Network-Based Kinetic Models: Emergence of a Statistical Description of the Graph Topology

Andrea Tosin (Polito)
Joint work with M. Nurisso (Polito), M. Raviola (EPFL)

22nd April 2024

European-Asian Webinar on Kinetic and Fluid Equations for Collective Behavior

Talk Based On

M. Nurisso, M. Raviola and A. Tosin. "Network-based kinetic models: Emergence of a statistical description of the graph topology". In: European J. Appl. Math. (2024), pp. 1-22. Doi: 10.1017/S0956792524000020

Motivations

- Interacting multi-agent systems are ubiquitous in both classical physics and socio-/econophysics
- In socio-/econophysics, unlike classical physics, interactions are often networked: agents do not interact "all-to-all" but according to some preferential connections
- Prototype: opinion formation on social networks
- Large number of networked agents \rightsquigarrow need for a statistical description of the network topology

Some Related Contributions

- G. Toscani, A. Tosin and M. Zanella. "Opinion modeling on social media and marketing aspects". In: Phys. Rev. E 98.2 (2018), pp. 022315/1-15. Doi: 10.1103/PhysRevE.98.022315
- N. Loy, M. Raviola and A. Tosin. "Opinion polarization in social networks".

In: Philos. Trans. Roy. Soc. A 380.2224 (2022), pp. 20210158/1-15. DoI:
10.1098/rsta. 2021.0158

- B. Düring, J. Franceschi, M.-T. Wolfram and M. Zanella. "Breaking consensus in kinetic opinion formation models on graphons". Preprint. 2024
- M. Burger, N. Loy and A. Rossi. "Stability of stationary solutions to Allen-Cahn type opinion formation models". In preparation. 2024

Particle Description

- Agents are understood as the vertices of a graph $\mathcal{G}=(\mathcal{I}, \mathcal{E}), \mathcal{I}=\{1, \ldots, N\}$
- A representative agent $X \in \mathcal{I}$ features an opinion $V_{t} \in \mathcal{O} \subset \mathbb{R}$ at time $t \geq 0$
- Opinion exchange algorithm in randomly selected pairs of agents:

$$
\begin{aligned}
& V_{t+\Delta t}=(1-\Theta) V_{t}+\Theta \Psi\left(V_{t}, V_{t}^{*}\right) \\
& V^{*} \quad=(1-\Theta) V^{*}+\Theta \Psi \quad\left(V^{*} V_{t}\right) \quad \Theta \sim \operatorname{Bernoulli}\left(B\left(X, X_{*}\right) \Delta t\right)
\end{aligned}
$$

in an interaction time step $0<\Delta t \leq 1$

- The interaction rate B encodes the information on agents' connections:

$$
B\left(X, X_{*}\right)= \begin{cases}1 & \text { if }\left(X, X_{*}\right) \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

- $\Psi, \Psi_{*}: \mathcal{O}^{2} \rightarrow \mathcal{O}$ represent the post-interaction opinions in case of a successful interaction

Derivation of a Kinetic Description 1/2

- Let $\left(X, V_{t}\right) \sim f(x, v, t), x \in \mathcal{I}, v \in \mathcal{O}$

$$
f(x, v, t)=\frac{1}{N} \sum_{i \in \mathcal{I}} f_{i}(v, t) \otimes \delta(x-i)
$$

with $f_{i}: \mathcal{O} \times[0,+\infty) \rightarrow \mathbb{R}_{+}$the pdf of the opinion of agent i at time t

- Taking the expectation of $\Phi\left(X, V_{t+\Delta t}\right)$ and of $\Phi\left(X_{*}, V_{t+\Delta t}^{*}\right)$, where Φ is an arbitrary scalar function, one obtains

$$
\begin{aligned}
& \frac{d}{d t} \sum_{h \in \mathcal{I}} \int_{\mathcal{O}} \Phi(h, v) f_{h}(v, t) d v= \\
& =\sum_{h, k \in \mathcal{I}} \iint_{\mathcal{O}^{2}} B(h, k) \frac{\Phi\left(h, v^{\prime}\right)+\Phi\left(k, v_{*}^{\prime}\right)-\Phi(h, v)-\Phi\left(k, v_{*}\right)}{2 N} f_{h}(v, t) f_{k}\left(v_{*}, t\right) d v d v_{*}
\end{aligned}
$$

where

$$
v^{\prime}=\Psi\left(v, v_{*}\right), \quad v_{*}^{\prime}=\Psi_{*}\left(v_{*}, v\right)
$$

