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Consider a α-Hölder function A : Σ→ R and assume that it admits a unique maximizing
measure µmax. For each β, we denote µβ , the unique equilibrium measure associated to

βA. We show that (µβ) satisfies a Large Deviation Principle, that is, for any cylinder C

of Σ,

lim
β→+∞

1

β
log µβ(C) = − inf

x∈C
I(x)

where

I(x) =
X
n≥0

`
V ◦ σ − V − (A−m)

´
◦ σn(x), m =

Z
A dµmax

where V (x) is any strict subaction of A.

Keywords: Equilibrium state, Large Deviation Principle, Zero temperature, Subaction,
Maximizing measure, Dual Potential, W Kernel.

1. Introduction

Let Σ = {x ∈ {1, 2, ..., r}N | M(xi, xi+1) = 1 for all i ≥ 0} be a subshift of finite
type on r symbols and transition matrix M , and σ the left-shift acting on Σ defined
by σ(x0, x1, x2, ...) = (x1, x2, x3, ...). Let A : Σ → R be a fixed α−Hölder function
which we call observable. The matrix M takes values in {0, 1} and indicates whether
a transition i→ j, i, j ∈ {1, 2, · · · , r}, is allowed :

i→ j is allowed ⇐⇒M(i, j) = 1.

A probability σ-invariant measure µmax is said to be maximizing if

m(A) :=
∫

A dµmax = sup{
∫

A dµ | µ invariant for σ}.
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A general α-Hölder function A may admits several maximizing measure. Never-
theless, as it is shown in 10, a “generic”(in a certain space and a Hölder topology)
function A admits a unique maximizing measure which has a support on a periodic
orbit for σ. We choose therefore in the sequel the following assumption:
Assumption 1. The Hölder function A admits a unique maximizing measure µmax.
(We nevertheless do not make any assumption on the support of that measure.)

For instance the above assumption is true for observables A constant on a peri-
odic orbit and strictly smaller elsewhere.

We denote by LA the Ruelle-Perron operator corresponding to A and L∗A its
dual operator acting on finite measures:

LA(φ)(x0, x1, · · · ) =
∑

y1→x0

exp
(
A(y1, x0, x1, · · · )

)
φ(y1, x0, x1, · · · ).

We refer the reader to 19 for the results we use about Thermodynamic Formalism.
We denote also by λ(A), φA and νA, respectively, the largest eigenvalue of LA, the
corresponding unique eigenfunction and eigenmeasure of LA and L∗A normalized by∫

φA dνA = 1 and νA(Σ) = 1,

LA(φA) = λ(A)φA, L∗A(νA) = λ(A)νA.

The probability measure µA = φAνA is σ-invariant and maximizes the pressure of
A. We call νA the Gibbs measure of A and µA the equilibrium measure of A.

Later we will simplify the notations by introducing λβ , φβ , νβ , the largest eigen-
value, the corresponding eigenfunction and eigenmeasure of the function βA. With-
out assuming uniqueness of the probability measure, it is known 10 that any weak
subsequence limit of the (µβn) converges, when n goes to infinity, to a maximizing
measure.

In fact, here we need less than assumption 1. It is enough that the weak limit
of Gibbs states for β A, with β ∈ R, converges to a unique measure, when β →∞.
Then, our result would be for this special probability. Reference 7,15 address the
question of such uniqueness in a particular.

According to our assumption 1, we know that (µβ) converges to the unique
maximizing measure µmax. Our purpose is to show that (µβ) satisfies a Large
Deviation Principle. Let us recall first the definition of this principle:
Definition 2. We say a one-parameter family of probability measures (µβ) which
converges to some measure ρ when β → ∞, satisfies a Large Deviation Principle
with deviation function I : Σ→ R, if for any cylinder C ⊂ Σ

lim
β→+∞

1
β

log µβ(C) = − inf
x∈C

I(x)

for some non-negative lower semi-continuous function I(x).
A general reference for Large Deviation results in Ergodic Theory is 18.
Considerations about weak limits of equilibrium states µβ with β →∞ are called

the analysis of the temperature zero case 7, 8, 12, 13 5, 20, 15. This is so because in
Statistical Mechanics β is (up to a physical constant) the inverse of temperature.
We also point out the similar results obtained by N. Anantharanam, 1, 2, who also
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studies a Large Deviation Principle in the Lagrangian case and shows an upper
large deviation inequality.

After this paper was accepted we received the information that the present
Proposition 7 appears in some form in 14.

2. Main results

In order to write a precise formula for the deviation function I(x), we need
the basic notion of subaction and more precisely the notion of strict subaction. A
subaction for A(x) is a real continuous function U on Σ such that A ≤ U ◦ σ−U +
m(A) everywhere on Σ. A strict subaction possesses a stronger property:
Definition 3. A continuous function V : Σ→ R is called strict subaction if

V (x) = max
y : σ(y)=x

(
V (y) + A(y)−m(A)

)
.

(In other terms, V is a subaction and for any x ∈ Σ there exists y ∈ Σ such that
σ(y) = x and V (y) + A(x)−m(A) = V (x) ).

