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Stéphane Brull�∗1, Kévin Guillon�1 and Philippe Thieullen�1

1Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5251, F-33400 talence, France

(Communicated by Milana Pavić-Čolić)

Abstract. Through this paper, we extend the derivation of the Fick-relaxation

BGK model operated in [16], whose aim was a relaxation operator recovering

the Fick Law and the shear viscosity at hydrodynamic limit, for a mixture of
monoatomic gases. Here, the framework deals with a mixture of monoatomic

and polyatomic gases, and we need a model including the non translational de-

grees of freedom and internal energies. The attractors are computed from the
resolution of an entropy minimisation problem. The model is shown to satisfy

a H theorem. Next, we use a Chapman-Enskog expansion in order to compute
the expression for the transport coefficients; that is, the phenomenological Fick

matrix as both shear and volume viscosity.

1. Introduction. Boltzmann equation plays a paramount role to describe sim-
plified dilute gas dynamics, and thus has raised increasing interest in the field of
kinetic theory. Indeed, the original Boltzmann operator draws its descriptive accu-
racy from the precise statistical microscopic transcription of gas particle collision
encoded in its expression. Such a precise description enables, for instance, to re-
cover Euler and Navier-Stokes equations at the hydrodynamic limits, with all the
right transport coefficients. Such properties justifies theoretical popularity of the
Boltzmann operator. As a drawback of that accuracy, the mathematical complexity
of the original operator prevents effective numerical analysis and computations. In
order to confront such a technical issue, alternative models have surged to conciliate
simplicity and descriptive qualities. A relevant solution was to abandon cumber-
some microscopic details in favor of a macroscopic overview of the gas dynamics:
the BGK relaxation model, settled in 1954 in [6], has appeared as a remarkable
breakthrough, thanks to a simple and intuitive relaxation operator involving the
celebrated maxwellian functions.

Such convenience implies a double price to pay. The first problem deals with
analysis: the simple relaxation BGK formula hides a high non linearity within the
maxwellian equilibrium function which substantially complicates potential proofs
for solution existences, see [39]. The second issue is of physical concern: a mere
macroscopic relaxation operator misses the microscopic description needed to grasp
sufficient physical accuracy, and such a model never enables to recover all the phys-
ical properties drawn from the gas dynamics, whatever complex may it be. As a
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consequence, and since there are many ways to define a BGK model for gas mix-
ture, a modelization step consists in choosing the physical properties to include
in the desired BGK operator. Required fulfillements are many, and among the
most fundamental : conservation laws, H-theorem - for both physical and mathe-
matical purposes, positive maxwellian-like equilibria, positive temperatures, which
are essential, but not always straightforward, properties to be recovered. Other
authors require more specific phenomenons to be included, such as Andries, Aoki
and Perthame, who elaborated through [2] a model observing the true microscopic
exchanges relations, thus requiring additional parameters to be introduced. Such
comprehensive models demand more degrees of freedom so as to absorb the extra
constraints required, as was done in [2] through fictitious coefficients. Any chosen
set of properties to be recovered brings with itself complications- see, for example
[34], [41], [38] in which the realizability of moments is questioned. This choice even
raised new subordinate models, such as the ES-BGK model, which emerged from a
desire to recover the right Prandtl number at the hydrodynamic limit ( [17], [18],
[15]). In [43], the authors propose a polynomial model that is able to reproduce the
transport coefficients. In ([45] ), the ESBGK and the Shakhov model are combined
in order to recover Fick, Newton and Fourier laws.

Moreover, if theory and derivation are well-known and established regarding
monoatomic and monospecies gases, results in a polyatomic or polyspecies frame-
work for the BGK model are scarcer, and would need greater investigation. Indeed,
the study of atmospheric gases, which represent an important field of application
for the BGK models, confronts a mixture of polyatomic gases, such as O2 or H2O,
and monoatomic ones, He for example. That simple fact shows that avoiding poly-
atomic or polyspecies gases in BGK theory lacks relevance. Yet substantial models
have been recently brought for more general contexts. Regarding polyatomic frame-
work, one generally has to introduce additional non translational internal energy, as
well as to choose between whether a discrete or continuous energy description. For
a mere polyatomic Boltzmann model with continuous energy, see [13] for the deriva-
tion of the celebrated Borgnakke-Larsen procedure, or ([14], [24]) for an alternative
polyspecies one. An adaptation to BGK model has been investigated through [8],
for a mixture of monoatomic and polyatomic gases. Discrete energy models, with
a finite number of energetic levels, can also be adopted, as done in [7], and then
generalized in [10] to a mixture of monoatomic and polyatomic gases. In order to
consider a comprehensive study of the gas behaviour, a huge litterature has been
developped in the reactive case : detailed modelization, conservation and stability
studies are investigated in [40] for monoatomic structures and then [29] for internal
polyatomic settings. This framework entails different considerations regarding con-
servation laws, or the parameters of equilibrium through the mass action law or the
compared relaxation times for mechanical and reactive phenomena. Consequently,
various models including bimolecular reactions study could have been derived and
investigated : see [30] for a generalization of [2] to slow chemical reactions, [9] for
a deeper focus on the Chapman-Enskog expansion on the previous model. Also,
other conservation concerns have been an equally interesting and different source of
work, via [7] for a discrete polyatomic setting or [10] for a continuous one. Finally,
[19] investigates the possibility of a generalization of the Fick-relaxation model of
[16] for reactive mixtures.

In a polyspecies framework, other valuable quantities to be recovered are the
transport coefficients, such as the phenomenological coefficients related to the Fick,
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Soret, Fourier and Dufour laws, or the viscosities. Such an investigation requires
to derive macroscopic equations for gases - namely, the Navier Stokes equation,
from our mesoscopic considerations, near the hydrodynamic limit. The Chapman-
Enskog expansion is a classical procedure to obtain these desired expression, being
performed in [5] or [8] for a mixture of monoatomic and polyatomic species, and in
[16] for a mixture of monoatomic species, where the linearized operator is seen to
play a great role in the expression of transport coefficients.

The following work investigates a generalization of the modelization performed in
[16] for a monoatomic mixture with Fick law, to a polyatomic mixture framework.
More precisely, we aim to derive a BGK model for a mixture of monoatomic and
polyatomic gases that is able to reproduce Fick coefficients, shear viscosity and
volume viscosity.

Our investigation will proceed as follows: in a second part, general notations
and remainders for the Boltzmann equation are briefly evoked. In a third part
will be introduced the physical framework: in particular, we develop formulae to
express the physical properties that the desired relaxation operators are required
to fulfill, relying on those for the Boltzmann operator previously recalled. The
fourth part establishes the desired expression for the attractor of the BGK operator,
obtained from an entropy minimisation under conservation requirements as well
as the supplementary constraints linked with the volume viscosity, specific to the
polyatomic framework. Finally, the last part analyses the BGK operator obtained,
expresses the associated physical coefficient with respect to the linearized operator
, and compare their adequation with the correct coefficients in order to quantify
the model relevance regarding our initial aim. In particular, we will investigate the
possibility of recovering the indifferentiability principle.

2. General notations and framework.

2.1. Kinetic framework and notations. We consider here an ideal mixture of
N ≥ 1 ideal gases, which, for each species, can be either monoatomic or polyatomic
: this distinction will be highlighted through some notations and conventions (many
of them taken from [3]) and hence will not need extra indexation for the gases.

