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ABSTRACT. In the following work, we consider the Boltzmann equation that
models a polyatomic gas by representing the microscopic internal energy by
a continuous variable I. Under some convenient assumptions on the transition
function B, we prove that the linearized Boltzmann operator £ of this model
is a Fredholm operator. For this, we write £ as a perturbation of the collision
frequency multiplication operator, and we prove that the perturbation operator
K is compact. The result is established after inspecting the kernel form of I
and proving it to be L2 integrable over its domain using elementary arguments.

1. Introduction. This work is devoted to the study of the Fredholm property of
the linearized Boltzmann operator £ for polyatomic gases. In fact, the Fredholm
property of L is essential in the Chapman-Enskog asymptotics and has been as-
sumed for polyatomic gases in the literature, [2, 25] for instance. In contrast to
monatomic molecules, the energy in a polyatomic molecule is not totally kinetic,
but also partially internal coming from the rotation and vibration of the mole-
cule. This microscopic internal energy is mathematically integrated into the models
by being assumed to take discrete values as in [6, 25, 18, 23], or by being repre-
sented by a continuous parameter. This continuous representation was introduced
in [13] for modeling the Boltzmann equation describing polyatomic gases using the
Borgnakke-Larsen procedure [10]. Many formal results were achieved for the model
n [13]. Using [20], the Chapman-Enskog method was recently developed in [2], and
many macroscopic models of extended thermodynamics were derived [33]. In ac-
cordance with [32], two hierarchies of transfer equations for moments were obtained
in [31], in contrast to one hierarchy in the case of monatomic gases. In agreement
with the macroscopic approach [33], the procedure of maximum entropy principle
for the closure of the moments equations was applied to polyatomic gases [32, 7].

In the context of simplifying the polyatomic Boltzmann equation, the simplified
ES-BGK model has been developed [1, 14], where the return to equilibrium of the
solutions in the homogeneous case has been studied as well in [14]. In [34], an
existence result of the ES-BGK model was achieved in the case where the solution
lies close to equilibrium.
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In order to construct a quantitative theory and to obtain explicit convergence
rates to the equilibrium, explicit estimates for the spectral gap of the linearized
Boltzmann operator should be obtained. In the monatomic single gas setting, Grad
[28] proved that the linearized Boltzmann operator is a Fredholm operator for hard
potentials, by writing it as a compact perturbation of a coercive multiplication op-
erator (see also [17, 22]). Bobylev was the first to find explicit estimates for the
spectral gap for Maxwell molecules by implementing Fourier methods [8, 9]. Using
the spectral gap of Maxwell molecules, coercivity estimates for hard sphere gases
were recently established in [3], and for monatomic gases without angular cut-off in
[29]. Under certain assumptions on the collision cross-section, the following results
were achieved. For monatomic mixtures, £ was proved to be Fredholm in [12, 4].
Coercivity estimates on the spectral gap of the linearized Boltzmann operator were
obtained [19]. For a single diatomic gas, the operator £ was proved to be a Fred-
holm operator, in which K was proved to be Hilbert-Schmidt in [15] under some
assumption on the transition function. In [5], £ was proved to be Fredholm for a
single polyatomic gas with continuous internal energy using a different approach,
while in [4], discrete internal energy was considered. In [11], the compactness of K
was proved for polyatomic gases undergoing resonance. In this current work, we aim
to generalize the work [15] for a single polyatomic gas using elementary arguments.
For this, we write £ as a compact perturbation of the collision frequency multiplica-
tion operator, and we prove as well that the collision frequency v is coercive. This
implies that £ is a Fredholm operator.

The plan of the paper is as follows: In Section 2, we give a brief recall on the
collision model [13], which describes the microscopic state of polyatomic gases, and
give an equivalent formulation of the collision operator. In Section 3, we define the
linearized operator £, which is obtained by approximating the distribution function
f around the Maxwellian M. The main aim of this paper is to prove that the
linearized Boltzmann operator is a Fredholm operator, which is achieved in Section
4. In particular, we write £ as £ = K — v Id and we prove that I is compact, and v
is coercive. As a result, £ is viewed as a compact perturbation of the multiplication
operator v Id. To prove K is compact, we write K as K3 + Ko — K1, and we prove
each IC;, with i = 1,2, 3, to be a Hilbert-Schmidt operator. In Section 5, we prove
the coercivity and we give the monotonicity property of the collision frequency,
which helps to locate the essential spectrum of L.

2. The classical model. We present first the model in [13] on which our work
is mainly based. We start with physical conservation equations and proceed by
parameterizing them.

