Geometric effects on $W^{1, p}$ regularity of the stationary linearized Boltzmann equation

I-Kun Chen
Institute of Applied Mathematical Sciences, National Taiwan University

Webinar Kinetic and fluid equations for collective behavior, 8th, April, 2024

This talk is based on a joint work with Daisuke Kawagoe, Chun-Hsiung Hsia, and Jhe-Kuan Su.

Stationary linearized Boltzmann equation in \mathbb{R}^{3}

Bounded domain:

$$
\begin{equation*}
\Omega \in \mathbb{R}^{3} . \tag{1}
\end{equation*}
$$

We consider the linearized velocity distribution function: $f: \Omega \times \mathbb{R}^{3} \rightarrow \mathbb{R}$.
We define

$$
\begin{equation*}
\Gamma_{-}:=\{(x, v) \mid x \in \partial \Omega, n(x) \cdot v<0\} \tag{2}
\end{equation*}
$$

Incoming Boundary Value Problem for linearized stationary Boltzmann equation:

$$
\begin{cases}v \cdot \nabla_{x} f=L(f), & x \in \Omega, v \in \mathbb{R}^{3} \tag{3}\\ f(x, v)=g(x, v), & (x, v) \in \Gamma_{-}\end{cases}
$$

where L is the linearized collision operator.

Our gaol is to classify the range of $W^{1, p}$ solution space according to the geometry of the domain.
We focus on the stationary linearized Boltzmann equation in a convex domain. To our surprise, the flatness has a dramatic effect on the range of p.

Regularity of stationary Boltzmann equation in a bounded domain

Mixture lemma: Collision and free transport move regularity from velocity variable to space variable.

- (C. 2018 SIMA) Linearized equation, incoming boundary, locally Holder.
- (C., Kawagoe, Hsia 2019 Annales de l'Institut Henri Poincaré C) Linearized equation, diffuse reflection, pointwise estimate of derivatives.
- (Chen, Kim. 2022 ARMA) Nonlinear equation, diffuse boundary, locally $C^{1, \beta}$.
- (Chen 2022 SIMA) Cercignani-Lampis Boundary condition
C., Kawagoe, Hsia 2019 Annales de l'Institut Henri Poincaré C:

$$
\left|\nabla_{x} f\right|+\left|\nabla_{v} f\right| \leq C\left|1+d_{x}^{-1}\right|^{\frac{4}{3}+\epsilon}
$$

where

$$
d_{x}=\operatorname{dist}(x, \partial \Omega)
$$

Chen, Kim. 2022 ARMA:

$$
\left\||v|^{2} \nabla_{v} f\right\|_{\infty} \leq C\left\|T-T_{w}\right\|_{\infty}
$$

(Notice that the Lemma 2.13 in this paper is not correct)

Velocity averaging lemma

- (C.,Chung, Hsia, Su 2022 JSP) linearized equation, incoming boundary, $L_{v}^{2}\left(\mathbb{R}^{3}, H_{x}^{1-}(\Omega)\right)$.
We can not recover $L_{v}^{2}\left(\mathbb{R}^{3}, H_{x}^{1}(\Omega)\right)$ by this estimates by Bourgain-Brezis-Mironescu formula.

Time evolutional problem

Regularity for time evolutional problem: (Guo, Kim, Tonon, Trescases 2017 Invent. Math.) Nonlinear equation, diffuse reflection, $W^{1, p}$ for $1 \leq p<2$. Disprove H^{1} result to free transport equation.

Motivation:
What is the situation for stationary solution?

Existence of H^{1} solutions to Stationary Linearized Boltzmann Equation in a Small Domain.

Theorem (C.,Chung, Hsia, Kawagoe, Su April 19, 2023)

There exists a small $\epsilon>0$ such that
Suppose domain Ω is of positive curvature with $\operatorname{diam}(\Omega)<\epsilon$, the incoming boundary value problem for stationary linearized Boltzmann equation has a unique solution $f \in H^{1}\left(\Omega \times \mathbb{R}^{3}\right)$ if g is smooth enough.