Subactions can play an important role in Large Deviation problems as we will
see here.

There are several ways to construct subactions. For instance, it is shown in 10,
that any accumulation point of ( 1

β log φβ), for the uniform convergence topology, is
a strict subaction V for A. That is there exists a subsequence of (βn) such that,
uniformly on Σ, the following limit exists:

V := lim
n→+∞

1
βn

log φβn .

From the proof presented here it follows that the limit of above sequence does
not depend of the sequence βn.

Our main purpose in this paper is to prove that the sequence (µβ) satisfies a
Large Deviation Principle:
Theorem 4. Let A : Σ→ R be a Hölder observable admitting a unique maximizing
measure µmax. Then for any cylinder C of Σ,

lim
β→+∞

1
β

log µβ(C) = − inf
x∈C

I(x)

where I(x) is given by ( m := m(A) to simplify the notation )

I(x) =
∑
n≥0

(
V ◦ σ − V − (A−m)

)
◦ σn(x)

and V (x) is any strict subaction for A. (Notice that each term in the previous sum
is nonnegative.)

The proof of this theorem is very indirect and uses the notion of dual shift and
(what we call) the W kernel. We explain in the rest of this section the plan of this
proof.
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We first explain why V (x) can be any subaction in theorem 4. Let

S(p, x) := lim
ε→0

sup
n≥1, x′∈Σ

{ n−1∑
k=0

(A−m) ◦ σk(x′) | d(x′, p) < ε, σn(x′) = x
}

for any p, x ∈ Σ. We showed, see 10 for instance, that S(p, x), as a function of x, is
finite and Hölder as soon as p belongs to the support of some maximizing measure.
We have
Proposition 5. Let A : Σ → R be a Hölder observable admitting a unique maxi-
mizing measure µmax. Then for any strict subaction V , x ∈ Σ and p ∈ supp(µmax)

V (x) = V (p) + S(p, x).

In particular, any two strict subactions differ by a constant.
The second notion we need is called W kernel. This function is defined on the

natural extension of Σ.
Consider

Σ∗ = {(y1, y2, · · · ) ∈ {1 · · · r}N |M(yi+1, yi) = 1, for all i ≥ 1 },

which represents also the Bernoulli space but which indexes increasing in the neg-
ative direction of the lattice Z. The reader should consider the pair (y, x) =
(...y3, y2, y1, x0, x1, x2, ..) as an element on Σ∗ × Σ ⊂ {1 · · · r}Z.

It will convenient later to define a function M(y, x), on Σ∗ × Σ, by M(y, x) =
M(y1, x0), so that M(y, x) = 1 if (y, x) ∈ Σ̂ and M(y, x) = 0 elsewhere.

We prefer to introduce first the dual Markov chain (Σ∗, σ∗) of transition matrix
M∗, the transpose of M , and then defined the natural extension Σ̂ as a subset of
Σ∗ × Σ. We thus introduce

Σ̂ = {(y, x) ∈ Σ∗ × Σ |M(y1, x0) = 1}

We just have defined the two-sided subshift of finite type and of transition matrix
M . It is convenient to write points y ∈ Σ∗ and x ∈ Σ in the form

y = 〈· · · , y3, y2, y1|, x = |x0, x1, x2, · · · 〉.

The left shift has the following definition using these notations

σ̂(y, x) := (τ∗x (y), σ(x)), τ∗x (y) := 〈· · · , y2, y1, x0|
σ̂−1(y, x) = (σ∗(y), τy(x)), τy(x) := |y1, x0, x1, · · · 〉.

τy = τy1 and τ∗x = τ∗x0
are the inverse branches of σ and σ∗ of order 1. We also

define inverse branches of order n:

τy,n(x) = |yn, · · · , y1, x0, x1, · · · 〉, τ∗x,n(y) = 〈· · · , y2, y1, xn−1, · · · , x0|

and the two Birkhoff sums of respectively B : Σ→ R and B∗ : Σ∗ → R

SnB =
n−1∑
k=0

B ◦ σk, S∗nB∗ =
n−1∑
k=0

B∗ ◦ σ∗k.
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We explain in a few lines why we have chosen this nonconventional definition of
the natural extension. A natural extension (Σ̂, σ̂) of (Σ, σ), in the sense of Rohlin,
it is not unique in the category of measure preserving dynamical systems. It may
happen that there exist several topological natural extensions. In the case of the
one-sided subshift of finite type it is usual to choose the corresponding two-sided
subshift of finite type. It is however important in the present paper to let the past
and future variables play the same role. In the considered formalism σ̂ and ˆσ−1 are
natural extension of the two subshift of finite type (Σ, σ) and (Σ̂, σ̂) of transition
matrix M and M∗ (the transpose of M).