Derivation of a Kinetic Description 2/2

- Taking $\Phi(x, v)=\phi(x) \varphi(v)$ with

$$
\phi(x)=\left\{\begin{array}{ll}
1 & \text { if } x=i \in \mathcal{I} \\
0 & \text { otherwise },
\end{array} \quad \varphi: \mathcal{O} \rightarrow \mathbb{R}\right. \text { arbitrary }
$$

we get

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathcal{O}} \varphi(v) f_{i}(v, t) d v= & \frac{1}{2 N} \sum_{k \in \mathcal{I}} B(i, k) \iint_{\mathcal{O}^{2}}\left(\varphi\left(v^{\prime}\right)-\varphi(v)\right) f_{i}(v, t) f_{k}\left(v_{*}, t\right) d v d v_{*} \\
& +\frac{1}{2 N} \sum_{h \in \mathcal{I}} B(h, i) \iint_{\mathcal{O}^{2}}\left(\varphi\left(v_{*}^{\prime}\right)-\varphi(v)\right) f_{h}(v, t) f_{i}\left(v_{*}, t\right) d v d v_{*}
\end{aligned}
$$

- Introducing the adjacency matrix $\mathbf{M}:=(B(i, j))_{i, j \in \mathcal{I}} \in \mathbb{R}^{N \times N}$ of \mathcal{G} :

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathcal{O}} \varphi(v) \mathbf{f}(v, t) d v= & \frac{1}{2 N} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v^{\prime}\right)-\varphi(v)\right) \mathbf{f}(v, t) \odot \mathbf{M} \mathbf{f}\left(v_{*}, t\right) d v d v_{*} \\
& +\frac{1}{2 N} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v_{*}^{\prime}\right)-\varphi(v)\right) \mathbf{M}^{T} \mathbf{f}(v, t) \odot \mathbf{f}\left(v_{*}, t\right) d v d v_{*}
\end{aligned}
$$

with $\mathbf{f}(v, t)=\left(f_{i}(v, t)\right)_{i \in \mathcal{I}}$ and $\odot=$ Hadamard's vector product

Interlude

- The system of kinetic equations

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathcal{O}} \varphi(v) \mathbf{f}(v, t) d v= & \frac{1}{2 N} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v^{\prime}\right)-\varphi(v)\right) \mathbf{f}(v, t) \odot \mathbf{M} \mathbf{f}\left(v_{*}, t\right) d v d v_{*} \\
& +\frac{1}{2 N} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v_{*}^{\prime}\right)-\varphi(v)\right) \mathbf{M}^{T} \mathbf{f}(v, t) \odot \mathbf{f}\left(v_{*}, t\right) d v d v_{*}
\end{aligned}
$$

for the array \mathbf{f} of opinion distribution functions is valid on whatever graph

- Problem: it requires a "pointwise" description of the graph connections, which gets readily unfeasible when the size N of \mathcal{G} grows

Towards a Statistical Description of the Graph Connections

- Global opinion distribution (v-marginal of f):

$$
F(v, t):=\int_{\mathcal{I}} f(x, v, t) d x=\frac{1}{N} \sum_{i \in \mathcal{I}} f_{i}(v, t)=\frac{1}{N} \mathbf{1}^{T} \mathbf{f}(v, t)
$$

with $\mathbf{1}=(1, \ldots, 1) \in \mathbb{R}^{N}$

- The equation for F is not closed in general:

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathcal{O}} \varphi(v) F(v, t) d v= \\
& =\frac{1}{2 N^{2}} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)-\varphi(v)-\varphi\left(v_{*}\right)\right) \mathbf{f}^{T}(v, t) \mathbf{M f}\left(v_{*}, t\right) d v d v_{*}
\end{aligned}
$$

- A preliminary idea is to see whether this equation closes at least for special classes of interaction rules

Polarised Memory Interactions

- We say that an interaction rule $v^{\prime}=\Psi\left(v, v_{*}\right)$ is of polarised memory type if Ψ depends only on either v or v_{*}
- If $v^{\prime}=\Psi(v)$ we say that the interaction rule has perfect memory
- If $v^{\prime}=\Psi\left(v_{*}\right)$ we say that the interaction rule is memoryless
- To fix the ideas, in the following we will focus on the case

$$
v^{\prime}=\Psi(v), \quad v_{*}^{\prime}=\Psi_{*}(v)
$$

i.e. v^{\prime} has perfect memory whereas v_{*}^{\prime} is memoryless

- In this case:

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathcal{O}} \varphi(v) F(v, t) d v= \\
& =\frac{1}{N^{2}} \int_{\mathcal{O}}\left(\left(\mathbf{w}^{+}\right)^{T} \frac{\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)}{2}-\frac{\left(\mathbf{w}^{-}\right)^{T}+\left(\mathbf{w}^{+}\right)^{T}}{2} \varphi(v)\right) \mathbf{f}(v, t) d v
\end{aligned}
$$

with $\mathbf{w}^{-}, \mathbf{w}^{+}$vectors of incoming and outgoing degrees of the vertices of \mathcal{G}