Remark

Chen Kim investigate a related issue on asymptotic stability in $W_{x}^{1, p}$ for $1 \leq p<3$ (ARMA 2024).

We classify the range of p for solution space $W^{1, p}$ according to the geomtry of the domain.

Assumption A. We say L satisfies the condition A if the operator $L(f)$ can be decomposed into the multiplicative term $-\nu(v) f$ and the integral term $K(f)=\int k\left(v, v_{*}\right) f\left(v_{*}\right) d v_{*}$ with the following estimates for some fixed $0 \leq \gamma \leq 1$.

$$
\begin{gather*}
\nu_{0}(1+|v|)^{\gamma} \leq \nu(v) \leq \nu_{1}(1+|v|)^{\gamma} \tag{4}\\
\left|k\left(v, v^{*}\right)\right| \leq C \frac{1}{\left|v-v^{*}\right|\left(1+|v|+\left|v^{*}\right|\right)^{1-\gamma}} e^{\frac{1-\rho}{4}\left(\left|v-v^{*}\right|^{2}+\left(\frac{|v|^{2}-\left|v^{*}\right|^{2}}{\left|v-v^{*}\right|}\right)^{2}\right)} \tag{5}\\
\left|\nabla_{v} k\left(v, v^{*}\right)\right| \leq C \frac{1+|v|}{\left|v-v^{*}\right|^{2}\left(1+|v|+\left|v^{*}\right|\right)^{1-\gamma}} e^{\frac{1-\rho}{4}\left(\left|v-v^{*}\right|^{2}+\left(\frac{|v|^{2}-\left|v^{*}\right|^{2}}{\left|v-v^{*}\right|}\right)^{2}\right)}, \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
\left|\nabla_{v} \nu(v)\right| \leq C(1+|v|)^{\gamma-1} \tag{7}
\end{equation*}
$$

Remark
The crosssection $B=C|v|^{\gamma} \cos \theta$ for $0 \leq \gamma \leq 1$ yields a linearized collision operator L satisfying Assumption A.

Remark

For Grad's angular cutoff, $0 \leq B \leq C|v|^{\gamma} \cos \theta$ for $0 \leq \gamma \leq 1$, (8) and the upper bound in (7) was proved by Caflisch (1980 CMP).

$$
\begin{aligned}
& \tau(x, v):=\inf _{t>0}\{t: x-v t \notin \Omega\}, \\
& q(x, v):=x-\tau(x, v) v .
\end{aligned}
$$

We rewrite

$$
\begin{cases}v \cdot \nabla_{x} f+\nu(v) f=K(f), & x \in \Omega, v \in \mathbb{R}^{3} \tag{8}\\ f(x, v)=g(x, v), & (x, v) \in \Gamma_{-}\end{cases}
$$

Integral equation:

$$
\begin{align*}
f(x, v)= & e^{-\nu(v) \tau(x, v)} g(q(x, v), v) \\
& +\int_{0}^{\tau(x, v)} e^{-\nu(v) s} K(f)(x-s v, v) d s \tag{9}
\end{align*}
$$

Hereafter, we define

$$
\begin{align*}
(J g)(x, v) & :=e^{-\nu(v) \tau_{-}(x, v)} g(q(x, v), v) \tag{10}\\
\left(S_{\Omega} f\right)(x, v) & :=\int_{0}^{\tau(x, v)} e^{-\nu(v) s} f(x-s v, v) d s \tag{11}
\end{align*}
$$

We can rewrite

$$
\begin{equation*}
f(x, v)=J(g)+S_{\Omega} K(f) \tag{12}
\end{equation*}
$$

Definition
We say f is a solution to (8) if f satisfies (12).

