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Abstract We consider the set of maps € Foy+ = Ug-oC1# of the circle which are
covering maps of degreB, expanding, mip.s1 f'(x) > 1 and orientation preserving.
We are interested in characterizing the set of such nfaplsich admit a uniqu¢ -invariant
probability measurg. minimizing [ In f” du over all f-invariant probability measures.
We show there exists a sét. ¢ F,, open and dense in thg+*-topology, admitting a
unigque minimizing measure supported on a periodic orbit. We also show thfaadmits
a minimizing measure not supported on a finite set of periodic points, fhisra limit in
theC't“-topology of maps admitting a unique minimizing measure supported on a strictly
ergodic set of positive topological entropy.

We use in an essential way a sub-cohomological equation to produce the perturbation.
In the context of Lagrangian systems, the analogous equation was introduced bpdR. Ma™
and A. Fathi extended it to the all configuration space3jn [

We will also present some results on the setfeinvariant measureg maximizing
[ Adufora fixedC1-expanding mag and a general potential, not necessarily equal to

—In .

1. Introduction
We consider the spacg, of C1** maps of the circlef : ST — ST (wherea < 1) which
are covering maps of degrég orientation-preserving and expanding:

A(f) = min f/(x) > 1.
xest

We denote by I, (A4) thea-Holder constant of a function : ST — R,

{IA(X)—A(y)I}

Hol, (A) = sup TERSE

O<d(x,y)<m
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by ||A|lo the uniform norm and by{A ||, thex-Holder norm ofA,
[Alle = HOly(A) + [|Allo.

We noteC?, the set otx-Holder functions, and® ™, the setUs-,C? equipped with the&®
topology. The set of*™* maps of the circle is endowed with the distance

dif.9)=1f—-glo+Ilf — &l

where f, g denote the covering maps ¢f g to R fixing zero. The spacé't® becomes a
complete space anf, an open set af1**. We denote byF,, the setUg.qFp equipped
with theC1t®-topology. AlthoughC? maps are dense @t for theC1-topology, the closure
of C** for theC*-topology is strictly included ir€®.

Definition 1. Let IC(f) be the set off -invariant probability measures,

J(f) = inf{exp(/lnf’dv)

M(f) = {u e K(f) ‘ /In Fdu = an(f)}.

ve/C(f)}

A measure inM(f) is called aLyapunov minimizing measure

The purpose of this paper is to show the following theorem. We recall first that a
compact invariant set is said to Berictly ergodicif it is minimal and uniquely ergodic
or, equivalently, if it is uniquely ergodic and the support of the unique invariant measure is
equal to the compact set itself.

THEOREM2. Leta < 1.

(i) The setG; of mapsf in F,+ having a unique Lyapunov minimizing measure
supported on a periodic orbit and satisfying the property of continuously varying
support is open and densef, .

(i) If f € Fqut has a Lyapunov minimizing measure not supported on a finite set of
periodic points, thery is a limit in theC1**-topology of mapsf, ) in . admitting
a unique Lyapunov minimizing measwg such thatf, restricted tosuppi,) is
strictly ergodic and has positive topological entropy.

The property of continuously varying support was first introduced byévim™the
Lagrangian setting. It can be formulated in our setting in the following way.

Definition 3. Supposef € F, admits a unique Lyapunov minimizing measure\WWe say
that f satisfies theroperty of continuously varying suppaft for any sequencéf,) of

F, converging tof in theCt®-topology, for any Lyapunov minimizing measures for

fa, the sequencéu,) converges tqu in the weak topology and the sequence of compact
sets(supfu,)) converges to sugp) in the Hausdorff topology.

The problem we consider here is in some sense analogous (although we do not consider
the homological position) to the problems considered in Aubry—Mather theorygseg)|
for Lagrangian flows. A recent result of Mé&Tsee 1§ and also b, 6]) on Lagrangian
flows shows that generically on the Lagrangian there is a unique measure minimizing
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action. The main difference of these results to our setting is that the minimization in our
theorem is among invariant probabilities and iniid&theorem the minimization can be
done among a fixed subset of probability measures (not necessarily invariant) independent
of L. Therefore, in the setting considered here, if we change the map, the set of invariant
probabilities will also change and this is one of the main differences fit8htp our
proof. The above theorem is the analogous result for the setting of expanding maps of
a conjecture for Lagrangians proposed byridan [18, 19. Ott also proposed a related
conjecture (seelp)). In the Lagrangian case, the conjecture whether, generically on the
Lagrangian, the unique maximizing measure is supported on a periodic orbit is still open.
Lyapunov minimizing measures have been previously considereti2syip, 22

In our setting, the seM (f) may not be reduced to a single probability measure and
the more pathological case is whenflhis cohomologous to a constantlin that is, when
there exists a positive function : S — R such thatf’ = D(h o f/h). In that case,
J(f) = D and any invariant measure is minimizing. See Proposition 28 for equivalent
properties for Inf’ to be cohomologous to a constant. Neverthelesg, &lways satisfies a
sub-cohomological equation which is one of the key ingredients of the proof of Theorem 2.

THEOREM4. Forany f € Fy, there exists a-Holder functionx : ST — 10, 1] such that
f' = J(f)(h o f/h) everywhere o5t and f' = J(f)(h o f/k) on the support of any
Lyapunov minimizing measures.

The proof of Theorem 2 depends actually on similar statements whésdixed and
A = —log f’ varies among all Hider functions with zero pressure. We therefore develop
in 82 a theory for maximizing a general potentia{not necessarily of zero pressure).

Definition 5. For anyC*-expanding mag and any Hbider function defined os?, A :
s - R, we call

m(A,f):SUp{/Adv

ve/C(f)}

M(A,f)={ME/C(f)‘/AdM=m(A,f)}-

Any measure inM (A, f) will be called amaximizing measur®r (A, f).

As usual, a set is said to lgenericif it contains a countable intersection of open and
dense sets.

THEOREMG. Let f be aCl-expanding map and > 0. Then the set o&-Holder
functionsA admitting a unique maximizing measure far, 1) is generic inC%. For such
functionsA, the mapf is strictly ergodic on the support of its unique maximizing measure.

If AisCP?and has a unique maximizing measureif (A,) converges ta in the C°-
topology andu,, is chosen inM(A,,, f) for all n, then(u,) converges tq: in the weak
topology (see step one in the proof of Proposition 16). In the following definition we ask a
stronger property.

Definition 7. Let f be aCl-expanding map and let be ax-Holder function admitting a
unique maximizing measune. We sayA satisfies the property of continuously varying
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support if, for any sequena&,,) of a-Holder functions converging td in the «-Holder
topology and for any measuye, chosen inM(A4A,, f), the sequence of measurgs,)
converges weakly tee and the sequence of its compact supp@tppu,) converges to
suppu in the Hausdorff topology.

In the case when the uniqgue maximizing measuris supported by a single orbit,
because the mafis expanding, the property of continuously varying support is equivalent
to saying there exists a neighborhdéaf A in theC*-topology such that, for alB in U,
M(B, ) = M(A, [) = {u}.

THEOREMS. Let f be aC!-expanding map.

(i) The set ofA € C* having a unigue maximizing measurg satisfying the property
of continuously varying support is genericG.

(i) The seG of A € C* having a unigue maximizing measure supported on a periodic
orbit and satisfying the property of continuously varying support is opeffiand
G+ = GNC*" is open and dense itF+.

(i) Let A e C** be fixed. IfM(A, f) contains a maximizing measure which is
not supported on a finite set of periodic points then there exists a sequ8pre
converging toA in the C*-topology such that eacl®, has a unique maximizing
measure supported on a strictly ergodic invariant compact set of positive entropy
and satisfying the property of continuously varying support.

As before, the main tool to prove Theorem 8 is the following sub-cohomological
equation. For a generalization to smooth Anosov diffeomorphisms28ke [

THEOREM. Let f be aCl-expanding map and e C*. Then there exist¥ € C* such
thatA < Vo f — V 4+ m(A, f). In particular, A is cohomologous te:(A, f) on the
support of any maximizing measwes M(A, f),thatis,A=Vo f —V +m(A, f)on
the support ofu.

The functionV should be called sub-action in analogy with Lagrangian mechanics,
KAM theory and with B], because it corresponds, for the discrete time version, to a sub-
solution of the Hamilton—Jacobi equation:

1
S((D) = S (0) s/o Ldi—E,

whereL is the Lagrangian restricted ja(r), ¢t € (0, 1), andE is the energy. The function

A plays the role of the Lagrangiam,(A, f) plays the role of energy; plays the role of

the flow and the inequality is inverted because we are maximizing and not minimizing.
The strategy of the proof of the above results is the following. In 82 we prove

Theorems 6, 8 and 9 for a fixed expanding mgps& Fo. We then transfer in 83 the

above properties to prove Theorems 2 and 4 for varying functjfan$n that case, the

potentialA is linked to the function by the formula = —log f” and the thermodynamic

formalism is used. Analogous results hold for topologically mixing one-sided sub-shifts of

finite type in D-symbols and by means of a Markov patrtition to general mixing expanding

maps on a compact set (sek for the construction of such a Markov partition).
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2. Maximizing measures fordlider potentials
We begin by proving that, generically, there exists a uniqgue maximizing measure.
This comes mainly from the fact that, for a compact convex sé&n among the set
of hyperplanes which support the convex set, the set of those hyperplanes having an
intersection reduced to a single point is generic. Nonetheless, the proof has to be carried
in infinite dimension and requires more details.

