# Rational approximation to real points on quadratic hypersurfaces

#### Anthony Poëls (joint work with Damien Roy)

France-Korea IRL webinar in Number Theory

5th December 2022



Université Claude Bernard

Lvon 1

Anthony Poëls (joint work with Damien Roy)

### Introduction

#### Dirichlet's Theorem (in dimension 1)

For each  $\xi \in \mathbb{R}$  and each X > 1, there exists  $(p,q) \in \mathbb{Z}^2$  such that

$$1 \leq q \leq X \quad ext{and} \quad |q\xi - p| \leq rac{1}{X}.$$

イロト イヨト イヨト イヨ

### Introduction

#### Dirichlet's Theorem (in dimension 1)

For each  $\xi \in \mathbb{R}$  and each X > 1, there exists  $(p,q) \in \mathbb{Z}^2$  such that

$$1 \leq q \leq X$$
 and  $|q\xi - p| \leq rac{1}{X}$ 

Corollary : There are infinitely many (p,q) such that  $\left|\xi - \frac{p}{q}\right| \leq \frac{1}{q^2}$ .

イロト イヨト イヨト イヨ

### Introduction

#### Dirichlet's Theorem (in dimension 1)

For each  $\xi \in \mathbb{R}$  and each X > 1, there exists  $(p,q) \in \mathbb{Z}^2$  such that

$$1 \leq q \leq X \quad ext{and} \quad |q\xi - p| \leq rac{1}{\chi}.$$

Corollary : There are infinitely many (p,q) such that  $\left|\xi - \frac{p}{q}\right| \le \frac{1}{q^2}$ .

#### Dirichlet's simultaneous approximation Theorem (in dimension n)

Let  $n \geq 2$  be an integer and let  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ . For each X > 1 there is an integer point  $\mathbf{x} = (q, p_1, \dots, p_n) \in \mathbb{Z}^{n+1}$  such that

$$1 \leq q \leq X$$
 and  $\max_{1 \leq i \leq n} |q\xi_i - p_i| \leq X^{-1/n}$ .

< □ > < 同 > < 回 > < Ξ > < Ξ

### Exponents of simultaneous rational approximation

#### Definition

We define  $\hat{\lambda}(\boldsymbol{\xi})$  (resp.  $\lambda(\boldsymbol{\xi})$ ) as the supremum of all  $\lambda \in \mathbb{R}$  s.t. for each X > 1 large enough (resp. for arb. large X), there is  $\mathbf{x} \in \mathbb{Z}^{n+1}$  satisfying

$$1 \leq q \leq X$$
 and  $\max_{1 \leq i \leq n} |q\xi_i - p_i| \leq X^{-\lambda}.$ 

A B A B A B A

### Exponents of simultaneous rational approximation

#### Definition

We define  $\hat{\lambda}(\boldsymbol{\xi})$  (resp.  $\lambda(\boldsymbol{\xi})$ ) as the supremum of all  $\lambda \in \mathbb{R}$  s.t. for each X > 1 large enough (resp. for arb. large X), there is  $\mathbf{x} \in \mathbb{Z}^{n+1}$  satisfying

$$1 \leq q \leq X \quad ext{and} \quad \max_{1 \leq i \leq n} |q\xi_i - p_i| \leq X^{-\lambda}.$$

• (dimension 1)  $\hat{\lambda}(\xi) = 1$  and  $\lambda(\xi) + 1 = \text{irrationality exponent of } \xi$  for each  $\xi \in \mathbb{R} \setminus \mathbb{Q}$ .

• • • • • • • • • • •

### Exponents of simultaneous rational approximation

#### Definition

We define  $\hat{\lambda}(\boldsymbol{\xi})$  (resp.  $\lambda(\boldsymbol{\xi})$ ) as the supremum of all  $\lambda \in \mathbb{R}$  s.t. for each X > 1 large enough (resp. for arb. large X), there is  $\mathbf{x} \in \mathbb{Z}^{n+1}$  satisfying

$$1 \leq q \leq X$$
 and  $\max_{1 \leq i \leq n} |q\xi_i - p_i| \leq X^{-\lambda}.$ 

• (dimension 1)  $\hat{\lambda}(\xi) = 1$  and  $\lambda(\xi) + 1 = \text{irrationality exponent of } \xi$  for each  $\xi \in \mathbb{R} \setminus \mathbb{Q}$ .

• We have 
$$\frac{1}{n} \leq \hat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi}) \leq \infty$$
 for each  $\boldsymbol{\xi} \in \mathbb{R}^n$ .