We are now able to define the W kernel.
Definition 6. Let A : Σ→ R be a continuous observable (considered as a function
on Σ̂ ). We call W kernel, W (y, x), a continuous function W : Σ̂→ R such that

A∗ := A ◦ σ̂−1 + W ◦ σ̂−1 −W

depends only on the variable y. A∗ defines thus a continuous function on Σ∗. It is
convenient to extend W on the whole product space Σ∗ × Σ by W (y, x) = −∞, if
(y, x) does nor belong to Σ̂.

Although the fact that any function on Σ̂ is cohomologous to a function de-
pending only on y (or x) is well known (see 6), we prefer to give a specific name to
the transfer function W because of its importance later in the construction of the
deviation function I(x). As we will see soon, W (y, x) is unique up to a function
depending only on y. The dual observable A∗(y) thus defined is unique up to a
coboundary.

When A depends only of the two first coordinates in Bernoully space, the values
(eA(i,j)) define a square matrix. From Perron-Frobenius Theorem for this positive
operator we obtain a stochastic matrix and finally a stationary Markov Chain prob-
ability which defines the Gibbs state for A (see 21 for a proof). This fact was first
observed by W. Parry. In this case the adjoint of the matrix (eA(i,j)) is the matrix
(eA∗(i,j)).

We will give a proof of the following lemma
Proposition 7. Let A : Σ→ R be an Hölder observable.

(1) A admits a Hölder W kernel.

(2) If W1 and W2 are two Hölder W kernels for A, their difference W1 − W2

depends only on the variable y.

The W kernel plays a fundamental role in the definition of the deviation function.
It has also some independent interest that we describe in the following proposition 8.
The Ruelle-Perron LA operator gives two important informations: the eigenmeasure
νA and the eigenfunction φA. It is usually more difficult to find the eigenfunction
than the eigenmeasure and the W kernel can be used instead. (Σ∗, σ∗) is a subshift
of finite type and a similar Ruelle-Perron operator can be defined. If A and W
are Hölder, the dual observable A∗ is also Hölder and we denote by ν∗A and φ∗A the
eigenmeasure and eigenfunction for the largest eigenvalue λ(A∗) again normalized
by

∫
φ∗A dν∗A = 1 and ν∗A(Σ∗) = 1. Notice that λ(A) = λ(A∗) because of the
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coboundary equation between A and A∗. In particular

m(A) = lim
β→+∞

1
β

log λ(βA) = m(A∗).

We show that the knowledge of W , νA and ν∗A is enough to find φA and φ∗A.
Proposition 8. Let A : Σ → R be an Hölder observable, W the associated kernel
and A∗ the corresponding dual observable. Let

c := log
∫∫

M(y, x) exp
(
W (y, x)

)
dν∗A(y)dνA(x)

where M(y, x) = M(y1, x0). Then

(1) The natural extension µ̂A of the equilibrium measure µA is given by

µ̂A(dy, dx) = M(y, x) exp
(
W (y, x)− c

)
ν∗A(dy)× νA(dx).

(2) The normalized eigenfunctions φA and φ∗A are given by

φA(x) =
∫

M(y, x) exp
(
W (y, x)− c

)
dν∗A(y),

φ∗A(y) =
∫

M(y, x) exp
(
W (y, x)− c

)
dνA(x).

A similar proposition for Markov expanding transformations F on the inter-
val can be proved. To illustrate this generalization, we show for instance how to
construct an explicit W kernel for the Gauss map which enable us to recover the
standard invariant measure absolutely continuous with respect to Lebesgue. Re-
lated considerations can be found in the very interesting article 3 where results are
described without mathematical rigor.

We point out that in a forthcoming paper we will use the W kernel, in the
context of Bowen-Series transformations 17, to describe a relation of the Helgason
distribution (an eigendistribution for a complex Ruelle operator) of each eigenfunc-
tion of the Laplacian in a compact surface of negative constant curvature with an
eigenfunction associated to the eigenvalue 1 of the related complex Ruelle operator
acting on the boundary of Poincare disk. In this way we will be able to give a
mathematical proof, for the compact case (via results of Helgason and Otal), of the
main result stated in 3 .

Let us recall first the definition of the Gauss map T : [0, 1[→ [0, 1[, ({u} denotes
the fractional part of u),

a(x) :=
{ 1

x

}
if x 6= 0, F (0) := 0,

T (x) :=
1
x
−

{ 1
x

}
if x 6= 0, a(0) := +∞.

This dynamical system ([0, 1[\Q, T ) can be identified to the full shift (Σ, σ), Σ =
(N∗)N, on a countable number of symbols using the theory of decomposition into
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continuous fraction

(x0, x1, x2, · · · ) ∈ Σ←→ x =
1

x0 + 1
x1+

1
x2+···

∈ [0, 1[\Q.