We first recall some definitions. We say that a pgirng an extremal point of a compact
convex seC of R" if p is not the mid point of a segment totally includedinWe say that
p is strictly extremal if there exists a linear form which attains its maximum at the point
p only. A classical result (se@]]) states that is equal to the closed convex hull of its
strictly extremal points. Theorem 6 is a direct consequence of the one WherdC(f)
andH = C“.

PrROPOSITION10. LetX be a compact convex subset of the set of probability measures on
stand(H, | - |l%) be a dense Banach spacedf(s?, R) which embeds continuously in
C%(s1, R). Then there exists a residual setin H (for the || - |+-topology) such that, for

all AeR,if

def

M) % {Me/c /Aduzm(A)} and m(A) ":efmax{/Adu‘ue/c}

then M (A) contains a unique measure.

Proof. Let {H,},~1 be a dense subset of the unit ballf¢f SinceH is dense

def 1
d(e, 1) E Zﬁ /Hndﬂ_/Hndﬂ/‘

n>1
defines a metric ofC compatible with the weak topology. Let us call

Re LA € €05, R) | diamM(A) < e).

We claim thatR. is open inc%(s1, R) andR. N H is dense irf{ for the|| - ||-topology.
The desired residual set will fé = N.R. N H.

We show by contradiction tha. is open. If not, one can find in R, B, in CO(S1, R)
and(u,, v,) in M (A + B,,) such that| B, ||o convergesto zero ant{u,, v,) > € forall n.
We may assume by taking a subsequence(hat and(v,) converge tqx andv. Let us
prove thatu € M(A): indeed for everys € IC,

/(A+Bn>dus/<A+Bn)dun S/AdunJr 1Bullo

and[ Adu < [ Adp by taking the limit om. For the same reasanbelongs taM (A).
We have obtained a contradiction sinbg:, v) > €.

We now show thatR. N H is dense inH. Let Ag € H andKg = M(Ap).
The continuous projections, : K — R", m, (1) = ([ Hidu, ..., [ Hydr) sendsko
to a compact convex set, (o) which admits a strictly extremal poimp,. We first notice
that diamn,;l(p,,) < 27" and we choose large enough so that2 < ¢. By definition of
pn = (pL, ..., p") there existgal, ..., a") € R” such that

n n
Za’pl >Za’q' Vq=(q1,--.,q")€ﬂn(K0), q#P-
i=1 i=1
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In particular, if Ay = Y1, a' H;, mo(A1) = max{ [ A1du | n € Ko} and

Mo(Ap) & {u e Ko

/Aldﬂ = mo(Al)},

then Mp(Ay) = n;l(p,,) has diameter less than We show that, for small enough
{>0,Ar = (1-¢)Ao+ ¢A1 € Re. More precisely we show that, for any open set
U D Mo(Ay), for any¢ sufficiently small M (A;) C U. By contradiction, there exists
a sequencg, € M(A;,) \ U for someg, converging to zero. We may assume that)
convergestq € K\ U. We first show thafi € Ko = M(Ap): for everyu € KC,

and by taking a limitim, [ Agdun < [ Aodjr. We then show thai belongs taMg(A1):
for everyu € Ko,

/A;,l dﬂ=(1—§n)/AodM+§n/A1dﬂ
=< (1_§n)/A0dH«n+§n/Ald,U«n'

Since [ Aodu, < [ Aodu, we have obtained' A1du < [ Aidu, and at the limit
[ Ardu < [ A1dji. We have obtained a contradiction sincez U. a

We now prove the cocycle Theorem 9. We show thatAnyC® is sub-cohomologous
to a constantn(A, f) with a unique minimal coboundary,. The main tool is the
shadowing lemma. We say that two pointsand y belong to the same inverse branch
of lengthr if there exists a close intervdl containingx and y such thatf” restricted
to int(1) is one-to-one ang™ (1) = S*. Theorem 9 is strongly related to Theorem B of
Marié [17]. Our result is in some sense stronger since we obtain a sub-coboundary defined
everywhere (this fact is crucial in the following) whereasri@aproof gives a coboundary
defined only on the support of the maximizing measure.

PROPOSITION11. Let f be aCl-expanding map and e C®. Then there exists a unique

minimal non-negative-Holder functionVy4 : $1 — R such that:

() A<Viof—Vat+m(A,f)onsh

(i) for any non-negative functiow : S — R (not necessarily Blder) satisfying
A<Wo f—W+m(A, f)onSt we haveV, < W on St

Moreover,Hol, (V4) < HOl,(A)/(A* — 1) andA = V40 f — V4 +m(A, f) everywhere

onsupp ) of any maximizing measurefor (A, f).

Proof. We may assumez(A, f) = 0. We recall thatS, A denotes the Birkhoff sum
"_3 Ao fXandthats, A = 0 whenn = 0. Let us define

Va(x) = supS,A(y) | n = 0andf"(y) = x}.

We show thatV, is well defined. On the one hand, for any periodic pgirdgf periodn,
S,A(p) < 0. On the other hand, for any > 0 and anyy € S* there exists a periodic
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point p in the same inverse branch of lengtlasy such thatf” (p) = p. Moreover, ifN
is large enoughiV > 2, forallk < n — N, d(f*(y), f*(p)) < 3 and

Hol, (A)
A% —1
We now show thaV/, is a-Holder. If f*(y) = x, f"(y’) = x’ andy andy’ are in the same
inverse branch of length, if d(x, x’) < % then

1SnA(y) — SpA(p)| = + 2N ||Allo.

Hol, (A
1140 — 1 AGN! = D a e, e
and, by taking the supremum oveandn, we finally obtain
Hol, (A
Va) = VaG) < o) e wye,

A —1

By definition of V4, we haveV4 o f > A + V4 on SL. If W is non-negative and
satisfiesW o f > A + W on §%, then for everyn > 0, (x, y) such thatf"(y) = x,
W(x) > S,A(y) + W(y) and thereforé¥ (x) > V4(x). If u is a maximizing measure,
J(Vao f—Vs—A)dp=0andVso f — V4 = A on supgp). O

Remark 12.We collect here alternative proofs of the existence of a sub-coboundary.
(i)  Ifwe choose in Proposition 11 the following definition B :
Va(x) = lim sup sup {ScA(y) —km(A, f)},
"0 ken fh(y)=x
we again obtain a sub-coboundary which satisfies in addition the functional equation
considered by Bouscl?] and Fathi B]:

Vxe st Ta) = max (A —m(A, )+ Va)h

In particular 0 = 2), for any opposite points, x’ (i.e. f(x) = f(x)), one of them
belongs to the set = {A — m(A, f) = V4o f — Va}. T has therefore always a
non-empty interior and € 4 = x’ € .
A second way to prove the existence of a sub-coboundary is to use Proposition 23(iii)
where we define an action potentidli(x, y). A third way is to use the
thermodynamic formalism: see Proposition 29(iii).

(i) If A is not equal to a coboundary modulo a constant then the sethbblder
functionsW which are solutions oA < Wo f — W 4+ m(A, f) is always a large
set. IndeedleR = Vpo f — V4 —A+m(A, fand1l>ap > a1--- > o, > 0,
a-Holder functions, then

W =Va+ (@R)+ (@1R)o f+ -+ (yR) o f"

is such a solution.

(iif) Proposition 11 shows that, in the case whdnadmits a unique maximizing
measureu, f is uniquely ergodic on sugp). This follows from the fact that any
measure» with support contained in the support pfsatisfies/ A dv = m(A, f).
A maximizing measure foA may not be unique: for instance, wharis of the form
A =m+ Vo f—V,anyinvariant measure is maximizing.
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In order to prove the property of continuously varying support, we introduce a
vocabulary close to what is used in the setting of Lagrangian flows.

Definition 13. Let A be a continuous function amd = m (A, f).
(i) Afunction W is called asub-actiorfor (A, f) if it satisfies the inequalitt — m <
W o f — W everywhere. We then call the set

Saw={xeSAx)—m=Wo f(x) — W)}

the W-actionset (we could have called it the Magset).
(i) If Wisasub-action angk, y) is a pair of points of§, we say that the pointa, y)

are W-connectedand we writex > y if, for everye > 0, there exist € S* and
n > 1lsuchthati(z,x) <€, f*(z) = y and

[S, (A —m)(z) — (W(y) — WX))| < e.

We say thatx, y) are W-equivalentf x L y andy L
(iii) A point x € S1is said to be non-wandering with respectt, f) if, for anye > 0,
there exist € S andn > 1 such that

d(z,x) <e, f"(2)=x and [S,(A—m)(2)| <e.

We denote byQ2 (A, f) the set of non-wandering points with respect(to, f).
We will see shortly thaf2 (A, f) is not empty.

(iv) If W is a sub-action, a compact invariant gét(i.e. f(K) = K) is said to be
W-irreducibleif any two points(x, y) of K areW-equivalent.

