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I.1. Zero-temperature chaotic convergence

We want to understand whether some spin systems exhibit a
phenomenon called zero-temperature chaotic convergence introduced
by van Enter and Ruszel (2007).

Definition
Let ΣdpA q “ A Zd

be a spin system over a finite alphabet A and
φ : ΣdpA q Ñ R be a continuous function (potential). Let µβφ be any
invariant Gibbs measure for the potential βφ.

The zero-temperature chaotic convergence is a phenomenon where
there exists a sequence pβkqkě0, βk Ñ `8, and two disjoint invariant
compact sets K0,K1 Ď ΣdpA q such that if µβkφ is any invariant
Gibbs measure,

‚ any weak˚ limit of pµβ2kφqkě0 is supported in K0

‚ any weak˚ limit of pµβ2k`1φqkě0 is supported in K1
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I.2. Zero-temperature chaotic convergence

Remark
‚ By compactness argument, some subsequences pµβk

qkě0 are con-
verging and are not chaotic. So the chaotic convergence cannot be
expected for all subsequences.

‚ Coronel, Rivera-Letelier (2015) introduced a stronger notion of
sensitive dependence of the chaotic convergence: for every sequence
βk Ñ `8, for every ϵ ą 0, there exists }ψ ´ ϕ}8 ă ϵ and a subse-
quence pβσpkqqkě0 such that pµβσpkqψqkě0 has a chaotic convergence
at zero temperature.

‚ We will not discuss that notion, but van Enter’s method is robust
and it is likely that our results are also true in that case.
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I.3. General setting

Notation
‚ A spin system: A a finite alphabet, ΣdpA q “ A Zd

, the full shift

‚ The group of space translations σk : ΣdpA q Ñ ΣdpA q, k P Zd

‚ The Hamiltonian is given by a Lipschitz function φ : ΣdpA q Ñ R

HΛpxq “
ÿ

kPΛ

φ ˝ σkpxq, Λ Ť Zd (1)

Remark
We will be interested in studying short range interactions Φ “ pΦXqX

where X “ k ` J1, DKd is any square of fixed size D. Our Hamiltonian
is equivalent to the one defined by summing over all interactions

HH

Λ pxq “
ÿ

XĎΛ

ΦXpxq, φpxq “
1

D2

ÿ

0PX

ΦXpxq (2)
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I.4. Equilibrium measures/Gibbs measures

Definition
An equilibrium measure is a shift invariant probability measure µβφ
solution of the variational principle: µβφ minimizes the free energy

Fβpφq :“ inf
!

ż

φdµ´ β´1Entpµq : µ shift invariant probability u

‚ shift invariance: σk7 pµq “ µ, @ k P Zd,

‚ Kolmogorov-Sinai entropy: P the canonical generating partition

Entpµq “ lim
nÑ`8

1

nd
Ent

´

µ,
ł

kP J1,nKd
σ´kP

¯

Remark
If φ : ΣdpA q Ñ R is Lipschitz, shift invariant Gibbs measures defined
by the DLR procedure and equilibrium measures are the same notions
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I.5. Main question

Let Gβpφq be the set of equilibrium measures or Gibbs measures.

Remark
‚ Thanks to Dobrushin’s argument, Gβpφq is a single element at large
temperaure

‚ For simple systems (at least for short range φ), Gβpφq may have
several pure states at small temperature. For the Ising model in
Z2

@β ă βc, cardpGβpφqq “ 1, @β ą βc, Gβpφq “ rµ`
β , µ

´
β s (1)

Question
What are the limits of Gibbs measures as the temperature goes to
zero? More precisely what are the limits of the whole set Gβpφq as
β Ñ `8? For the Ising model

rµ`
β , µ

´
β s Ñ rµ`, µ´s, there is no chaotic convergence (2)
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I.6. Minimizing measures

What are the possible weak limits of pµβqβÑ`8?
ż

φdµβ ´ β´1Entpµβq “ Fβpφq (3)

Definition
‚ The ground energy level (by freezing the system β Ñ `8)

F8pφq :“ inf
!

ż

φdµ : µ shift invariant probability
)

‚ Aminimizing measure µmin is a shift invariant probability measure
satisfying

ż

φdµmin “ F8pφq (4)

Theorem (Obvious)

‚ Fβpφq Ñ F8pφq

‚ Any accumulation point of pµβqβě0 is a minimizing measure that
maximizes the entropy of all minimizing measures.

Ph. Thieullen Zero temperature 8/33



Summary Position of the problem Old results A new result Bibliography

I.7. The set K of ground configurations

Observation
‚ Assume X :“ tφ “ minφu is shift invariant, then

‹ any weak limit of µβ Ñ µmin satisfies supppµminq Ď X
‹ but is it is not true in general that any invariant measure sup-
ported on X is a candidate to be a limit of a Gibbs measure.