- Notice: information about \mathbf{M} is lumped in $\mathbf{w}^{-}, \mathbf{w}^{+}$

Statistical Distribution of the Degrees

- To obtain a kinetic formulation free from references to single vertices we augment the space of microscopic states by including also information on the connections via the incoming and outgoing degrees:

$$
g_{N}\left(v, w^{-}, w^{+}, t\right):=\frac{1}{N} \sum_{\substack{i \in \mathcal{I} \\ \operatorname{indeg}(i)=w^{-} \\ \operatorname{outdeg}(i)=w^{+}}} f_{i}(v, t), \quad w^{-}, w^{+} \in\{0, \ldots, N\}
$$

- Then:

$$
F(v, t)=\sum_{w^{-}, w^{+}=0}^{N} g_{N}\left(v, w^{-}, w^{+}, t\right), \quad\left(\mathbf{w}^{ \pm}\right)^{T} \mathbf{f}(v, t)=N \sum_{w^{-}, w^{+}=0}^{N} w^{ \pm} g_{N}\left(v, w^{-}, w^{+}, t\right)
$$

whence we deduce a closed equation for g_{N} :

$$
\begin{aligned}
& \frac{d}{d t} \sum_{w^{-}, w^{+}=0}^{N} \int_{\mathcal{O}} \varphi(v) g_{N}\left(v, w^{-}, w^{+}, t\right) d v= \\
& =\frac{1}{N} \sum_{w^{-}, w^{+}=0}^{N} \int_{\mathcal{O}}\left(w^{+} \frac{\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)}{2}-\frac{w^{-}+w^{+}}{2} \varphi(v)\right) g_{N}\left(v, w^{-}, w^{+}, t\right) d v
\end{aligned}
$$

Formal Limit of Growing Graph $(N \rightarrow \infty) 1 / 2$

- Scaling:

$$
\tilde{w}^{ \pm}:=\frac{w^{ \pm}}{N} \in \mathcal{W}_{N}:=\left\{\frac{n}{N}, n=0, \ldots, N\right\}, \quad \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right):=N^{2} g_{N}\left(v, N \tilde{w}^{-}, N \tilde{w}^{+}, t\right)
$$

- Introduce the steps $\Delta \tilde{w}^{ \pm}:=\frac{1}{N}$ so that

$$
\sum_{\tilde{w}^{-}, \tilde{w}^{+} \in \mathcal{W}_{N}} \int_{\mathcal{O}} \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v \Delta \tilde{w}^{-} \Delta \tilde{w}^{+}=\sum_{w^{-}, w^{+}=0}^{N} \int_{\mathcal{O}} g_{N}\left(v, w^{-}, w^{+}, t\right) d v=1
$$

and the r.h.s. may be understood as a Riemann sum approximating, for every N, the integral of the pdf $\int_{\mathcal{O}} \tilde{g} d v$ on the square mesh of $[0,1]^{2}$ produced by the grid $\mathcal{W}_{N} \times \mathcal{W}_{N} \rightsquigarrow$ cf. a graphon

- Moreover:

$$
\begin{aligned}
& \frac{d}{d t} \sum_{\tilde{w}^{-}, \tilde{w}^{+} \in \mathcal{W}_{N}} \int_{\mathcal{O}} \varphi(v) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v \Delta \tilde{w}^{-} \Delta \tilde{w}^{+}= \\
& =\sum_{\tilde{w}^{-}, \tilde{w}^{+} \in \mathcal{W}_{N}} \int_{\mathcal{O}}\left(\tilde{w}^{+} \frac{\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)}{2}-\frac{\tilde{w}^{-}+\tilde{w}^{+}}{2} \varphi(v)\right) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v \Delta \tilde{w}^{-} \Delta \tilde{w}^{+}
\end{aligned}
$$

Formal Limit of Growing Graph $(N \rightarrow \infty)$ 2/2

- Passing formally to the limit $N \rightarrow \infty$, the Riemann sums w.r.t. $\tilde{w}^{ \pm}$become integrals:

$$
\begin{aligned}
& \frac{d}{d t} \iint_{[0,1]^{2}} \int_{\mathcal{O}} \varphi(v) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v d \tilde{w}^{-} d \tilde{w}^{+}= \\
& =\iint_{[0,1]^{2}} \int_{\mathcal{O}}\left(\tilde{w}^{+} \frac{\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)}{2}-\frac{\tilde{w}^{-}+\tilde{w}^{+}}{2} \varphi(v)\right) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v d \tilde{w}^{-} d \tilde{w}^{+}
\end{aligned}
$$