Let

$$
L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right):=\left\{f \mid\|f\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}<\infty\right\}
$$

where

$$
\|f\|_{L_{\alpha}^{\alpha}\left(\Omega \times \mathbb{R}^{3}\right)}^{p}:=\int_{\Omega} \int_{\mathbb{R}^{3}}|f(x, v)|^{p} e^{p \alpha|v|^{2}} d x d v
$$

Also, for $1 \leq p<\infty$ and $\alpha \geq 0$, we define the function space $W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ by

$$
W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right):=\left\{f \mid\|f\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)}<\infty\right\}
$$

where
$\|f\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)}:=\|f\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}+\left\|\nabla_{x} f\right\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}+\left\|\nabla_{V} f\right\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}$.
Notice that $W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ with $\alpha=0$ is the usual Sobolev space $W^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$.

Theorem (C., Hsia, Kawagoe, Su, 11, 2023)

Suppose L satisfies Assumption A. Let $0 \leq \alpha<(1-\rho) / 2$ and Ω be a bounded convex domain with C^{2} boundary. Then, the following statements hold.
(i) For $1 \leq p<2$, there exists $\epsilon>0$ depending on p and α such that: for any Ω with diam $(\Omega)<\epsilon$, the boundary value problem (3) has a unique solution $f \in W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ if and only if $J g \in W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$.
(ii) We further assume that $\partial \Omega$ is of positive Gaussian curvature. Then, the range of p in (i) can be extended to $1 \leq p<3$.
(iii) The conclusions in (i) and (ii) are optimal.
arXiv:2311.12387

To be more precise, (iii) means:

Lemma (Counter example $\mathrm{p}=2$)

For fixed $1 \leq p<2$ and $0 \leq \alpha<(1-\rho) / 2$, there exist a bounded convex domain Ω and a boundary data g such that the boundary value problem (3) has a solution in $L_{\alpha}^{2}\left(\Omega \times \mathbb{R}^{3}\right) \cap W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ but not in $W_{\alpha}^{1,2}\left(\Omega \times \mathbb{R}^{3}\right)$.

Lemma (Counter example $\mathrm{p}=3$)
For fixed $2 \leq p<3$ and $0 \leq \alpha<(1-\rho) / 2$, there exist a bounded convex domain Ω with its boundary of positive Gaussian curvature and a boundary data g such that the boundary value problem (3) has a solution in $L_{\alpha}^{3}\left(\Omega \times \mathbb{R}^{3}\right) \cap \mathcal{W}_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ but not in $W_{\alpha}^{1,3}\left(\Omega \times \mathbb{R}^{3}\right)$.

Nonlinear case for small domain with positive Gaussian curvature is established in a norm that is a proper subspace of $W^{1, p}$ for $1 \leq p<3$ by by C. Kawagoe, hsia, and Su in 3, 2024.
arXiv:2403.10016

Sketch of the proof

Recall

$$
\begin{equation*}
f(x, v)=J(g)+S_{\Omega} K(f) \tag{13}
\end{equation*}
$$

Performing Picard iteration, formally we have

$$
\begin{equation*}
f=\sum_{i=0}^{\infty}\left(S_{\Omega} K\right)^{i} J g \tag{14}
\end{equation*}
$$

Goal: To prove the series (14) converges in the desired norm.

For L_{α}^{p} space, we have
Lemma
Let $1 \leq p<\infty$ and $0 \leq \alpha<(1-\rho) / 2$, where ρ is the constant in Assumption A. Then, for any $h \in L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)$, we have

$$
\begin{equation*}
\left\|S_{\Omega} K h\right\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)} \lesssim \operatorname{diam}(\Omega)^{\frac{1}{\rho}}\|h\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)} . \tag{15}
\end{equation*}
$$

If $\operatorname{diam}(\Omega)$ is small enough, by contraction mapping theorem, (3) has a solution in L_{α}^{p}.