We first give elementary properties. The main tool is the standard shadowing lemma.
We recall that, for a complete orbit= (x,),cz in S (f (x,) = x,41 foralln € Z), w(x)
denotes the compact invariant set of accumulation points, 0% >0 and«(x) the compact
invariant set of accumulation points @f_,),>o. We also recall that asrpseudo orbit with
M jumps fromx to y is a finite sequence of poin{sg. .. x,} such thateg = x, x, = y,
d(f(xp), xk+1) < € forall 0 < k < n, and the cardinality of the set of indices0k < n
satisfying f (xx) # xx+1 is bounded by

LEMMA 14. Let W be a Hlder sub-action.
(i) Let(x, y) be a pair of points and/ > 0 an integer. Then L y if and only if, for
everye > 0, there exists &-pseudo orbit with at mos¥ jumps fromx to y such

that
n—1

Z(A —m(A, f)x) = (W) = Wk))| <e.
k=0

() 1fx% yandy % zthenx % 2.

(i)  Any W-irreducible compact invariant seX is included inQ2 (A, f).

(iv) If x = (xn)nez is @ complete orbit in théV-action set, therw(x) and w(x) are
compact invariantW-irreducible sets and therefore belong (A, f). For any

w oW
acalx)andw € w(x), o > x —> .
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The main ingredients for proving Theorem 8 are given by the following two
propositions. Proposition 15(ii) shows in particular tteft(A, f) is equal to the set of
all invariant measures whose support stayQ s, f).

PROPOSITION15. Let A be a Hblder function. Then:

(i) (A, f) is a compact invariant set included in th#-action set of any continuous
sub-actionW'.

(i) For any invariant measurg., © € M(A, f) if and only if suppp) C Q(A, f).
In particular, (A, f) admits a unique maximizing measure, if and onlifA, f) is
uniquely ergodic. Ifu is an ergodic maximizing measuspg ) is W-irreducible
for any continuous sub-actioW.

(i) If Q(A, f)is W-irreducible for some ldlder sub-actiorW, thenQ2 (A, f) contains
all compact invariant sets included in tfi#-action set.

(iv) If (A, f) admits a unigue maximizing measure, tie(A, f) is W-irreducible for
any Holder sub-actioriv.

Proof. Part (i). If (x;)i>0 is a sequence of points d2(A, f) converging tox and
€ > 0, thend(x;, x) < %e for somei and there exisy;, n > 0 such that/(y;, x;) <
le, d(f"(y),xi) < 3e and[S,(A — m(A, f)(3)| < e. Thend(y,x) < e and
d(f"(yi), x) < €. We have prove® (A, f) is closed.

Let x be a point of2(A, f) ande > 0. We choose, using the continuity gfand A,
n > 0 so thatf(B(x,n)) C B(f(x), ¢) and the oscillation oA on B(x, n) is bounded
by €. Then there exisy andn > 0 such thatd(y,x) < n, d(f"(y),x) < n and
S, (A — m(A, f))(¥)| < €. Using the definition of;, we obtaind(f(y), f(x)) < e,
d(f"*H(y), f(x)) < e and

1Sa (A —m(A, fNf D= 1S (A —m(A, ) — (A= Ao ()] < 2.

We have proved (Q(A, f)) C Q(A, f).

If x" € Q(A, f), (y)i=o is a sequence of points isit converging tox’, (ni)i>o0
is an increasing sequence of integers such yffaty)) converges tor’ and |S,; (A —
m(A, f))(y))| converges to zero, by taking a subsequence we may asﬂi'mé(y;)
converges to some satisfying f (x) = x’. For any large, y! admits a unique pre-image
yi close tox and as abovéS,, (A — m(A, f))(yi)| converges to zero. We have proved
FQA, ) =Q(A, /).

To prove thatQ (A, f) is included in theW-action set, we introduce the non-negative
function

Ryw=Wo f—W+m(A, f)—A.

If x € Q(A, f), (vi)i=o converges ta and(n;);>o is chosen so that” (y;) converges to
x andS,, (A —m(A, f))(yi) converges to zero, then

Sni (A —m(A, £)i) + Sp; Ra,w (i) = Wo f"(yi) — W(yi)

converges to zero and therefatéx) = 0.
Part (ii). The fact that the support of any maximizing measuie included inQ2 (A, f)
follows from Atkinson’s theorem1] since, by definition ofx, [(A — m(A, f))du = 0.
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If, in addition u is ergodic, for any two pointgx, y) in supfgu), there exists a path
{z,..., f™(2)} included in the support gi which connects as close as we waxt y).
Since that path is included in th&-action set, we have just shown that syppis
W-irreducible.

Part (iii). We now assume th&2 (A, f) is W-irreducible for some lider sub-actiorV.
Let K be a compact invariant set included in tieaction set. We pick = (z,),ez, @

complete orbit inK passing through (i.e.zo = z), @ € a(z) andw € w(z). Then

o« X z ¥ & and by irreducibility of Q(A, ), w ¥ Therefore,z L z and

z€ Q(A, f).

Part (iv). The proof is very similar to part (iii). Lei be the unique maximizing
measurey, y, points of2 (A, f), andx = (x,),ez, ¥ = (¥n)nez COMplete orbits passing
throughx, y, respectively. We define two sequences of probability measures:

1 n—1 1 n—1
wn:;kzc:]axk and a":;kzc:]ay‘k'

By taking subsequence@, ) and(«,) converge to the same measurand in particular
one can findv € w(x) N suppu) anda € a(y) N suppu). Sincex ¥ w, o ¢ y and

0%« by ergodicity of x, we obtainx ¢ y forall (x,y) € QA, f): Q(A, f)is
W-irreducible. a

Proposition 25 shows thaEs w may contain invariant compact sets bigger than
Q(A, f): it may contain heteroclinic orbits connecting two irreducible sets.

PROPOSITION16. LetA : ST — R be aa-Holder function.

(i) If Q(A, f) is minimal then, for any sequende\,),>o Of «-Holder functions
converging toA in the C¥-topology, the sequence of compact S&%A,, f))n>0
converges t@2 (A, f) in the Hausdorff topology.

(i) If Q(A, f) is strictly ergodic, A satisfies the property of continuously varying
support.

Proof. Step oneUsing only the convergence 6,),>0 to A in theC-topology, we show
that(m(An, f))n>0 convergestan (A, f) and that, ifu, is some maximizing measure for
(An, f), any weak limit of(x,)n>0 iS @again a maximizing measure fot, f). Indeed, we
have

Im(A, f) —m(B, f)| < |lA — Bllo

forall A, B and for any sub-sequenc¢e, ), >0 converging to some measyug

/Adu — Iim/A,,/ dpy = limm(Ay, ) =m(A, f).
n’ n'

Step two.Let K, = Q(A,, f) andK be a limit set in the Hausdorff topology of some
sub-sequencékX,), 0. Thanks to Propositions 11 and 15(i), for eaghhere exists a
a-Holder sub-actiorV, for (A,, f) such thatk, is included in theV,-action set:

Ap—m(Ay, f)=Vao f =V, onk,.
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We may assume thaf, is normalized so tha¥,, = 0 for some point inkK,,. Since(A,),
converges taA in the C*-topology, using Proposition 11 we may also assume that the
a-Holder norm ofV,, is uniformly bounded. By Ascoli’s theorem, we can extract a sub-
sequencéV,), >0 Which converges uniformly to am-Holder functionV. We have thus
obtained a sub-actioi € C* for (A, f) and a compact invariant sé&t (i.e. f(K) = K)
included in theV -action set. Sinc& (A, f) is V-irreducible by minimality, we know from
Proposition 15(iii) thatk has to be included i® (A, f) and therefore has to be equal to
Q(A, f).

Step threeWe assume now th& (A, f) is strictly ergodic and is equal to the support
of the unique ergodic measure Let u,, be some maximizing measure fof,,, /) and
K, = suppu,). Thanks to Proposition 15(ii)K, is included inQ2(A,, f), and any
accumulation set ofK,),>0 is contained ir2 (A, f) and equal$2(A, f) by minimality.
Any weak-accumulation measure has a support includex{ i, 1) and is therefore equal
to u by unique ergodicity. ]

We are now able to prove the first part of Theorem 8.

Proof of Theorem 8(i)We actually prove a little more. LeE be the set ofx-Holder
potentialsA such that2 (A, f) is minimal. We show thag is generic inrC*. The setR of
a-Holder potentialsA such that2 (A, f) is uniquely ergodic is also generic according to
Proposition 10. ThereforeZ N R is generic and any\ € Z N R satisfies the property of
continuously varying support as is shown in Proposition 16(ii). For ewery0, we define

Z. = {A €C*[3An=>0, VyeQ(A,f), QA,f)C Ufk(B(y,e))}.

k=0

Let us first notice thaZ = N.Z. In order to show that is dense, for anyy € C¢,
we choose som& C Q(A, f) minimal. Then we can find € C* such thatp = 0
on K, ¢ > 0 everywhere outsid& and such thatA — ¢ is C*-close toA. Then
m(A — ¢, f) = m(A, f), any sub-actiorV for A is again a sub-action fod — ¢, the
V-action set forA — ¢ is equal toK

(A—¢p—-m=Vof—V}=K

andQ (A — ¢, f) = K is minimal.
We now show thatZ, containsZ in its interior. LetA € Z, then there exists > 0
such that

n

QA )| Bo.e)

k=0

for everyy € Q(A, f). By compactness dk (A, f), there exists a neighborhoéd of
Q(A, f) such that

Ue C | By, e)
k=0

for everyy € U.. By Proposition 16(i), anyB close toA (in the C*-topology) satisfies
Q(B, f) C Ue and therefore is included i&.. O
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The strategy of the proof of Theorem 8(ii) is to find a periodic orbit well distributed and
closed ta2 (A, f). We begin by proving a lemma of approximation in tfetopology for
functions having a better regulariff, g > «.