• • • • • • • • • • •

### Exponents of simultaneous rational approximation

#### Definition

We define  $\hat{\lambda}(\boldsymbol{\xi})$  (resp.  $\lambda(\boldsymbol{\xi})$ ) as the supremum of all  $\lambda \in \mathbb{R}$  s.t. for each X > 1 large enough (resp. for arb. large X), there is  $\mathbf{x} \in \mathbb{Z}^{n+1}$  satisfying

$$1 \leq q \leq X$$
 and  $\max_{1 \leq i \leq n} |q\xi_i - p_i| \leq X^{-\lambda}.$ 

- (dimension 1)  $\hat{\lambda}(\xi) = 1$  and  $\lambda(\xi) + 1 = \text{irrationality exponent of } \xi$  for each  $\xi \in \mathbb{R} \setminus \mathbb{Q}$ .
- We have  $\frac{1}{n} \leq \hat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi}) \leq \infty$  for each  $\boldsymbol{\xi} \in \mathbb{R}^n$ .
- λ(ξ) = λ̂(ξ) = 1/n for almost every ξ ∈ ℝ<sup>n</sup> (w.r.t. Lebesgue measure)

< □ > < □ > < □ > < □ > < □ >

#### LI condition

We denote by  $\mathbb{R}_{li}^n$  the set of  $\boldsymbol{\xi} \in \mathbb{R}^n$  such that  $1, \xi_1, \ldots, \xi_n$  are linearly independent over  $\mathbb{Q}$ .

**Question** : Describe the set of values that  $\hat{\lambda}$  and  $\lambda$  take when  $\boldsymbol{\xi}$  runs through all points of  $\mathbb{R}_{li}^{n}$ ?

Image: A matching of the second se

#### LI condition

We denote by  $\mathbb{R}_{li}^n$  the set of  $\boldsymbol{\xi} \in \mathbb{R}^n$  such that  $1, \xi_1, \ldots, \xi_n$  are linearly independent over  $\mathbb{Q}$ .

**Question** : Describe the set of values that  $\hat{\lambda}$  and  $\lambda$  take when  $\boldsymbol{\xi}$  runs through all points of  $\mathbb{R}_{ii}^{n}$ ?

$$\hat{\lambda}(\mathbb{R}_{\mathrm{li}}^n) = \Big[rac{1}{n},1\Big] \quad \mathrm{and} \quad \lambda(\mathbb{R}_{\mathrm{li}}^n) = \Big[rac{1}{n},+\infty\Big].$$

Image: A matching of the second se

#### LI condition

We denote by  $\mathbb{R}_{li}^n$  the set of  $\boldsymbol{\xi} \in \mathbb{R}^n$  such that  $1, \xi_1, \ldots, \xi_n$  are linearly independent over  $\mathbb{Q}$ .

**Question** : Describe the set of values that  $\hat{\lambda}$  and  $\lambda$  take when  $\boldsymbol{\xi}$  runs through all points of  $\mathbb{R}_{li}^{n}$ ?

$$\hat{\lambda}(\mathbb{R}^n_{\mathrm{li}}) = \Big[rac{1}{n},1\Big] \quad \mathrm{and} \quad \lambda(\mathbb{R}^n_{\mathrm{li}}) = \Big[rac{1}{n},+\infty\Big].$$

**Question** : joint spectrum of  $(\hat{\lambda}, \lambda)$ ?

Image: A math a math

#### LI condition

We denote by  $\mathbb{R}_{li}^n$  the set of  $\boldsymbol{\xi} \in \mathbb{R}^n$  such that  $1, \xi_1, \ldots, \xi_n$  are linearly independent over  $\mathbb{Q}$ .

**Question** : Describe the set of values that  $\hat{\lambda}$  and  $\lambda$  take when  $\boldsymbol{\xi}$  runs through all points of  $\mathbb{R}_{li}^{n}$ ?

$$\hat{\lambda}(\mathbb{R}_{\mathrm{li}}^n) = \Big[rac{1}{n},1\Big] \quad \mathrm{and} \quad \lambda(\mathbb{R}_{\mathrm{li}}^n) = \Big[rac{1}{n},+\infty\Big].$$

**Question** : joint spectrum of  $(\hat{\lambda}, \lambda)$ ? General case conjectured by Schmidt-Summerer (2013) and proved by Marnat-Moshchevitin (2020) :

$$\hat{\lambda}(oldsymbol{\xi})+rac{\hat{\lambda}(oldsymbol{\xi})^2}{\lambda(oldsymbol{\xi})}+\dots+rac{\hat{\lambda}(oldsymbol{\xi})^n}{\lambda(oldsymbol{\xi})^{n-1}}\leq 1 \quad (n\geq 2, oldsymbol{\xi}\in\mathbb{R}^n_{\mathrm{li}}).$$

Image: A matching of the second se

#### Problem

Study of  $\lambda(\boldsymbol{\xi})$  and  $\hat{\lambda}(\boldsymbol{\xi})$  when  $\boldsymbol{\xi}$  belongs to a fixed "interesting" subset of  $\mathbb{R}^n$ ?

・ロト ・回ト ・ヨト・

#### Problem

Study of  $\lambda(\boldsymbol{\xi})$  and  $\hat{\lambda}(\boldsymbol{\xi})$  when  $\boldsymbol{\xi}$  belongs to a fixed "interesting" subset of  $\mathbb{R}^n$ ? Set of values?

イロト イヨト イヨト イ

#### Problem

Study of  $\lambda(\boldsymbol{\xi})$  and  $\hat{\lambda}(\boldsymbol{\xi})$  when  $\boldsymbol{\xi}$  belongs to a fixed "interesting" subset of  $\mathbb{R}^n$ ? Set of values? Maximal value taken?

