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Abstract. In the following work, we consider the Boltzmann equation that

models a diatomic gas by representing the microscopic internal energy by a con-

tinuous variable I. Under some convenient assumptions on the collision cross-
section B, we prove that the linearized Boltzmann operator L of this model

is a Fredholm operator. For this, we write L as a perturbation of the col-

lision frequency multiplication operator, and we prove that the perturbation
operator K is compact. The result is established after inspecting the kernel

form of K and proving it to be L2 integrable over its domain using elementary

arguments.This implies that K is a Hilbert-Schmidt operator.

1. Introduction. In the last several decades, the kinetic theory of polyatomic
gases witnessed extensive interest due to its vigorous relation with a wide range
of practical applications including spacecraft flights, hypersonic flights and aero-
dynamics [1], plasma physics [20], thermal sciences [13, 23], combustion processes,
and chemical reactors. In the context of polyatomic gases, Borgnakke and Larsen
proposed a microscopic model [6]. Later on, an entropic kinetic model consistent
with [6] has been derived [8]. This model originates from the Boltzmann equation,
which was a breakthrough in the kinetic theory, and offered an accurate description
of the gas flow.

However, it is usually expensive and cumbersome to solve the Boltzmann equa-
tion directly. As an alternative to the Boltzmann equation, kinetic theory provides
macroscopic models for not too large Knudsen numbers. These models are de-
rived as approximations to the Boltzmann equation and offer high computational
speed and explicit equations for macroscopic variables, which are helpful for un-
derstanding and analyzing the flow behavior. Macroscopic models are classically
obtained by Chapman-Enskog method [5] and moments method [22, 18]. Using the
Chapman-Enskog method, Nagnibeda and Kustova [19] studied the strong vibra-
tional nonequilibrium in diatomic gases and reacting mixture of polyatomic gases,
and derived the first-order distribution function and governing equations. Cai and
Li [10] extended the NRxx model to polyatomic gases using the ES-BGK model of
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[2] and [9]. In [24], the existence result of the ES-BGK model was achieved in the
case where the solution lies close to equilibrium.

Simplified Boltzmann models for mixtures of polyatomic gases have also been
proposed in [3, 12]. The authors of [4] developed a generalized macroscopic 14 field
theory for the polyatomic gases, based on the methods of extended thermodynam-
ics [18]. In the full non-linear Boltzmann equation, Gamba and Pavić-Čolić [15]
established existence and uniqueness theory in the space homogeneous setting.

The relation of the kinetic theory with the spectral theory was initiated by Grad
[17], who was behind the history of serious investigation of the spectral properties
of the linearized Boltzmann operator for monoatomic gases. With his pioneering
work, Grad showed that the linearized collision operator L for Maxwell and hard
potential cases can be decomposed as L = K − ν Id, where ν is called collision
frequency, and by using his angular cut-off assumption on the cross-section, he
proved that K is a compact operator in L2(R3). The compactness of K for a mixture
of monoatomic gases was celebrated later by [7], with more explanation in [21]. This
result is significant for formally deriving the fluid systems in the Chapman-Enskog
expansion which was recently developed in [5] for a mixture of monoatomic and
polyatomic gases. One of the focuses of [5] was on the diatomic gases.

In fact, diatomic gases gain a solid importance due to the fact that in the upper
atmosphere of the earth, the diatomic molecules Oxygen (O2) and Nitrogen (N2)
are dominant. We aim in this article to restrict ourselves to diatomic gases, for
which the proof is simpler than polyatomic gases. In contrast to monoatomic
gases, which have only 3 degrees of freedom coming from the translational motion,
diatomic gases have 3 translational and 2 rotational degrees of freedom which sum
up to 5 degrees of freedom. We restrict ourselves in this paper for the case where the
vibrational degree of freedom is ignored. In this case, the parameter α appearing
in the collision operator is equal to zero. Namely, the parameter α is given by
α = D−5

2 , where D is the total number of degrees of freedom of the gas. Therefore,
discarding the terms with a power of α in the collision operator simplifies the proof
of compactness of K. We remark that using elementary arguments, for the first time
we prove that for diatomic gases the operator K is a Hilbert-Schmidt operator, as
an improvement of Grad’s result [17] for single monoatomic gases. For a mixture
of monoatomic gases, Boudin, Grec, Pavić-Čolić, and Salvarani [7] proved K to be
compact. A generalization of this work for general polyatomic gases is to be carried
later.