Sobolev space case

We do not have a direct analogy for $W_{\alpha}^{1, p}$ case. Instead, Lemma
Given $h \in W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ with $1 \leq p<2$ and $0 \leq \alpha<(1-\rho) / 2$, where ρ is the constant in Assumption A, we have

$$
\begin{aligned}
\left\|S_{\Omega} K h\right\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)} & \text { diam }(\Omega)^{\frac{1}{n}}\|h\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)}+\|h\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)} \\
& +\operatorname{diam}(\Omega)^{\frac{1}{p}}\|h\|_{L_{\alpha}^{p}\left(\partial \Omega \times \mathbb{R}^{3}\right)},
\end{aligned}
$$

where $\|h\|_{L_{\alpha}^{p}\left(\partial \Omega \times \mathbb{R}^{3}\right)}$ is defined by

$$
\|h\|_{L_{\alpha}^{p}\left(\partial \Omega \times \mathbb{R}^{3}\right)}^{p}:=\int_{\mathbb{R}^{3}} \int_{\partial \Omega}|h(z, v)|^{p} e^{p \alpha|v|^{2}} d \Sigma(z) d v,
$$

and $d \Sigma$ denotes the surface measure on $\partial \Omega$.

Trace inequalities

Lemma (Trace inequalities)
Let Ω be a bounded domain with Lipschitz boundary. Also,
$\alpha \geq 0$. Then,
(i) For $1<p<\infty$, there exists a positive constant $C_{2}(\Omega, p)$ such that
$\|h\|_{L_{\alpha}^{p}\left(\partial \Omega \times \mathbb{R}^{3}\right)} \leq C_{2}(\Omega, p)\left(\delta^{\frac{p-1}{p}}\left\|\nabla_{x} h\right\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}+\delta^{-\frac{1}{p}}\|h\|_{L_{a}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}\right)$
for all $h \in W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ and $0<\delta<1$.
(ii)

$$
\|h\|_{L_{\alpha}^{1}\left(\partial \Omega \times \mathbb{R}^{3}\right)} \leq(1+\delta)\left\|\nabla_{\chi} h\right\|_{L_{\alpha}^{1}\left(\Omega \times \mathbb{R}^{3}\right)}+C_{\delta}(\Omega)\|h\|_{L_{\alpha}^{1}\left(\Omega \times \mathbb{R}^{3}\right)}
$$

for all $h \in W_{\alpha}^{1,1}\left(\Omega \times \mathbb{R}^{3}\right)$.

For fixed $1 \leq p<2$ and $0 \leq \alpha<(1-\rho) / 2$, taking δ and $\operatorname{diam}(\Omega)$ sufficiently small and combining Lemmas above together, we have

$$
\begin{align*}
\left\|\left(S_{\Omega} K\right)^{i} J g\right\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)} \leq & \frac{1}{2}\left\|\left(S_{\Omega} K\right)^{i-1} J g\right\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)} \tag{16}\\
& +C_{3}\left\|\left(S_{\Omega} K\right)^{i-1} J g\right\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)}
\end{align*}
$$

For the case $2 \leq p<3$, we need to use a good property of positive Gaussian curvature. We recall the following estimate. Lemma (Proposition 5.9 in (C., Chung, Hsia, Su 2022 JSP))
Let Ω be a C^{2} bounded convex domain of positive Gaussian curvature. Then, there exists a positive constant $C_{1}(\Omega)$ depending only on Ω such that for any $z \in \partial \Omega$ and $v \in \mathbb{R}^{3}$ we have

$$
|z-q(z, v)| \leq C_{1}(\Omega) N(z, v)
$$

where

$$
N(z, v):=|n(z) \cdot \hat{v}|, \quad \hat{v}:=\frac{v}{|v|}
$$

From Lemma 7, we have the following estimate.
Lemma
Let Ω be a C^{2} bounded convex domain of positive Gaussian curvature, and let $C_{1}(\Omega)$ be a constant defined in Lemma 7.
Then, given $h \in W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)$ with $2 \leq p<3$ and
$0 \leq \alpha<(1-\rho) / 2$, where ρ is the constant in Assumption A, we have