2.1. Boltzmann equation. Without loss of generality, we first assume that the
molecule mass equals unity, and we denote as usual by (v,v.), (I, ) and (v',v)),
(I',I) the pre-collisional and post-collisional velocity and internal energy pairs
respectively. In this model, the internal energies are assumed to be continuous.
The following conservation of momentum and total energy equations hold:

vt v, =0 v (1)

1 1 1 1
5\u|2+§|v*|2+1+1*:§\u’|2+§|v;|2+1’+1;. (2)
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From the above equations, we can deduce the following equation representing the
conservation of total energy in the center of mass reference frame:

1 1
Z|v—v*|2+I+I*:Z|v’—v;|2+l’+lfk:E,

with E denoting the total energy. We introduce in addition the parameter R € [0, 1]
which represents the portion allocated to the post-kinetic energy out of the total
energy, and the parameter r € [0, 1] which represents the distribution of the post
internal energy among the two interacting molecules. Namely,
1
Z|v’ — .| =RE

I'+1I.=(1-R)E,

and
I'=r(1-R)E

I=(1-r)(1-R)E.
Using the above equations, we can express the post-collisional velocities in terms of

the other quantities by the following
v =o' (v,v,,1,1,,0,R) = ° ‘;”* +VRE o

o, =vl(v,0., 1,10, R) = =2~ VRE o,

/

where 0 = h)v,%v* € S? is regarded as a parameter. In addition, we define the

vl
parameters ' € [0,1] and R’ € [0,1] for the pre-collisional terms in the same
manner as r and R. In particular

1
i|v—v*|2 =R'E
[+ =(1-R)E,

and
I=r(1-RHE

L=01-7)Y1-R)E.
Finally, for (', R') € (0,1)2, the post-collisional energies can be given in terms of
the pre-collisional energies by the following relation
,_rd—-R)
(1 —R')
7 (1-m(1-R)
T 1-r(1-R)
The Boltzmann equation for an interacting single polyatomic gas reads
OWf+v-Vof =Q(f, ), (3)

where f = f(t,z,v,I) > 0 is the distribution function, with t > 0,2 € R? v € R3,
and I > 0. The operator Q(f, f) is the quadratic Boltzmann operator [13] given as

_ e gk vt e
QNI (it~ i) *BX =0 (1=

x I°T%(1 — R)RY? dRdrdodl, dv,,

1

I..

(4)
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where @ > 0, and we use the standard notations f, = f(vs, L), f = f(v',I),
and f, = f(v},I.). Choosing the power « in the measure of the above integral is
essential for the operator K (23) to be a Hilbert-Schmidt operator (see the proof of
compactness of g on page 9).

The function B is the transition function; a function of (v, v, I, Ii,7, R,0). we
give some assumptions on B inspired from [24], which are extended from Grad’s
assumption for collision kernels of monatomic gases. In general, B is assumed to be
an almost everywhere positive function satisfying the following microreversibility
conditions

B(v,vi, I, 1,17, R, 0) = B(ve,v, I, I,1—r,R,—0),
B(v, v, I, L,7,R,0) = B, v, I', I.,v' R, o"),

y Usr by Ly

(5)

where ¢/ = |2:Z*\'
.

Remark 2.1. The expression of the collision operator @ in (4), which was intro-
duced in [13] is equivalent to the expression given in (54), in which the integration
is carried out with a measure preserving £ and G. The equivalence of these expres-
sions is shown in Appendix A.

2.2. Main assumptions on the transition function B. Throughout this paper,
¢ > 0 will denote a generic constant. Together with the above assumption (5), we
assume the following boundedness assumptions on the transition function B. In
particular, for a given v > 0 we assume

v >0, (P,Y(T,R) (|U_U*"Y+I’Y/2+LZ/2) SB(’U,’U*,I,I*,T,R,O'), (6)
and
v>0, B(vv,I,I.,rR o)< T, (rR) (|u |+ D 1:/2). (7)

For —2 — 2a < v < 0, we prove that K remains compact under the following upper
bound assumption on B
—2-2a<y<0, Bwuv,II,rR o)<V, (r,R)E"2 (8)

We assume that @, (for v > 0) and ¥, (for v > 0 or —2 —2a < v < 0), are positive
functions such that

o, <V,
and
¢, (r,R)=®,(1-7,R), ¥,(r,R)=9,(1-rR). 9)
In addition, ¥, satisfies the following
\Ilfy(r, R)(1 —r)? 177~ 1R(1 — R)®*™7 € L'((0,1)?). (10)

In fact, though assumption (10) seems to be strict, yet it covers several physical
models. In addition, one may notice that for bigger values of a or smaller values of
7, condition (10) covers a wider class of functions ¥.,.

Remark 2.2. We remark that physically, it is possible that v may only belong to
(—3,2] (as in the monatomic case). However, we prove in this paper that from a
mathematical point of view, the compactness of K is valid even under assumption
(8), where —2 — 2a < v < 0. Yet in this case, v is not coercive, which implies that
L does not satisfy the Fredholm property.
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In order to give some models of B that satisfy condition (10), we first present the
relation between the number of atoms in a molecule and the value of «, see [30].
Let D be the number of degrees of freedom in a molecule of N atoms, then « is
given in terms of D by the formula:

o=—". (11)

To relate D with N, we consider the following cases of molecules:

1. Non-vibrating molecules In this case, we distinguish between linear and
non-linear molecules. Regarding the fact that vibrations are not occurring,
a linear (respectively non-linear) molecule will always remain linear (respec-
tively non-linear) even after collisions. The number of degrees of freedom D in
this case will be the sum of the rotational and translational degrees of freedom
in R?, and will not depend on the number of atoms in the gas molecule.

e Linear molecules:
label=— translational degrees of freedom: 3
label=— rotational degrees of freedom: 2
and therefore D =5 and a = 0.

e Non-linear molecules:
label=— translational degrees of freedom: 3
label=— rotational degrees of freedom: 3
and therefore D = 6 and o = 1/2.