The plan of the document is the following: In section 2, we give a brief recall
on the collision model [8], which describes the microscopic state diatomic gases. In
section 3, we define the linearized operator L, which is obtained by approximating
the distribution function f around the Maxwellian M . The operator L is considered
as a perturbation of the multiplication operator ν Id by a linear operator K, which
we aim to prove to be compact. We write hence K as K3 +K2 −K1, and in section
4 we prove each Ki, with i = 1, · · · , 3, to be a Hilbert-Schmidt operator using
classical arguments. The main idea of the proof is to extract the kernel of Ki.
For K2 and K3, a major step is a change of variable from the post-collisional to
the pre-collisional velocity and internal energy. This change of variable is different
from the one implemented by [17], as it considers the parameter ω to be fixed, yet
takes into consideration the internal energy parameter. In section 5, we give two
important properties of the collision frequency: the monotony and coercivity. As a
consequence, the linearized Boltzmann operator is a Fredholm operator.
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2. The classical model. For the sake of clarity, we present the model in [8] on
which our work is mainly based. We start with physical conservation equations and
proceed as follows.

2.1. Boltzmann equation. Without loss of generality, we first assume that the
particle mass equals unity, and we denote as usual by (v, v∗), (I, I∗) and (v′, v′∗),
(I ′, I ′∗) the pre-collisional and post-collisional velocity and energy pairs respectively.
In this model, the internal energies are assumed to be continuous [9, 12] rather
than discrete [14, 16]. The following conservation of momentum and total energy
equations hold:

v + v∗ = v′ + v′∗ (1)

1

2
v2 +

1

2
v2
∗ + I + I∗ =

1

2
v′2 +

1

2
v′2∗ + I ′ + I ′∗. (2)

From the above equations, we can deduce the following equation representing the
conservation of total energy in the center of mass reference frame:

1

4
(v − v∗)2 + I + I∗ =

1

4
(v′ − v′∗)2 + I ′ + I ′∗ = E,

with E denoting the total energy of the colliding particles. We introduce in addition
the parameter R∈ [0, 1] which represents the portion allocated to the kinetic energy
after collision out of the total energy, and the parameter r∈ [0, 1] which represents
the distribution of the post internal energy among the two interacting molecules.
Namely,

1

4
(v′ − v′∗)2 = RE

I ′ + I ′∗ = (1−R)E,

and
I ′ = r(1−R)E

I ′∗ = (1− r)(1−R)E.

Using the above equations, we can express the post-collisional velocities in terms of
the other quantities by the following

v′ ≡ v′(v, v∗, I, I∗, ω,R) =
v + v∗

2
+
√
RE Tω

[
v − v∗
|v − v∗|

]
v′∗ ≡ v′∗(v, v∗, I, I∗, ω,R) =

v + v∗
2
−
√
RE Tω

[
v − v∗
|v − v∗|

]
,

where ω ∈ S2, and Tω(z) = z − 2(z.ω)ω. In addition, we define the parameters
r′∈ [0, 1] and R′∈ [0, 1] for the pre-collisional terms in the same manner as r and R.
In particular

1

4
(v − v∗)2 = R′E

I + I∗ = (1−R′)E,
and

I = r′(1−R′)E
I∗ = (1− r′)(1−R′)E.
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Finally, the post-collisional energies can be given in terms of the pre-collisional
energies by the following relation

I ′ =
r(1−R)

r′(1−R′)
I

I ′∗ =
(1− r)(1−R)

(1− r′)(1−R′)
I∗.

The Boltzmann equation for an interacting single polyatomic gas reads

∂tf + v.∇xf = Q(f, f), (3)

where f = f(t, x, v, I) ≥ 0 is the distribution function, with t ≥ 0, x ∈ R3, v ∈ R3,
and I ≥ 0. The operator Q(f, f) is the quadratic Boltzmann operator [8] given as

Q(f, f)(v, I) =

∫
R3×R+×S2×(0,1)2

(
f ′f ′∗

(I ′I ′∗)
α −

ff∗
(II∗)

α

)
× B × (r(1− r))α(1−R)2α×

IαIα∗ (1−R)R1/2 dRdrdωdI∗ dv∗,

(4)
where we use the standard notations f∗ = f(v∗, I∗), f

′ = f(v′, I ′), and f ′∗ =
f(v′∗, I

′
∗), and α > −1. For diatomic molecules, α = 0 and the collision opera-

tor (4) is relaxed to

Q(f, f)(v, I) =

∫
R3×R+×S2×(0,1)2

(f ′f ′∗ − ff∗)× B × (1−R)R1/2 dRdrdωdI∗ dv∗,

(5)
The function B is the collision cross-section; a function of (v, v∗, I, I∗, r, R, ω). In
the following, we give some assumptions on B, extended from Grad’s assumption
for collision kernels of monoatomic gases. In general, B is assumed to be an almost
everywhere positive function satisfying the following microreversibility conditions:

B(v, v∗, I, I∗, r, R, ω) = B(v∗, v, I∗, I, 1− r,R,−ω),

B(v, v∗, I, I∗, r, R, ω) = B(v′, v′∗, I
′, I ′∗, r

′, R′, ω).
(6)