Such mixtures can be described by using Boltzmann type collision operators as in
([5]). In particular, the authors introduce collision operators for interactions beween
monoatomic and polyatomic components. However, the passage for polyatomic
collision operators to monoatomic collision operators is a sigular limit and cannot
be proved ([4]).

Let us now introduce notations :

• The functions of interest write g := g(x, t, v, I) := (gi(x, t, v, Ii))1≤i≤N , de-
pending on several physical parameters: position x ∈ R3

x, time t ∈ R+, veloc-
ity v ∈ R3

v, and a N -tuple I = (Ii)1≤i≤N where Ii ∈ R+ is a quantum number
related to the internal energy of i, in the following sense: letting δi ≥ 0 be the
number of non translational internal degrees of freedom of the species i (and

assumed constant with respect to the temperature), I
2
δi
i actually corresponds

with a quantum level of energy of i. As in ([15]), we use the conventions δi = 0
and gi(x, t, v, 0) = gi(t, x, v) if and only if species i is monoatomic. That will
be our only discriminant factor between monoatomic and polyatomic gases,
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therefore allowing to avoid cumbersome discussions. Then, a secondary chal-
lenge will be the total generalization of both monoatomic and monospecies
frameworks; such an aim motivates the general notations set above.

• Let dIi be the associated measure with Ii. If i is monoatomic, we chose
dIi := δ0 the usual Dirac mesure, to illustrate the fundamental level of internal
energy where i always remains. If i is polyatomic, continuous level of energies
invite us to chose dIi = dλ, the usual Lebesgue mesure on R+. See [24] for a
continuous kinetic model for polyatomic species. From now on, we will resort
to the notation Ii for Iiχi, for every real function F , so as to slightly lighten
the formulae and computations.

• Given a point (x, t, v, I), fi(x, t, v, Ii)dxdvdIi represents the density of species
i at the point (x, v, I), at time t. We will note f := (fi)1≤i≤N . The natural
framework is the Hilbert space L2(Ω, F ), where Ω = R3

v × (R+
I )

N endowed

with the measure dv ⊗
⊗N

i=1 dIi, and F = L∞
loc(R3

x × Rt).
We associate the following natural dot product to this space :

⟨g, h⟩ :=
N∑
i=1

∫∫
gi(v, Ii)hi(v, Ii)dvdIi.

More generally, if g := (g1, . . . , gN ) and h = (h1, . . . , hN ) are N -tuples of p and
q-tensors respectively, the dot product will be the integral of the contracted
product :

⟨g, h⟩ :=
N∑
i=1

∫∫
gi(v, Ii) : hi(v, Ii)dvdIi.

Here, we remain that if T is a p+ q-tensor and V is a q-tensor, then the total
contracted product is a p tensor T : V defined by :(

T : V
)
j1...jp

:=
∑

i1,...,iq

Tj1...jpi1...iqVi1...iq .

Moreover, real functions F : R → R will be implicitly extended to vectors
e ∈ RN via the notation

F (e) := (F (e1), . . . , F (eN )),

so as to bring compactness and simplicity while writing.
• Finally, our calculations will often involve vectors indexed on the 1 ≤ i ≤ N
components. To make the notations both compact and clear, we will denote :

v :=T (v1, . . . , vN ),

when no other notation fits. Among the notations that will occur most often :

m :=T (m1, . . . ,mN ), I
2
δ :=T (I

2
δ1
1 , . . . , I

2
δN

N ), δ =T (δ1, . . . , δN ), 1 :=T (1, . . . , 1).
(1)

We can also note ei :=
T (0, . . . , 1

↑
i

, . . . , 0), so that v =
∑

i viei.

The density vector f satisfies the Boltzmann-like equation :

(∂t + v · ∇)f = S(f), (2)

where S denotes the collision operator associated to the chosen model, and∇ := ∇x.
We will sometimes denote Dt := (∂t + v · ∇) the transport operator.



A FICK LAW’S RECOVERING BGK MODEL 5

Obviously, our framework will require deeper integrability properties, and we will
assume such a framework to be set. The typical hypothesis will be to assume :∑

i

∫∫
fi(1 + v2 + I

2
δi
i + ln fi)dvdIi <∞.

2.2. Macroscopic quantities for the mixture. If 1 ≤ i ≤ N , we can introduce
the following macroscopic quantities associated with the gas i, i.e molecular mass
mi, respective number and volume densities ni and ρi, mean velocity ui, total,
total internal, internal and translational energies Ei, Ei, Eint,i and Etr,i, and finally
total, internal and translational temperatures Ti, Tint,i and Ttr,i, with the following
formulae :

ni := ⟨f, ei⟩ ,
ρi := mini = ⟨f,miei⟩ ,

ui :=

〈
f,

1

ni
vei

〉
,

niEtr,i :=

〈
f,

1

2
mi(v − ui)

2ei

〉
=:

3

2
nikTtr,i,

niEint,i :=

〈
f, I

2
δi
i ei

〉
=:

δi
2
nikTint,i,

Ei :=
δi + 3

2
kTi :=

δi
2
kTint,i +

3

2
kTtr,i,

Ei :=

〈
f, (

1

2
miv

2 + I
2
δi
i )ei

〉
=: niEi +

1

2
ρiu

2
i .

Here, k := kB denotes the Boltzmann constant.
Analogous quantities for the whole gas mixture are the total number and volume

densities n and ρ, the mean macroscopic velocity u, the mean degree of freedom δ,
the total and internal energies E and E , and the temperature T for the mixture,
defined as :

n :=
∑
i

ni,

ρ :=
∑
i

ρi,

u :=
1

ρ

∑
i

ρiui,

δ :=
1

n

∑
i

δini,

nEtr :=

〈
f,

1

2
m(v − u)2

〉
=
∑
i

niEtr,i +
1

2

∑
i

ρi(ui − u)2 =:
3

2
nkTtr,

nEint :=
∑
i

niEint,i =
∑
i

δi
2
nikTint,i =:

δ

2
nkTint,

nE : =

〈
f,

1

2
m(v − u)2 + I

2
δ

〉
=
∑
i

ni(
δi + 3

2
)kTi +

1

2

∑
i

ρi(u− ui)
2 =:

δ + 3

2
nkT,
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nE :=
∑
i

niEi =

〈
f,

1

2
mv2 + I

2
δ

〉
= nE +

1

2
ρu2.

3. General properties and expressions for kinetic operators. As one may
know, BGK operators have been set to tackle the cumbersomeness issue of the
Boltzmann operator, due to the complexity of its macroscopic description. To that
extent, one aims to mimic its macroscopic properties. In this section, we investigate
kinetic operators with well-chosen properties, inherited from the Boltzmann collision
operator, whose expression and formal derivation are recalled beforehand. From the
usual Chapman-Enskog expansion, we finally derive an expression for the sought
transport coefficients with respect to the linearized general collision operator.

3.1. The Boltzmann polyatomic collision operator. The particular case of
Boltzmann operator will define our criteria on S for physical properties, require-
ments of which being obviously brought by physics. We refer to [13] - for the idea of
the following process, and to [14], [24], [1] and [25] for further explanations on the
Boltzmann operator. The main difference of our framework with the monoatomic
case consists in taking into consideration non translational energies. Considering
microscopic collisions of two particles, respectively for i and j, the following con-
servation laws prevail for binary micro collisions :

miv +mjv∗ = miv
′ +mjv

′
∗,

1
2µij(v − v∗)

2 + I
2
δi
i + I

2
δj

j∗ = 1
2µij(v

′ − v′∗)
2 + I

′ 2
δi

i + I
′ 2
δj

j∗ =: Eij ,

with µij :=
mimj

mi +mj
the reduced mass of the system, inherited from the associated

barycentric referential.
Conservation of the system energy implies a post-collision redistribution of in-

ternal and kinetic energies, formalized by the two rates 0 ≤ r,R ≤ 1, defined by:I
′ 2
δi

i + I
′ 2
δj

j∗ = (1−R)Eij ,

I
′ 2
δi

i = r(1−R)Eij .