LEMMA 17. Let0 <« < 8 < 1. For anyp-Holder functionsA,
Hol, (A) < 2 Holg (A)*/ P Allg /.
In particular, if (A,) is a sequence g8-holder functions uniformly bounded in thi#-
topology, if(A,) converges to zero in th&’-topology, ther(A,) converges to zero in the
C*-topology.
Proof. The two estimates
|A(x) = A()| < Holg(A)d(x, )’ < Holg(A)d(x, y)P~*d(x, y)?,

2| Allo
|A(x) — A = 2| Allo = A y)

d(x, )%,

show thatA is «-Holder with

; , IAllo .. _
Hol, (A) < 2 supm|n< ,Holg(A)d(x, y)? "‘) )
¢ x#£y d(x, y)* f
The minimum is reached at the intersection of the decreasing graphjA|or~* and the
increasing graph — Hblﬁ(A)tﬂ*“. |

Although the following is a very standard lemma, we need a precise estimate of the
shadowing constant in the proof of Lemma 19 and so we give a proof.

LEMMA 18. Let f beCl-expandings = A(f) andN be such thatV > 2. Then for any
x € S such thatd(x, f¥(x)) is less thanzll, there exists a periodic poin of period N
such that

AW dx, Y
VO<k<N, d(f'(p), ff0) = v — (xkﬁ,,fx))

Notice thatrV /(AN — 1) — 1whenN — +oo0.

Proof. We callx; = fV(x) andxo = x. We assume; # xo (otherwise we choose
p = xo) and we denote bya, b[ the smallest unordered interval joiniagandb. Let x|
be the closest pre-image of, fN(x(’)) = x1, such thatf" restricted to]xg, xo[ is an
homeomorphism onts? \ {x1} and such thalkxg, xol is disjoint from]xo, x1[ (we use the
fact thatAV > 2). Letx_; be the unique pre-image of in 1x, xol by the mapf", then
FN(1x_1, xo[) = Ixo0, x1[ (we use the fact that" preserves the orientation). By induction
we obtain a sequence_;) of points]x(), xo[ such that]x_g, x_x+1[) are pairwise disjoint
and such thatf¥ maps]x_;_1, x_¢[ onto]x_x, x_;+1[. The pointp, limit of (x_) is
therefore a periodic point of periad and the length of the intervéb, x1[ is bounded by

N

AN —1
In particular, this length is bounded t%ny maps] p, xo[ onto]p, x1[ and

1 1
d(xo, x1) |:1+)L—N+W+"'i| < d(xg, x1).

1
VO<k =N, d(f'(p), ff(x0) = sx=d(p, x0).

The two inequalities combined end the proof. ]
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LEMMA 19. Let @ be an invariant compact setf(2) = €, without periodic orbit.
Letn = %(1 — 1/A). Then for any > O sufficiently small, there exists a periodic orbit

{p. f(p)..... fN(p) = p} such that
d(f'(p).Q) <e and d(f'(p). f(p)) > ne,
forall0<i < j < N.
Proof. For eachk > 0 we define
d(K) =min{d(f'(x), f/(x)) | x € Q,0<i < j < K}.

Since no periodic orbit belongs @, d(K) > 0 and tends to zero whet tends to infinity.
We now choos& so that\X > 5 and

1K 1 N 1
K_1\xTak) T
Let € be small enough such that < %d(K). We first exhibit an almost closed orbit
{(x, f(x),..., fN(x)} in Q satisfying
dix, fN(x) <e and d(f'(x), f/(x) =€

forall0 < i < j < N excepti = 0andj = N. This can be achieved by
choosing an orbity, f(y), ..., f"(y)} in € such thatd(y, f"(y)) < ¢ and a sub-orbit
{x, f(x), ..., fN(x)} with the property that/(x, " (x)) < € and N is minimal (x is a
point in the orbit ofy). Sincee < d(K), N has to be bigger thak. By the shadowing
lemma, Lemma 18, there exists a periodic pgirttf period N such that

; ; AN e
d(f'(p), f'(x)) < W 1N’

forall0 <i < N. We now show thap is the good candidate.
ForO<i<j<N-K,

d(f"<p>,f"<x)><§, d(ff<p),ff<x>><§, d(fi(x), f1(x) > e

and we obtairl (f'(p), f/(p)) > 3¢ > ne.
ForN — K <i<j <N,

d(fi(p), f{) <€, d(fl(p), f1) <€, d(f'(x), f/(x)) > d(K) > 3e

and we obtain in this cast( f (p), f/(p)) > € > ne.
ForO<i <N —K < j < N,d(f'(x), f/(x)) > € and

i i A e j j AK€
d(f'(p), ['(x)) < K 15K’ d(f!(p), f/(x) < VR
and we obtain
) i VRS |
d(f'(p), f/(p) > € 1_)J<——]. X+X_K > ne. a
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Proof of Theorem 8(ii)Let G be the set of functiong € C* having a unique maximizing
measure supported on a periodic orbit and satisfying the property of continuously varying
support. We first show thaj is open inC®. Let Ap € G andug = n~?! Z}Z;cl, 8 k()

be the unique maximizing measure supported on a periodic prbBy the property of
continuously varying support, there exist a neighborh&boaf orb(p) and a neighborhood

U in C¥ of Ag such that, forany € &/ and anyu € M(A, f), the support of: is included

in A/. By the standard shadowing lemma,= wuo is the only invariant measure close to
orb(p). Theni/ C G.

We now show thag, = G N C** is dense irC**. Let A1 € C**, thenA; € CP, for
somex < B < 1. We look for somed = A1 + ¢, ¢ € CP, with small| - |,-norm such
thatQ2 (A, f) is reduced to a single periodic orbit. From Proposition 16(ii), we know that
A will satisfy the property of continuous varying support. We actually prove the existence
of a sequencép.) of CA-functions having g-norm, uniformly bounded and converging
to zero in the uniform topology whengoes to zero.

From Propositions 11 and 15(i), we can write

Ar=m(A1, )+ Viof—Vi—R1

whereVy, Ry € C#, Ry > 0andRy = 0 0nQ (A1, f). Letm (A1, f) = m1.

We first construct some, € C#, ¢ > 0, with small|| - ||o-norm such that1 + ¢
admits a maximizing measure supported on a periodic orbf2 (K, f) already contains
a periodic orbit, we choosg. = 0. If not, from Lemma 19, for any > 0, there exists a
periodic orbit{p, ..., fN(p) = p} satisfyingd(q, Q (A1, f)) < € andd(q, q’) > ne for
anyq, q' € orb(p), ¢ # q', wheren = 1(1 — 1/x). We note that

C1 = Holg(Ry).
SinceR; = 00nQ (A1, f) andR1(q) < C1d(g, (A1, f))?, we obtain for ally € orb(p)

Ri(g)\*
C1 ) )

We now define for eacly on the orbit a localized functiow. ,. The functions
{¢e.q}georb(py have disjoint support; they satisfyQ ¢. , < Ry everywhere ang ,(¢q) =
R1(g) for all g € orb(p), by the following formula

be.q(x) = [R1(q) — D1d(x, ¢)PT"

whereD; = (2/n)#C1. Clearly D1 > C1 and by the Hlder property ofR; we have
¢e,q < R1. The support of each, , is included in the ball of center and radius

[Rl(q)T/ﬁ_ [Rl(q)T/’S n 1

€ >d(q, A, f)) > <

2 = 2"
which shows thatee ,},corp) have disjoint support.
On the one hand, thedt-semi-norm ofp. , is uniformly bounded, independently of

D1 C1 272

) 2\f
Holg(¢e,g) <C1+ D1 <2 (;) C1

(we have usetht — b*| < |a — b|, |a? — bP| < |a — b|# whenp < 1).
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On the other hand, thig- |[o-norm of ¢, , tends to zero wheatends to zero,

I peqllo < R1(g) < C1€P.

We have thus obtained a non-negative function

¢6= Z ¢6,q

georb(p)

satisfying l|pcllo < Ci€P, HOlg(¢e) < 4(2/n)PC1, 0 < ¢ < Ry everywhere and
¢c(q) = Ri1(q) for all pointsqg € orb(p). By using Lemma 17¢. € C? has small
| - llo-norm. Moreoverm (A1 + ¢e, f) = my andQ (A1 + ¢, f) contains bott2 (A1, 1)
and orlgp). Indeed

A1+ ¢ =Viof—Vi—Ri+¢e +m1 < Vio f —Vi+ms.