Main assumptions on B
Together with the above assumption (6), we assume the following boundedness

assumptions on the collision cross section B. In particular, we assume that

C1ϕ(R)ψ(r)

∣∣∣∣ω. (v − v∗)|v − v∗|

∣∣∣∣ (|v − v∗|γ + I
γ
2 + I

γ
2
∗

)
≤ B(v, v∗, I, I∗, r, R, ω), (7)

and

B(v, v∗, I, I∗, r, R, ω) ≤ C2ϕα̃(R)ψβ̃(r)
(
|v − v∗|γ + I

γ
2 + I

γ
2
∗

)
, (8)

where for any p > 0,

ψp(r) = (r(1− r))p, and ϕp(R) = (1−R)p.

In addition, ϕ(R), and ψ(r) are positive functions such that

ϕ(R) ≤ ϕα̃(R), and ψ(r) ≤ ψβ̃(r), (9)

and γ ≥ 0, α̃ > 1
4 + γ

2 , β̃ > 3
4 + γ

2 , and C2 ≥ C1 > 0.

We remark that the above assumptions (7) and (8) are compatible with Maxwell
molecules, hard spheres and hard potentials in the monoatomic case.
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3. The linearized boltzmann operator. We state first the H-theorem for di-
atomic gases which was initially established for polyatomic gases in [8]. Namely,
suppose that the positivity assumption of B in (8) holds, then the entropy produc-
tion functional

D(f) =

∫
R3

∫
R+

Q(f, f) log f dIdv ≤ 0,

and the following are equivalent

1. The collision operator Q(f, f) vanishes, i.e. Q(f, f)(v, I) = 0 for every v ∈ R3

and I ≥ 0.
2. The entropy production vanishes, i.e. D(f) = 0.
3. There exists T > 0, n > 0, and u ∈ R3 such that

f(v, I) =
n

(2πkT )
3
2 kT

e−
1
kT ( 1

2 (v−u)2+I), (10)

where κ in (10) is the Boltzmann constant. The linearization of the Boltzmann
equation of diatomic gases is taken around the local Maxwellian function, which
represents the equilibrium state of a diatomic gas and is denoted by Mn,u,T (v, I),
and given by

Mn,u,T (v, I) =
n

(2πκT )
3
2 kT

e−
1
κT ( 1

2 (v−u)2+I), (11)

where n, u, and T in (11) are the number of atoms per unit volume, the hydrody-
namic velocity, and the temperature respectively. In particular,

n =

∫
R3

∫
R+

fdIdv, nu =

∫
R3

∫
R+

vfdIdv,
5

2
nT =

∫
R3

∫
R+

(
(v − u)2

2
+I

)
fdIdv.

Without loss of generality, we will consider in the sequel a normalized version M1,0,1

of Mn,u,T , by assuming κT = n = 1 and u = 0. For the sake of simplicity, the index
will be dropped. In particular,

M(v, I) = M1,0,1(v, I) =
1

(2π)
3
2

e−
1
2 v

2−I .

We look for a solution f around M having the form

f(v, I) = M(v, I) +M
1
2 (v, I)g(v, I). (12)

The linearization of the Boltzmann operator (5) around M (12) leads to introduce
the linearized Boltzmann operator L given as

Lg = M−
1
2 [Q(M,M

1
2 g) +Q(M

1
2 g,M)],

In particular, L writes

Lg = M−
1
2

∫
∆

[
M ′M

′ 12
∗ g
′
∗ −MM

1
2
∗ g∗ +M ′

1
2M ′∗g

′ −M 1
2M∗g

]
B(1−R)R1/2 drdRdωdI∗dv∗.

(13)
Thanks to the conservation of total energy (2) we have MM∗ = M ′M ′∗, and so L
has the explicit form:
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L(g) =−
∫

∆

BM 1
2M

1
2
∗ g∗(1−R)R1/2 drdRdωdI∗dv∗

−
∫

∆

BM∗g(1−R)R1/2 drdRdωdI∗dv∗

+

∫
∆

BM
1
2
∗ M

′ 12 g′∗(1−R)R1/2 drdRdωdI∗dv∗

+

∫
∆

BM
1
2
∗ M

′ 12
∗ g
′(1−R)R1/2 drdRdωdI∗dv∗.