Image: A math the second se

#### Problem

Study of  $\lambda(\boldsymbol{\xi})$  and  $\hat{\lambda}(\boldsymbol{\xi})$  when  $\boldsymbol{\xi}$  belongs to a fixed "interesting" subset of  $\mathbb{R}^n$ ? Set of values? Maximal value taken?

#### Definition

Let  $Z \subseteq \mathbb{R}^n$  be such that  $Z \cap \mathbb{R}^n_{li} \neq \emptyset$ . We define

$$\hat{\lambda}(Z) := \sup\{\hat{\lambda}(\boldsymbol{\xi}) \mid \boldsymbol{\xi} \in Z \cap \mathbb{R}_{\mathrm{li}}^n\} \in [1/n, 1].$$

< □ > < 同 > < 回 > < Ξ > < Ξ

#### Problem

Study of  $\lambda(\boldsymbol{\xi})$  and  $\hat{\lambda}(\boldsymbol{\xi})$  when  $\boldsymbol{\xi}$  belongs to a fixed "interesting" subset of  $\mathbb{R}^n$ ? Set of values? Maximal value taken?

#### Definition

Let  $Z \subseteq \mathbb{R}^n$  be such that  $Z \cap \mathbb{R}^n_{li} \neq \emptyset$ . We define

$$\hat{\lambda}(Z) := \sup\{\hat{\lambda}(\boldsymbol{\xi}) \mid \boldsymbol{\xi} \in Z \cap \mathbb{R}^n_{\mathrm{li}}\} \in [1/n, 1].$$

Classical example :  $\mathcal{V}_n := \{(\xi, \xi^2, \dots, \xi^n) \mid \xi \in \mathbb{R}\}$  (Veronese curve).

< □ > < 同 > < 回 > < 回 >

#### Problem

Study of  $\lambda(\boldsymbol{\xi})$  and  $\hat{\lambda}(\boldsymbol{\xi})$  when  $\boldsymbol{\xi}$  belongs to a fixed "interesting" subset of  $\mathbb{R}^n$ ? Set of values? Maximal value taken?

#### Definition

Let  $Z \subseteq \mathbb{R}^n$  be such that  $Z \cap \mathbb{R}^n_{li} \neq \emptyset$ . We define

$$\hat{\lambda}(Z) := \sup\{\hat{\lambda}(\boldsymbol{\xi}) \mid \boldsymbol{\xi} \in Z \cap \mathbb{R}^n_{\mathrm{li}}\} \in [1/n, 1].$$

Classical example :  $\mathcal{V}_n := \{(\xi, \xi^2, \dots, \xi^n) \mid \xi \in \mathbb{R}\}$  (Veronese curve).

**Motivation** : related to approximation of  $\xi$  by algebraic numbers (resp. algebraic integers) of degree  $\leq n$  (resp.  $\leq n + 1$ ).

< □ > < □ > < □ > < □ > < □ >

#### Remarks :

• We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.

イロト イヨト イヨト イヨ

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

Image: A math the second se

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

**Problem** : Do we have  $\hat{\lambda}(\mathcal{V}_n) \neq \{1/n\}$ ? In other words, can we find  $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$  such that  $\hat{\lambda}(\xi, \ldots, \xi^n) > 1/n$ ?

• • • • • • • • • • •

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

**Problem** : Do we have  $\hat{\lambda}(\mathcal{V}_n) \neq \{1/n\}$ ? In other words, can we find  $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ?

#### Summary $(\xi \in \mathbb{R} \setminus \mathbb{Q})$

• 
$$1/2 \leq \hat{\lambda}(\xi,\xi^2) \leq 1/\gamma = 0.618\cdots$$
 (DS, 1969)

(日)

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

**Problem** : Do we have  $\hat{\lambda}(\mathcal{V}_n) \neq \{1/n\}$ ? In other words, can we find  $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ?

#### Summary $(\xi \in \mathbb{R} \setminus \mathbb{Q})$

- $1/2 \leq \hat{\lambda}(\xi,\xi^2) \leq 1/\gamma = 0.618\cdots$  (DS, 1969)
- Conjecture  $\leq$  2000 :  $\hat{\lambda}(\xi,\xi^2) = 1/2$ .

(日)

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

**Problem** : Do we have  $\hat{\lambda}(\mathcal{V}_n) \neq \{1/n\}$ ? In other words, can we find  $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ?

#### Summary $(\xi \in \mathbb{R} \setminus \mathbb{Q})$

- $1/2 \leq \hat{\lambda}(\xi,\xi^2) \leq 1/\gamma = 0.618\cdots$  (DS, 1969)
- Conjecture  $\leq$  2000 :  $\hat{\lambda}(\xi,\xi^2) = 1/2$ . FALSE
- $\hat{\lambda}(\mathcal{V}_2)=1/\gamma$  (Roy, 2004)

イロト イボト イヨト イヨ

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

**Problem** : Do we have  $\hat{\lambda}(\mathcal{V}_n) \neq \{1/n\}$ ? In other words, can we find  $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ?