As a consequence, considering a reflexion vector ω ∈ S2, we obtain, thanks to
computations in the mass center reference frame :

v′ =
miv +mjv∗
mi +mj

+

√
2RµijEij
mi

(u− 2(u|ω)ω) = v − 2
mj

mi +mj
(v − v∗|ω)ω,

v′∗ =
miv +mjv∗
mi +mj

−
√
2RµijEij
mj

(u− 2(u|ω)ω) = v∗ + 2
mi

mi +mj
(v − v∗|ω)ω,

where (·|·) denotes the canonical scalar product in R3.
Further statistical considerations lead to the following definition of the poly-

atomic and multi-species Boltzmann operator.

Definition 3.1. The Boltzmann operator B = (B1, . . . ,BN ) for mixtures writes as
follows :

Bi(f, f) =
∑
k

Bik(f, f),
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where Bik is the operator describing collisions between the species i and k, itself
defined as :

Bik(f, f) =

∫∫∫∫
∆

(fi(v
′
ik)fk(v

′
ik∗)

−fi(v)fk(v∗))σik(v, v∗, Ii, Ik∗, r, R, ω)(1−R)
I

2
δi

−1

i I
2
δk

−1

k∗
|v − v∗|

dv∗dIi∗drdRdω,

with σik the associated cross-section and ∆ = S2 × [0, 1]2 × R+ × R3
v.

Theorems of existence and unicity for the Cauchy problem associated with the
polyatomic Boltzmann equation, have been proved, in the case of a single polyatomic
gas ([25]) and for a mixture of monoatomic and polyatomic gases ([1]).

3.2. Conservation laws and equilibria. The Boltzmann operator S = B ex-
presses physical relevance since it satisfies conservations of mass, total quantity of
movement and energy, which can be expressed as the following:

Property 1. (Conservation laws) S = B verifies :

∀1 ≤ j ≤ N + 4, ⟨S(f), ϕj⟩ = 0, (3)

where the associated collisional invariants (ϕi)i, with 1 ≤ i ≤ N + 4, are :

ϕ1 =

1
...
0

 , . . . , ϕN =

0
...
1

 ,

ϕN+k =

m1vk
...

mNvk

 , k ∈ {1; 3},

ϕN+4 =


1
2m1v

2 + I
2
δ1
1

...

1
2mNv

2 + I
2

δN

N

 .

(4)

The space spanned by the collisional invariants (ϕi)i , 1 ≤ i ≤ N+4 will be denoted
by K and PK will represent the orthogonal projection on K.

Definition 3.2. The Boltzmann entropy H(f) is defined by the following formula:

H(f) := ⟨f, log f − 1̄⟩ =
∑
i

∫∫
fi(log fi − 1)dvdIi. (5)

This definition is consistent with the natural additivity of entropy.

As has been proved, the entropy enables to quantify distance of the gas from equi-
librium. In particular is proved its Lagrangian decrease in the Boltzmann operator
case :

Property 2. (H-Theorem: Entropy dissipation) The entropy associated with S =
B is dissipative, in the following sense :

∂tH(f) +∇ · Φ[H](f) = ⟨S(f), (log f)⟩ ≤ 0, (6)
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where :

Φ[H](f) :=
∑
i

∫∫
vfi(log fi − 1)dvdIi,

is the entropy flux, for f := (fi)1≤i≤N .

Such a behaviour invites to investigate entropy minima, and the Lagrange Mul-
tiplier method performed to minimize H, under the physical constraint set (3)
associated with the macroscopic parameters evoked above, lead to the well known
maxwellian forms of equilibrium :

Definition 3.3. The maxwellian equilibrium distribution corresponding with a
macroscopic triplet (ρ, u, T ) is M := (M1, . . . ,MN ) where :

Mi = ni(
mi

2πkT
)

3
2 (

1

kT
)

δi
2 Λ−1

i exp (−mi(v − u)2

2kT
− I

2
δi
i

kT
), 1 ≤ i ≤ N, (7)

Λi =

∫
exp (−I

2
δi
i )dIi =

δi
2
Γ(
δi
2
), (8)

where Γ denotes the usual gamma function. Also, we will note M(f) (or M when
the context is not misleading) the maxwellian corresponding with the macroscopic
parameters of f .

From this expression, we can introduce the natural dot product for the weighted
space L2(Ω, F,M), i.e :

∀h, g ∈ L2(Ω, F,M), ⟨h, g⟩M :=
∑
i

∫∫
higiMidvdIi. (9)

This definition can also be extended to tensors, as evoked above. The assiociated
Hilbert norm will be denoted by ∥ ∥M . This product will be used often, as colli-
sional invariants ; that will sometimes require to take profits out of the underlying
geometrical structure, by Schmidt-orthogonalizing the basis of K.

These calculations are performed so as to express the orthogonal projection on
K, PK that has been defined in property 1. It leads to the orthogonalized family :

ψi = ϕi, ∥ψi∥2M = ni, 1 ≤ i ≤ N,

ψN+k,j = mj(vk − uk), 1 ≤ k ≤ 3, ∥ψN+k∥2M = ρkT, 1 ≤ j ≤ N,

ψN+4,j =
1

2
mj(v − u)2 + I

2
δj

j − (
δj + 3

2
)kT, ∥ψN+4∥2M =

δ + 3

2
n(kT )2, 1 ≤ j ≤ N.

Definition 3.4. If 1 ≤ j ≤ N , let us define the tensor Cj by the following :{
(Cj)j := v − u,

(Cj)j ̸=i := 0.
(10)

Definition 3.5. If 1 ≤ j ≤ N , we denote Φj := (Id − PK)(Cj), α := 2
3kT (Id −

PK)(I
2
δ ) as well as the generated spaces :

C := V ect{Φj , 1 ≤ j ≤ N},

C̃ := C
⊕

Rα.
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We shall later proceed in a further investigation of such spaces. Easy calculations
bring : 

(Φj)i = (χij −
minj
ρ

)(v − u),

3

2
kTαi = − δ

2(δ + 3)
mi(v − u)2 +

3

δ + 3
I

2
δi
i +

3

2
(
δ − δi
δ + 3

)kT,

(11)

where Id is the identity operator and χij is the characteristic function associated
with the pair {i, j}, i.e :

χij =

1 if i = j,

0 else.

Introducing the following reduced velocities:

V j :=
∑
i

V j
i ei, j ∈ N, Vi :=

√
mi

kT
(v − u),

we can write :

αi = − δ

3(δ + 3)
V 2
i +

2

δ + 3

I
2
δi
i

kT
+ (

δ − δi
δ + 3

).

We can now link maxwellians with equilibrium :

Property 3. (Equilibrium) For S = B, ⟨S(f) log f⟩ = 0 if and only if f = M -
where M is the maxwellian vector introduced at Definition 3.3, i.e f is at thermo-
dynamic equilibrium.