2. Vibrating molecules In this case, the total number of degrees of freedom
depends on N. Consider a molecule of N atoms in R3, then as long as the
shape of the molecule is deformable due to vibrations, the position of each
atom will be determined freely by 3 degrees of freedom. Thus, the total
number of degrees of freedom of the molecule of N atoms will equal to 3NV.
Hence, D = 3N and

3N -5

a=—" (12)

We notice that in this case, the fact that the molecule is linear or non-linear
doesn’t have an impact on D and a.

We now give some models that satisfy assumptions (10), which have been recently
studied in the literature (see [24, 21]).

Examples. In [24], for v € (0,2], and an angular function b(cos(#)) € L'([0,7])
the following transition function model was suggested

B(v,v L Roo)=b (o o) (v—v]"+ 12+ 1), (13)
=]
which is equivalent to the model
B(U,v*,I,I*,r,R,a)=b<a-|Z_Z*|> EV/2, (14)

In addition, the following models were suggested

V — Uy

B(v,v.,1,1.,r, R,0) =b <g ) (m/? lv— v |" + (1 —R)V2(I + 1*)”/2)

(15)

o= o]
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B(v,v.,I,I,,r,R,0) =b (o v )

o= o]

X (R’Y/Q v —v,]” (16)

+ (1= R 4 (1= )1 = RIL)?).

The above models satisfy assumptions (6),(7), (9), and (10) for a constant angular
function b, for @ > 0, and 7 < 2«. Under these constraints, the parameters « and
~ range according to the molecule state as described in the following table.

Molecule state Range of a y
vibrating a>1/2 | v< 2
not vibrating, non-linear | « =1/2 v<1

TABLE 1. Range of a and possible range of v based on the degrees
of freedom

Models (13), (15), and (16) are obtained by taking for model (13)
¢, (r,R)=¥,(r,R) =1,
for model (15)
®.(r,R) = min{R, (1 — R)}"/2, and ¥, (r, R) = max{R,1— R}"/?,
and for model (16)
@, (r, R) = min{R, (1-R)}"?min{r, (1-r)}"/2, and ¥, (r, R) = max{R,1-R}"/2,

In [21], the authors considered the class of transition functions having the ex-
pression

B(v,v.,I,I,,r,R,0) =b <a v )

o= o]

X (R”’/2 v — v, " (17)
+r (L= R 4 (1 =11 = B,

where b(cos 0) was assumed to be L! integrable while establishing the first six fields
equations, whereas b was assumed constant for the fourteen moments model.

Remark 2.3. In comparison to the result of [5], the compactness of K was proved
to be valid in [5] without such restrictions on 7, and under an assumption on B
that governs the above models suggested in [24] for v € (0,2]. Yet for proving the
Hilbert-Schmidt property of K, the restriction o > 1/4 is needed. In our approach,
the assumption « > /2 is rather needed.

3. The linearized Boltzmann operator. We state first the H-theorem for poly-
atomic gases which was initially established in [13]. In particular, the entropy
production functional satisfies

pif)= [ [ Qu.pogs araw <o,

and the following are equivalent



240 STEPHANE BRULL, MARWA SHAHINE AND PHILIPPE THIEULLEN

1. The collision operator Q(f, f) vanishes, i.e. Q(f, f)(v,I) = 0 for every v € R3
and I > 0.

2. The entropy production vanishes, i.e. D(f) = 0.

3. There exists T > 0, n > 0, and u € R? such that

n 1 2
f,I) =My ur(v,I)= @ (o £ D(eT)o 7 [0~ (/R (glo—ul*+1) (18)
where k in (18) is the Boltzmann constant. The linearization of the Boltzmann
equation of polyatomic gases could be taken around the local Maxwellian function
M, w7, which represents the equilibrium state of a gas, where n,u, and T" are the
number of molecules per unit volume, the hydrodynamic velocity, and the temper-
ature respectively. In particular,

n:/ fdldv, nu:/ / vfdldv,
R3 JR, R3 JR,
12
<a—|—5> TLIiT:/ / <|v u +I>fd[dv.
2 rs JR, 2

Without loss of generality, we will consider in the sequel a normalized version M ¢ 1,
by assuming k7' =n =1 and u = 0. For the sake of simplicity, the index will be
dropped. In particular,

and

1

M(v, 1) = Moa (D) = Gospra 1

1% 3101, (19)

We look for a solution f around M defined in (19) having the form
fo,I) = M(v, I) + MY?(v, I)g(v, ).

The linearization of the Boltzmann operator (4) around M leads to introduce the
linearized Boltzmann operator £ given as

Lg=M"2Q(M,M"?g) + Q(M"/?g, M)].

More explicitly, £ writes

Lg=M"1/? ></ [M'<M;>1/2 g MM g
N RVACSA LV LRVAV SO L SXVA FRvE
N ML(M/)1/2 g/ M*M1/2 g (20)
(L I I VIV
x (r(1—=7)*(1 — R)>**RYV2[1°1*B drdRdodl,dv,.