#### Summary $(\xi \in \mathbb{R} \setminus \mathbb{Q})$

- $1/2 \leq \hat{\lambda}(\xi,\xi^2) \leq 1/\gamma = 0.618\cdots$  (DS, 1969)
- Conjecture  $\leq$  2000 :  $\hat{\lambda}(\xi,\xi^2) = 1/2$ . FALSE
- $\hat{\lambda}(\mathcal{V}_2)=1/\gamma$  (Roy, 2004)
- $(n \ge 3)$  Does it exist  $\xi$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ?

(日)

#### Remarks :

- We have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  almost everywhere.
- We also have  $\hat{\lambda}(\xi, \dots, \xi^n) = 1/n$  for each  $\xi \in \overline{\mathbb{Q}}$  of degree at least n+1.

**Problem** : Do we have  $\hat{\lambda}(\mathcal{V}_n) \neq \{1/n\}$ ? In other words, can we find  $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ?

#### Summary $(\xi \in \mathbb{R} \setminus \mathbb{Q})$

- $1/2 \leq \hat{\lambda}(\xi,\xi^2) \leq 1/\gamma = 0.618\cdots$  (DS, 1969)
- Conjecture  $\leq$  2000 :  $\hat{\lambda}(\xi,\xi^2) = 1/2$ . FALSE
- $\hat{\lambda}(\mathcal{V}_2)=1/\gamma$  (Roy, 2004)
- $(n \ge 3)$  Does it exist  $\xi$  such that  $\hat{\lambda}(\xi, \dots, \xi^n) > 1/n$ ? OPEN

イロト イボト イヨト イヨ

Let  $q \in \mathbb{Z}[t_0, \ldots, t_n]_2$  be a rational quadratic form  $\neq 0$  on  $\mathbb{R}^{n+1}$ .

イロト イヨト イヨト イヨ

Let  $q \in \mathbb{Z}[t_0, \ldots, t_n]_2$  be a rational quadratic form  $\neq 0$  on  $\mathbb{R}^{n+1}$ . Quadratic hypersurface associated to q:

$$Z_q := \{(\xi_1,\ldots,\xi_n) \in \mathbb{R}^n \mid q(1,\xi_1,\ldots,\xi_n) = 0\} \subset \mathbb{R}^n.$$

Image: A math the second se

Let  $q \in \mathbb{Z}[t_0, \ldots, t_n]_2$  be a rational quadratic form  $\neq 0$  on  $\mathbb{R}^{n+1}$ . Quadratic hypersurface associated to q:

$$Z_q := \{(\xi_1,\ldots,\xi_n) \in \mathbb{R}^n \mid q(1,\xi_1,\ldots,\xi_n) = 0\} \subset \mathbb{R}^n$$

The (rational) **Witt index**  $m_q$  of q is the integer m such that any maximal totally isotropic subspace of  $\mathbb{R}^{n+1}$  defined over  $\mathbb{Q}$  has dimension  $m + \dim \ker(q)$ . Recall that  $W \subset \mathbb{R}^{n+1}$  is totally isotropic iff  $q_{|W} = 0$ .

#### Examples

•  $\mathcal{V}_2 = \{(\xi, \xi^2) \mid \xi \in \mathbb{R}\} = Z_q \subset \mathbb{R}^2 \text{ with } q(x_0, x_1, x_2) = x_0 x_2 - x_1^2$ (here  $m_q = 1$ ).

イロト イボト イヨト イヨ

Let  $q \in \mathbb{Z}[t_0, \ldots, t_n]_2$  be a rational quadratic form  $\neq 0$  on  $\mathbb{R}^{n+1}$ . Quadratic hypersurface associated to q:

$$Z_q := \{(\xi_1,\ldots,\xi_n) \in \mathbb{R}^n \mid q(1,\xi_1,\ldots,\xi_n) = 0\} \subset \mathbb{R}^n$$

The (rational) **Witt index**  $m_q$  of q is the integer m such that any maximal totally isotropic subspace of  $\mathbb{R}^{n+1}$  defined over  $\mathbb{Q}$  has dimension  $m + \dim \ker(q)$ . Recall that  $W \subset \mathbb{R}^{n+1}$  is totally isotropic iff  $q_{|W} = 0$ .

#### Examples

- $\mathcal{V}_2 = \{(\xi, \xi^2) \mid \xi \in \mathbb{R}\} = Z_q \subset \mathbb{R}^2 \text{ with } q(x_0, x_1, x_2) = x_0 x_2 x_1^2$ (here  $m_q = 1$ ).
- More generally : Quadratic hypersurface in  $\mathbb{R}^2 = ext{conic}$  (in that case  $m_q \leq 1$ ).