The dual shift (Σ∗, σ∗) is equal to the original full shift (Σ, σ). If we use the same
identification between Σ∗ and [0, 1[\Q, the natural extension of T is defined on
[0, 1[\Q× [0, 1[\Q and given by

T̂ (y, x) = (T−1
a(x)(y), T (x)) T̂−1(y, x) = (T (y), T−1

a(y)(x))

where T−1
n (y) := 1/(n + y). We will prove

Proposition 9. Let ([0, 1[\Q, T ) be the Gauss map and A(x) := − log |T ′(x)|. Then
expA(x) = x2 and the function W defined on [0.1[\Q× [0, 1[\Q by

W (y, x) := −2 log(1 + xy)

is a W kernel for A. The corresponding dual observable A∗ satisfies expA∗(y) = y2.
In this case the dual A∗ = A and this is very unusual.
From now on we choose a particular Hölder W kernel W . We notice that βW

is a W kernel for βA and the corresponding dual observable is equal to βA∗

βA∗ = βA ◦ σ̂−1 + βW ◦ σ̂−1 − βW.

For any β, we denote by λ∗β , φ∗β and ν∗β , the largest eigenvalue, the corresponding
eigenfunction and eigenmeasure of the Ruelle-Perron operator on the dual subshift
(Σ∗, σ∗) associated to the observable βA∗. We again normalize by∫

φ∗β dν∗β = 1, ν∗β(Σ∗) = 1.

Note that from the cohomology equation above (by means of W ), if µmax is
a maximizing measure for A, if µ̂max denotes its natural extension and µ∗max its
projection onto Σ∗, then µ∗max is also a maximizing measure for A∗. According to
our assumption 1, µmax and µ∗max are unique.

As previously, (A∗ is Hölder), the sequence ( 1
β log φ∗β) possesses accumulation

points V ∗ for the uniform topology. All these accumulation points are strict subac-
tions and we choose as before a particular subsequence (βn) such that

V ∗ := lim
n→+∞

1
βn

log φ∗βn
exists uniformly on Σ∗.

The main step in the proof of theorem 4 is given by the following intermediate
proposition
Proposition 10. Let A : Σ → R be a Hölder observable admitting a unique max-
imizing measure µmax. Let W : Σ̂ → R be a Hölder W kernel and A∗ the corre-
sponding dual Hölder observable. Let µ̂max be the natural extension of µmax.
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(1) Suppose that for some subsequence (βn), the following limits exist

V := lim
n→+∞

1
βn

log φβn
, and V ∗ := lim

n→+∞

1
βn

log φ∗βn
.

Then for any (p∗, p) ∈ supp µ̂max

γ(W ) := W (p∗, p)− V (p)− V ∗(p∗)

= lim
n→∞

1
βn

log
∫∫

M(y, x) exp
(
βnW (y, x)

)
dν∗βn

(y)dνβn(x).

(2) For any (y, x) ∈ Σ̂, (m = m(A) = m(A∗) )

I(x) = W (y, x)− γ(W )− V (x)− lim
n→+∞

(
S∗n(A∗ −m) + V ∗

)
◦ σ̂n(y, x).

(3) (The Large Deviation Principle). For any cylinder C ⊂ Σ

lim
β→+∞

1
β

log
(
µβ(C)

)
= − inf

x∈C
I(x).

and the definition of I(x) is independent of the chosen V (which in fact can
be any strict subaction)

In the proof of this theorem we will show that limβ→+∞
1
β log φβ exists. Notice

that this limit is when β →∞ and not for βn →∞.

Notice that the above proposition implies Theorem 4.
When A(x) depends only on the first two elements of x, that is, A(x) =

A(x0, x1), where x = (x0, x1, x2, · · · ) ∈ Σ, the proof of our main result can be
simplified. We just have to consider an associated Markov Chain and the deviation
function I(x) has a simpler formulation. In this case A∗ also depends on the first
two elements of y, that is A∗(y) = A∗(y1, y2), where y = (y1, y2, y3, · · · ) ∈ Σ∗. In 7,
15 interesting results about the case A(x) = A(x0, x1) are obtained.
Remark 11.

(1) It is known (see 7, 15 for a proof) that, in the Markov case (A depends on finite
number of coordinates), the sequence of equilibrium measures (µβ) converges
to some maximizing measure.

3. Proof of the Main Results

We analyze now the case of a general Hölder A : Σ→ R depending on an infinite
number of coordinates and having a unique maximizing measure.

Given x = |x0, x1, x2, ...〉 ∈ Σ and y = 〈· · · y2, y1| ∈ Σ∗, we will use the notation
〈y|x〉 = 〈· · · , y3, y2, y1 | x0, x1, x2, · · · 〉 ∈ Σ̂ (for any admissible transition y1 → x0).
The symbol | is used to say where the coordinate at time 0 is located.

We recall that the left shift σ acting on Σ has inverse branches of all order n
given by

τy,n|x0, x1, · · · 〉 = |yn, · · · y1, x0, x1, · · · 〉.



A large Deviation Principle

In the same way σ∗ : Σ∗ → Σ∗ has inverse branches given by

τ∗x,n〈· · · y2, y1| = 〈· · · y2, y1, x0, · · · , xn−1|.