MM, _ M M,

Thanks to the conservation of total energy (2) we have 75 7o = = (3= > and so

L has the following form:
L(g)

1/2 3 r1/2
= —I‘“/2/A Ii%%%(r(l — %1 — R)**M'RY21°I?BdrdRdodI. dv.
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M.

_I_a
N

(r(1 —)*(1 — R)** T RY?1*I* BdrdRdodl. dv.

’ 1/2 n1/2
e /A (f'g)l/z Af;/a ((]}4’)1/2 (r(1—r)*(1 = R)***'RY?I°I? BdrdRdodI.dv,

, A4f/2 ML/2
+ra/2/a (zf(;m e ((p*))m (r(1 = )" (1 — R)*** RV I°I? BdrdRdodI.dv..

Here, A refers to the open set (0,1)%? x S?2 x R, x R3. The operator £ can be written
in the form
L=K-vlId,
where
M,
N

represents the collision frequency. We write also I as K = K3 + Ko — K7 with

v(v,[)=1"¢

(r(1 —r))*(1 = R)?*FRY2[*[*BdrdRdod ] dv,,  (21)

. M2 M*1/2
Kig =1/ 2/ s Tarr o P = 1) (1= R R [ BdrdRdodl o,
N~ R

(22)

1/2 n1/2
—« ga/k M* M « « aro
fag =1 /Z/Au/)a/g Jor3 (u/)l/a (r(1 = )*(1 = R)**RY21°[2 BdrdRdodLcb.,
i (23)

and

1/2 /\1/2
—a g' M, M* @ a oo
Kag =102 [ e i (=) (=R R 21 126 drddr .

(24)
The linearized operator £ is a symmetric operator, with kernel

1
ker £ = M'/? span{l,vl,vg,v3,§|v\2+I}. (25)
Since £ is symmetric and v Id is self-adjoint on
Dom(v 1d) = {g € L*(R®* xR,) : vg € L*(R® x R, )},

then C is symmetric. In the following section, we prove that K is a bounded
compact operator on L*(R® x R;). Hence, £ is a self-adjoint operator on Dom
(£) = Dom(v Id). In Section 5 we prove that v is coercive, and therefore, the
coercivity of v and the compactness of K, imply that £ is a Fredholm operator on
L?(R? x Ry).

4. Main result. We state the following theorem, which is the main result of the
paper.

Theorem 4.1. 1. Fory >0, and under assumptions (7),(9), and (10), the op-
erator K defined by (22)-(24) for a single polyatomic gas is a compact operator
from L2(R® x Ry) to L*(R3® x Ry.), and by assumption (6) the multiplication
operator by v is coercive. As a result, under assumptions (6),(7), (9), and
(10) the linearized Boltzmann operator L is an unbounded self-adjoint Fred-
holm operator from Dom (L) = Dom (v Id) C L*(R3 x R) to L*(R3 x R,).

2. For —2 —2a < v < 0, under assumptions (8),(9), and (10), K is a compact
operator from L2(R® x Ry) to L?(R® x R,).
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Proof. We give the proof of compactness of I for both cases of v (y > 0 and
—2—2a < 7 < 0) right after the following corollary. In addition, we prove that v is
coercive for v > 0 in Section 5. As a result, by Theorem 4.3 in [26], £ is a Fredholm
operator for v > 0 and under assumptions (6),(7), (9), and (10). O

For «v > 0, where under assumptions (7),(9), and (10) K is compact, and under
assumption (6) v is coercive, we can deduce the following corollary (see [27] in the
monatomic case and [5] in the polyatomic case).

Corollary 4.2. For v > 0, there exists C > 0 such that, for each ¢ € L?(vdvdl),
the following coercivity estimate holds

/ SL(¢)dvdI > C (¢ — Po)?v(v, Idvdl, (26)
R3xR4

R3xRy
where P is the orthogonal projection on ker L given in (25).

The proof of the corollary is similar to that in the monatomic case [27]. Therefore,
we only give the proof of Theorem 1. We carry out the proof of the coercivity of v Id
in Section 5, and we dedicate the rest of this section to the proof of the compactness
of IC.

Proof of compactness of K We will prove the compactness of each IC;, with
1 =1,2,3, separately.

Compactness of K1. The compactness of Iy is straightforward as K; already pos-
sesses a kernel form. Thus, we can inspect the operator kernel of K; (22) to be

o - a1 2a+1 pl/27a/2 7o/2
1\Uy 4y Uy L) — *
k1 (v, I, v, L) (rl—r)*“(1—-R) RYAIYL.7°B

&,
F(O[ + 1)(277)3/2 (0,1)2x 52

v 2= 0]

_1 _1p_1
X e 1 2-=21 4rdRdo,

and therefore

Kig(v,I) = / g (ve, L) k1 (v, I, 0., L) dv,dI,  V(v, 1) € R® x R,.
R3XR+

We give the following lemma that yields to the compactness of k5.

Lemma 4.3. Using assumptions (7),(8), and (10) on B, the function
ki€ L2(R?® x Ry x R® x Ry).

Proof. Applying Cauchy-Schwarz inequality we get

1

ki 22 <—/ /Ialfz 1— 2a 1_R4a+2R62X
H 1||L _F(Oé+1)(271')3/2 Roxz, Ja (T( 7”)) ( )

e~ 3l P =3P —L~I g q RdodTdvdI, dv,.