イロト イポト イヨト イヨト

Let  $q \in \mathbb{Z}[t_0, \ldots, t_n]_2$  be a rational quadratic form  $\neq 0$  on  $\mathbb{R}^{n+1}$ . Quadratic hypersurface associated to q:

$$Z_q := \{(\xi_1,\ldots,\xi_n) \in \mathbb{R}^n \mid q(1,\xi_1,\ldots,\xi_n) = 0\} \subset \mathbb{R}^n$$

The (rational) **Witt index**  $m_q$  of q is the integer m such that any maximal totally isotropic subspace of  $\mathbb{R}^{n+1}$  defined over  $\mathbb{Q}$  has dimension  $m + \dim \ker(q)$ . Recall that  $W \subset \mathbb{R}^{n+1}$  is totally isotropic iff  $q_{|W} = 0$ .

#### Examples

- $\mathcal{V}_2 = \{(\xi, \xi^2) \mid \xi \in \mathbb{R}\} = Z_q \subset \mathbb{R}^2 \text{ with } q(x_0, x_1, x_2) = x_0 x_2 x_1^2$ (here  $m_q = 1$ ).
- More generally : Quadratic hypersurface in  $\mathbb{R}^2 = ext{conic}$  (in that case  $m_q \leq 1$ ).
- Sphere  $S^{n-1} \subset \mathbb{R}^n$  with  $q(x_0, ..., x_n) = x_0^2 (x_1^2 + \cdots + x_n^2)$ .

イロン イロン イヨン イヨン

#### Theorem (Kleinbock-Moshchevitin, 2019)

Let q be a rational non-degenerate quadratic form on  $\mathbb{R}^{n+1}$  such that  $Z_q \cap \mathbb{R}^n_{li} \neq \emptyset$  and  $m_q \leq 1$ . Then

$$\frac{1}{n} \leq \hat{\lambda}(Z_q) \leq 1/\rho_n,$$

where  $\rho_n \in (1,2)$  is the only positive root of  $x^n - (x^{n-1} + \cdots + x + 1)$ .

< □ > < 同 > < 回 > < Ξ > < Ξ

#### Theorem (Kleinbock-Moshchevitin, 2019)

Let q be a rational non-degenerate quadratic form on  $\mathbb{R}^{n+1}$  such that  $Z_q \cap \mathbb{R}^n_{li} \neq \emptyset$  and  $m_q \leq 1$ . Then

$$\frac{1}{n} \leq \hat{\lambda}(Z_q) \leq 1/\rho_n,$$

where  $\rho_n \in (1,2)$  is the only positive root of  $x^n - (x^{n-1} + \cdots + x + 1)$ .

Example : sphere  $S^{n-1} \subset \mathbb{R}^n$  (with  $q(x_0, \ldots, x_n) = x_0^2 - (x_1^2 + \cdots + x_n^2)$ ).

(日) (四) (日) (日) (日)

#### Theorem (Kleinbock-Moshchevitin, 2019)

Let q be a rational non-degenerate quadratic form on  $\mathbb{R}^{n+1}$  such that  $Z_q \cap \mathbb{R}^n_{li} \neq \emptyset$  and  $m_q \leq 1$ . Then

$$\frac{1}{n} \leq \hat{\lambda}(Z_q) \leq 1/\rho_n,$$

where  $\rho_n \in (1,2)$  is the only positive root of  $x^n - (x^{n-1} + \cdots + x + 1)$ .

Example : sphere  $S^{n-1} \subset \mathbb{R}^n$  (with  $q(x_0, \ldots, x_n) = x_0^2 - (x_1^2 + \cdots + x_n^2)$ ).

• 
$$1/\rho_2 = 1/\gamma = 0.6180\cdots$$

- $1/\rho_3 = 0.5436\cdots$
- $1/\rho_4 = 0.5187 \cdots$
- $(\rho_n)_{n\geq 2}$  is increasing and tends to 2 as  $n \to \infty$ .

イロト イボト イヨト イヨト

#### Theorem (P.-Roy, 2021)

Let  $q \neq 0$  be a rational quadratic form on  $\mathbb{R}^{n+1}$  s.t.  $Z_q \cap \mathbb{R}_{li}^n \neq \emptyset$ . Then

$$\hat{\lambda}(Z_q) = egin{cases} 1/
ho_n & ext{if } m_q \leq 1, \ 1 & ext{else.} \end{cases}$$

Moreover, the set  $\{ \boldsymbol{\xi} \in Z_q \cap \mathbb{R}_{li}^n | \hat{\lambda}(\boldsymbol{\xi}) = \hat{\lambda}(Z_q) \}$  is countably infinite if  $m_q \leq 1$ , and uncountable otherwise.

• • • • • • • • • • •

#### Theorem (P.-Roy, 2021)

Let  $q \neq 0$  be a rational quadratic form on  $\mathbb{R}^{n+1}$  s.t.  $Z_q \cap \mathbb{R}_{li}^n \neq \emptyset$ . Then

$$\hat{\lambda}(Z_q) = egin{cases} 1/
ho_n & ext{if } m_q \leq 1, \ 1 & ext{else.} \end{cases}$$

Moreover, the set  $\{ \boldsymbol{\xi} \in Z_q \cap \mathbb{R}_{li}^n | \hat{\lambda}(\boldsymbol{\xi}) = \hat{\lambda}(Z_q) \}$  is countably infinite if  $m_q \leq 1$ , and uncountable otherwise.