Here, ∆ refers to the open set R3×R+×S2× (0, 1)2. In addition, L can be written
in the form

L = K − ν Id,

where

Kg =

∫
∆

BM
1
2
∗ M

′ 12 g′∗(1−R)R1/2 drdRdωdI∗dv∗

+

∫
∆

BM
1
2
∗ M

′ 12
∗ g
′(1−R)R1/2 drdRdωdI∗dv∗

−
∫

∆

BM 1
2M

1
2
∗ g∗(1−R)R1/2 drdRdωdI∗dv∗,

(14)

and

ν(v, I) =

∫
∆

BM∗ (1−R)R1/2drdRdωdI∗dv∗, (15)

which represents the collision frequency. We write also K as K = K3 +K2−K1 with

K1 =

∫
∆

BM 1
2M

1
2
∗ g∗(1−R)R1/2 drdRdωdI∗dv∗, (16)

K2 =

∫
∆

BM
1
2
∗ M

′ 12 g′∗(1−R)R1/2 drdRdωdI∗dv∗, (17)

and

K3 =

∫
∆

BM
1
2
∗ M

′ 12
∗ g
′(1−R)R1/2 drdRdωdI∗dv∗. (18)

The linearized operator L is a symmetric operator, with kernel

ker L = M1/2span {1, vi,
1

2
v2 + I} i = 1, · · · , 3.

Since L is symmetric and ν Id is self-adjoint on

Dom(ν Id) = {g ∈ L2(R3 × R+) : νg ∈ L2(R3 × R+)},

then K is symmetric. In the following section, we prove that K is a bounded
compact operator on L2(R3 × R+). Hence, L is a self adjoint operator on Dom
(L) = Dom(ν Id). In section 5 we prove that ν is coercive, and therefore L is a
Fredholm operator on L2(R3 × R+).
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4. Main result. We give now the main result on the linearized Boltzmann operator
based on the assumptions of the collision cross section (8) and (7). In particular,
using (7) we prove that the multiplication operator by ν Id is coercive and using
(8) we prove that K is compact. This leads to the Fredholm property of L on
L2(R3 × R+).

We state the following theorem, which is the main result of the paper.

Theorem 4.1. The operator K of diatomic gases defined in (14) is a compact
operator from L2(R3 × R+) to L2(R3 × R+), and the multiplication operator by ν
is coercive. As a result, the linearized Boltzmann operator L is an unbounded self
adjoint Fredholm operator from Dom(L) =Dom(ν Id) ⊂ L2(R3 × R+) to
L2(R3 × R+).

We carry out the proof of the coercivity of ν Id in section 5, and we dedicate the
following proof for the compactness of K.

Proof. Throughout the proof, we prove the compactness of each Ki with i = 1, · · · , 3
separately.

Compactness of K1. The compactness of K1 is straightforward as K1 already pos-
sesses a kernel form. Thus, we can inspect the operator kernel of K1 (16) to be

k1(v, I, v∗, I∗) =
1

(2π)
3
2

∫
S2×(0,1)2

Be− 1
4v

2
∗− 1

4 v
2− 1

2 I∗−
1
2 I(1−R)R1/2 drdRdω,

and therefore

K1g(v, I) =

∫
R3×R+

g (v∗, I∗) k1 (v, I, v∗, I∗) dI∗dv∗ ∀(v, I) ∈ R3 × R+.

If B is constant in |v − v∗|, I, and I∗, then K1 is a rank one operator and thus
compact. However, in general, we give the following lemma that yields to the com-
pactness of K1.

Lemma 4.2. With the assumption (8) on B, the function k1 belongs to
L2(R3 × R+ × R3 × R+).

Proof. Applying Cauchy-Schwarz we get

||k1||2L2 ≤ c
∫
R3

∫
R+

∫
R3

∫
R+

(Iγ + Iγ∗ + |v − v∗|2γ)e−
1
2 v

2
∗− 1

2 v
2−I∗−IdIdvdI∗dv∗

≤ c
∫
R3

e−
1
2 v

2
∗

[ ∫
|v−v∗|≤1

e−
1
2 v

2

dv +

∫
|v−v∗|≥1

|v − v∗|d2γee−
1
2v

2

dv

]
dv∗

≤ c
∫
R3

e−
1
2 v

2
∗

∫
|v−v∗|≥1

d2γe∑
k=0

|v|k|v∗|d2γe−ke−
1
2v

2

dv

dv∗

≤ c
d2γe∑
k=0

∫
R3

|v∗|d2γe−ke−
1
2v

2
∗

[∫
R3

|v|ke− 1
2v

2

dv

]
dv∗ <∞,

where d2γe is the ceiling of 2γ, and c > 0 is a generic constant.

This implies that K1 is a Hilbert-Schmidt operator, and thus compact. We prove
now the compactness of K2, similarly by proving it to be a Hilbert-Schmidt operator.
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Compactness of K2. Additional work is required to inspect the kernel form of K2,
since the kernel is not obvious. As a first step, we simplify the expression of K2

by writing it in the σ−notation through a change of variable on ω explained in the
following lemma.

Lemma 4.3. Let

σ = Tω

( v − v∗
|v − v∗|

)
=

v − v∗
|v − v∗|

− 2
v − v∗
|v − v∗|

.ωω, (19)

then the Jacobian of the ω − σ transformation is given in [11] as

dω =
dσ

2
∣∣σ − v−v∗

|v−v∗|
∣∣ .