For v > 0 we use assumptions (7) and (10) to get
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k|32 < e / [OI(I + 17 + [v — v, [P)e” 31 F=3 1P =1 =T g fdud T, do,
(R4 xR3)2

L, 1|2 12
< co—|—c/ e~ zlvxl [/ ezl dy —|—/ v — v, Te 2l dv] do.
R3 [v—v,|<1 [v—v,|>1

[27]

R3 |

v—v. |21 T

[27]

<ot CZ/ o, |71~k dloel? U Ulke—élvzdv:| dv, < oo,
k=0 RS R3

where [2v] is the ceiling of 27, and ¢y is such that
c/ 19717 + I7)e~2lo P =3P =L~ q1dpd L, dv, < co. (27)
(R} xR?3)?
For —2 — 2a: < v < 0, we use assumptions (8) and (10) to obtain
|[k1]22 < c/ I°T¢(I 4 I, + o — v,|) e 210 =3P~ L=Tq1qpd T, dv,.
(R, xR3)

As v < 0, the inequality
T+ 1, + v —nv) <2172
holds. Therefore we get

||k]]72 < c/ JeH7/2 [0t 2 =50 P =3P~ L =14 14T, < oo,
(Ry)?

O

This implies that Ky is a Hilbert-Schmidt operator, and thus compact. We
now prove the compactness of Ko similarly, by proving it to be a Hilbert-Schmidt
operator.

Compactness of Ko. Additional work is required to inspect the kernel form of Ko,
since the kernel is not obvious as Iy is given explicitely as

Kag(v, I) = / (1) o/2e~ 5= ara-m (Bl ) =y = (252 4 VRE o)
A

. 1
X g (”;” —VREs,(1—-R)(1 —r)[4|v—v*|2—|—l—|—[*}>

1 « « « «
X W(r(l —7)%(1 — R)>**1RY21%/21°B drdRdodl,dv,.
(28)
We seek then to write Ky in its kernel form. For this, we define h, 1 , r,»; Where for
simplicity the index will be omitted; as

h:R3 xR, — h(R® x R,) CR® x Ry

2 4
(1-R)(1 —r)[i|u—v*|2+1+1*})7

" 1
(va, L) +— (z,y) = <U+U - \/R(|v—v*|2 + 1+ 1),
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for fixed v,I,r,R, and o. The function h is invertible, and (v, I.,v’,I’) can be
expressed in terms of (z,y) as

v, =22 +2v/Rayo —v, I. =ay—1I— (z—v++/Rayo)?,

and .
vV =x+4+2Rayo, I' = Y
—-r
where a = m. The Jacobian of =1 is computed to be
0v, 01, 8
‘ Oxdy (1-7r)(1-R)’ (29)

and the positivity of I, restricts the variation of the variables (z,y) in integral (28)
to the space

H}%’ia =h(R*xRy) = {(z,y) ER* xR, :ay — I — (x —v++/Rayo)? > 0}. (30)
In fact, H ;é:l;,o can be explicitly expressed as

Hy o ={(x,y) R’ xRy @ 2 € B,_ /mago(Vay —I) and y € (1 —r)(1 — R)I,+00)}.

Therefore, equation (28) becomes

1
K — —a/2 1— o 1—-R 2a+1R1/2la/21aBJ
* I(a+1)(2m)3/2 /(0,1)2><32/H“ Y (r(1 =)™ ) *

R,r,o

—I—(z—v+Rayo)? ”
)eiay (= 12’+ ayo) 72(17”yfi(2m+2\/R7ay07v)27i(x+2\/R7ayo)2

xg(z,y
dydzdodrdR.
(31)
Now we point out the kernel form of o and prove after by the help of assumption
(7) that the kernel of Ky is in L?(R3xR; xR3xR ). Indeed, we recall the definition
of A, with A := (0,1)? x $2 x R, x R?, and we define H%! to be

H"! .= {(R,r,0,2,y) € A : Re(0,1), r € (0,1), 0€S5% z€B,_ Tago(Vay — 1),
andy € (1 —r)(1 = R)I,+00)}.

We remark that H}%’iﬁ is a slice of H", and we define the slice
H2 L < (0,1) x (0,1) x $% such that H”' = HY'l x R* x Ry. In particular,

v, __ 2, v, I
Hy, ={(r,R,0) € (0,1) x (0,1) x S%: (y,z,0,7, R) € H""}. (32)
Then by Fubini’s theorem, it holds that
ICQQ(U, I)
1

= F(a+1)(27r)3/2 /Hv Iy_a/Q(r(l - T»Q!l_R)zaHRl/Qla/QIfBJg(xay)

—I—(z—v+VRayo)? r 2
% eiay = ave 72(1_T)yf%(2x+2\/Rayafv)27%(z+2\/Raya') dT’deO’d:Z?dy

1
" Tla+1)(2n)3/2 Y
@+ (2m)3/2 Jpaxr S 2!
ay—I—(zx—v++/Rayo)? r
e~ y—I-( 2+ Rayo) —2(177,)y—%(2m+2\/R7ayo’—v)2—%(w+2\/R7aya)2

g(z,y)drdRdodydz.