If x € Q(A1, f), € > 0 andz, n > 0 have been chosen such thatk,z) < e,
d(x, f'(z)) < e andY{Z5R o f*(z) < ¢, thenY {25 ¢ o f¥(z) < € and we have
shown thate € Q(A1 + ¢, f). Actually, although we do not need it, we can show that

QA1+ ¢, [) = Q(A, f)Uorb(p).

We now choosey. > 0, ¥, € CP, with small| - lg-norm such thaty. = 0 on orl(p)
andy, > 0 elsewhere. TheA = A; + ¢ — ¥ € CP is close toAg in theC*-topology
and admits a unique maximizing measure supported ap@rb

1
= S,. O
"= Hor(p) 2 b

georb(p)

Proof of Theorem 8(iii).We actually give a criterion to decide whethe(A, f) can stay
stably a finite union of periodic points. The proof of Theorem 8 is a direct consequence of
the following proposition.

PROPOSITION20. Let f be aCl-expanding map) < o < B, and A be ag-Holder

function. Then one of the following cases occurs.

() A is a limit in the C*-topology ofC#-functions(A,), uniformly bounded in the
CP-topology, having a unique maximizing measwurg whose support is strictly
ergodic and has positive topological entropy.

(i) Q(A, f)is afinite union of periodic points and there exist§/aneighborhood/ of
A suchthat, forallB e U, Q(B, f) C Q(A, f).

Before proving Proposition 20, we need the following lemma.

LEMMA 21. Let K be a compact set (hot necessarily invariant). Temadmits a basis
of closed neighborhoodé# such that

Ay=()r"ah

n>0

possesses the following property:
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(i) eitherAy has positive entropy antl;, contains a strictly ergodic invariant compact
set of positive entropy; or
(i) Ay has zero entropy and the set of periodic points belongingas finite.

Proof. We first assume that is a compact set of the one-sided full stft (D). LetV be
an open set containing andcCy, ..., Cy, afinite union of cylinders covering* (D) \ V
and disjoint fromkK. We may assume the cylinders have all the same lengthi/Let
BT(D)\ (CLU---UCy). Thenl{ is a closed neighborhood & and

Ay={xeB (D) |Vi=1...,N,Yn=>00"(x)&C;}

is topologically conjugate to a one-sided Markov chain. If the entropygfis equal
to zero, the set of periodic points ify, is finite. If the entropy ofAy, is positive, we
use Grillenberger’s theorem&(] and [L1] to construct a strictly ergodic compact set of
positive entropy inside\,.

In the general case, let’ be a compact set o and)’ a neighborhood of".
We denote byr : BT(D) — S! the canonical extension ofl. Let K = 7 1K),
VY =n"1V), C1...Cn, U as before andél’ = =(U). Thenlt' is a closed neighborhood
of K’ (7 (C;) is disjoint fromK’) included in}’. Moreoverr(Ay) C Ay and a point
in Az which does not belong ta(Ay) is necessarily a pre-image of one. Modulo a
countable set im;; and in Ay, 7 is a bijection,Ay;, Ay have the same topological
entropy and the set of periodic points&f; (except maybe one) is equal to the projection
of the set of periodic points of;,.

Finally, if L is a strictly ergodic invariant compact set(L) is also strictly ergodic and
L andx (L) have the same topological entropy. a

Proof of Proposition 20. Step onéssume there exists@ sub-actionV such that, for
any closed neighborhoadd of the V-action set

K={A-m=Vof—V)}

the invariant set\;; has positive topological entropy. As in the proof of Theorem 8(ii), we
start by writing the cohomological equation for the sub-actign

A-m=Vof—-V—-R

wherem = m(A, f) andR is a non-negativ€?-function which is equal to zero ok .
We want to find a sequence of non-negatiefunctions(¢,) converging to zero in the
uniform topology and uniformly bounded in ti@-topology such thav’ is still a sub-
action of A + ¢, and theV -action set ofA + ¢, contains a neighborhood &f. We define

. 1
¢, = Min <R, —) .
n

Then0< ¢, < R, A+ ¢, —m < Vo f—V andg¢, equalsk on a neighborhoott,
of K (notice thatn(A, f) = m(A + ¢n, f)). By using Lemma 214, contains a strictly
ergodic compact invariant sét, of positive topological entropy. We finally choosgeg
non-negativey,, = 0 onL, andy, > 0 onSt\ L, with small|| - ls-norm. We have just
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proved thatd, = A + ¢, — ¥, converges tod uniformly with bounded’?-norm and that
eachQ (A, f) is strictly ergodic and has positive entropy.

Step two.Assume that for everg? sub-actionV there exists a neighborhodtiof K
such thatA;, has zero entropy.

We first show thaf2 (A, f) is a finite union of periodic points. L&t be any sub-action.
Then, by Lemma 21, there exists a neighborhidad K such thatA;, contains only a finite
number of periodic points. If a periodic point belongstpit actually belongst® (A, f).

We can therefore choogé so that all periodic points i, are inQ2 (A, f). Conversely,
if x is a pointinQ (A4, f), thenx is a limit of periodic points,, of period p, such that
Sp, (A —m)(z,) tends to zero. Thefi,, R(z,) also tends to zero and the orbitgfhas to
stay closer and closer #%. Forn large enougkhg, belongs taA;; andx is a periodic point.

Let (B,) be a sequence @ functions, with bounded?-norm, converging ta in
the C¥-topology. We want to show tha® (B, ) C Q(A, f) for n sufficiently large.
As in step two of the proof of Proposition 16, for eaBh we choose a sub-action, and
we may assume (maybe by taking a sub-sequence)thatonverges to some sub-action
V of classC? and that theV,-action setk,, converges to some compact set included in
the V-action set. We choose a neighborhébds before so that the only periodic points
included inAy, are actually in2(A, f). Forn large enoughQ2(B,, f) C K, c U and
by the same argument as bef6téB,,, /) has to be included into the closure of the set of
periodic points ofA;,. That is, for large:, Q2 (B, f) C Q(A, f). ]

The rest of this section is independent of Theorem 8. The reader interested just in the
minimization of Lyapunov measures can go directly to 83. We first show how to construct
other sub-actions from a functidh (x, y) that we call the action potential. We then define
the notion of av -heteroclinic orbit which is stronger than the notionioiconnection and
apply it to the case where there is a finite number of irreducible sets.

Definition 22. Let (x, y) € ST andA : ST — R. We call theaction potentiabf A from x
to y the following quantity:

Salx,y) = |imOSUHS,,(A —m)(x)|n>1,dx,x)<e, f"(x) =y}

(notice that we take the supremum over all paths of lengthl ending aty and beginning

within € of x).

As in the definition of V4 in Proposition 11,54 (x, y) is uniformly bounded from
above but it may happen tha8f (x, y) = —oo. The interesting case takes place when
x € Q(A, f).

PrROPOSITION23. Let f be aCl-expanding map and be aC®-function. Then the action

potential ofA satisfies the following properties:

(i) forany sub-actiorV, foranyx, y € S1, S4(x, y) < V(y) — V(x) andx X yifand
only if Sa(x, y) = V(y) — V(x);

(i) foranyx,y,z e SY Sa(x,y) + Sa(y,z) < Sa(x,2), Sa(x,x) <0andSa(x, x) =
Oifand only ifx € Q(A, f);

(iif) foranyx € Q(A, f), Sa(x, ) isaC? sub-action (in particularSs (x, y) > —oo for
anyy e S1).
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Proof. (We only prove part (iii).) Letr € Q(A, f) be fixed.
Step one.We first show thatS, (x, -) never takes the valueco. Let us define an
approximate action potential

S9(x, y) = supSu(A —m)(x") | d(x,x") <€, ff(x')=y,n>1}

where the supremum is taken over all paths of length 1 starting withine of x and
ending aty. ThenS(x,y) = inf. S5(x,y). Leteg < % andng > 1, x’ such that
d(x,x") < eo, f"x") = y andS,,(A — m)(x) is close toS¢ (x, y). Sincex belongs
to Q(A, f), for everye > 0, there exisiu > 1, large enough so that¢p < €/2, 7

such thatd(z, x) < €/2, f"(z) = x and|S,(A — m)(z)| < €. We choose’ in the same
inverse branch of lengtth asz such thatf” (z’) = x’. Thend(z,z") < A™"d(x, x") < €/2,

d(x,7) <eand

, Hol, (A)
[Sn(A —m)(z) — Su(A —m)(2)| < mGQ
, Hol, (A)
Sno+n(A —m)(2) = Spo(A —m)(x )— a_q 0" ¢€
By letting € go to zero, we obtain
HoI A
Sax,y) > S(x,y) — ( ) €o.

This section shows in addition that, in the definitionsgf(x, y), n can be as large as we
want.

SteptwoLet(y, z) € ST suchthat/(y, z) < 3. Lete > Oandz > 1suchthak ™ < ¢
Then there exists’ such that/(x, x') < €, f"(x) = y andS§ (x, y) < S, (A—m)(x)+e.
Letx” be the unique-pre-image ot in the same inverse branchds Thend (x'x”) < «,
d(x,x") < 2e and

, . Holy (A)
Sn(A =m)(x) < sy (A —=m)(x7) + —7—==d(y. 2).
Combining all these inequalities we obtain
Salx,y) < S§(x,y)
= Su(A— m)(x/) +e
<S%* 4 + a( ) d(y, z)
a( )

< Sa(x, z)—i—e—i— 1 [2¢ +d(y, 2)]

andS4 (x, -) is C* with «-Holder constant HL;[(A)/(A“ —-1).
Step threeWe show thafS (x, -) is a sub-action. Far > 0 we have clearly

Sy, ) + (A —m)(y) = Si(x, f().