The last remarkable inner property of B is related to this linearized operator,
which, as we shall see, plays a great role for recovering Navier Stokes equations :

Definition 3.6. The linearized operator L[S] associated with S is defined by the
following directional derivative of the collisional operator near equilibrium :

L[S](g) := M−1 d

dϵ

(
S(M(1̄ + ϵg))

)∣∣∣
ϵ=0

,

with Mg := (M1g1, . . . ,MNgN ).

This definition is quite formal for the sake of generality but has an obviously
simpler expression in the Boltzmann case thanks to its bilinear operator.

Property 4. With S = B, L[S] induces a continuous, self-adjoint and definite
negative operator on K⊥.

As we shall see, such properties enable an operator to recover a Navier-Stokes-like
system of equations near equilibrium, and justifies to prove Fredholm alternatives
when studying collision operator, as has been performed in [20] in the diatomic case
and in [21] in the general case for monospecies Boltzmann operator.

Definition 3.7. A collision operator S satisfying properties 1, 2, 3, 4 will be said
properly defined.
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3.3. Thermodynamics of irreversible processes. This part is devoted to the
description of the fluxes appearing in the compressible Navier-Stokes system. They
can be expressed in function of different variables.

The fluxes associated to the gases can expressed as ([16], [23]):

Mass fluxes : Ji =

N∑
j=1

Lij∇(− µj

kT
) + Liq∇(− 1

kT
),

Heat fluxes : Jq =

N∑
j=1

Lqj∇(− µj

kT
) + Lqq∇(− 1

kT
),

Velocity flux : Ju = −ηΣ(u)− ηV (∇ · u)I3,

(12)

where I3 is the identity matrix in R3, (Lij)1≤i,j≤N is the Onsager matrix, µj is the
chemical potential of the species j. These quantities are defined by :

µj = −kT ln

 njΛ
−1
j(

2πkT
mj

) 3
2

 , (13)

and :

Σ :=
∇u+ (∇u)T

2
− (

1

3
∇ · u)I3,

is the Reynolds tensor, η is the shear viscosity and ηV the volume viscosity.
Another formulation of the fluxes is more relevant for real applications since they

are expressed in function of phenomenological coefficients ([42])

Ji = −
N∑
j=1

ρiDij
∇pj
p

− ρiθi
∇T
T
, (14)

Jq = −λ̂∇T − p

N∑
i=1

θi
∇pi
p

+

N∑
i=1

hiJi, (15)

where (Dij) is the Fick matrix, θi are the thermal coefficients and λ̂ is the thermal
conductivity.

Therefore, the Fick matrix is directly connected to the Onsager matrix Lij by
the relation

Dij = −nkLij

ninj
.

These coefficients can be measured experimentally. The link between these two
formulations has been shown by Kurochkin, Makarenko, and Tirskii ([37]). (Dij)ij
is called the Fick Matrix for the system, and contains the so-called Fick coeffi-
cients we aim to recover with our BGK oper ator. Casimir-Onsager relations im-
ply that the associated Onsager matrix associated with the Boltzmann operator( Lij [B]
∥Ci∥M ∥Cj∥M

)
ij
, is symmetric non positive. This result can be found in [16].

We will later point out that this condition has as direct consequence the assumption
of symmetry and non positiveness of L itself.

Since ηV only appears within polyatomic frameworks, we expect it to be a func-
tion ηV = ηV (δ), with ηV (0) = 0.
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In particular, these fluxes play a crucial role in the gas dynamics, drawn by the
isotropic Navier Stokes equations fulfilled by the mixture:

∂tρi +∇ · (ρiu+ Ji) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI3 + Ju) = 0,

∂t(ρE) +∇ · ((ρE + p)u) +∇ · (Jq + Ju · u) = 0.

(16)

3.4. General expression of the transport coefficients. As Boltzmann equa-
tion leads to the Euler equations at hydrodynamic limit as well as to Navier-Stokes
system at first approximation, it is of particular interest to seek an operator able
to deliver correct fluxes ; equivalently, correct phenomenological coefficients are to
be recovered. It may be useful to recall that the limit and the first approximation
are taken with respect to ϵ := Kn, which is the Knudsen number associated with
the mixture.

It is well known that BGK models do not fail at providing Euler equations at
hydrodynamic limit. To obtain the inherent Navier Stokes system, we perform a
Chapman Enskog expansion. Starting from the kinetic equation (2) with a com-
pressible scaling

∂tf + v · ∇xf =
1

ε
S(f)

where ε is proportional to the Knudsen number, f around its local maxwellian, for
any properly defined collision operator :

f = M(f)(1 + ϵg +O(ϵ2)), (17)

where M(f) and f and share the same conserved moments

⟨f , ϕj⟩ = ⟨M(f) , ϕj⟩, j ∈ {1;N + 4}

where (ϕj)1,N+4 has been defined in (4). In relation (17), g corresponds to the first
order correction.

Lemma 1. Let S be any properly defined operator. The first order correction g
satisfies the equation:

L[S](g) =
N∑
j=1

Φj ·∇(− µj

kT
)+kTA(V ) : Σ(u)+B̃(v, I)·∇(− 1

kT
)−α(V, I)∇·u, (18)

where we have defined the following quantities :

A(V ) := V ⊗ V − 1

3
V 2I3,

V j :=
∑

i V
j
i ei, j ∈ N, Vi :=

√
mi

kT (v − u),

B̃(v, I) := (v − u)
(

1
2kTV

2 + I
2
δ − nm

ρ
(
δ + 5

2
)kT

)
,

(19)

where Φj refers to Definition 3.5 and equation (11), and the overlined quantities
have been previously defined through relations (1).

Remark 1. Actually, α corresponds with − 1
3ϕ

κ, where ϕκ is part of the Chapman-
Enskog first-order decomposition derived from [27].
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Remark 2. The last two terms in the expression (18) above are inherited from the
polyatomic framework; computing δ = 0 and δi = 0 from (2) will bring us back to
the monoatomic framework. See [27] or [42] for such a derivation within a discrete
framework.

Proof. Let us write the Chapman-Enskog expansion (17), at first at 0 order:

∂tM+ v · ∇M = ML(g) +O(ϵ). (20)

For each component i, by using the expressions of (7), (8) and thanks to (13), a
direct computation gives

logMi = − µi

kT
− (v − u)2 + I

2
δi
i

2kT
=
∑
j

αjϕj,i, (21)

with:



αj = − µj

kT
− mju

2

2kT
,

αN+j =
uxj

kT
, 1 ≤ j ≤ 3,

αN+4 = − 1

kT

.

Hence the relation (21) gives lnM ∈ K and PK(lnM) = lnM. So dividing (20) by
M, applying the conservation projection PK and using that L(g) ∈ K⊥ leads to :

∂tM
M

= −PK(v ·
∇M
M

) +O(ϵ). (22)

Next, using (22) after dividing once more by M in (20):

L(g) = (Id − PK)(v ·
∇M
M

) = (Id − PK)((v − u) · ∇ logM)

where Id is the identity operator.
We are only left with mere computations.

• If 1 ≤ j ≤ N, (v − u) · ∇αj = (v − u) · ∇(− µj

kT ) +
mj

2 u
2(v − u) · ∇(− 1

kT ) −
mj

kT (v − u) · (∇u)T · u,
• If 1 ≤ j ≤ 3, (v − u) · ∇αN+j = −uxj

(v − u) · ∇(− 1
kT ) +

(v−u)
kT · ∇uxj

,

• (v − u) · ∇αN+4 = (v − u) · ∇(− 1
kT ).