The (bijective) natural extension is given by σ̂(y, x) = (τ∗x (y), σ(x)) and its inverse
by σ̂−1(y, x) = (σ∗(y), τy(x)). The same formula are true for σ̂n and σ̂−n using τy,n

and τ∗x,n. We also introduce a convenient notation. We call W∗(x) and W(y), the
local stable and unstable ”manifolds”, that is for any (y, x) ∈ Σ̂

W(y) = {u ∈ Σ | y1 → u0 } W∗(x) = {v ∈ Σ∗ | v1 → x0 }.

Our first main objective is to proof the existence of a W kernel.
Proof of Proposition 7-(1). (Sinai’s method). We first define a family of

cocycles ∆(x, x′, y) given by

∆(x, x′, y) =
∑
n≥1

A ◦ τy,n(x)−A ◦ τy,n(x′).

Note that x and x′ are both in W(y).
The function ∆(x, x′, y) is well defined (and Hölder) because A is Hölder and

τy,n is contracting. We note that

∆(x, x′, y) = A ◦ τy(x)−A ◦ τy(x′) + ∆(τy(x), τy(x′), σ∗(y)).

We are going to prove that

W (y, x) := ∆(x, x′, y)− log
∫
W(y)

exp∆(u, x′, y) dνA(u) (∀x′ ∈ Wy)

is a W kernel. Notice that W (y, x) is well defined, that is, does not depend on
x′ ∈ W(y). We recall that νA is the normalized eigenmeasure of the Ruelle operator
L∗A corresponding to the largest eigenvalue λ(A) = exp P (A). Let

A∗(y, x) := W ◦ σ̂−1(y, x)−W (y, x) + A ◦ σ̂−1(y, x).

We just need to prove that A∗ depends only on the variable y. We study first the
integrand in the definition of W :

I := log
∫
W(y)

exp∆(u, x′, y) dνA(u)

Since τy : W(y) → |y1〉 is injective and has Jacobian (A − P (A)) ◦ τy with respect
to νA

I = log
∫
W(y)

exp(A ◦ τy(u)−A ◦ τy(x′)) exp∆(τy(u), τy(x′), σ∗(y)) dνA(u)

= (P (A)−A ◦ τy(x′)) + log
∫
|y1〉

exp∆(v, τy(x′), σ∗(y)) dνA(v).
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Since
∆(τy(x), τy(x′), σ∗(y))−∆(x, x′, y) = A ◦ τy(x′)−A ◦ τy(x).

We finally obtain

W ◦ σ̂−1 −W + A ◦ σ̂−1 = P (A) + log

∫
|y1〉 exp∆(v, τy(x′), σ∗(y)) dνA(v)∫

W◦σ∗(y)
exp∆(v, τy(x′), σ∗(y)) dνA(v)

.

The right hand side of the equality is clearly independent of x.
We notice that Sinai’s method gives a dual observable A∗ which is normalized

in the sense that the function φ∗(y) := 1 is an eigenfunction of the dual Ruelle
operator for its largest eigenvalue λ(A) = exp P (A): for all y ∈ Σ∗∑

y1←i

exp(A∗ − P (A))〈· · · y2, y1, i| = 1 ∀ i = 1 · · · r.

Remember that Σ∗ is a subshift of transition matrix M∗ and the summation in
the above formula is over all transitions i following the symbol y1. In particular
this normalization implies that A∗ does not change if a coboundary is added to A.
Indeed, if B = A + c− c ◦ σ

∆B(x, x′, y) = ∆A(x, x′, y)− [c(x)− c(x′)]
νB(dx) = exp c(x)νA(dx)

WB(y, x) = WA(y, x)− c(x)

B∗(y) = WB ◦ σ̂−1 −WB + B ◦ σ̂−1 = A∗(y).

We could have chosen another proof using Bowen’s ideas. In this case we would
lost the normalization of A∗ and gained a linear dependence from A to A∗.
Remark 12. For any W kernel W , for any (y, x) ∈ Σ̂, x′ ∈ W(y), y′ ∈ W∗(x)

- W (y, x)−W (y, x′) = ∆(x, x′, y),

- W (y, x)−W (y′, x) = ∆∗(y, y′, x) :=
∑

n≥1 A∗ ◦ σ̂k(y, x)−A∗ ◦ σ̂k(y′, x).

This last equality explains why I(x) in Theorem 4 depends only on x and not on y.
We are now going to prove the second part of Proposition 7.
Proof of Proposition 7-(2). Let W1 W2 be two W kernels for the same

observable A. Let

A∗1 = W1 ◦ σ̂−1 −W1 + A ◦ σ̂−1,

A∗2 = W2 ◦ σ̂−1 −W2 + A ◦ σ̂−1,

A∗ = A∗2 −A∗1 = (W2 −W1) ◦ σ̂−1 − (W2 −W1).

The Birkhoff sum of A∗, as a function on Σ̂, is equal to zero on any periodic orbit.
The same remark is valid when A∗ is considered as a function on Σ∗. Since A∗ is
Hölder, thanks to Livsic theorem 16, A∗ is equal to a coboundary:

A∗(y) = c(y)− c ◦ σ∗(y),
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for some Hölder function c(y). Then

(W2 −W1 + c) ◦ σ̂ = (W2 −W1 + c)

every where on Σ̂. Thanks to the transitivity of σ̂, W2−W1 + c has to be constant,
W2 −W1 depends only on y.