By letting € go to zero we obtain

(A=m)(y) = Sa(x, f(y)) = Sa(x,y). o
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From the first part of Proposition 23, we notice that, if an invariant compaat 9et
irreducible for two sub-actiong andW, thenV — W is constant oK . The last part of the
proposition shows that, for any € Q(A, f), there exists a sub-action(y) = Sa(x, y)
such that any e St is V-connected ta: (x X ).

We now define a stronger notion Bfconnection.

Definition 24. Let V be a sub-action angtg, 21 be two disjointV-irreducible compact
invariants sets of2 (A, f). We say thatg, 21) arestrongly V-connectedf there exists
a complete orbitt = (x,),cz included in theV-action set such that(x) c Qo and

w(x) C Q1.

If Qpand2; are periodic orbits of2(A, f) and stronglyv -connected, such a complete
orbitx satisfyinga(x) C Q¢ andw(x) C Q1 could be called &eteroclinic orbit

PROPOSITION25. Let V be a sub-action and let us assume tl§atA, f) is equal to

a finite disjoint union ofV-irreducible compact invariant set{sﬂi}f"zl. Then each®;

is a maximalV-irreducible invariant compact set and cannot be a disjoint union of two
invariant compact sets. Leét# j. If (Q;, ;) are V-connected, then there exist a chain
(io, i1, ..., i) Of pairwise distinct indexes iftl, ..., N} such thatpo = i, i, = j in each
(Ri,_,, ;) are stronglyV -connected.

Proof. Step onelLet K be an invariant compact set and assume ghatan be written as a
disjoint union of two (not necessarily-irreducible) compact invariant seky andK1. We
assume, moreover, that there exigte Ko andp1 € K1 which areV-connected. We show
that, if Ug andU1 are disjoint open sets containig and K1, there existsg & Ko U K1
and a complete orbit included in theV -action set going througky such thatr(x) C Ug
and
\% \% \% \%
po = a(x) = xg > @(x) = p1.

Since(po, p1) are V-connected, for every > 0, there existze > 1 andp. such that
d(po, pe) <€, f"(pe) = p1and

V(p1) — V(pe) —€ < Su(A—m)(pe) < V(p1) — V(pe).
Let us show, forall O< k < [ < n,
Vo fl(pe) = Vo fX(pe) — € < Si—(A —m) o fX(pe)

and
Si—k(A —m) o fX(pe) < Vo flipe) — Vo fr(pe).

On the one hand, becauges a sub-action
Si—k(A —=m) o fX(pe) < Vo fl(pe) = Vo fX(pe).
On the other hand,

V(p1) — V(pe) — € < Sp—i(A —m) o fl(pe)
+ Sik(A —m) o fX(pe) + Sk(A — m)(pe),
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and

Sk(A —m)(pe) < Vo fX(pe) = V(pe),
Sn_1(A—m)o fl(pe) < V(pr) — Vo fl(po).

Combining these inequalities we obtain
Vo fl(pe) = Vo fX(pe) — € < Sik(A —m) o fX(pe).

Let s be the first time the iterates qf. escapelp, that is, fX(p.) € Ug for k =
0,1,....,5c and f*t(p.) ¢ Uy. Letx_r(e) = f*(p). By a procedure of
diagonal extraction, we can find a subsequence€w€onverging to zero such that each
x_x(€) converges to some_; (note thatse — oo whene — 0). By construction,
xo € Uo\fYUop), x_x € Ugforallk = 1,2,... and the complete orbkt = (x,) is

included in theV -action set. Moreover, for any e Z, po X Xn X P1.

Step two.We show that a maximal (for the inclusiokl}irreducible compact invariant
set K cannot be equal to a disjoint union of two invariant compact #gfsand K.
Otherwise, we choosgy € Ko, p1 € K1 and by assumptiolipg, p1) are V-connected
in both directions. Thanks to step one there exist complete orlaited y included in the
V-action set such thatandy do not belong ta&k and B

\% \% \% \%
po — orb(x) — p1 — orb(y) — po.

The setKo U orb(x) U K1 U orb(y) is compact, invariant and-irreducible, which contra-
dicts the maximality of . B

Step three. We assume from now on th& (A, f) is equal to a disjoint union of
irreducible compact invariant se{t@i}f"zl and that®; is V-connected t&2;. Letig = i.
There exists a complete orb;i;0 not included inQ2(A, f) such thata(&,-o) C Q;, and
w(x;,) is V-connected t&2; (we use the fact that(x; ) can be chosen in a neighborhood
of ©;, and has to be included 2 (A, f)). Butw(x;,) is included inQ2 (A, f) and has to
be included into some;, (thanks to step twe (x;,) cannot intersect tw€;). Necessarily
i1 # i, otherwise, by irreducibility of2;, we would have

Ol(L'o) _V> L’o(o) —V> CU(L'O) —V> Ol(L'O)

andx, (0) would belong to€2;,. Eitheriy = j and we are done or we repeat the previous
construction. There existi_g1 such thatx(gil) C Qpy, o(x;)) is contained in some&;,
andiil(O) & Q(A, f). By irreducibility of ©;, or €;,, i> cannot be equal téy or i1.
This process has to stop since the number of irreducible parts is finite. |

3. Lyapunov minimizing measures
The idea of the proof of Theorem 2 is first to conjugAt® a fixed magd by preserving the
same geometry of the orbits and second to transfer the smoothnggstoftwo invariants
(A, n) whereA = —In f’ has pressure zero and the Lebesgue measure, is the unique
equilibrium measure associated(i®, f).

We first show in the following lemma that any ma@s g) in F, are conjugate by bi-
Holder maps and that thediler exponent can be as close to 1 as we want, depending
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on theCc'+*-distance off andg. Notice that the composition of anHolder map with a
B-Holder map isxg-Holder. We use the notatiennb = min(a, b) andavb = maxa, b).

LEMMA 26. For simplicity we assume all maps R, fix 1 € S*.

() For any C' f and g in F,, there exists a unique orientation-preserving
homeomorphisr = 64, such thaty(1) = 1and f o 8 = 6 o g. The conjugating
map is bi-Holder:

C Y, WY <d@x),0() < Cd(x,y)”, Vx,yest

with Holder exponeny = y (f, g) andy-Hoélder normC = C(g):

] Inffx) Ing'(x) If —3llo
(f, g) =inf A d(x,y) < ———
vt : g " inpoy [T S A Ve -1
. _ Holy (g)
1 o
r(g) = )[Te"sq gx), Cg= Zogi\)éd(zf» Z;'ngl) eXF)(W—l
wherezg, ..., z5, , are theD pre-images ofl by g.
(i) LetT e F, befixed. Then forany, g € F, 65 = 077 andb, = 6, r satisfy
—_ If -zl
By —Bello < —1 —8l0

SNV -1
@)~ = @) Mo < CDIT 5 — Tl DT

wheref f, 6, : R — R denote the lifts of 7, 6, with 6 ;(0) = 6,(0) = 0.

Proof. Let f € Fy, zg =1 andz{...z{;fl be the pre-images of 1 by ordered
canonically onSt \ {1}. More generally, we calZ(f) the set of pre-images of 1
by (f*), n > 0, and code the points iZ(f) by points of the form{zflh__in} where

in = 0,1,...,D — 1. For instance, whe = 2 the pre-images are ordered in the
following way:

_f f f f f f
1=25_ 000 20..001 20..010 20..011: 20..100 - - -+ %1111 < L-

Moreover, Z(f) is dense inS!, otherwise any non-empty connected component of
ST\ Z(f) would be permuted without containing the point 1 and this would contradict
the uniform growth of the length.
Since the conjugating mafy,, has to preserve the order of the pre-images, we have
necessarily
O1(2) = zif, Vi=i1...iy.

Thendy,, extends uniquely to a homeomorphism which conjuggtesdg. Let f be the
lifting of £ fixing 0. We denote by, ™! : [0, 1] — [0,1[,i = 0,1,..., D — 1, the inverse
branches off:

Foffw)y=w+i, Ywel01].

Then the point$z.f ) on ST correspond to the points

i1...0p

Zf = fe 0 f7NO)

i1...in
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on [0, 1. We first prove that for any on [0, 1[,n > 1:

f I/ —2llo
|wi1...i - ll N | =
" " (fHIvag -1

f _ . .
wherewilmin = le o fi Lw). By induction
-1 -1 -1
|w../'f’-1---in - wfil---i;1| = If (wll ln f] (wflln)| + |f/ (w;g:lln) o g] (wflln)l

wh = wh_, 1+ 1T ~ o).