Finally, we obtain the following expression, for the i-th line :∑
j

(v − u) · ∇αjϕj,i =(v − u) · ∇(− µi

kT
)χij + (mi

(v − u)2

2
+ I

2
δi
i )(v − u) · ∇(− 1

kT
)

+ (
mi(v − u)⊗ (v − u)

kT
) : (

∇u+ (∇u)T

2
).

Now let us finally compute the orthogonal projection of this sum, component by
component.

• To begin with, we simply apply the projection to our first term, which provides∑N
j=1 Φj · ∇(− µj

kT ).

• Then, the projection applied to the second term leads to mi(v−u)( 12 (v−u)
2−

5
2
n
ρ kT ), plus an additional term which is (I

2
δi
i − 1

2
n
ρ δkTmi)(v− u), correlated

which our polyatomic framework.
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• Finally, the last term is, at i-th line,

mi

kT
(v − u)⊗ (v − u)− [

(
δ − δi
2

)kT +
1

2
mi(v − u)2 + I

2
δi
i

δ + 3

2
kT

]I3.

Note that this term is indeed a generalization of the monoatomic case (assum-

ing that the term I
2
δi
i goes formally to 0 when we revert back to this case) :

with this hypothesis, we get the traceless tensor Vi ⊗ Vi − 1
3V

2
i I3.

The desired expression follows easily.

Lemma 2. The following useful alternative formula for L[S] is true :

L[S](g) =
N∑
j=1

Φj ·
∇pj
pj

+ kTA(V ) : Σ(u) +B′(v, I) · ∇(− 1

kT
)− α(V, I)∇ · u, (23)

with the new quantity:

B′(v, I) = (v − u)(
1

2
m(v − u)2 + I

2
δ − δ + 5

2
kT1) ∈ C̃⊥. (24)

Also, that expression brings, following the way of the previous lemma, the following
alternative formula for the masses and heat fluxes introduced in (12):

Ji =

N∑
j=1

kLij [S]
∇pj
pj

+ θi[S]T∇(− 1

kT
),

θi[S] =
Liq[S]
T

+

N∑
j=1

(
δj + 5

2
)kTLij [S],

Jq = k

N∑
i=1

Liq[S]
∇pi
pi

+ β[S]∇(− 1

kT
),

β[S] = Lqq[S] +
N∑
j=1

(
δj + 5

2
)kTLjq[S].

(25)

For a similar expression in a discrete framework we refer to [27].

Proof. Let us simply remark that the formula (13) brings :

∇(− µi

kT
) =

∇pi
pi

− δi + 5

2

∇T
T

=
∇pi
pi

+
(δi + 5

2

)
kT∇

(
− 1

kT

)
.

Now inserting this expression into (18) :

L[S](f) =
N∑
j=1

Φj ·
∇pi
pi

+kTA(V ) : Σ(v)+
{
B̃(v, I)+PK⊥V

}
·∇
(
− 1

kT

)
−α(V, I)∇·u,

with

V =
(∑

i

(δi + 5

2

)
kTCi

)
.

But the lth component of PK(V) writes:[
PK(V)

](l)
=
[ 3∑

i=1

⟨V, ψN+i⟩
∥ψN+i∥2M

ψN+i

](l)
=

δ+5
2 nkT

ρkT
mkT (vl − uxl

), (26)
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where uxl
is the lth component of u. (26) is exactly the opposite of the last term

in the definition (24) of B̃(v, I). Consequently, the term newly associated with the

vector ∇
(
− 1

kT

)
is:

B′(v, I)=(v−u)
(1
2
kTV 2+I

2
δ

)
−PK⊥

(∑
i

(δi + 5

2

)
kTCi−PK

(∑
i

(δi + 5

2

)
kTCi

))
,

i.e :

B′(v, I) = (v − u)
(1
2
kTV 2 + I

2
δ

)
−
∑
i

(δi + 5

2

)
kTCi

and the result follows by applying the definition (10) for the Ci family.

As one is aware of the link between linearized operator and approximation around
the equilibrium, the previous formula provides, more particularly, the expression of
the desired phenomenological coefficients, as stated by the following lemma.

Lemma 3. Let S be a properly defined operator. Then, if f satisfies (2), the
associated gas mixture verifies the Navier Stokes system (16) at order 1 in ϵ, where
ϵ denotes the Knudsen number for the mixture, and with the following transport
coefficients, as defined in (12) :

∀i, j, Lij [S] =
1

3

〈
Φi,L[S]−1Φj

〉
M , (27)

∀i, Liq[S] =
1

3

〈
Φi,L[S]−1(B̃)

〉
M
, (28)

η[S] = − 1

10
k2T 2

〈
A,L[S]−1(A)

〉
M , (29)

ηV [S] = −kT
〈
α,L[S]−1(α)

〉
M , (30)

∀j, Lqj [S] =
1

3

〈
B̃,L[S]−1Φj

〉
M
, (31)

Lqq[S] =
1

3

〈
B̃,L[S]−1(B̃)

〉
M
. (32)

Proof. Taking anew the Chapman-Enskog expansion at order 1 brings :

DtM+ ϵDt(Mg) = S(f) +O(ϵ2). (33)

Applying the unweighted dot product against ϕi, for every 1 ≤ i ≤ N+4, we obtain
the following N + 4 conservation equations :

∀1 ≤ i ≤ N + 4, ⟨DtM, ϕi⟩M + ϵ ⟨Dt(Mg), ϕi⟩M = O(ϵ2).

Here we seek to develop the Navier-Stokes remainder part to obtain an expression
of the fluxes depending on the linearized operator. Note that the first consideration
is to find a new expression of the fluxes depending on the linearized Boltzmann
operator. From this, we then deduce a correct expression for any “well-enough
defined” collision operator.

Let us finally remark that, since g ∈ K⊥, our term of interest simplifies into:

⟨Dt(Mg), ϕi⟩M = ∇ · ⟨(v − u)ϕi, g⟩M . (34)

Let us compute the right-hand side dot product of (34), for 1 ≤ i ≤ N + 4.
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• 1 ≤ i ≤ N : (v − u)ϕi = Ci, so that, identifying first orders,

Ji = ⟨Ci, g⟩M = ⟨Φi, g⟩M .

Relying on the phenomenological expression of the mass fluxes, and assuming
mutual functional independance of the family {∇(− µ1

kT ), . . . ,∇(−µN

kT ),∇(− 1
kT )},

we finally obtain (27) and (28).
• N + j, 1 ≤ j ≤ 3: Due to g ∈ K⊥, we can consider ψN+j instead of ϕN+j , and

given the equality :

(v − u)ϕN+j = kT (A(V ) +
1

3
V 2I3)ej ,

we obtain the following expression :

Ju = kT

〈
A(V ) +

1

3
V 2I3, g

〉
M
. (35)

Note here that the dot product implying 1
3V

2 does not vanish if the mixture
is not strictly monoatomic, because of a more complex invariant basis. In

particular, ψN+4,i contains the supplementary term I
2
δi
i , causing 1

3V
2 ̸∈ K

within the polyatomic framework, causing the volume viscosity to appear.
Indeed, one notice that:

PK(
1

3
V 2) =

1

3
V 2 + α,

causing α = −PK⊥( 13V
2), which truly contributes as soon as the δi do. Since

g ∈ K⊥, (35) becomes :

Ju = kT ⟨A− αI3, g⟩M .