$$
\begin{gathered}
\left\|S_{\Omega} K h\right\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)} \lesssim \operatorname{diam}(\Omega)^{\frac{1}{\|}}\|h\|_{W_{\alpha}^{1, p}\left(\Omega \times \mathbb{R}^{3}\right)}+\|h\|_{L_{\alpha}^{p}\left(\Omega \times \mathbb{R}^{3}\right)} \\
+C_{1}(\Omega)^{\frac{1}{p}}\|h\|_{L_{\alpha}^{p}\left(\partial \Omega \times \mathbb{R}^{3}\right)} .
\end{gathered}
$$

Counter-example for the case $p=2$

We choose Ω as a small bounded convex domain such that

$$
\begin{equation*}
D_{r_{1}}:=\left\{x=\left(0, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x \mid<r_{1}\right\} \subset \partial \Omega \tag{17}
\end{equation*}
$$

with a small radius r_{1} and

$$
\begin{equation*}
\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x \mid<r_{1}, x_{1}<0\right\} \subset \Omega \tag{18}
\end{equation*}
$$

We remark that $n(0)=(1,0,0)$.

Counter-example for $p=2$

Let φ_{1} be a smooth cut-off function on $\partial \Omega$ such that $0 \leq \varphi_{1} \leq 1$, $\varphi_{1}(x)=1$ for $x \in D_{r_{1} / 4}$, and $\varphi_{1}(x)=0$ for $x \in \partial \Omega \backslash D_{r_{1} / 2}$. We pose the boundary data g of the form:

$$
\begin{equation*}
g(x, v)=\varphi_{1}(x) e^{-\frac{1}{2}|v|^{2}}, \quad(x, v) \in \Gamma^{-} \tag{19}
\end{equation*}
$$

Counter-example for $p=2$

We assume $f \in W_{\alpha}^{1,2}$, then derive a contradiction. Recall

$$
\begin{align*}
(J g)(x, v) & :=e^{-\nu(v) \tau_{-}(x, v)} g(q(x, v), v), \tag{20}\\
\left(S_{\Omega} f\right)(x, v) & :=\int_{0}^{\tau(x, v)} e^{-\nu(v) s} f(x-s v, v) d s . \tag{21}
\end{align*}
$$

Thus,

$$
\begin{aligned}
\nabla_{x} f(x, v)= & -\nu(|v|)\left(\nabla_{x} \tau(x, v)\right) J g(x, v)+\left(\nabla_{x} q(x, v)\right) J\left(\nabla_{x} g\right)(x, v) \\
& +S_{\Omega, x} K f(x, v)+S_{\Omega} K\left(\nabla_{x} f\right)(x, v) .
\end{aligned}
$$

By assumption, we see that $S_{\Omega} K\left(\nabla_{\chi} f\right) \in L_{\alpha}^{2}\left(\Omega \times \mathbb{R}^{3}\right)$, and therefore the integral

$$
\begin{equation*}
\int_{\Omega} \int_{\mathbb{R}^{3}}\left|\nabla_{x} f-S_{\Omega} K \nabla_{\chi} f\right|^{2} e^{2 \alpha|v|^{2}} d x d v \tag{22}
\end{equation*}
$$

is bounded.

Let $r_{2}>0$ and

$$
D_{r_{1}, r_{2}}:=\left\{(x, v) \in \Omega \times \mathbb{R}^{3}\left|q(x, v) \in D_{r_{1} / 4}, \tau(x, v) \leq 1,|v|<r_{2}\right\}\right.
$$