Before showing some properties a W kernel possesses, we establish a fundamental
lemma which explains in part the disymetry in the definition in W .
Lemma 13. Let W : Σ̂ → R be a W kernel for an observable A(x). Let LA and
LA∗ be the Ruelle operator defined on Σ and Σ∗.

(1) For any symbol i, any x ∈ Σ and y ∈ Σ∗, if y1 → i→ x0 are admissible

(A∗ + W )(〈y, i|x〉) = (A + W )(〈y|i, x〉).

(2) In particular, for any x ∈ Σ, y ∈ Σ∗ and any function f : Σ∗ × Σ→ R

LA∗

(
f(·, x)M(·, x) expW (·, x)

)
(y)

= LA

(
f ◦ σ̂(y, ·)M(y, ·) expW (y, ·)

)
(x).

(M(y, x) := M(y1, x0) where M(i, j) = 1 iff i→ j is admissible.)

Proof of Lemma 13. Part(1). Let y′ = 〈y, i| and x′ = |i, x〉, then σ̂−1(y′, x) =
(y, x′). By definition of A∗

A∗(y′, x) = W (y, x′)−W (y′, x) + A(y, x′).

Part (2).

LA∗
(
f(·, x)M(·, x) expW (·, x)

)
(y)

=
∑

i

M(y1, i)f(〈y, i|x)M(〈y, i|, x) exp
(
A∗(〈y, i|) + W (〈y, i|x)

)
=

∑
i

M(y1, i)f ◦ σ̂(y|i, x〉)M(i, x0) exp
(
A(|i, x〉) + W (y|i, x〉)

)
=

∑
i

M(i, x0)f ◦ σ̂(y|i, x〉)M(y, |i, x〉) exp
(
A(|i, x〉) + W (y|i, x〉)

)
= LA

(
f ◦ σ̂(y, ·)M(y, ·) expW (y, ·)

)
(x)

We can then prove the following
Proof of Proposition 8. Part (1). For simplicity we note

K(y, x) = M(y, x) exp(W (y, x)− c).
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For any bounded Borel f : Σ∗ × Σ→ R we have∫∫
f ◦ σ̂(y, x)K(y, x) dν∗A(y)dνA(x)

=
∫

dν∗A(y)
∫
L(A−P )

(
f ◦ σ̂(y, ·)K(y, ·)

)
(x) dνA(x)

=
∫

dνA(x)
∫
L(A∗−P∗)

(
f(·, x)K(·, x)

)
dν∗A(y)

=
∫∫

f(y, x) dν∗A(y)dνA(x)

where P (resp. P ∗) is the pressure of A (resp. A∗). We already noticed P = P ∗.
The measure µ̂A(dy, dx) = M(y, x)ν∗A(dy)νA(dx) is invariant and projects onto µA

and µ∗A. µ̂A is therefore the natural extension of µA.

Part (2). Let φA(x) =
∫

K(x, y) dν∗A(y). Then

φA(x) =
∫
L(A∗−P∗)

(
K(·, x)

)
(y) dν∗A(y)

=
∫
L(A−P )

(
K(y, ·)

)
(x) dν∗A(y)

= L(A−P )(φA)(x).

The proof for φ∗A is similar.
The proof of Proposition 9 is actually very simple provided we guess the correct

W kernel. We explain this fact in the first part. In the second part, we use Sinai’s
method to construct a W kernel and obtain

W̃ (y, x) = log
1 + y

(1 + xy)2

which is our guess times a function of y as predicted by the general theory.
Proof of Proposition 9. First part: proof using the a priori definition. We

first notice that expA(x) = x2. Define expA∗(y) := y2. We want to show, as in
Lemma 13, that for any symbol n ≥ 1

exp
(
A∗ ◦ T−1

n (y) + W (T−1
n (y), x)

)
= exp

(
A ◦ T−1

n (x) + W (y, T−1
n (x))

)
.

Indeed

1
(n + y)2

1(
1 + x

n+y

)2 =
1

(n + x)2
1(

1 + y
n+x

)2 =
1

(n + x + y)2
.

Second part: how guessing the W kernel. We first recall an identity we will use
later. Let (a0, a1, · · · ) be a sequence of positive integers with reduced quotients
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(pn/qn). Then for any x ≥ 0, n ≥ 0

pn + pn−1x

qn + qn−1x
=

1

a0 +
1

a1 +
1

a2 + · · ·+
1

an + x

and
qn + qn−1x =

(a0 +
1

a1 + 1
a2+···+ 1

an+x

) (a1 +
1

a2 + · · ·+ 1
an+x

)...(an + x)

We want now to compute

exp∆(x, x′, y) =
∏
k≥1

expA ◦ T−k
y (x)

expA ◦ T−k
y (x′)

where (y1, y2, · · · ) are the continuous fraction expansion of y and

y =
1

y1 +
1

y2 +
1

y3 + · · ·

T−k
y (x) =

1

yk +
1

yk−1 + · · ·+
1

y1 + x

.