IA

A(f) [
(The second term is obtained using the estimate

—1 __ ——1 _ __ —1 — __

F 7w —g =1 ogog tw)—F ofog tw)
foranyu € [0, D[.) In particular, this proves

1677 —Bgrllo< sup 107G =0, rGENI= sup 7/ —7°

i=iq..in i=i1...in
If —%llo
TMH VA -1
Assuming thad ; = 6,7 is B-Holder, we obtain
167" 8, o=118, 08g08, —8;~108s00, llo
< Hol, @, )18, — 8,15

We now prove that = 6, is Holder. We begin by proving that, for all > 1, for any
consecutive pre-images of order
=gy ro- 0810, THy=g to0g (D),

we havezf =0() and|2f — Zi{u' < |zf — 75,417, Indeed

- o o IR P
77 — 2l 2/0 H[D—wf" :|(wik+1~~~i,,)dw'
k=1

s|nce|w,A 0= wi...f,J < I f —gllo/IA(f) Vv A(g) — 1], we obtain by definition of (£, g)

-1 8 =8 =8 14
i l+l| / |: 8iy i| (w if41in )dw < |Zi _Zi+l| :

(We use Jensen’s inequality to extract the poweutside the integral since(f, g) < 1
forany f # g.) Let‘ andz’ i+1 ( =i1...i,) be two consecutive pre-images of order
then[z}.z}, [contalnsD pre-images of order + 1 that we calk;;, whereij =i; ...iyj
andj = 0 1 — 1. We show that forany =0, ..., D — 1,

=8 =8 1 =8 =8
i =il = 3C@I7; — 74l
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where C(g) is given in the above lemma. It is enough to show that the distortion of
gt oo g; tis uniformly bounded by exipiol, (s')/(A(g)* — 1)), thatis

d -1 -1 n ro. .8 n

w8, ° o8& (u) g (v; n)

e =[] |5 < exp) g f ) — g )
Zw8iny ° o8&, | 1|8 W) =1

is bounded by exgdl, (g')/ (A (g)¥ — 1)) which is a consequence of

|U§(...in - Miln| = )‘(g)n_k—i_l-
We conclude the proof. Given y € S1there exists € [x, y] such thatx, z] (respectively
[z, y]) can be covered by an interval of the fo[ﬂﬁ, sz] of ordern and simultaneously
contains at least an interval of the fof /8 zf”Hl] of ordern + 1 (n need not be the same
for x andy). Then

dOx),00) < 2/ -z 1 <2 -1
Vo -
= (3c@) 2 7l = 3C(@d(x, )7

and an equivalent estimate holds #{ (z), 6(y)). To obtain the other inequality, we use
instead
2 =Tl < B — T <dew.0:)". =
In the next lemma, we show that ady*#-map of the circle can be approximated by
smooth maps, in thé1*+*-topology, for anyx < 8 (and not in the2'+#-topology). For the

purposes of this paper we need a more precise statement.

LEMMA 27. For any0 < o < 1, the spaceF, N C*® of smooth maps of! is dense in
Fay intheC-topology.

Proof. Let f € Fp for somep > «, f be the lift toR of £, (p,) be a smooth
approximation of unity (i.ef p, (1) dt = 1, the support op, is included in] — 1/n, 1/n[)

andf, = f % p, — f * p,(0), the convolution off with p,. Thenf, is a smooth map,
f,x+1) = f,x)+ D, f,(00 = 0 andi(f,) > Ar(f). The sequence of magg,)
converge tof in the C1-topology. In particular, for large, f, is a smooth covering of
degreeD of the circle, preserves orientation and satisfies the same constraints for the first
derivative. Moreover, thg-Holder semi-norm off, is uniformly bounded:

1) = f1)) 5/If’(x—t)—f/(y—t)lp(t)dt
< Holg(f)lx — yIP.

By using Lemma 17( ;) converges tof’ in the C*-topology for anyae < 8, and(f,)
converges tof in theC'+*topology. m]

We now give a short summary of the theory of the thermodynamic formalism for any
T € Fy, which are particular expanding Markov maps. An interested reader may find a
comprehensive exposition of this theory 0. Given a potential : S* — R, we define
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the Ruelle—Perron—Frobenius operatdr,, acting on the set of continuous functions, by
the following formula:

(Lam)x)= Y h(et®, vxest
T(y)=x

whereh : ST — R is a continuous function and the summation is taken overtipe-
images ofx. If A isa-Holder,L 4 also acts o-Holder functions and, by duality; 4 acts
on the set of probability measures by

/hd(ﬁj.u) :/EA.hdu

for any continuous test functioths For such Markov expanding and mixing mAgand for
sucha-Holder potentialsA, the spectruna (L£4) of L4, acting onC*-potentials, admits an
isolated simple eigenvalu€’” (4 which dominates the whole spectrurfiy (A) is called
thepressureof A and the rest of the spectrum has a strictly smaller modulus:

sup  {lzl |z € a(La)} < expPr(A).
z#expPr(A)

Moreover, there exists a unique probability measuge called theGibbs measureand a
unique positivex-Holder functionz 4 such that

EZ.MA = €PT(A)/LA, Lahy = ePT(A)hA and /hA d,uA =1
We also recall that a map possessesdacobianJ : St — 10, 4+-oo[ with respect tqu if
w(TU)) = / Jdup
U

for all the Borel set/ whereT : U — S is one-to-one. Thea’T(4)~4 js the Jacobian

of T with respect tous. The measur(,zx“:';q“i = hauy is called theequilibrium measure
associated ta\, it is T-invariant and
ha exp(Pr(A) — A)
hpoT T

is the Jacobian of with respect tqu5™"

Although the following proposition is certainly well known, the thermodynamic
formalism gives simple criteria for Ifi’ to be cohomologousto a constant and the existence
of a sub-action simplifies the proof.

PROPOSITION28. Let f € F,. The following properties are equivalent:

() In f’is measurably cohomologous to a constant (the constant is actually equal to
In D);

(i) for any periodic point of periodp, (f?) (x) = D?;

(i) £ is C-conjugate tol'(z) = z” (if f(1) = 1 the conjugacy is actually unique and
c*; moreover)n f’ is equal to an Wlder coboundary);

(iv) if © denotes the unique absolutely continuous invariant probability, therf) =

htop(f).
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Proof. We first notice that Pesin’s formula gives (f) = [ In f’ du, besideSiop(f) =

InD.
(i) = (iv) uses the fact that, if a cobounda¥yo f — V is integrable, ther (V o f —
V)du = 0.

(iv) = (iii) uses Jensen’s inequality: létbe the unique eigenfunctio,4 (h) = h,
for the Ruelle—Perron—-Frobenius operator associated te= —In f/ normalized by
Jhduw=1. Thenu =hlLeband

InD:/Inf/d/L=/In(f/hof/h)duf|n|:/f/(hof/h)d'uj|zlnD

(we have used ¢La(y)dLeb= [¢ o fyrdLebandla(f’) = D). By strict convexity
of In, we geth o ff' = Dh. If his aliftof h andf(x) = [y h(t)dr thenf o f =T o 6.

(iii) = (ii) is trivial.

(i) = (i) uses the fact that periodic measures are dense (for the weak topology) in the
space of ergodic invariant probability measures. Then

min/lnf/duzmax/lnf/duzlnD
i w

where we minimize (maximize) over the set of invariant probability measures. Thanks to
Proposition 11, we can finddider functionsV, W such that

ND+Wof—-W>Inf'>InD+Vof—V.

W — V is increasing along the orbits and is therefore constant everywhere. We have
therefore shownlf’ =InD+ Vo f — V. O

Using the thermodynamic formalism, we are now able to give another construction
of maximizing measures and sub-actions. We recall that an equilibrium measure gives
positive mass to any non-empty open set and is therefore never a maximizing measure
for a potential which is not cohomologous to a constant. Part (i) of the next proposition
appeared in a slightly different form id§]. Part (iii) was suggested to the last author by
M. Pollicott from a communication of S. V. Savchenko.

PROPOSITION29. Let f be expanding and be ax-Holder potential. Then

(i) anyweak limit of (uty") whenr goes to+oo is @ maximizing measure fof;

(i) the metric entropy ofi(i;, ) converges tdiop(f | (A, f)) whent goes to+oo;
in particular, any weak limij is of maximal entropy foy restricted toQ2 (A, f);

(i) rewrite h;4 = exp(tV;), the unique eigenfunction of,4 for the eigenvalue
expPr(tA) normalized by[ h,adu;, = 1. Then the sequenc#,);-o stays in
a compact set in the uniform topology and any accumulation fundtiagives a

sub-action satisfying

Vix) = TY(T;«)':L)(x(V(y) + A(y) —m).
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Proof. To simplify, we denotg:, = ;Lfg”i. For any f-invariant measurg

t/Adush(M)+thdu§h(uz)+t/AduzShtop+t/Aduz-
We obtain, therefore, for any maximizing measure M(A, f)

‘/Adu—/Ad,u,,

which shows the first assertion. On the one hand,

htop(f | S2(A, f)) = jggh(“’)'

1
= ;htop(T) and h(u) < h(u)

On the other hangy — h(w) is upper semi-continuous and

lim supi (i) < hiop(f | 2(A, f)).

t—>—+00

To simplify again, we denoté; = L;4_p,4). FOr everyn, defineV;” by £;1 = exp(tV;*)
for+ > 0 andVy = 0 by convention. Sincg; leaves invariant the following compact set
of functions (for the uniform topology)

S, = {h e cOsh

h >0, /hduz =1, h(x) < h(y) exp(Crd(x, y)¥), Vx, y}

where
C; = Hol,(tA — Pr(tA)/ (0% — 1) =t HOl, (A) /(A% — 1),
we obtain for allr > 0 and for alln > 0
Hol, (V') < HOl, (A)/(A% —1).