#### Remarks.

• (n = 2)  $(\xi, \xi^2)$  and conics : proved by Roy (in 2004 and 2012 resp.)

イロト イヨト イヨト

# Quadratic hypersurface of $\mathbb{R}^n$ $(n \ge 2)$

### Theorem (P.-Roy, 2021)

Let  $q \neq 0$  be a rational quadratic form on  $\mathbb{R}^{n+1}$  s.t.  $Z_q \cap \mathbb{R}_{li}^n \neq \emptyset$ . Then

$$\hat{\lambda}(Z_q) = egin{cases} 1/
ho_n & ext{if } m_q \leq 1, \ 1 & ext{else.} \end{cases}$$

Moreover, the set  $\{ \boldsymbol{\xi} \in Z_q \cap \mathbb{R}_{li}^n | \hat{\lambda}(\boldsymbol{\xi}) = \hat{\lambda}(Z_q) \}$  is countably infinite if  $m_q \leq 1$ , and uncountable otherwise.

#### Remarks.

(n = 2) (ξ, ξ<sup>2</sup>) and conics : proved by Roy (in 2004 and 2012 resp.)
q can be degenerate.

イロト 不得 トイヨト イヨト

# Quadratic hypersurface of $\mathbb{R}^n$ $(n \ge 2)$

### Theorem (P.-Roy, 2021)

Let  $q \neq 0$  be a rational quadratic form on  $\mathbb{R}^{n+1}$  s.t.  $Z_q \cap \mathbb{R}_{li}^n \neq \emptyset$ . Then

$$\hat{\lambda}(Z_q) = egin{cases} 1/
ho_n & ext{if } m_q \leq 1, \ 1 & ext{else.} \end{cases}$$

Moreover, the set  $\{ \boldsymbol{\xi} \in Z_q \cap \mathbb{R}_{li}^n | \hat{\lambda}(\boldsymbol{\xi}) = \hat{\lambda}(Z_q) \}$  is countably infinite if  $m_q \leq 1$ , and uncountable otherwise.

#### Remarks.

- (n = 2)  $(\xi, \xi^2)$  and conics : proved by Roy (in 2004 and 2012 resp.)
- q can be degenerate.
- Upper-bound λ̂(Z<sub>q</sub>) ≤ 1/ρ<sub>n</sub> based on Marnat-Moshchevitin (2020) (relation between λ̂ and λ).

< □ > < □ > < □ > < □ > < □ >

# Quadratic hypersurface of $\mathbb{R}^n$ $(n \ge 2)$

### Theorem (P.-Roy, 2021)

Let  $q \neq 0$  be a rational quadratic form on  $\mathbb{R}^{n+1}$  s.t.  $Z_q \cap \mathbb{R}_{li}^n \neq \emptyset$ . Then

$$\hat{\lambda}(Z_q) = egin{cases} 1/
ho_n & ext{if } m_q \leq 1, \ 1 & ext{else.} \end{cases}$$

Moreover, the set  $\{ \boldsymbol{\xi} \in Z_q \cap \mathbb{R}_{li}^n | \hat{\lambda}(\boldsymbol{\xi}) = \hat{\lambda}(Z_q) \}$  is countably infinite if  $m_q \leq 1$ , and uncountable otherwise.

#### Remarks.

- (n = 2)  $(\xi, \xi^2)$  and conics : proved by Roy (in 2004 and 2012 resp.)
- q can be degenerate.
- Upper-bound  $\hat{\lambda}(Z_q) \leq 1/\rho_n$  based on Marnat-Moshchevitin (2020) (relation between  $\hat{\lambda}$  and  $\lambda$ ).

• 
$$Z_q \cap \mathbb{R}_{li}^n = \emptyset$$
 for  $q = x_0^2 - x_1^2 = (x_0 - x_1)(x_0 + x_1)$ .

For any  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in Z_q \cap \mathbb{R}^n_{\mathrm{li}}$  and  $\mathbf{x} \in \mathbb{Z}^{n+1}$ , we write

$$\|\mathbf{x}\| = \max_{0 \le i \le n} |x_i|$$
 and  $\mathcal{L}_{\boldsymbol{\xi}}(\mathbf{x}) = \max_{1 \le i \le n} |x_0 \xi_i - x_i|.$ 

#### Summary of our strategy

Construct by induction a sequence  $(\mathbf{x}_i)_{i\geq 0}$  of points in  $\mathbb{Z}^{n+1}\setminus\{0\}$  s.t. :

•  $(\mathbf{x}_i)_{i\geq 0}$  converges projectively to a point  $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$  and  $q(\mathbf{x}_i)/\|\mathbf{x}_i\|$  tends to 0 as  $i \to \infty$ .