Then, (18) brings the following equalities :{
−ησ(u) = k2T 2

〈
A− αI3,L[S]−1(A : Σ(u))

〉
M ,

ηV = kT
〈
A− αI3,L[S]−1α

〉
M .

Now, applying the matrix trace to the first equation provides :〈
α,L[S]−1(A : Σ(u))

〉
M = 0.

So :

−ησ(u) = k2T 2
〈
A,L[S]−1(A : Σ(u))

〉
M .

Then, symmetry of the involved tensors brings (29). Similarly, applying ma-
trix trace to the second equation of our system, provides (30).

• i = N + 4: Computations provides us with the following expression :

(v − u)ϕN+4 = B(v) +
5

2

n

ρ
mkT + kT (A+

1

3
V 2I3) · u+

1

2
mu2(v − u) + I

2
δ (v − u)

= B(v) + kT (A+
1

3
V 2I3) · u+ I

2
δ (v − u) + e,

with e ∈ K. As a consequence,

Jq =
〈
(v − u)ϕN+4, g

〉
M − Ju[u] = ⟨B(v), g⟩M +

〈
I

2
δ (v − u), g

〉
M
.

It finally results in the previous formulae (31) and (34).
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Remark 3. Let us remark that only the mutual independency of the macroscopic
functions brought

β = 1
3

〈
B′ + (

δ + 5

2
)kT (v − u),L[S]−1(B′)

〉
M
,

Ljq = 1
3

〈
B′ + (

δ + 5

2
)kT (v − u),L[S]−1(Φj)

〉
M
,

without assuming anything on the L[S]−1-stability of the orthogonal sum C
⊥
⊕C⊥ =

K⊥. This stability is established for S := B. It will be proved for Fick-relaxation
operators as well.

Remark 4. Lemma 1 also provides the following expression :

θiT =
1

3

〈
Φi,L[S]−1(B′)

〉
M , (36)

where θi has been defined in (14, 15).

Lemma 4. Alternative expressions are given for the coefficients :

β =
1

3

〈
B′ + (

δ + 5

2
)kT (v − u)1,L[S]−1(B′)

〉
M
,

Ljq =
1

3

〈
B′ + (

δ + 5

2
)kT (v − u)1,L[S]−1(Φj)

〉
M
.

(37)

Proof. Following the steps of the previous proof leads to the expression :

Jq =

〈
B′ + (

δ + 5

2
)kT (v − u), g

〉
M
.

Now, replacing g by its alternative expression brought by (24), and identifying with
the alternative expression of Jq above, brings the result.

4. Definition of a Fick-relaxation operator. Here, we seek to define a BGK
model for which the Fick law holds, thus having the following expression :

R(f) = ν(f)(G(f)− f), (38)

where the collision frequency ν(f) depends on f through its macroscopic fields and
G is a function to be suitably chosen. This operator must, on the one hand, be
properly defined, i.e satisfy the properties (conservation laws, entropy dissipation,
correct equilibrium states, and well-defined linearized operator) introduced above.
But those constraints are not fully satisfactory, as we have highlighted the necessity
to recover (all or parts of) the Navier Stokes equation near equilibria. Lagrange
multipliers method shows that, in absence of other constraints, the BGK model is
fully determined by the formula (3), leaving only one insufficient degree of freedom
to our operator. The constraints (3) garantee that the BGK model will satisfy
the right conservation laws. Supplementary constraints on non conserved moments
introduced on R will partially solve this problem. They rely the moments of the
relaxation operator and the moments of the distribution function f and are re-
stated as linear relations between the moments of f and those of G. The following
problem is to define G once its moments are known. This part is overcome by min-
imizing the natural entropy under moment constraints. In a last step, performing a
Chapmann-Enskog expansion starting from (38) up to Navier-Stokes, we compute
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transport coefficients. The goal is therefore to recover the Fick matrix (from (27)),
the shear viscosity and the the volume viscosity (from 30) associated to the Boltz-
mann operator considered here as the reference. We could also consider transport
coefficients measured from experiments as the reference.

This section is therefore devoted to expressing convenient conditions to obtain a
Fick-relaxation operator. As done in [16], the space C̃ is of particular interest for
those constraints.

Hypothesis 1. We assume wr ∈ C, 1 ≤ r ≤ N − 1 to be well-chosen elements of
C, as well as the following constraints to be verified :⟨R(f), wr⟩ = −λr ⟨f, wr⟩

⟨R(f), α⟩ = −λ ⟨f, α⟩
(39)

4.1. Properties of C. Let us first recall two lemmas from [16] describing the
supplementary constraints space C as well as its link with the Boltzmann operator.
The proofs of these lemmas remain unchanged.

Lemma 5. The matrix (Lij [B])1≤i,j≤N is of rank N − 1, where Lij [B] is defined
through (27), with S = B being the multispecies polyatomic Boltzmann operator.

Lemma 6. Let us introduce, if 1 ≤ i, j ≤ N , L∗
ij [B] := k

Lij [B]
∥Ci∥M ∥Cj∥M

. Then

L∗[B] is symmetric, non-positive. Noting W [B] a matrix such that:

W [B]TL∗[B]W [B] := Diag(d1, . . . , dN ), (40)

with d1, . . . , dN−1<0 and dN =0, then, the family

(
wr[B] :=

N−1∑
s=1

Wrs[B]
Cs

∥Cs∥M
)

)
r<N

provides an orthonormal basis of C for our weighted product, while

wN [B] :=
N∑
s=1

WNs[B]
Cs

∥Cs∥M
∈ K,

with :

WNs[B] := ±
√
ρs
ρ
.

Finally, σ(L∗[B])− {0} = σ(L−1[B]|C), with:wr[B] ∈ Ker(L−1[B]− dr),Wr[B] ∈ Ker(L∗[B]− dr), r < N,

wN [B] ∈ Ker(L[B]),WN ∈ Ker(L∗[B]).

Under the following conditions, BGK-type collisional operators can provide the
correct Fick law near the hydrodynamical limit.

Property 5. Let us assume that R is a properly defined BGK operator, defined
from (38). Then, taking λr := −d−1

r for r < N , λN := 0, and wr := wr(B), then R
allows to recover the correct Fick law at hydrodynamic limit if and only if

L−1[R](B′) ∈ C⊥. (41)
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Proof. Let us assume that R is properly defined and fulfills the phenomenologic
Fick law from (12) at the hydrodynamic limit, that is, since this is the case for the
Boltzmann operator :

∀i, j, Lij [R] = Lij [B].
The order one for the Chapman-Enskog expansion as in (17) for our relaxation
condition (39) leads to the following spectral requirements on L[R]:

⟨L[R](g), wr⟩M = −λr ⟨g, wr⟩M , r < N, (42)

where {wr, r < N} is a basis for C and λr < 0, r < N . Let us recall that {Φi, i < N}
is a generating family for C. Hence we can write:

wr =

N∑
s=1

Wrs
(Id − PK)(Cs)

∥Cs∥M
, (43)

since wr ∈ C. Let us also remark that the additional condition :

⟨L[R](g), wN ⟩M = −λN ⟨g, wN ⟩M , (44)

is trivial because wN ∈ K and λN = 0. Firstly, the right-hand term of (42)-(44)
gives :

⟨g, wr⟩M =

N∑
s=1

⟨g, Cs⟩M
∥Cs∥M

Wrs =

N∑
s=1

Wrs

∥Cs∥M
Js[R]. (45)

By hypothesis, the Fick law is recovered at the hydrodynamic limit, i.e, by (25):

Ji[R] =

N∑
j=1

kLij [B]
∇pj
pj

+ θiT∇(− 1

kT
). (46)

Therefore according to (46), (45) becomes :

⟨g, wr⟩M =
∑
j

(
∑
s

Wrs

||Cs||M
Lsj [B])

∇pj
pj

+ (

N∑
s=1

θs
||Cs||M

WrsT )∇(− 1

kT
). (47)

Secondly, the left-hand term of the expansion (42)-(44) expresses :

⟨L[R](g), wr⟩M =

N∑
j=1

(

N∑
s=1

⟨Cj , Cs⟩M
Wrs

||Cs||M
)
∇pj
pj

. (48)

Injecting (47)-(48) into (42)-(44) leads, by algebraic identification, to the following
conditions : 

λr||Cj ||MWrj =

N∑
s=1

Wrs

||Cs||M
Lsj [B],

N∑
s=1

Wrs
θs

||Cs||M
= 0.