Let
p∗1
q∗1

=
1
yk

p∗2
q∗2

=
1

yk +
1

yk−1

· · · p∗k
q∗k

=
1

yk +
1

yk−1 + · · ·+
1
y1

.

Then
n∏

k=1

expA ◦ T−k
y (x) =

1
(q∗n + q∗n−1x)2

exp∆(x, x′, y) = lim
n→+∞

(q∗n + q∗n−1x
′

q∗n + q∗n−1x

)2

=
(1 + yx′

1 + yx

)2

,

thanks to

q∗n−1

q∗n
=

q∗n−1

y1q∗n−1 + q∗n−2

=
1

y1 +
q∗n−2

q∗n−1

= · · · =
1

y1 +
1

y2 + · · ·+
1
yk

lim
n→+∞

q∗n−1

q∗n
= y.
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The W kernel is finally given by∫ 1

0

∆(u, x′, y) du =
(1 + x′y)2

1 + y
exp W̃ (y, x) =

1 + y

(1 + xy)2
.

Notice that in this example,

νA(dx) = dx A∗(y) = y2 1 + T (y)
1 + y

ν∗A(dy) =
1

1 + y
dy∫∫

exp W̃ (y, x) dν∗A(y)dνA(x) = log 2

and the density is given by φA(x) = 1
log 2

1
1+y .

The definition of the deviation function I(x) in Theorem 4 uses an accumulation
point V (x) of ( 1

β log φβ). V (x) is actually a strict subaction. In the case of a unique
maximizing measure, Proposition 5 tells us that all the strict subactions V are equal
up to a constant.
Definition 14. Let A : Σ → R be a continuous observable. The A-nonwandering
set is the set Ω(A, σ) = {x ∈ Σ | S(x, x) = 0}.

Proof of Proposition 5 On the one hand, for any subaction (strict or not)

S(p, x) ≤ V (x)− V (p).

On the other hand, since V is a strict subaction, there exists a sequence of points
y = (y1, y2, · · · ) such that

σ(y1) = x, σ(yn+1) = yn, ∀n ≥ 1
(A−m)(yn+1) = V (yn)− V (yn+1) ∀n ≥ 1.

Let α(y) be the set of all accumulation points of the sequence (yn). This set is
compact and σ-invariant; it possesses therefore an invariant measure. Since α(y) ⊂
Ω(A, σ), see Definition 14, this measure is necessarily maximizing. By assumption,
there exists a unique such measure; we thus obtain that supp(µmax) ⊂ α(y) and
that p is an accumulation point of (yn). The definition of S(p, x) implies

S(p, x) ≥ V (x)− V (p).

The rest of this section is now devoted to the proof of Proposition 10 end there-
fore to Theorem 4.

Proof of Proposition 10 : part (1). Let p̂ = (p∗, p) be a point in the support
of µmax. Let B∗ ×B be a small cylinder containing p̂.

Recall that Kβ(y, x) is defined on the whole product space Σ∗ ×Σ and is equal
to 0 outside Σ̂.

Let

Kβn := M(y, x) exp
(
βnW (y, x)

)
, cβn := log

∫∫
Kβn(y, x) dν∗βn

(y)dνβn(x).
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Then

µ̂βn(B∗ ×B) exp(cβn) =
∫∫

B∗×B

Kβn
(y, x)

φ∗βn
(y)φβn(x)

dµ∗βn
(y)dµβn(x)

≤ µ∗βn
(B∗)µβn

(B) sup
B∗×B

Kβn
(y, x)

φ∗βn
(y)φβn(x)

.

Since µβn → µmax,

µ̂max(B∗ ×B) 6= 0, µ∗max(B
∗) 6= 0, µmax(B) 6= 0.

Letting n go to ∞ and using 1
βn

log φβn
→ V , 1

βn
log φ∗βn

→ V ∗, we obtain

lim sup
n→∞

1
βn

log cβn
≤ sup

(B∗×B)∩Σ̂

{W (y, x)− V ∗(y)− V (x)}.

Since B∗ and B can be chosen as small as we need, we finally get

lim sup
n→∞

1
βn

log cβn ≤W (p̂)− V ∗(p∗)− V (p).

The lower bound is similar.
Proof of Proposition 10 : part 2. Let (γ = γ(W ))

Î(y, x) = W (y, x)− V ∗(y)− V (x)− γ

− lim
n→∞

(
V ∗ − V ∗ ◦ σ̂−n + S∗n(A∗ −m)

)
◦ σ̂n.

Since by definition S∗n(A∗ −m) =
∑n−1

k=0(A∗ −m) ◦ σ̂−k, we obtain

Î(y, x) = W (y, x)− V ∗(y)− V (x)− γ + R̂(y, x),

where R̂(y, x) =
∑

k≥1

(
V ∗ ◦ σ̂−1 − V ∗ − (A∗ −m)

)
◦ σ̂k. We use now the cocycle

relation between A∗ and A

(A∗ −m) ◦ σ̂k = W ◦ σ̂k−1 −W ◦ σ̂k + A ◦ σ̂k−1

n∑
k=1

(A∗ −m) ◦ σ̂k = W −W ◦ σ̂n +
n−1∑
k=0

(A−m) ◦ σ̂k

Î = lim
n→∞

(W − V ∗ − V − γ) ◦ σ̂n +
n−1∑
k=0

(
V ◦ σ − V − (A−m)

)
◦ σk.