In this region, we have $J\left(\nabla_{x} g\right)=0$

Counter-example for $p=2$

$$
\begin{aligned}
S_{\Omega, x} K f(x, v)= & \left(\nabla_{x} \tau(x, v)\right) e^{-\nu(v) \tau(x, v)} \int_{\Gamma_{q(x, v)}^{+}} k\left(v, v^{*}\right) f\left(q(x, v), v^{*}\right) d v^{*} \\
& +\left(\nabla_{x} \tau(x, v)\right) e^{-\nu(v) \tau(x, v)} \int_{\Gamma_{q(x, v)}^{-}} k\left(v, v^{*}\right) e^{-\frac{1}{2}\left|v^{*}\right|^{2}} d v^{*} .
\end{aligned}
$$

We substitute the function f in the first term of the right hand side by the integral equation again to obtain

$$
\begin{aligned}
& \int_{\Gamma_{q(x, v)}^{+}} k\left(v, v^{*}\right) f\left(q(x, v), v^{*}\right) d v^{*} \\
= & \int_{\Gamma_{q(x, v)}^{+}} k\left(v, v^{*}\right) J g\left(q\left(q(x, v), v^{*}\right), v^{*}\right) d v^{*} \\
& +\int_{\Gamma_{q(x, v)}^{+}} k\left(v, v^{*}\right) S_{\Omega} K f\left(q\left(q(x, v), v^{*}\right), v^{*}\right) d v^{*} .
\end{aligned}
$$

Here, since $q\left(q(x, v), v^{*}\right) \notin D_{r_{1}}$ for $(x, v) \in D_{r_{1}, r_{2}}$ and $v^{*} \in \Gamma_{q(x, v)}^{+}$, the first term in the right hand side is zero.

Counter-example for $p=2$

On the other hand, we have

$$
\begin{aligned}
&\left|\int_{\Gamma_{q(x, v)}^{+}} k\left(v, v^{*}\right) S_{\Omega} K f\left(q\left(q(x, v), v^{*}\right), v^{*}\right) d v^{*}\right| \\
& \lesssim\|f\|_{C_{\alpha}\left(\left(\Omega \times \mathbb{R}^{3}\right) \cup \Gamma^{ \pm}\right)} \operatorname{diam}(\Omega) \\
& \lesssim \operatorname{diam}(\Omega)
\end{aligned}
$$

Therefore, we can make contribution from the integral

$$
\int_{\Gamma_{q(x, v)}^{+}} k\left(v, v^{*}\right) f\left(q(x, v), v^{*}\right) d v^{*}
$$

arbitrary small by taking diam (Ω) sufficiently small.

Thus, in $D_{r_{1}, r_{2}}$

$$
\begin{align*}
& -\left(\nabla_{x} f(x, v)-S_{\Omega} K\left(\nabla_{x} f\right)(x, v)\right) \geq \\
& \nu(|v|)\left(\nabla_{x} \tau(x, v)\right) e^{-\nu(v) \tau(x, v)}\left(e^{-\frac{1}{2}|v|^{2}}-\int_{\Gamma_{\bar{q}(x, v)}} k\left(v, v^{*}\right) e^{-\left.\frac{1}{2}\left|v^{*}\right|\right|^{2}}-\epsilon\right) \\
& \geq \nu(|v|)\left(\nabla_{x} \tau(x, v)\right) e^{-\nu(v)}\left(e^{-\frac{1}{2}|v|^{2}}-\int_{\Gamma_{q}^{-}(x, v)} k\left(v, v^{*}\right) e^{-\frac{1}{2}\left|v^{*}\right|^{2}}-\epsilon\right) \tag{24}
\end{align*}
$$

Lemma
There exist $\eta_{0}>0$ and $r_{2}>0$ such that

$$
\nu(|v|) e^{-\frac{1}{2}|v|^{2}}-\int_{\Gamma_{q(x, v)}^{-}} k\left(v, v^{*}\right) e^{-\frac{1}{2}\left|v^{*}\right|^{2}} d v^{*}>\eta_{0}
$$

for all $(x, v) \in D_{r_{1}, r_{2}}$.
$\int_{\Omega} \int_{\mathbb{R}^{3}}\left|\nabla_{x} f-S_{\Omega} K \nabla_{x} f\right|^{2} e^{2 \alpha|v|^{2}} d x d v \gtrsim \int_{D_{r_{1}, r_{2}}}\left|\nabla_{x} \tau(x, v)\right|^{2} d x d v$.
Here, we perform the same change of variable.