Proof. It’s enough to assume that ω is not collinear to v−v∗
|v−v∗| . The differential map

for (19) is

dσω : R3 7−→ R3

~ω −→ ~σ = −2

〈
v − v∗
|v − v∗|

, ~ω

〉
ω − 2

〈
v − v∗
|v − v∗|

, ω

〉
~ω.

(20)

Let T1 be the tangent plane to ω, and T2 be the plane determined by ω and v−v∗
|v−v∗| ,

i.e. T2 = span
{
ω, v−v∗|v−v∗|

}
. Choose {~ω1, ~ω2} ⊂ T1 orthonormal basis such that

~ω1 ∈ T2 and ~ω2 ⊥ T2, and let ( ~σ1, ~σ2) = (dσω(~ω1), dσω(~ω2)). Then, ~σ1 ∈ T2 and
~σ2 ⊥ T2. The Gram determinant is given by

Gram = |~σ1|2|~σ2|2 − 〈~σ1, ~σ2〉2 ,

where

|~σ1|2 = 4

(〈
v − v∗
|v − v∗|

, ~ω1

〉2

+

〈
v − v∗
|v − v∗|

, ω

〉2
)

= 4

∣∣∣∣ v − v∗|v − v∗|

∣∣∣∣2 = 4,

|~σ2|2 = 4

(〈
v − v∗
|v − v∗|

, ~ω2

〉2

+

〈
v − v∗
|v − v∗|

, ω

〉2
)

= 4

〈
v − v∗
|v − v∗|

, ω

〉2

,

and

〈σ1, σ2〉 = 0.

As a result,

Gram = 16

〈
v − v∗
|v − v∗|

, ω

〉2

= 4

∣∣∣∣σ − v − v∗
|v − v∗|

∣∣∣∣2 .
We thus write K2 as

K2g(v, I) =

∫
∆

e−
I∗
2 −

1
2 r(1−R)

(
(v−v∗)2

4 +I+I∗

)
− 1

4v
2
∗− 1

4

(
v+v∗

2 +
√
R( 1

4 (v−v∗)2+I+I∗)σ
)2
×

g
(v + v∗

2
−
√
R(

1

4
(v − v∗)2 + I + I∗)σ, (1−R)(1− r)

[1

4
(v − v∗)2 + I + I∗

])
1

(2π)
3
2

(1−R)R
1
2B
∣∣∣∣σ − v − v∗

|v − v∗|

∣∣∣∣−1

drdRdσdI∗dv∗.

(21)
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We seek first to write K2 in its kernel form. For this, we define hv,I,r,R,σ; where for
simplicity the index will be omitted; as

h : R3 × R+ 7−→ h(R3 × R+) ⊂ R3 × R+

(v∗, I∗) 7−→ (x, y) =
(v + v∗

2
−
√
R(

1

4
(v − v∗)2 + I + I∗)σ,

(1−R)(1− r)
[1

4
(v − v∗)2 + I + I∗

])
,

for fixed v,I,r,R, and σ. The function h is invertible, and (v∗, I∗, v
′, I ′) can be

expressed in terms of (x, y) as

v∗ = 2x+ 2
√
Rayσ − v, I∗ = ay − I − (x− v +

√
Rayσ)2,

and

v′ = x+ 2
√
Rayσ, I ′ =

r

1− r
y,

where a = 1
(1−r)(1−R) . The Jacobian of h−1 is computed as

J =

∣∣∣∣∂v∗∂I∗∂x∂y

∣∣∣∣ =
8

(1− r)(1−R)
,

and the positivity of I∗ restricts the variation of the variables (x, y) in integral (21)
over the space

Hv,I
R,r,σ = h(R3 ×R+) = {(x, y) ∈ R3 ×R+: ay− I − (x− v+

√
Rayσ)2 > 0}. (22)

In fact, Hv,I
R,r,σ can be explicitly expressed as

Hv,I
R,r,σ = {(x, y)∈R3×R+ : x ∈ Bv−√Rayσ(

√
ay − I) and y∈((1−r)(1−R)I,+∞)}.

Therefore, equation (21) becomes

K2g =
1

(2π)
3
2

∫
(0,1)2×S2

∫
Hv,IR,r,σ

(1−R)R
1
2 J B

∣∣∣σ − v − x−
√
Rayσ

|v − x−
√
Rayσ|

∣∣∣−1

g(x, y)×

e−
ay−I−(x−v+

√
Rayσ)2

2 − r
2(1−r)y−

1
4 (2x+2

√
Rayσ−v)2− 1

4 (x+2
√
Rayσ)2

dydxdσdrdR.