Since (£{1),-0 converges uniformly toh; = hia_pra > 0, (V=0
converges uniformly to som&; with the same Idider coefficient T, (A)/(A% — 1).
The eigenfunctiorh, = exp(tV;) is a solution ofC;h, = hy or Li(hs/h; o T) = 1.
We first obtain (for > 0)

R E (V0T = Vi) — 1A + Pr(tA) > O.

The definition of pressure impliggi(A) < Pr(tA) < hwp(T) + tm(A). By letting
go to infinity, any accumulation limiv of (V;) is a sub-action. SinceR, satisfies more
precisely the functional equation,

eXp(—tR;(x1)) + - -- + exp(—t R, (xp)) = 1

foranyxs, ..., xp with the same image. Whergoes to infinity, a sub-sequence(@);- o
convergestiR = Vol —V — A+ m(A) with

min(R(x1), ..., R(xp)) = 0. |

In the following lemma we define a kind of ‘local’ chatify, ®7) about anyl’ € Fg .
The difficulty comes from the loss of differentiability in the conjugating maphich is
not Lipschitz buty-Holder withy as close to one as we want providédis small enough.
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LEMMA 30. LetO <o < B, T € FgandA = —InT’.

() There exists @1*#-neighborhood/; of T such thatP(f) = —In ' o Orris a
C*-function depending continuously ghe Ur.

(i) Conversely, there exist &-neighborhood/r of A and a continuous magr :
Ur — Fq+ such that for every € Ur, f = &7 (F) is the solution of the equation,

F—Pr(F)=—-Inf'obs7.
Moreoverl{y can be any neighborhood of the form
Ur = {F € CP | Holg(F) < C and||F — Allo < €}
whereC is any positive constant and= ¢(C) is sufficiently small.

Proof. Part (i). Sincedr is y (f, T)-Holder and can be as close to one as desired, we choose
y* < 1lsuchthagy™ > «. We also choos€™* > Holg(T"), * < A(T), A* > A(T) and

Ur ={f € Fp | y(f. T) > y*, Holg(f') < C*, A(f) > A* andA(f) < A*}.
Foranyf € Ur, theBy*-Holder norm of F = P(f) is bounded by
C*[2D exp(C* /(AP — 1)1P.
Foranyf, ginlr, F = P(f), G = P(g),
|F(x) = G)| < [f 00r(x) — g 0by(x)

(we have used the fact tht’| > A > 1), and by using Lemma 26 we obtain

*

IA=Blo=<Ilf"—gllo+ If —%llo-

A —1
Continuity of P now follows from Lemma 17.

Part (ii). For anyC#-function F, exp(Pr (F) — F) is the Jacobian of with respect to
the Gibbs measurer. If 6 : ST — S is a homeomorphism, expr (F)— F)o6; ' is the
Jacobianoff =0rpoTo 9;1 with respect to the push measuég )., . We are therefore
looking for ady which satisfieg6r).ur = Leb anddr(1) = 1. The only possibility for
0 is given by the formula

Leb@ [0, x]) = 8r(x) = ip([0,x]), Vx e [0, 1]

where6r is the lift of O and i is the corresponding measure fh 1[. Sinceur
gives positive measure to non-empty open sets and has no fasss® — St is an
homeomorphism. Lef = 0p o T o 9;1, thenf is a covering of degre® and preserves
the orientation. Moreovet, = exp(Pr(F) — F o 9;1) is the Jacobian of with respect
to the Lebesgue measure and

_ _ y_
fO) = fx) =/ J(@t)dt

X

forany 0< x < y < 1. This shows in particular that is C* and

—Inf' oOp = F — Pr(F).
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By Lemma 26 (withg instead ofw), 67 = 6F, 9;1 is y(T, f)-Holder and itsy-Holder
constant is bounded by(7). Thenf’ is By-Holder and

Holg, (f') < llexp(Pr(F) — F)lloHolg (F)C(T)’.

Lety* < 1, close to 1, such thaty* > «. LetC* > Holg(A). LetA* < A* such that
A < M(T) andA* > A(T) = max. 1 T’ (x). Define for smalk,

Ur = (F € CP | Holg(F) < C* and||F — Al < €}.
For smalle we get

max max exp(Pr(F) — F(x)) < A*, min min exp(Pr(F) — F(x)) > A*.
Felr xeS! Felr xeSt
We also gey (T, f) > y* and a uniform upper bound for thig/*-Holder constant off’.
If we can show thayf’ depends continuously with respectfioin the uniform topology,
using Lemma 17, we prove the continuity ®f (F) with respect toF e Ur as aCclte-
maps.
We first notice the following estimate:

If—zglo<If —&lo
wheref’ = exp(Pr(F) — F) 0851, g’ = exp(Pr(G) — G) 0 5. Then we have

If' = &'llo < A*[2IF — Gllo+ C*Il@ )~ — @) "5
1@ = @) Yo < CDF — G0~

To conclude, it is now enough to prove that depends continuously with respect to
F € Ur in the uniform topology.

Let (F,) be a sequence gf-Holder functions converging té' in the C#-topology and
(f») the corresponding maps. We show ttet, ) convergesteé r uniformly. Restricted to
[0, 1], 6 £, corresponds to the distribution of the measufe. Sinced ¢, 6k, are increasing
and continuous, by using Helly’'s theorem, it is enough to show that) converges
pointwise tod  or that(zt s, ) converges weakly to - (we use here the fact that, has no
atom).

Let v be a weak limit of some sub-sequeriger ). SinceLr, converges taCr in the
uniform topology, for any test functioh : $* — R,

n’— 00

/EFn/'h dan’ = EP(FH/)/hdMFn’

lim eP(B"’)/hdMB”/ =eP(F)/hdv.

n'—o00

lim /;Cpn,.hd/l,pn/ =/£p.hdv

We thus obtain that is solution ofCr.v = ¢ Py, and by uniqueness of Gibbs measures,
v = up. Sincey(T, f) depends continuously with respect foin the C1-topology,
y(T, f) can be made larger thgn* for every F € Ur as soon ag is chosen small
enough. ]
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Remark 31.In the previous lemma,Uy, ®7) is not a one-to-one parametrization.
Although we do not need it, we could have been more precise. Th® set {A €
C* | A < 0andPr(A) = 0} is actually an embeddeg!t-manifold: for eachA € P,

P is homeomorphic to an open set in a Banach sghce= {F € C* | F < 0 and
[(F = A)duS™ = 0). Indeed ifF € P,

equi equi
[Aduy— .FeTy and JAdu,— >
[FduS™ [ FduS™

whereuiq“i is the equilibrium measure associated4o Conversely, ifF € 74, the

pressureP is C*-differentiable on the space 6f-potentials (seel[7]) and
Pj(A).H = /Hduiqm.

The mapp(t, F) = Pr(tF) is thereforeC® with respect ta and F,

a .

a—’: =/qu‘;q“'< 0, pO F)=InD and p(1 F)<0.
The function p(¢, F) is decreasing with respect to, and there exists a unique
0 < 8(F) < 1 such thaip(§(F), F) = 0. By the implicit function theorem, the function
F > 8(F)isCL.

Proof of Theorem 2Let G be the set of mapg in F, admitting a unique Lyapunov
minimizing measure supported on a periodic orbit and satisfying the property of
continuously varying support. We first show tlgats open inF, and thatlg, = G N Fu+
is dense inF, (A, A).
To show thagg is open, we proceed as in the proof of Theorem 8(ii). fet G, let
1 N-1
Mo = — 3 K (po)

N = fo(po
be the uniqgue minimizing periodic measuy€, a neighborhood of the orbit ofpg) =
{po, fo(po), - .-, f({"(po) = po} andl{ a neighborhood off in the C1**-topology such
that, for anyf € U, f has a unique periodic orbjt of period N in A/ which is also the
only f-invariant compact set iV. We note that

=

-1

1
mi=5 2% m»
0

w-
Il

be the corresponding periodic measure. Thanks to the property of continuously varying
support/ can be chosen small enough so that, for gny U/, any Lyapunov minimizing
measureu for f has a support included iN and is therefore equal @ s. To prove that
any f € U also satisfies the property of continuously varying support, we ch@fge
converging tof in the uniform topology and notice that any accumulation$edf the
sequenceésuppu r,)) is equal to the unique periodic orbit gfin .

We now show tha is dense inF,.. LetT € Fu, thenT e Fg for someg > o
andA = —InT’ is C#. According to Theorem 8 (and more precisely its proof) there
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exists a sequenad’;,) of g-Holder functions having g-Holder norm uniformly bounded
converging tad in theC%-topology and such that, € G, for all n. Thanks to Lemma 30,
(dr(Fy,)) converges td” asC1t*-maps and the set of Lyapunov minimizing measures of
@7 (F,) coincides with the set of maximizing measuresdpf

The proof of the second part of Theorem 2 follows from the equivalence between (i)
and (ii) in Proposition 20. ]
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