• • • • • • • • • • •

For any  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in Z_q \cap \mathbb{R}^n_{\mathrm{li}}$  and  $\mathbf{x} \in \mathbb{Z}^{n+1}$ , we write

$$\|\mathbf{x}\| = \max_{0 \le i \le n} |x_i|$$
 and  $\mathcal{L}_{\boldsymbol{\xi}}(\mathbf{x}) = \max_{1 \le i \le n} |x_0 \xi_i - x_i|.$ 

#### Summary of our strategy

Construct by induction a sequence  $(\mathbf{x}_i)_{i\geq 0}$  of points in  $\mathbb{Z}^{n+1}\setminus\{0\}$  s.t. :

•  $(\mathbf{x}_i)_{i\geq 0}$  converges projectively to a point  $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$  and  $q(\mathbf{x}_i)/||\mathbf{x}_i||$  tends to 0 as  $i \to \infty$ . Then  $\boldsymbol{\xi} \in Z_q$ .

For any  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in Z_q \cap \mathbb{R}^n_{\mathrm{li}}$  and  $\mathbf{x} \in \mathbb{Z}^{n+1}$ , we write

$$\|\mathbf{x}\| = \max_{0 \le i \le n} |x_i|$$
 and  $\mathcal{L}_{\boldsymbol{\xi}}(\mathbf{x}) = \max_{1 \le i \le n} |x_0 \xi_i - x_i|.$ 

#### Summary of our strategy

Construct by induction a sequence  $(\mathbf{x}_i)_{i\geq 0}$  of points in  $\mathbb{Z}^{n+1} \setminus \{0\}$  s.t. :

- $(\mathbf{x}_i)_{i\geq 0}$  converges projectively to a point  $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$  and  $q(\mathbf{x}_i)/||\mathbf{x}_i||$  tends to 0 as  $i \to \infty$ . Then  $\boldsymbol{\xi} \in Z_q$ .
- (*n*+1) consecutive points **x**<sub>*i*</sub>,..., **x**<sub>*i*+n</sub> are always linearly independent.

(日)

For any  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in Z_q \cap \mathbb{R}^n_{\mathrm{li}}$  and  $\mathbf{x} \in \mathbb{Z}^{n+1}$ , we write

$$\|\mathbf{x}\| = \max_{0 \le i \le n} |x_i|$$
 and  $\mathcal{L}_{\boldsymbol{\xi}}(\mathbf{x}) = \max_{1 \le i \le n} |x_0 \xi_i - x_i|.$ 

#### Summary of our strategy

Construct by induction a sequence  $(\mathbf{x}_i)_{i\geq 0}$  of points in  $\mathbb{Z}^{n+1} \setminus \{0\}$  s.t. :

- $(\mathbf{x}_i)_{i\geq 0}$  converges projectively to a point  $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$  and  $q(\mathbf{x}_i)/||\mathbf{x}_i||$  tends to 0 as  $i \to \infty$ . Then  $\boldsymbol{\xi} \in Z_q$ .
- (n+1) consecutive points  $\mathbf{x}_i, \ldots, \mathbf{x}_{i+n}$  are always linearly independent. Then  $\boldsymbol{\xi} \in \mathbb{R}_{1i}^n$ .

For any  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in Z_q \cap \mathbb{R}^n_{\mathrm{li}}$  and  $\mathbf{x} \in \mathbb{Z}^{n+1}$ , we write

$$\|\mathbf{x}\| = \max_{0 \le i \le n} |x_i|$$
 and  $\mathcal{L}_{\boldsymbol{\xi}}(\mathbf{x}) = \max_{1 \le i \le n} |x_0 \xi_i - x_i|.$ 

#### Summary of our strategy

Construct by induction a sequence  $(\mathbf{x}_i)_{i\geq 0}$  of points in  $\mathbb{Z}^{n+1} \setminus \{0\}$  s.t. :

- $(\mathbf{x}_i)_{i\geq 0}$  converges projectively to a point  $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$  and  $q(\mathbf{x}_i)/||\mathbf{x}_i||$  tends to 0 as  $i \to \infty$ . Then  $\boldsymbol{\xi} \in Z_q$ .
- (n+1) consecutive points  $\mathbf{x}_i, \ldots, \mathbf{x}_{i+n}$  are always linearly independent. Then  $\boldsymbol{\xi} \in \mathbb{R}^n_{\mathrm{li}}$ .
- L<sub>ξ</sub>(x<sub>i</sub>) ≤ ||x<sub>i+1</sub>||<sup>-α</sup> for any i ≫ 1 and some α arbitrarily close to the expected upper bound (1/ρ<sub>n</sub> or 1).