(23)
We now point out the kernel form of K2 and prove after by the help of assumption

(8) that the kernel of K2 is in L2(R3×R+×R3×R+). Indeed, we recall the definition
of ∆, with ∆ := R3 × R+ × S2 × (0, 1)× (0, 1), and we define Hv,I to be

Hv,I := {(y, x, σ, r, R) ∈ ∆ : R ∈ (0, 1), r ∈ (0, 1), σ ∈ S2,

x ∈ Bv−√Rayσ(
√
ay − I), and y ∈ ((1− r)(1−R)I,+∞)}.

We remark that Hv,I
R,r,σ is a slice of Hv,I , and we define the slice Hv,I

x,y ⊂ (0, 1) ×
(0, 1)× S2 such that

Hv,I = Hv,I
x,y×R3×R+ which is equivalent to Hv,I = (0, 1)×(0, 1)×S2×Hv,I

R,r,σ.

In other words,

Hv,I
x,y = {(r,R, σ) ∈ (0, 1)× (0, 1)× S2 : (y, x, σ, r, R) ∈ Hv,I}. (24)
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Then by Fubini theorem, it holds that

K2g(v, I) =
1

(2π)
3
2

∫
Hv,I

(1−R)R
1
2 J B

∣∣∣σ − v − x−
√
Rayσ

|v − x−
√
Rayσ|

∣∣∣−1

g(x, y)×

e
− ay−I−(x−v+

√
Rayσ)2

2
− r

2(1−r) y−
1
4

(2x+2
√
Rayσ−v)2− 1

4
(x+2

√
Rayσ)2

dydxdσdrdR

=
1

(2π)
3
2

∫
R3×R+

∫
H
v,I
x,y

(1−R)R
1
2 J B

∣∣∣σ − v − x−
√
Rayσ

|v − x−
√
Rayσ|

∣∣∣−1

g(x, y)×

e
− ay−I−(x−v+

√
Rayσ)2

2
− r

2(1−r) y−
1
4

(2x+2
√
Rayσ−v)2− 1

4
(x+2

√
Rayσ)2

dσdrdRdydx.

(25)

The kernel of K2 is thus inspected and written explicitly in the following lemma.

Lemma 4.4. With the assumption (8) on B, the kernel of K2 given by

k2(v, I, x, y) =
1

(2π)
3
2

∫
Hv,Ix,y

(1−R)R
1
2 J B

∣∣∣σ − v − x−
√
Rayσ

|v − x−
√
Rayσ|

∣∣∣−1

×

e−
ay−I−(x−v+

√
Rayσ)2

2 − r
2(1−r)y−

1
4 (2x+2

√
Rayσ−v)2− 1

4 (x+2
√
Rayσ)2dσdrdR

is in L2( R3×R+×R3×R+).

Proof. Rewriting k2 in the ω−notation and applying Cauchy-Schwarz inequality,
we get

‖k2‖2L2 ≤ c
∫
R3

∫
R+

∫
R3

∫
R+

∫
(0,1)2×S2

(1−R)2RJ2B2×

e
−
[
ay−I−(x−v+

√
RayTω( v−v∗

|v−v∗| ))
2
]
− r

(1−r)y−
1
2 (2x+2

√
RayTω( v−v∗

|v−v∗| )−v)2

e−
1
2 (x+2

√
RayTω( v−v∗

|v−v∗| ))2dωdrdRdydxdIdv.

Writing back in σ notation, then by means of h−1, and back to the ω notation with

omitting the term e−
1
2 v
′2−r(1−R)I∗ in the last integral, we get

‖k2‖2L2 ≤ c
∫
R3

∫
R+

∫
R3

∫
R+

∫
(0,1)2×S2

e−I∗−
1
2v

2
∗−r(1−R)

(
(v−v∗)2

4 +I
)

(1−R)2RJB2(v, v∗, I, I∗, r, R, ω)dωdrdRdI∗dv∗dIdv.

Assumption (8) on B yields

‖k2‖2L2 ≤ c
∫

(0,1)2

∫
R3

∫
R+

∫
R3

∫
R+

(1−R)2RJ
(
|v − v∗|2γ + Iγ + Iγ∗

)
(r(1− r))2β̃

(1−R)2α̃ × e−I∗−
1
2v

2
∗−r(1−R)

(
(v−v∗)2

4 +I
)
dIdvdI∗dv∗drdR

≤ c
∫

(0,1)2
r2β̃− 5

2−γ(1− r)2β̃−1R(1−R)2α̃− 3
2−γdrdR <∞.

with c > 0. We give the following remark for better understanding of the above
computations.
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Remark 1. For any a, b, c ∈ {0, γ, 2γ}, by using the spherical coordinates of (v−v∗)
we have∫

R3

∫
R+

∫
R3

∫
R+

IaIb∗|v − v∗|ce−I∗−
1
2 v

2
∗−r(1−R)

(v−v∗)2
4 −r(1−R)IdIdvdI∗dv∗

≤ C
(∫

R+

Iae−r(1−R)IdI

)(∫
R3

[ ∫
R3

|v − v∗|ce−r(1−R)
(v−v∗)2

4 dv
]
e−

1
2 v

2
∗dv∗

)
≤ C[r(1−R)]−a−1[r(1−R)]−

c+3
2 ,

for some constant C > 0.