The first condition writes :

λrWrj =

N∑
s=1

WrsL
∗
sj [B],∀r ≥ N ⇔WL∗WT = Diag(λ1, . . . , λN ).

The second condition writes according to relation (36):〈
wr,L−1[R](B′)

〉
M = 0, r < N,
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which is exactly asking L−1[R](B′) ∈ C⊥.

Let us finally notice that developing the λ constraint of (39) at order one for
Chapman-Enskog expansion, brings that the right λ eigenvalue for the Boltzmann
operator is :

λ[B] = kT
∥α∥2M
ηV [B]

. (49)

As a consequence, we will, from now on, take this value for λ in order to recover
the correct volume viscosity. Hence the following straightforward condition :

Lemma 7. If R satisfies λ[R] = λ[B], then ηV [R] = ηV [B] is the correct volume
viscosity for the gas mixture.

Remark 5. Finally, let us also notice that this last condition becomes, a priori,
singular at monoatomic limit.

4.2. Definition of a Fick-relaxation operator. The previous sections lead to
the derivation a BGK-type operator satisfying the Fick Law with correct Onsager
coefficients, as well as the obvious physical conservation laws and, in the strict
polyatomic case, the correct volume viscosity. The next aim deals with the obtention
of our so-called properly defined operator. In particular, we aim to obtain entropy
dissipation and the right behaviour at equilibrium.

Lemma 8. Let f ≥ 0 such that:∑
i

∫∫
fi(1 + v2 + I

2
δi
i + ln fi)dvdIi <∞.

We introduce the following set of constraints:

K(f) :=

g ≥ 0, g ∈ L1(v,H),


∀1 ≤ l ≤ N + 4, ⟨f, ϕl⟩ = ⟨g, ϕl⟩

∀r < N, ⟨g, wr(B)⟩ = (1− λr(B)
ν

) ⟨f, wr[B]⟩

⟨g, α⟩ = (1− λ

ν
) ⟨f, α⟩

 .

(Cons)
Let g ∈ K(f), and let us note ρi, ni, mi, δi the common macroscopic quantities

for g and f , whereas ui, T i (resp. ui, Ti) are the proper quantities for g (resp
f). Then, the velocity tensor U := (u1, . . . , uN )T of g can be expressed only with
parameters from f , via the following formula :

U − U = N−1WT [B](I − Λ

ν
)W [B]N(U − U), (50)

where U := (u, . . . , u)T , N := Diag(
√
ρ1, . . . ,

√
ρN ), Λ := Diag(λ1[B], . . . , λN [B]),

and U := (u1, . . . , uN )T is the velocity tensor associated with f .

Proof. The demonstration for that formula is similar to the proof in the monoatomic
case, see [16].

On the one hand, conservation laws (3) imply :

δ+3
2 nkT = E =

∑
i

∫∫
( 12mi(v − u)2 + I

2
δi
i )fidvdIi =

∑
i

∫∫
( 12mi(v − u)2 + I

2
δi
i )gidvdIi.

(51)
On the other hand, fictitious temperature for g can be defined by :

T ∗ :=
∑
i

ni
n
T i =

2

(δ + 3)nk

∑
i

∫∫
(
1

2
mi(v − ui)2 + I

2
δi
i )gidvdIi.
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From these two statements, we can deduce :

Lemma 9. The mean temperature of g can be defined exclusively via parameters of
f , with the following formula :

T ∗ = T − 1

(δ + 3)nk

∥∥∥∥WT (B)(I − Λ(B)
ν

)WN(U − U)

∥∥∥∥2 , (52)

where ∥ ∥ is the Euclidean norm. Moreover, T ∗ ≥ 0 if we chose ν ≥ maxr λr(B)
2

.

Proof. Let us first notice that (51), combined with the original expression of T ∗,
give the following relation between T and T ∗:

T − T ∗ =
1

(δ + 3)nk

∑
i

ρi(ui − u)2. (53)

Evaluating the norm of (50) leads, thanks to the symmetry of WT (I − Λ(B)
ν

)W :

T ∗ ≥ T − 1

(δ + 3)nk
maxσ(I − Λ(B)

ν
)
2 ∥∥U − U

∥∥2
= T − (1− minλr

ν
)2

1

(δ + 3)nk

∑
i

ρi(ui − u)2

≥
∑
i

δi + 3

2
nikTi ≥ 0,

with the correct choice of ν.

Lemma 10. The last constraint of (Cons) expresses :

T ∗
int = T ∗

tr + (1− λ

ν
){Tint − Ttr},

with : 
3
2nkT

∗
tr :=

〈
g, 12m(v − u)2

〉
M

δ
2nkT

∗
int :=

〈
g, I

2
δ

〉
M

,

the respective translational and non translational temperatures for g. For ν ≥
λ

1 + min{ δ
3 ,

3
δ }

, we have T ∗
int, T

∗
tr ≥ 0.

Proof. The equality :(
1 −1
δ
2

3
2

)(
T ∗
int

T ∗
tr

)
=

(
(1− λ

ν )(Tint − Ttr)
( δ+3

2 )T

)
leads to : T

∗
int = T + 3

δ+3 (1−
λ
ν )(Tint − Ttr),

T ∗
tr = T − δ

δ+3 (1−
λ
ν )(Tint − Ttr).

(54)

Now, let us denote β := 1− λ
ν ≤ 1. The first equation of (54) becomes :

T ∗
int = (

δ

δ + 3
+

3

δ + 3
β)Tint +

3

δ + 3
(1− β)Ttr.

We easily find the desired sufficient condition, requiring the first right-hand side
coefficient to be positive, and performing similar computations from the expression
of T ∗

tr.
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Remark 6. This supplementary constraint fits with the distinction between trans-
lational and non-translational internal temperatures, which introduces a new degree
of freedom. Thanks to the relation :

δ + 3

2
nkT =

δ

2
nkTint +

3

2
nkTtr,

we can obtain the following expression for fictitious temperature :

δ + 3

2
nkT ∗ =

δ + 3

2
nkT ∗

tr +
δ

2
(1− λ

ν
)(Tint − Ttr)

Theorem 4.1. If ν ≥ maxλr(B)/2, then K(f) ̸= ∅ and there exists a unique
solution to the minimization problem G = ArgminK(f)H, its coordinates read :

Gi = ni(
mi

2πkT ∗
tr

)
3
2 (

1

kT ∗
int

)
δi
2 Λ−1

i exp(−mi(v − ui)2

2kT ∗
tr

− I
2
δi
i

kT ∗
int

),

where (ui)1≤i≤N has been defined in (50) and with the notations of Lemmas 8, 9,
10.