704/2(7(1 _ 7,))04(1 _ R)?orHRl/ZIoz/2IfBJ

(33)
The kernel of Ky is thus inspected and written explicitly in the following lemma.
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Lemma 4.4. Using assumptions (7),(8), and (10) on B, the kernel of Ko given by
_ 1
CT(a+ 1)(2m)3/2

I (a_ 2
_ay—I—(x 12)+\/Raya) _2(17;7‘)y_%(21‘+2 ’7Raya—v)2—%(:c+2 /Tayg)erdea'

ka0, T, 2,1) [ =) R R B
H3y

(&
15 in LQ( RSXR+XR3XR+).

Proof. Applying Cauchy-Schwarz inequality we get

k2|32 <c/ / / / / —7))2%(1 — R)** T2 RI*I?* J?B*x
R3 JRy JR3 JRy JHY:

—lay—I—(z— v+\/R7aya)] sy 1(2z+2v/Rayo—v)*— 1 (z+2v/Rayo)?
drdeadydde dv.

By means of h~! we have then

s — meeta—hitor-R (B r)
(Ry xR3)2 J(0,1) ><S2

—7(”4”’* +y/ R(Z|v—vi|24+T+1, 0) a(l _ T)a(l _ R)3a+2RIaIEQJBQ (34)
drdRdodl.dv.dIdwv.
Using the inequality

1 o
I* < (4|v —v]? + I+I*) = E7, (35)

we eliminate £~% and I® from the above integral. Furthermore, if v > 0, we use
assumption (7) on B together with the inequality
v — v > + 17 + I} < cE7, (36)

and if —2 — 2a < v < 0, we use assumption (8). In both cases we get

2 oIk lvaP=r(1- Ry (L=l yr41.)
k272 <c ) i )
(0,1)252 J (R4 xR3)?

X e’E(“H* VR [v—ve P+ ") (37)
w2 (r, R)E’Yrm(l —7)%(1 — R)** "2 JRI?*dIdvdl,dv.drd Rdo.

We remark that choosing « to be the power of the measure of integral (4), is essential
for eliminating I* from (34), which is not integrable. This elimination is possible
thanks to (35). Perform now the change of variable I — E = I + I, + |v — v,|?,
then as dI = dF, (37) becomes

k|l < c/ / oL PR B (2 4 VRE)
(0,1)2x52 J(R, xR3)2

U2 (r, R)r**(1 —r)* ' (1 — R)***' RI}* E"dEdvdl,dv.drdRdo

:c/ / / oLl or(-R)E [/ / (454 VRE) gy
0,1)2 Jr3 J (R, )2 g2 Jgs

x U2 (r, R)r®*(1 — r)*~1(1 — R)***' RI?* EYdEdL.dv,drdR.

(38)
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Let V = 5+ % + VREo. Performing this change of variable in v, we get

I B N A e Y T
0,1)2 JrRe J(R )2 R3 J 52 (39)

x U2 (r, R)r**(1 = r)*~'(1 — R)***'RI?* E"dEdI,dv,drdR.

Therefore the integral in (39) becomes

kel < [
(0,1)2

< c/ U2 (r, R)yr**'"7(1 = r)* 'R(1 — R)**7drdR.
(0,1)?

2 2a a—1 3a+1
U2(r, R)yr**(1—r)* " '(1 = R)***'RdrdR

/ E'yefr(lfR)EdE
Ry

(40)
By (10), the integral
2 2a—1— a—1 3a—
/(0 b W (r, R)r (1 —=r)*""R(1 - R)** 7drdR < cc. (41)
This implies that Ko is a Hilbert-Schmidt operator. O

Compactness of K3. The proof of the compactness of K3 (24) is similar to that of
Ko. The operator K3 which has the explicit form

2
Ragle, ) = [ o8 H0mn0om(gtern) e (e Vi)
A

(1) ("5 + VREo, (1 - R)E) x

W“(l —r)%(1 — R)>**F1RY2[%/2[*B drdRdodI.dv,,
(6% s

inherits the same form as Ko, with a remark that the Jacobian of the needed trans-
formation

h:R3 xRy — R3 xR,

U+ Uy
2

r(l—R)E|v—v*|2+I+I*D,

1
(v*,I*)»—>(m,y):( +\/R(4|v—v*|2+l+l*)a,

is calculated to be
8

J=
r(1—R)
For the kernel of K3 to be L? integrable, the final computations require
2 20—1—vy, . a—1 3a— 1 2
v (r, R)(1—r) Tr*7 R(1—R)>*™Y e L' ((0,1)%). (42)

Applying the change of variable r — 1 —r, and using the symmetry assumption (9)
of ¥, (42) is satisfied by (10).

To this extent, the perturbation operator K is proved to be Hilbert-Schmidt, and
thus K is a compact operator.
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5. Properties of the collision frequency. In this section, we give some proper-
ties of v. The first is the coercivity property, which implies that £ is a Fredholm
operator, and we prove the monotonicity of v which depends on the choice of the
transition function B. The latter property is usually used in the monatomic case
for locating the essential spectrum of £ (see [16] Chapter 4).