The lemma is thus proved, which implies that K2 is a Hilbert-Schmidt operator.

Compactness of K3. The proof of the compactness of K3 (18) is very similar to that
of K2. The operator K3 which has the explicit form

K3g(v, I) =

∫
∆

e−
I∗
2
− 1

2
(1−r)(1−R)

(
(v−v∗)2

4
+I+I∗

)
e−

1
4
v2∗−

1
4

(
v+v∗

2
−
√
R( 1

4
(v−v∗)2+I+I∗)σ

)2
g
(v + v∗

2
+

√
R(

1

4
(v − v∗)2 + I + I∗)σ, r(1−R)

[1
4
(v − v∗)2 + I + I∗

])
1

(2π)
3
2

R
1
2 (1−R)B

∣∣σ − v − v∗
|v − v∗|

∣∣−1
drdRdσdI∗dv∗,

inherits the same form as K2, with a remark that the Jacobian of the transformation

h̃ : R3 × R+ 7−→ R3 × R+

(v∗, I∗) 7−→ (x, y) =
(v + v∗

2
+

√
R(

1

4
(v − v∗)2 + I + I∗)σ,

r(1−R)
[1
4
(v − v∗)2 + I + I∗

])
,

is calculated to be

J̃ =
8

r(1−R)
.

The final requirement for the kernel of K3 to be L2 integrable is∫
(0,1)2

(1− r)2β̃− 5
2−γr2β̃−1R(1−R)2α̃− 3

2−γdrdR <∞,

which holds by the change of variable r 7→ 1− r.

To this extent, the perturbation operator K is proved to be Hilbert-Schmidt, and
thus K is a bounded compact operator. As a result, the linearized operator L is a
self adjoint operator.

5. Properties of the collision frequency. We give in this section some proper-
ties of ν. The first is the coercivity property, which implies that L is a Fredholm
operator, and we prove the monotony of ν which depends on the choice of the colli-
sion cross section B. The latter property is used for locating the essential spectrum
of L.

Proposition 1 (Coercivity of ν Id). With the assumption (7), there exists c > 0
such that

ν(v, I) ≥ c(|v|γ+Iγ/2 + 1),

for any γ ≥ 0. As a result, the multiplication operator ν Id is coercive.
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Proof. The collision frequency (15) is

ν(v, I) =

∫
∆

Be−I∗− 1
2 v

2
∗ drdRdωdI∗dv∗,

where by (7) we get

ν(v, I) ≥ c
∫
S2

∫
R3

(
|v − v∗|γ+Iγ/2

)
e−

1
2 v

2
∗ dωdv∗

≥ c
(
Iγ/2 +

∫
R3

||v| − |v∗||γe−
1
2 v

2
∗ dv∗

)
,

where c is a generic constant. We consider the two cases, |v| ≥ 1 and |v| ≤ 1. If
|v| ≥ 1 we have

ν(v, I) ≥ c
(
Iγ/2 +

∫
|v∗|≤ 1

2 |v|
(|v| − |v∗|)γe−

1
2 v

2
∗ dv∗

)
≥ c
(
Iγ/2 + |v|γ

∫
|v∗|≤ 1

2

e−
1
2 v

2
∗dv∗

)
≥ c(|v|γ + Iγ/2 + 1).

For |v| ≤ 1,

ν(v, I) ≥ c
(
Iγ/2 +

∫
|v∗|≥2

(|v∗| − |v|)γe−
1
2 v

2
∗ dv∗

)
≥ c
(
Iγ/2 +

∫
|v∗|≥2

e−
1
2 v

2
∗ dv∗

)
≥ c(1 + Iγ/2 + |v|γ).

The result is thus proved. We give now the following proposition, which is a gen-
eralization of the work of Grad [17], in which he proved that the collision frequency
of monoatomic single gases is monotonic based on the choice of the collision cross
section B.

Proposition 2 (monotony of ν). Under the assumption that∫
(0,1)2×S2

(1−R)R
1
2B(|V |, I, I∗, r, R, ω)drdRdω (26)

is increasing (respectively decreasing) in |V | and I for every I∗, the collision fre-
quency ν is increasing (respectively decreasing), where |V | = |v − v∗|.