- This is a single kinetic equation in which the pointwise information on the graph topology encoded in \mathbf{M} has been replaced asymptotically by the statistical distribution of the (normalised) incoming and outgoing degrees of the vertices

The Case of General Interaction Rules

- For general interaction rules:

$$
v^{\prime}=\Psi\left(v, v_{*}\right), \quad v_{*}^{\prime}=\Psi_{*}\left(v, v_{*}\right)
$$

the kinetic equation for F can be written, using \tilde{g}, as:

$$
\begin{aligned}
& \frac{d}{d t} \sum_{\tilde{w}^{-}, \tilde{w}^{+} \in \mathcal{W}_{N}} \int_{\mathcal{O}} \varphi(v) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v \Delta \tilde{w}^{-} \Delta \tilde{w}^{+}= \\
& =\frac{1}{2 N^{2}} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)\right) \mathbf{f}^{T}(v, t) \mathbf{M f}\left(v_{*}, t\right) d v d v_{*} \\
& \quad-\frac{1}{2} \sum_{\tilde{w}^{-}, \tilde{w}^{+} \in \mathcal{W}_{N}} \int_{\mathcal{O}}\left(\tilde{w}^{-}+\tilde{w}^{+}\right) \varphi(v) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v \Delta \tilde{w}^{-} \Delta \tilde{w}^{+}
\end{aligned}
$$

- The first term on the r.h.s. cannot be closed in terms of the statistics of the graph connections only. In general, it requires a pointwise knowledge of the connections

Rank-one Approximation of M

$$
\mathbf{M} \approx \frac{\mathbf{w}^{+}\left(\mathbf{w}^{-}\right)^{T}}{M_{N}}, \quad M_{N}:=\sum_{i \in \mathcal{I}} \operatorname{indeg}(i)=\sum_{i \in \mathcal{I}} \operatorname{outdeg}(i)
$$

is a natural rank-one approximation of \mathbf{M} with given incoming/outgoing degrees

- Within this approximation it results:

$$
\begin{aligned}
& \frac{1}{2 N^{2}} \iint_{\mathcal{O}^{2}}\left(\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)\right) \mathbf{f}^{T}(v, t) \mathbf{M} \mathbf{f}\left(v_{*}, t\right) d v d v_{*} \approx \\
& \approx \frac{N^{2}}{2 M_{N}} \sum_{\tilde{w}_{*}^{-}, \tilde{w}_{*}^{+} \in \mathcal{W}_{N}} \sum_{\tilde{w}^{-}, \tilde{w}^{+} \in \mathcal{W}_{N}} \iint_{\mathcal{O}^{2}} \tilde{w}^{+} \tilde{w}_{*}^{-}\left(\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)\right) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right)
\end{aligned}
$$

$$
\times \tilde{g}\left(v_{*}, \tilde{w}_{*}^{-}, \tilde{w}_{*}^{+}, t\right) d v d v_{*} \Delta \tilde{w}^{-} \ldots \Delta \tilde{w}_{*}^{+}
$$

- Moreover, it can be shown that

$$
\frac{M_{N}}{N^{2}} \xrightarrow{N \rightarrow \infty} m:=\iint_{[0,1]^{2}} \int_{\mathcal{O}} \tilde{w}^{ \pm} \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v d \tilde{w}^{-} d \tilde{w}^{+}
$$

General Formal Limit of Growing Graph $(N \rightarrow \infty)$

- Within the rank-one approximation of \mathbf{M}, the equation for \tilde{g} converges formally to:

$$
\begin{aligned}
& \frac{d}{d t} \iint_{[0,1]^{2}} \int_{\mathcal{O}} \varphi(v) \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) d v d \tilde{w}^{-} d \tilde{w}^{+}= \\
& =\frac{1}{2} \iiint \int_{[0,1]^{4}} \iint_{\mathcal{O}^{2}} \frac{\tilde{w}^{+} \tilde{w}_{*}^{-}}{m}\left(\varphi\left(v^{\prime}\right)+\varphi\left(v_{*}^{\prime}\right)-\varphi(v)-\varphi\left(v_{*}\right)\right) \\
& \quad \times \tilde{g}\left(v, \tilde{w}^{-}, \tilde{w}^{+}, t\right) \tilde{g}\left(v_{*}, \tilde{w}_{*}^{-}, \tilde{w}_{*}^{+}, t\right) d v d v_{*} d \tilde{w}^{-} \ldots d \tilde{w}_{*}^{+}
\end{aligned}
$$

- Interestingly, this is a classical Boltzmann-type equation for the distribution function \tilde{g} on the space state $\mathcal{O} \times[0,1]^{2}$ with

$$
\frac{\tilde{w}^{+} \tilde{w}_{*}^{-}}{m}
$$

as collision kernel

