.t. :

- $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ converges projectively to a point $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$ and $q\left(\mathbf{x}_{i}\right) /\left\|\mathbf{x}_{i}\right\|$ tends to 0 as $i \rightarrow \infty$. Then $\xi \in Z_{q}$.
- $(n+1)$ consecutive points $\mathbf{x}_{i}, \ldots, \mathbf{x}_{i+n}$ are always linearly independent. Then $\xi \in \mathbb{R}_{1 \mathrm{i}}^{n}$.

Construction - general principles

For any $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z_{q} \cap \mathbb{R}_{\text {li }}^{n}$ and $\mathbf{x} \in \mathbb{Z}^{n+1}$, we write

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max _{1 \leq i \leq n}\left|x_{0} \xi_{i}-x_{i}\right| .
$$

Summary of our strategy

Construct by induction a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ of points in $\mathbb{Z}^{n+1} \backslash\{0\}$ s.t. :

- $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ converges projectively to a point $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$ and $q\left(\mathbf{x}_{i}\right) /\left\|\mathbf{x}_{i}\right\|$ tends to 0 as $i \rightarrow \infty$. Then $\xi \in Z_{q}$.
- $(n+1)$ consecutive points $\mathbf{x}_{i}, \ldots, \mathbf{x}_{i+n}$ are always linearly independent. Then $\xi \in \mathbb{R}_{\mathrm{li}}^{n}$.
- $L_{\xi}\left(\mathbf{x}_{i}\right) \leq\left\|\mathbf{x}_{i+1}\right\|^{-\alpha}$ for any $i \gg 1$ and some α arbitrarily close to the expected upper bound $\left(1 / \rho_{n}\right.$ or 1$)$.

Construction - general principles

For any $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z_{q} \cap \mathbb{R}_{\mathrm{li}}^{n}$ and $\mathbf{x} \in \mathbb{Z}^{n+1}$, we write

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max _{1 \leq i \leq n}\left|x_{0} \xi_{i}-x_{i}\right| .
$$

Summary of our strategy

Construct by induction a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ of points in $\mathbb{Z}^{n+1} \backslash\{0\}$ s.t. :

- $\left(\mathbf{x}_{i}\right)_{i \geq 0}$ converges projectively to a point $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$ and $q\left(\mathbf{x}_{i}\right) /\left\|\mathbf{x}_{i}\right\|$ tends to 0 as $i \rightarrow \infty$. Then $\xi \in Z_{q}$.
- $(n+1)$ consecutive points $\mathbf{x}_{i}, \ldots, \mathbf{x}_{i+n}$ are always linearly independent. Then $\xi \in \mathbb{R}_{\mathrm{li}}^{n}$.
- $L_{\xi}\left(\mathbf{x}_{i}\right) \leq\left\|\mathbf{x}_{i+1}\right\|^{-\alpha}$ for any $i \gg 1$ and some α arbitrarily close to the expected upper bound $\left(1 / \rho_{n}\right.$ or 1$)$. Then $\hat{\lambda}(\xi) \geq \alpha$.

Constructions used in the proof (ideas)

Hypothesis : Witt index $m_{q} \leq 1$

$q\left(\mathbf{x}_{0}\right)=\cdots=q\left(\mathbf{x}_{i}\right)=1$. Induction step (rigid) :

$$
\mathbf{x}_{i+n+1}:=b\left(\mathbf{x}_{i+n}, \mathbf{x}_{i}\right) \mathbf{x}_{i+n}-q\left(\mathbf{x}_{i+n}\right) \mathbf{x}_{i} \quad(i \geq 0)
$$

where b is the symmetric bilinear form associated to q.

Constructions used in the proof (ideas)

Hypothesis: Witt index $m_{q} \leq 1$

$q\left(\mathbf{x}_{0}\right)=\cdots=q\left(\mathbf{x}_{i}\right)=1$. Induction step (rigid) :

$$
\mathbf{x}_{i+n+1}:=b\left(\mathbf{x}_{i+n}, \mathbf{x}_{i}\right) \mathbf{x}_{i+n}-q\left(\mathbf{x}_{i+n}\right) \mathbf{x}_{i} \quad(i \geq 0)
$$

where b is the symmetric bilinear form associated to q.
Main difficulty) : Asymptotic behaviour $L_{\xi}\left(\mathbf{x}_{i}\right) \asymp\left\|\mathbf{x}_{i+1}\right\|^{-1 / \rho_{n}}$.

Constructions used in the proof (ideas)

Hypothesis: Witt index $m_{q} \leq 1$

$q\left(\mathrm{x}_{0}\right)=\cdots=q\left(\mathbf{x}_{i}\right)=1$. Induction step (rigid) :

$$
\mathbf{x}_{i+n+1}:=b\left(\mathbf{x}_{i+n}, \mathbf{x}_{i}\right) \mathbf{x}_{i+n}-q\left(\mathbf{x}_{i+n}\right) \mathbf{x}_{i} \quad(i \geq 0)
$$

where b is the symmetric bilinear form associated to q.
Main difficulty $)$: Asymptotic behaviour $L_{\boldsymbol{\xi}}\left(\mathbf{x}_{i}\right) \asymp\left\|\mathbf{x}_{i+1}\right\|^{-1 / \rho_{n}}$.
Hypothesis: Witt index $m_{q}>1$
$q\left(\mathbf{x}_{0}\right)=\cdots=q\left(\mathbf{x}_{i}\right)=0$. Induction step : we choose $\mathbf{z} \in \mathbb{Z}^{n+1}$ s.t. $q_{\mid\left\langle\mathbf{x}_{i}, \mathbf{z}\right\rangle}=0$ and we set $\mathbf{x}_{i+1}=\alpha \mathbf{x}_{i}+\mathbf{z}$ (with $\alpha \in \mathbb{Z}$ "very large").

Constructions used in the proof (ideas)

Hypothesis: Witt index $m_{q} \leq 1$

$q\left(\mathbf{x}_{0}\right)=\cdots=q\left(\mathbf{x}_{i}\right)=1$. Induction step (rigid) :

$$
\mathbf{x}_{i+n+1}:=b\left(\mathbf{x}_{i+n}, \mathbf{x}_{i}\right) \mathbf{x}_{i+n}-q\left(\mathbf{x}_{i+n}\right) \mathbf{x}_{i} \quad(i \geq 0)
$$

where b is the symmetric bilinear form associated to q.
Main difficulty $)$: Asymptotic behaviour $L_{\xi}\left(\mathbf{x}_{i}\right) \asymp\left\|\mathbf{x}_{i+1}\right\|^{-1 / \rho_{n}}$.

Hypothesis: Witt index $m_{q}>1$

$q\left(\mathbf{x}_{0}\right)=\cdots=q\left(\mathbf{x}_{i}\right)=0$. Induction step : we choose $\mathbf{z} \in \mathbb{Z}^{n+1}$ s.t. $q_{\mid\left\langle\mathbf{x}_{i}, \mathbf{z}\right\rangle}=0$ and we set $\mathbf{x}_{i+1}=\alpha \mathbf{x}_{i}+\mathbf{z}$ (with $\alpha \in \mathbb{Z}$ "very large").
Main difficulty $):(n+1)$ consecutive points are linearly independent.

Thank you.