In particular, for Maxwell molecules, where B is constant in |V | and I, ν is
constant. On the other hand, for collision cross-sections of the form

B(v, v∗, I, I∗, r, R, ω) = Cϕ(r)ψ(R)
(
|v − v∗|γ + Iγ/2 + I

γ/2
∗

)
,

the integral (26) is increasing, and thus ν is increasing, where C > 0, γ ≥ 0, and ϕ
and ψ are positive functions that belong to L1((0, 1)).

In fact, if ϕ and ψ satisfy in addition (9), then this collision cross section satisfies
our main assumptions (7) and (8).
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Proof. We remark first that ν is a radial function in |v| and I. In fact, we perform
the change of variable V = v − v∗ in the integral (15), where the expression of ν
becomes

ν(|v|, I) =
1

(2π)
3
2

∫
∆

(1−R)R
1
2B(|V |, I, I∗, r, R, ω)e−

1
2 (v−V )2−I∗drdRdωdI∗dV,

(27)
where ∆ = R3×R+×S2×(0, 1)2. The integration in V in the above integral (27) is
carried in the spherical coordinates of V , with fixing one of the axes of the reference
frame along v, and therefore, the above integral will be a function of |v| and I.

The partial derivative of ν in the vi direction is

∂ν

∂vi
=

1

(2π)
3
2

∫
(1−R)R

1
2
vi − v∗i
|v − v∗|

∂B
∂|v − v∗|

(|v − v∗|, I, I∗, r, R, ω)

e−
1
2 v

2
∗−I∗drdRdωdI∗dv∗.

(28)

Perform the change of variable V = v − v∗ in (28), then

∂ν

∂vi
=

1

(2π)
3
2

∫
(1−R)R

1
2
Vi
|V |

∂B
∂|V |

(|V |, I, I∗, r, R, ω)e−
1
2 (v−V )2−I∗drdRdωdI∗dV,

and thus,

3∑
i=1

vi
∂ν

∂vi
=

1

(2π)
3
2

∫
(1−R)R

1
2
v.V

|V |
∂B
∂|V |

(|V |, I, I∗, r, R, ω) (29)

e−
1
2 (v−V )2−I∗drdRdωdI∗dV. (30)

Applying Fubini theorem, we write (29) as

3∑
i=1

vi
∂ν

∂vi
=

1

(2π)
3
2

∫ [ ∫
(1−R)R

1
2
∂B
∂|V |

(|V |, I, I∗, r, R, ω)drdRdω

]
v.V

|V |
(31)

e−
1
2 (v−V )2−I∗dI∗dV. (32)

The partial derivative of ν along I is

I
∂ν

∂I
=

1

(2π)
3
2

∫
(1−R)R

1
2 I
∂B
∂I

(|V |, I, I∗, r, R, ω)e−
1
2

(v−V )2−I∗drdRdωdI∗dV

=
1

(2π)
3
2

I

∫ [ ∫
(1−R)R

1
2
∂B
∂I

(|V |, I, I∗, r, R, ω)drdRdω
]
e−

1
2

(v−V )2−I∗dI∗dV.

(33)

When v.V > 0, the exponential in the integral (29) is greater than when v.V < 0,
and so the term v.V doesn’t affect the sign of the partial derivatives of ν. Therefore,
the sign of the partial derivative of ν along |v| has the same sign as∫

(1−R)R
1
2
∂B
∂|V |

(|V |, I, I∗, r, R, ω)drdRdω.

It’s clear as well that the partial derivative of ν with respect to I (33) has the same
sign as ∫

(1−R)R
1
2
∂B
∂I

(|V |, I, I∗, r, R, ω)drdRdω.
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As a result, for a collision cross-section B satisfying the condition that the integral∫
(0,1)2×S2

(1−R)R
1
2B(|V |, I, I∗, r, R, ω)drdRdω

is increasing (respectively decreasing) in |V | and I, the collision frequency is in-
creasing (respectively decreasing).
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[7] L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for

gaseous mixtures, Kinet. Relat. Models, 6 (2013), 137–157.

[8] J.-F. Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame, Microreversible collisions for
polyatomic gases and Boltzmann’s theorem, European J. Mech. B Fluids, 13 (1994), 237–254.

[9] S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Continuum

Mech. Thermodyn., 20 (2009), 489–508.
[10] Z. Cai and R. Li, The NRxx method for polyatomic gases, Journal of Computational Physics,

267 (2014), 63–91.

[11] L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing,
Transport Theory and Statistical Physics, 21 (1992), 259–276.

[12] L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy

law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24
(2005), 219–236.

[13] A. Ern and V. Giovangigli, Thermal conduction and thermal diffusion in dilute polyatomic
gas mixtures, Physica A, 214 (1995), 526–546.

[14] A. Ern and V. Giovangigli, The kinetic chemical equilibrium regime, Physica A, 260 (1998),

49–72.
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