$$
\begin{aligned}
& \int_{D_{r_{1}, r_{2}}}\left|\nabla_{\chi} \tau(x, v)\right|^{2} d x d v \\
= & \int_{D_{r_{1} / 4}} \int_{\left\{v_{1}<0\right\} \cap\left\{|v|<r_{2}\right\}} \int_{0}^{\min \{\tau(z,-v), 1\}}\left|\nabla_{\chi} \tau(z+t v, v)\right|^{2} d t N(z, v)|v| d v
\end{aligned}
$$

It is known that

$$
\begin{equation*}
\nabla_{x} \tau(x, v)=\frac{-n(q(x, v))}{N(x, v)|v|} \tag{25}
\end{equation*}
$$

$$
\int_{0}^{\min \{\tau(z,-v), 1\}}\left|\nabla_{x} \tau(z+t v, v)\right|^{2} d t N(z, v)|v|=\frac{\min \{\tau(z,-v), 1\}}{N(z, v)|v|}
$$

We restrict ourselves to the case $|v|<r_{1} / 2$. In this case, we have $\tau(z,-v)>1$. Let $r_{3}:=\min \left\{r_{1} / 2, r_{2}\right\}$. Then, we have

$$
\begin{aligned}
& \int_{D_{r_{1} / 4}} \int_{\left\{v_{1}<0\right\} \cap\left\{|v|<r_{2}\right\}} \int_{0}^{\min \{\tau(z,-v), 1\}}\left|\nabla_{x} \tau(z+t v, v)\right|^{2} d t N(z, v)|v| d v \\
\geq & \int_{D_{r_{1} / 4}} \int_{\left\{v_{1}<0\right\} \cap\left\{|v|<r_{3}\right\}} \frac{1}{N(z, v)|v|} d v d \Sigma(z) .
\end{aligned}
$$

Introducing the spherical coordinates to v so that $\theta=0$ corresponds to $(-1,0,0)$, we have

$$
\int_{\left\{v_{1}<0\right\} \cap\left\{|v|<r_{3}\right\}} \frac{1}{N(z, v)|v|} d v=\pi r_{3}^{2} \int_{0}^{\pi / 2} \frac{\sin \theta}{\cos \theta} d \theta
$$

which is divergent for all $z \in D_{r_{1} / 4}$. Therefore the integral (22) is not bounded, and it is a contradiction.

Thank you!

Counter example for $p=3$

We consider $B(0, r)$. We parametrize the boundary by $x=(r \cos \theta, r \sin \theta \cos \phi, r \sin \theta \sin \phi)$ for $\theta \in[0, \pi]$ and $\phi \in[0,2 \pi)$. With these coordinates, for $\theta_{0} \in(0, \pi)$, let $\partial \Omega_{\theta_{0}}:=\left\{x \in \partial \Omega \mid 0 \leq \theta<\theta_{0}\right\}$. Take $0<\theta_{1}<\theta_{2}<\pi$ and a smooth cut-off function φ_{2} on $\partial \Omega$ such that $\varphi_{2}(x)=1$ for $x \in \partial \Omega_{\theta_{1}}, \varphi_{2}(x)=0$ for $x \in \partial \Omega \backslash \partial \Omega_{\theta_{2}}$, and $0 \leq \varphi_{2}(x) \leq 1$ for $x \in \partial \Omega_{\theta_{2}} \backslash \partial \Omega_{\theta_{1}}$. We pose the boundary data g of the form:

$$
\begin{equation*}
g(x, v)=\varphi_{2}(x) e^{-\frac{1}{2}|v|^{2}}, \quad(x, v) \in \Gamma^{-} \tag{26}
\end{equation*}
$$

Thank you!