Proposition 5.1 (Coercivity of v Id). With the assumption (6), there exists ¢ > 0
such that
v(v, 1) > e(|o]" + 12 + 1),
for any v > 0. As a result, the multiplication operator v 1d is coercive.
Proof. The collision frequency (21) is
1 1,12
I — BIQ 1 - « 1 7R 2&+1R1/2 71*7§|’U*‘
V0. ]) = [ B =) (= R R
drdRdodl.dv,,

where by (6) we get

V(’U,I) > c/ (|1} — U*|V +I’y/2) 67%|v*|2 dv.
R3

> C([W/Q +/ Ilv| — |v*\|767%‘”*|2 duk),
R3

where ¢ is a generic constant. We consider the two cases, [v| > 1 and |v] < 1. If
|v| > 1 we have

v(v,I) > 0(17/2+/

|v*|S%‘U|

ZC(IW/Q_HUP/ e—%\v*lzdv*)
|

v.l<4

2
(lo] = |oa])7e 2] du*)

> ejo]Y + 1772 +1).
For |v| <1,

(v, I) > c(I’W +/

[vi|>2

C(Iv/2 _|_/ e 5lvel? dv*>
[vi|>2

> (14172 + ).

2
(o] = o) e 311 do, )

Y

O

As a result of Theorem 1 and Proposition 4, £ is a Fredholm operator for v > 0
under assumptions (6),(7), (9), and (10). We now give the following proposition,
which is a generalization of the work of Grad [28], in which he proved that the
collision frequency of monatomic single gases is monotonic based on the choice of
the transition function B.

Proposition 5.2 (monotonicity of v). Under the assumption that
/ (r(1 —7r)*(1 — R)>* RYV2B(|V|,I,I.,r, R, 0)drdRdo (43)
(0,1)2x 52

is increasing (respectively decreasing) in |V| and I for every I., the collision fre-
quency v is increasing (respectively decreasing), where |V| = |v — vy].
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Remark 5.3. If B is increasing (respectively decreasing) in |V| and I, then (43) is
increasing (respectively decreasing) in |V| and I.

In particular, for Maxwell molecules, where B is constant in |V| and I, v is
constant. On the other hand, for transition functions of the form

B(U7U*7Ia I*,T, Ra G) = (I)’Y(ra R) (|U - IU*|’Y + I,Y/Q + 11/2)7

integral (43) is increasing, and thus v is increasing, v > 0, and ®, is a positive
function such that

0, (r, R) = ®,(1 -1, R),
and
O, (r, R)(r(1 —r))*RY2(1 — R)?>*T! € L'((0,1)?).
In fact, if ., for instance satisfies
@2 (r, R)r* 1 (1 = r)** " 7R(1 — R)**7 € L'((0,1)?)
then this transition function satisfies our main assumptions (6)-(10).

Proof. We remark first that v is a radial function in |v| and I. In fact, we perform
the change of variable V' = v — v, in the integral (21), where the expression of v
becomes

1
[(a+1)(27)3/2
e~ 2l=VI~1 qrdRdodL.aV,

v(jol 1) = /A BV, 1, I.r, R, o) I (r(1 — r))*(1 — R)**F RV

(44)
where A = R3 xR, x §2 x (0,1)2. The integration in V in the above integral (44) is
carried in the spherical coordinates of V', with fixing one of the axes of the reference
frame along v, and therefore, the above integral will be a function of |v| and I.

The partial derivative of v in the v; direction is

v _/ I¢(r(1 —7))*(1 — R)***T1RY2 v; — v, "
A

, 3/2 —
ov; o T(a+1)(27) |[v — vyl (45)
— = (v —wv,|,I,I,,7, R, o) 21"~ qrd Rdod I, dv,.
v — v
Perform the change of variable V' = v — v, in (45), then
o _oN\a(1 _ p\2a+lpl/2 1
v :/ I¢(r(l—r)*(1—-R) RY*V; 0B (VI 1,17, R,0)
ov; A (o +1)(27)3/2 V] 0|V|
e~ 2=V -L qrdRdodI,dV,
and thus,
3
Io 1— a1l — 20+1p1/2 , .
S0 :/ ) (A= RPR2 0V OB g
20 " s Tatnend VI avi (46)

e~ 31"V ~L-4rdRdodI,dV.
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Applying Fubini’s theorem, we write (46) as
3

Zviﬁ :/ [/ (r(1 —r)*(1—R**HRY2x
i1 Ov; Ry xR3 [ J(0,1)2x52
oB Ie vV
VI,1,I,,r, R,o)drdRd x
gy VI L Leor Ry o)dr ITlat D)2 V]~

e 3lvVIP-Lqrqv.
The partial derivative of v along I is
o _ [ Lt nr R)+1RV2 015
ol A (o + 1)(27)3/2 ol
e 31"Vl qrd Rdod LAV

IO(
- NPT 1— N1 = R)2e+IRL/2%
/R+ wr3 (a4 1)(2m)3/2 [/(071)“32 (r(1—r)*( )

oB

ar
When v-V > 0, the exponential in integral (46) is greater than when v-V < 0, and
so the term v - V doesn’t affect the sign of the partial derivatives of v. Therefore,
the sign of the partial derivative of v along |v| has the same sign as

(IVI, 1, 1,m, R, 0) X

(\V|.I,1,,r,R, a)drdea] e"3=VI-Lgr qv.