(日) (四) (日) (日) (日)

For any  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \in Z_q \cap \mathbb{R}^n_{\mathrm{li}}$  and  $\mathbf{x} \in \mathbb{Z}^{n+1}$ , we write

$$\|\mathbf{x}\| = \max_{0 \le i \le n} |x_i|$$
 and  $\mathcal{L}_{\boldsymbol{\xi}}(\mathbf{x}) = \max_{1 \le i \le n} |x_0 \xi_i - x_i|.$ 

#### Summary of our strategy

Construct by induction a sequence  $(\mathbf{x}_i)_{i\geq 0}$  of points in  $\mathbb{Z}^{n+1} \setminus \{0\}$  s.t. :

- $(\mathbf{x}_i)_{i\geq 0}$  converges projectively to a point  $(1, \boldsymbol{\xi}) \in \mathbb{R}^{n+1}$  and  $q(\mathbf{x}_i)/||\mathbf{x}_i||$  tends to 0 as  $i \to \infty$ . Then  $\boldsymbol{\xi} \in Z_q$ .
- (n+1) consecutive points  $\mathbf{x}_i, \ldots, \mathbf{x}_{i+n}$  are always linearly independent. Then  $\boldsymbol{\xi} \in \mathbb{R}^n_{\mathrm{li}}$ .
- $L_{\boldsymbol{\xi}}(\mathbf{x}_i) \leq \|\mathbf{x}_{i+1}\|^{-\alpha}$  for any  $i \gg 1$  and some  $\alpha$  arbitrarily close to the expected upper bound  $(1/\rho_n \text{ or } 1)$ . Then  $\hat{\lambda}(\boldsymbol{\xi}) \geq \alpha$ .

イロト イポト イヨト イヨト

Hypothesis : Witt index  $m_q \leq 1$ 

 $q(\mathbf{x}_0) = \cdots = q(\mathbf{x}_i) = 1$ . Induction step (rigid) :

$$\mathbf{x}_{i+n+1} := b(\mathbf{x}_{i+n}, \mathbf{x}_i)\mathbf{x}_{i+n} - q(\mathbf{x}_{i+n})\mathbf{x}_i \quad (i \ge 0).$$

where b is the symmetric bilinear form associated to q.

< □ > < □ > < □ > < □ > < □ >

Hypothesis : Witt index  $m_q \leq 1$ 

 $q(\mathbf{x}_0) = \cdots = q(\mathbf{x}_i) = 1$ . Induction step (rigid) :

$$\mathbf{x}_{i+n+1} := b(\mathbf{x}_{i+n}, \mathbf{x}_i)\mathbf{x}_{i+n} - q(\mathbf{x}_{i+n})\mathbf{x}_i \quad (i \ge 0).$$

where *b* is the symmetric bilinear form associated to *q*. Main difficulty  $\mathcal{V}$ : Asymptotic behaviour  $L_{\boldsymbol{\xi}}(\mathbf{x}_i) \simeq \|\mathbf{x}_{i+1}\|^{-1/\rho_n}$ .

イロト イヨト イヨト イヨト

Hypothesis : Witt index  $m_q \leq 1$ 

 $q(\mathbf{x}_0) = \cdots = q(\mathbf{x}_i) = 1$ . Induction step (rigid) :

$$\mathbf{x}_{i+n+1} := b(\mathbf{x}_{i+n}, \mathbf{x}_i)\mathbf{x}_{i+n} - q(\mathbf{x}_{i+n})\mathbf{x}_i \quad (i \ge 0).$$

where *b* is the symmetric bilinear form associated to *q*. Main difficulty  $\mathcal{V}$ : Asymptotic behaviour  $L_{\boldsymbol{\xi}}(\mathbf{x}_i) \simeq \|\mathbf{x}_{i+1}\|^{-1/\rho_n}$ .

#### Hypothesis : Witt index $m_q > 1$

 $q(\mathbf{x}_0) = \cdots = q(\mathbf{x}_i) = 0$ . Induction step : we choose  $\mathbf{z} \in \mathbb{Z}^{n+1}$  s.t.  $q_{|\langle \mathbf{x}_i, \mathbf{z} \rangle} = 0$  and we set  $\mathbf{x}_{i+1} = \alpha \mathbf{x}_i + \mathbf{z}$  (with  $\alpha \in \mathbb{Z}$  "very large").

イロン イ団 とく ヨン イヨン

Hypothesis : Witt index  $m_q \leq 1$ 

 $q(\mathbf{x}_0) = \cdots = q(\mathbf{x}_i) = 1$ . Induction step (rigid) :

$$\mathbf{x}_{i+n+1} := b(\mathbf{x}_{i+n}, \mathbf{x}_i)\mathbf{x}_{i+n} - q(\mathbf{x}_{i+n})\mathbf{x}_i \quad (i \ge 0).$$

where *b* is the symmetric bilinear form associated to *q*. Main difficulty  $\mathcal{V}$ : Asymptotic behaviour  $L_{\boldsymbol{\xi}}(\mathbf{x}_i) \simeq \|\mathbf{x}_{i+1}\|^{-1/\rho_n}$ .

#### Hypothesis : Witt index $m_q > 1$

 $q(\mathbf{x}_0) = \cdots = q(\mathbf{x}_i) = 0$ . Induction step : we choose  $\mathbf{z} \in \mathbb{Z}^{n+1}$  s.t.  $q_{|\langle \mathbf{x}_i, \mathbf{z} \rangle} = 0$  and we set  $\mathbf{x}_{i+1} = \alpha \mathbf{x}_i + \mathbf{z}$  (with  $\alpha \in \mathbb{Z}$  "very large"). Main difficulty  $\mathcal{V}$  : (n+1) consecutive points are linearly independent. Thank you.

< □ > < □ > < □ > < □ > < □ >