Proof. We rely on [34], or [31] to argue that this minimization problem always has
a unique solution, as soon as:

Ω0 := {(Al)1≤l≤N+4, (Br)1≤r≤N−1, C;
∑

i exp(A · ϕi +B · w·,i + Cα) ∈ L1(R3 × R+)} ⊂ R2N+3,

is open, where ϕi, w·,i and α refer to the constraint vectors defined respectively in
Property 1, Lemma 6 and Equation (19). Indeed, Ω0 is open (for the usual norm
topology).

5. On the Fick-relaxation operator and the transport coefficients. Now
that we have explicited all the parameters necessary to describe our Fick-relaxation
operator with the desired constraints - i.e the frequency ν and the attractor G, it
remains to compute the associated parameters. In particular, we are now able to
give an expression of the linearized operator L[R], and therefore to all the phe-
nomenological coefficients. This process will finally enable us to verify the physical
compatibility of our model. In particular, the correct Onsager matrix and the two
viscosities are to be recovered - under conditions.

5.1. R(f) is properly defined.

Property 6. With the hypotheses of Theorem 4.1, R is properly defined, and the
associated linearized operator satisfies :

L[R] = ν(R ◦ PC̃ − PK⊥),

with R the linear operator on C̃ such that Rwr = (1 − λr(B)
ν )wr, for r < N , and

Rα = (1− λ
ν )α, while

L−1[R] =
1

ν
((R− Id)−1 ◦ PC̃ − PC̃⊥). (55)

Remark 7. Let us notice that once again, this formula still holds in the monospecies
case, since C̃ = {0} within this particular framework. Likewise, we recover the
monoatomic case when α = 0.

We can also remark once again (this is also clear from the above properties of L[R]

that the orthogonal sum C̃⊕ C̃⊥ = K⊥ is stable by L . Therefore we cannot make
simple hypothesis such as L−1[B̃] ∈ C̃⊥ within the pure polyatomic framework.
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Finally, we shall see that this writing of L−1 lacks convenience, since the expres-
sion of wr[B] is not known.

Proof. To prove that R(f) is properly defined, the only part differing from [16] is
the proof of the H-theorem from Property 2.

The convexity of F : x 7→ x lnx− x enables us to obtain the following inequality
on the entropy variation:

ν

∫∫ ∑
i

(Gi − fi) ln fidvdI ≤ H(G)−H(f). (56)

Now easy computations bring, from (2) :

H(G) =
∑
i

ni(lnni +
3

2
ln(

mi

2πkT ∗ )−
δi + 3

2
ln kT ∗ − δi + 3

2
− 1− ln Λi).

f ̸∈ K(f) implies that H(f) cannot be directly compared with H(G) (λr ̸≡ 0);
however, classic entropy minimization in the monospecies case leads to H(f) ≥
H(Γ), with :

Γi := niΛ
−1
i (

mi

2πkT i
)

3
2 (

1

kT i
)

δi
2 exp(−mi(v − ui)2

2kT i
− I

2
δi

kT i
).

Therefore, (56) becomes :

ν

∫∫ ∑
i

(Gi − fi) ln fidvdI ≤ n
δ̄ + 3

2
ln

∑
i ni

δi+3
2 kT i

δ̄+3
2 nkT ∗

≤ 0

thanks to the concavity of ln and definition of T ∗.

5.2. Hydrodynamic limit. Thanks to our previous computations combined with
the expression (52) for the inverse linearized operator, we are able to recover the
sought coefficients.

Property 7. The transport coefficients computed from our Fick relaxation operator
defined in (37) can be expressed by the following formulae :

Lij = Lij [B],

Liq = −kT
∑
j

(
δj + 5

2
)Lij ,

Lqq =k2T 2
N∑

i,j=1

(
δi + 5

2
)(
δj + 5

2
)Lij

+
5

2ν
k2T 3(

N∑
i=1

ni
mi

) +
1

4ν
δ2(

N∑
i=1

ni
mi

)

+
13− δ

6ν
(

N∑
i=1

ni
mi

δi) +
1

4ν
(

N∑
i=1

ni
mi

δ2i ),

η =
nk2T 2

ν
,

ηV =
2δnkT

3λ(δ + 3)
.



A FICK LAW’S RECOVERING BGK MODEL 23

Moreover, if η[B] ≤ 2nk2T 2

maxr λr[B]
, then taking ν :=

nk2T 2

η[B]
, the model enjoys the true

shear viscosity. Finally, if η[B] ≤ 3

2
(1+

3

δ
)(1+a)kTηV [B], with a := min{ δ

3 ,
3
δ }, the

model enjoys the true volume viscosity.

Proof. • If (41) is fulfilled, then the correct Fick coefficients are recovered,
• L−1(B′) ∈ C⊥, so θi = 0, thanks to the formula (36). As a consequence, (25)

brings :

Liq = −kT
N∑
j=1

(
δj + 5

2
)Lij .

• That equality, coupled with the expression of β, provides :

Lqq = k2T 2
N∑

i,j=1

(
δi + 5

2
)(
δj + 5

2
)Lij −

1

3ν

〈
B′ +

δ + 5

2
T (v − u)1,L−1(B′)

〉
M
.

Finally, further computations lead to the desired result.

Obviously, although L and both viscosities were shown to be recovered at hy-
drodynamic limit, nothing tends to prove - and cumbersome results rather tend to
disprove, that the other phenomenological coefficients are correct.

6. Conclusions and perspectives. Throughout this paper, has been investigated
a generalization to a mixture of both monoatomic and polyatomic gases, of the Fick
relaxation operator initiated in [16]. Two purposes were involved: on the one hand,
the sought operator was expected, within a polyatomic modelization inherited from
[13], to recover the correct Fick matrix, the shear viscosity and the volume viscosity
at the vicinity of hydrodynamic limit. This investigation has been shaped as an
inverse problem involving the desired coefficients. To that extent, a Chapman-
Enskog expansion at order 1 enabled a useful expression of our relaxation model’s
own coefficients with respect to its inversed linearized operator. These expressions
have then been used to provide equivalent constraints on our system, themselves
finally taking part of an entropy minimization, to solve the inverse problem while
fulfilling the H Theorem.

On the other hand, all these calculations have been performed in order to con-
struct a model which would strictly contains its monoatomic counterpart; the aim
was here to be able to revert back to a mixture of monoatomic gases from this
model, through a simple affectation of value.

Finally, this model can be made more realistic. For example, one is aware of
the fact that, within a context of sufficient variations of temperature, δ = δ(T ).
We mention a recent paper ([12]) in that direction where a new collision operator
intergrating varying δ has been constructed.
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24 STÉPHANE BRULL, KÉVIN GUILLON AND PHILIPPE THIEULLEN

[4] T. Arima, T. Ruggeri, M. Sugiyama and S. Taniguchi, Monoatomic gas as a singular limit
of polyatomic gas in molecular extended themodynamics with many moments, Annals of

Physics, 372 (2016), 83-109.

[5] C. Baranger, M. Bisi, S. Brull and L. Desvillettes, On the Chapman-Enskog asymptotics for
a mixture of monoatomic and polyatomic rarefied gases, Kinet. Relat. Models, 11 (2018),

821-858.
[6] P. L. Bhatnagar, E. P. Gross and M. Krook, A Model for collision processes in gases. I. small

amplitude processes in charged and neutral one-component systems, Phys. Rev., American

Physical Society, 94 (1954), 511-525.
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