oB
/ (r(1 —r))*(1 — R)**H'RY2_—(|V|,1,1,,r, R,o)drdRdo.
(0,1)2x 52 o|V|
It’s clear as well that the partial derivative of v with respect to I (47) has the same
sign as

oB
/ (r(1 —7)*(1 — R)>**'RYV2—(|V|,I,I.,r, R,0)drdRdo.
(071)2 x S2 3[
As a result, for a transition function B satisfying the condition that the integral
/ (r(1 —r))*(1 — R)>*HRY2B(|V|,I,1,,7,R,0)drdRdo
(0,1)2x 52

is increasing (respectively decreasing) in |V| and I, the collision frequency is in-
creasing (respectively decreasing). O

6. Conclusion. With what proceeds, we conclude that for v > 0, and under as-
sumptions (7),(9), and (10), the operator K for a single polyatomic gas is a compact
operator, and by assumption (6) the multiplication operator by v is coercive. As a
result, the linearized Boltzmann operator £ is an unbounded self-adjoint Fredholm
operator. For —2 — 2a < v < 0, under assumptions (8),(9), and (10), we conclude
that X remains a compact operator.

In comparison with the monatomic case, if the w- parameterization is used, one
can notice that the change of variable maps v, — v, and v, — v are not invertible
for monatomic molecules, and therefore, it is not possible to respectively apply these
changes of variables in the linearized Boltzmann operators Ky and K3 in order to
extract the kernel. That is why in the literature, when the w- representation has
been used, Ky and K3 were written in the Carleman representation in order to
extract the kernel of K. However, the extracted kernels are not L? integrable.
Nevertheless, if the o— representation is used in the monatomic case, the maps
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v, > v, and v, — v are invertible, and the Hilbert-Schmidt property can be proved
to be valid by the same approach, yet also under a stricter assumption on the
collision cross-section (10).

In the polyatomic case, the change of variable maps (v.,I.) — (vl,I.) and
(vi, L) — (v', I') are both invertible with Jacobians (1_T)1(1_R) and r(ll—R) respec-

tively (see (29)). In order to prove the L? compactness of the kernel, the singularities
coming from these Jacobians should be overcome by imposing further constraints
on the transition function B. From the expressions of these Jacobians, the con-
straints should be obviously set on the generic function ¥, (r, R), which is in the
upper bound of B. In particular, the assumptions needed are (9) and (10).

Appendix A. Appendix. We display the equivalence of the collision operator
form (4) to the form (54), where in the latter, the preserved quantities E and G
appear in the Lebesgue measure. The derivation of this formulation is a result of
subsequent changes of variables, see (48). The final result sought is the Jacobian of

the following map:
T:ROxRY x (0,1)? x S > RO x RY x R® x Ry (1)
(070*717]*77171%70’) = (U7G7E7[7U,7]/)7

where g = v — v, and G = . For this transformation, the following Jacobians

are elementary:

Vv,
2

Jwwa LI 7, R,0)—(9,G, I, T, Ryo) = L
and

J(9,G, 1,17, R0 (9,G, 1 E,r,R) = 1 (49)
Equation (49) is due to the fact that only E is a function of I,. What remains

in deducing the Jacobian of 7 is calculating the Jacobian of the transformation
(9,G,1,E,r,R,0) — (v,G,I,E,v',T'). As an intermediate step we define

A=VRE, pu=r(l-R),
which induces the Jacobian

L(0-R) &

Jig.a = -
9,G,L,E,r,R,0)—(g,G,I,E,\u,0) 2 VR
R

Thus the final sub-transformation is (g, G, I, E,\, u,0) — (v, G, I, E,v',I'), where
specifically,
v =G+ Xo, and I =pkFE. (50)
It’s clear that
J(9,.G.1, B2 1,0~ (9,6, LLENT o) = E
and for v we have

J(g.GLENT o) (9.0, B0 1) = A = RE, (51)

since (A, o) is the spherical representation of v/ — G. As v = %g + G, then the

Jacobian )
J(g,G 1, B! Iy (0,G L E 0 ') = 3 (52)

Finally, combining the preceding transformations, the Jacobian of T is

1
Jr = 175}%1/2(1 — R)E®2, (53)
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In other words,
1
dvdGAIdEdv'dI’ = TaRl/Q(l — R)E®?dvdv,dIdI.drdRdo.

The equivalent model of (4), based on the above computations is therefore

_ f'fi f1 - -
Qf, (v, I) = /(]R3><R+)2 ((I’I;)“ - (H*)a> W, I,v',I' G, E) dGdE dv'dI’,
(54)

where
W(v,I,v',I',G,E) = 16(I'[.I1)*E~3"2*B(v,v,,1,1,,r, R, o), (55)

where I, = I.(v,I,G,E), I, = I.(v',I',G, E), v, = v, (G,V), v. = v.(G,v), 0 =
oc(v',G), R=R(W,E,G),and r =r(I',v', E,G).

Moreover, W in (55) is clearly microreversible, and the measure dEdGdvdIdv'dl’
is invariant if time is reversed.

Use of AI tools declaration. The authors declare they have not used Artificial
Intelligence (AI) tools in the creation of this article.
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