Let I(x) :=
∑

k≥0(V ◦ σ − V − (A−m)) ◦ σk.
Either I(x) = +∞ then Î(y, x) = +∞ too and I(x) = Î(y, x). Or I(x) < +∞,

R̂(y, x) < +∞, the set of accumulation points, ω̂(y, x), of (σ̂n(y, x)) has to be
included in Ω̂(A, σ̂) and therefore contains the support of the unique maximizing
measure µmax. There exists a subsequence (σ̂nk(y, x)) converging to p̂ = (p∗, p),

lim
k→∞

(W − V ∗ − V − γ) ◦ σ̂nk(y, x) = (W − V ∗ − V − γ)(p̂) = 0
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and I(x) = Î(y, x) in this case too.
Proof of Proposition 10 : part 3. We choose a subsequence (βk) such that

1
βk

log φ∗βk
(y)→ V ∗(y) and

1
βk

log φβk
(x)→ V (x).

Note that under our assumption 1 the probability µβ converges to the maximiz-
ing measure as β →∞.

To simplify the notations, we keep β instead of βk. We also use the notation

Kβ(y, x) = M(y, x) exp
(
βW (y, x)− cβ

)
cβ = log

∫∫
M(y, x) expβW (y, x) dν∗β(y)dνβ(x).

We recall that 1
β cβ → γ. We choose once for all a cylinder C = |i0, i1, · · · , ir−1〉 of

length r. We first show that

l̄(C) := lim sup
β→∞

1
β

log µβ(C) ≤ − inf
C

I.

We define by induction a decreasing sequence of sets (Cn) in the following way :
Cr = C, if Cn = |i0, · · · , in−1〉 has been defined, since Cn is equal to the disjoint
sum of Cn+1 = |i0, · · · , in〉 over in, there exists at least one in such that

l̄(C) = lim sup
β→∞

1
β

log µβ(Cn+1).

Define xC = |i0, i1, i2, · · · 〉. Choose some fixed yC = 〈· · · i−2, i−1| ∈ Σ∗ so that
(yC , xC) ∈ Σ̂ and call Bk = 〈i−k, · · · , i−1|. On the one hand

µ̂β(Bk × Cn) =
∫∫

Bk×Cn

( Kβ(y, x)
φ∗β(y)φβ(x)

)
dµ∗β(y)dµβ(x)

≥ inf
Bk×Cn

( Kβ(y, x)
φ∗β(y)φβ(x)

)
µ∗β(Bk)µβ(Cn).

On the other hand

µ̂β(Bk × Cn) = µ∗β(〈i−k, · · · , i−1, i0, · · · , in−1|)

=
∫

Bk

expS∗n(βA∗ − Pβ) ◦ τ∗xC ,n(y)
φ∗β ◦ τxC ,n(y)

φ∗β(y)
dµ∗β(y)

≤ sup
y∈Bk

(
exp

(
S∗n(βA∗ − Pβ) ◦ τ∗xC ,n(y)

)φ∗β ◦ τxC ,n(y)
φ∗β(y)

)
µ∗β(Bk).

We first eliminate µ∗β(Bk) on both sides, then apply 1
β log on both sides, take limit

when β (or more precisely βn) goes to ∞, to get

l̄(C) + inf
Bk×Cn

(W − γ − V ∗ − V ) ≤ sup
Bk

(
(S∗n(A∗ −m) + V ∗) ◦ σ̂n − V ∗

)
.
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Letting first k go to infinity and then n go to infinity, we obtain finally

l̄(C) ≤ −Î(yC , xC) = −I(xC) ≤ − inf
x∈C

I(x).

We next show that

l(C) := lim inf
β→∞

1
β

log µβ(C) ≥ − inf
x∈C

I(x).

As before, take any x = |i0, i1, · · · 〉 ∈ C, any y ∈ Σ∗ such that (y, x) ∈ Σ̂ and define
in the same way Bk and Cn. Reversing the two previous inequalities, we obtain

µβ(Cn) sup
Bk×Cn

( Kβ

φ∗βφβ

)
≥ inf

Bk

(
exp

(
S∗n(βA∗ − Pβ) ◦ τ∗x,n

)φ∗β ◦ τx,n

φ∗β

)
l(C) + sup

Bk×Cn

(W − γ − V ∗ − V ) ≥ inf
Bk

(
(S∗n(A∗ −m) + V ∗) ◦ σ̂n − V ∗

)
.

and finally

l(C) ≥ −Î(x, y) = −I(x) for any (y, x) ∈ Σ̂, x ∈ C

≥ − inf
x∈C

I(x).
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