‚ If in addition X has a unique invariant measure µmin, then
Gβpφq Ñ tµminu (no chaotic convergence)

‚ In general φ´1pminφq is not invariant. The existence or not of a
chaotic convergence will depend strongly on the complexity of

K “
ď

!

supppµq : µ is minimizing:

ż

φdµ “ F8pφq

)

Hypothesis (minimal requirements)

‚ φ : ΣdpA q Ñ t0, 1u has finite range and depends on a finite number
of coordinates: we say φ is locally finite

‚ K is a computable subshift (or effectively closed subshift)
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I.8. Subshift of finite type

Definition
‚ A function φ : ΣdpA q Ñ t0, 1u is said to be locally finite if there
exists D ě 1 such that, for every x, y P ΣdpA q

xJ1,DKd “ yJ1,DKd ñ φpxq “ φpyq.

‚ A subshift X is a closed shift invariant subspace of ΣdpA q that is
defined by a countable set F of forbidden patterns (words)

‹ F Ď
ğ

ně1

A J1,nKd

‹ X “ ΣdpA ,F q :“ tx P ΣdpA q : @w P F , w Ć xu

‚ A subshift X is computable if F is enumerated by a Turing ma-
chine M by increasing size

‚ X is of finite type if there exists D ě 1 such that F Ď A J1,DKd
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I.9. Turing machine

Definition
A Turing machine is given by pA , t7u,Q, δq where

‚ A is a finite alphabet

‚ t7u is an extra symbol

‚ Q “ tq1, . . . , qnu \ tqini, qfinu

‚ δ : pA \ t7uq ˆ Q Ñ pA \ t7uq ˆ Q ˆ t`,´u (a transition
function)

‚ an infinite ribbon where finite words of the form

p¨ ¨ ¨ , 7, 7, w1, . . . , wn, 7, 7, ¨ ¨ ¨ q

In a schematic way:

a c

b'a

qb
q'

c
time

… …

……

δpb, qq “ pb1, q1,`q
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I.10. Turing machine
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R

0 $ 1`

# $ 1`

01# $ 01#´# $ #`

1 $ 0`

01 $ 01´

The notations a $ a1` means the

head reads a, then writes a1, and moves
forward.

ùñ A Turing machine is equivalent to a tiling defined by a
finite number of local constraints
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I.11. Conclusion

‚ We want to understand whether a system is chaotic at zero
temperature: do there exists a subsequence βk Ñ `8 and
K0,K1 Ď ΣdpA q, compact and disjoint, such that

‹ Gβ2k
pφq Ñ measures supported on K0

‹ Gβ2k`1
pφq Ñ measures supported on K1

‚ we want an example of potential φ as simple as possible:

φ “ 1rF s, F Ď A J1,DKd , rF s denotes a cylinder

‹ we verify that ground configurations do exist

X “ ΣdpA ,F q “ tx P ΣdpA : φ ˝ σkpxq “ 0, @ k P Zdu ‰ H

obviously the ground energy and ground measures satisfy

F8pφq “ 0 and supppµminq Ď X

‹ we construct two disjoint compact invariant sets

K0

ğ

K1 Ď X

‹ we want to work in dimension d “ 2: our main result is an
extension of Chazottes-Hochman (2010) in d ě 3
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II.1. Transfer matrix method

Assume d “ 1, A “ t1, 2, ¨ ¨ ¨ , nu, φ : A Z Ñ R is locally finite

φpxq “ φpi0, i1q, @x “ p. . . , i´1 | i0, i1, . . .q P A Z (1)

Lemma (Transfer method)
Gibbs measures are built using the following procedure

‚ Mβpi, jq “ e´βφpi,jq

‚ λβ “ the largest eigenvalue of Mβ “ pMβpi, jqq1ďi,jďn

‚ Lβ , Rβ are the left and right eigenvectors

‚ normalization:
n

ÿ

i“1

LβpiqRβpiq “ 1

‚ the unique Gibbs measure at temperature β´1 is

µβpri0, . . . , insq “
Lβpi0qRβpinq

λnβ
exp

´

´ β
n

ÿ

k“1

φpik´1, ikq

¯

(2)
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II.2. Minimizing cycles

Assume φ : A Z Ñ R has the form: φpxq “ φpi0, i1q. Recall

F8pφq “ inf
!

ż

φdµ : µ shift invariant probability
)

(1)

‚ F8pφq “ lim
nÑ`8

inf
xPA Z

1

n

n´1
ÿ

k“0

φ ˝ σkpxq

‚ A minimizing cycle is a τ -periodic path pi0, i1, . . . , iτ´1q such that

1

τ

τ´1
ÿ

k“0

φpik, ik`1q “ F8pφq (2)

‚ A transition is forbidden if it belongs to no minimizing cycle

‚ If F “ t forbidden transitions u then

K “
ď

!

supppµq : µ is minimizing
)

“ Σ1pA ,F q (3)
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II.3. Example of convergence

Example 1: A “ t1, 2, 3, 4u, φp1, 2q “ ´1, φp2, 2q “ 0

µβ Ñ µmin (1 measure of maximal entropy)

1 2

34

β→+∞

-1

2

0 2

-1

1

20

0

0

1 2

34

0

-1

0

-1

1

0

0

μmin

Example 2:

µβ Ñ 1
2 pµ`

min ` µ´
minq (2 measures of maximal entropy)

1 2

34

β→+∞

-1

1

1 2

-1

1

21

0

0

1 2

34

1

-1

-1

1
0

0 μmin
+

μmin
−
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II.4. A exact result of convergence

Theorem (Brémont (2003))
Let d “ 1, φ : Σ1pA q Ñ R be a locally finite potential. Then

(1) lim
βÑ`8

µβ “ µ˚
min (without taking a subsequence)

Û(2) µ˚
min is a minimizing measure (possibly non ergodic)

(3) Entpµ˚
minq “ suptEntpµq : µ is minimizing u

(4) µ˚
min is a barycenter of minimizing measures of maximal entropy

supported on disjoint SFTs. (The coefficients of the barycenter are
algebraic numbers).

Remark
(1) The proof uses tools in semi-algebraic theory.

(2) The set K :“
Ť

tsupppµq : µ is minimizing u that supports all
minimizing measures has a simple description: a subshift of finite
type.
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II.5. Examples of chaotic convergence

If the set K :“
Ť

tsupppµq : µ is minimizing u has a large complexity,
one may expect a chaotic convergence at zero temperature.

Theorem (Chazottes-Hochman (2010))
There exists an invariant compact set K Ă Σ1pA q such that the
potential φpxq “ dpx,Kq is chaotic at zero temperature.

But the set of minimizing measures can be as simple as possible.

Theorem (Garibaldi, Bissacot, Th. (2018))
There exists a Lipschitz potential φ : t0, 1uZ Ñ r0,`8q such that

‚ δ08 and δ18 are the only two ergodic minimizing measures

‚ φ is chaotic at zero temperature

‚ one defines an energy barrier h : Σ1 ˆ Σ1 Ñ r0,`8q and in order
to have chaotic convergence, we must have

hp08, 18q “ hp18, 08q “ 0
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III.1. Main result

Theorem (Barbieri, Bissacot, Dalle Vedove, Th. (2022))
There exists a locally finite potential φ : Σ2pA q Ñ R that is chaotic at
zero temperature.

Remark
‚ Chazottes, Hochman (2010) proved the previous result for d ě 3

‚ Simultaneously to us, Chazottes, Shinoda (2021), extended their
previous result to d “ 2. Their proof is different: Kleene fixed-
point theorem.

Theorem (Gayral, Sablik, Taati (2023))
If K is a finite simplex of periodic measures (or Π2-computable
simplex), there exists φ : Σ2pA q Ñ R locally finite such that

‚ diampGβpφqq Ñ 0

‚ any µ P K is an accumulation point of a choice of pµβφqβÑ`8
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III.2. General strategy

‚ Find a set of forbidden patterns F Ă A J1,DK2 of size D ě 1,

‚ Define the potential φ “ 1rF s

‚ Make sure that

X “ Σ2pA ,F q “ tx P Σ2pA q : φ ˝ σkpxq “ 0, @ k P Z2u ­“ H

‚ Find a special cooling sequence βk Ñ `8

‚ Take any Gibbs measure
ż

βkφdµβk
´ Entpµβk

q “ inf
!

ż

βkφdµ´ Entpµq : µ is invariant
)

‚ Show that

µβ2k`1
Ñ µ1

min, µβ2k
Ñ µ2

min, µ1
min ‰ µ2

min

‚ Notice that

supppµ1
minq, supppµ2

minq Ă X
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II.3. Step 1/6

We construct a 1d set of forbidden words with alternating complexity

‚ Ã “ t0, 1, 2u, 0 is a marker,

‚ A p1q “ t0, 1u, A p2q “ t0, 2u

‚ construct inductively two languages of words of length ℓk

A
p1q

k “ t1ℓk , a
p1q

k u, A
p2q

k “ t2ℓk , a
p2q

k u

‚ choose a finite set Fk such that

X̃k :“ ΣpA ,Fkq “

#

bi-infinite configurations obtained as

concatenation of words in A
p1q

k and A
p2q

k

‚ construct similarly

X̃
p1q

k :“ Σ1pA ,F
p1q

k q and X̃
p2q

k :“ Σ1pA ,F
p2q

k q

‚ F̃ “
Ů

Fk, the first subshift we construct

X̃ “ Σ1pÃ , F̃ q “
č

kě0

X̃k
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II.4. Step 2/6

‚ we summarize X̃ “
Ş

kě0 Ó X̃k

X̃k Ą X̃
p1q

k \ X̃
p2q

k , X̃
p1q

k Ă t0, 1uZ, X̃
p2q

k Ă t0, 2uZ

‚ impose an alternating complexity

#

for k even, FreqpX̃
p1q

k q ! FreqpX̃
p2q

k q

for k odd, FreqpX̃
p2q

k q ! FreqpX̃
p1q

k q

‚ start with a
p1q

0 “ 01, a
p2q

0 “ 02, build

A
p1q

0 “ t11, a
p1q

0 u, A
p2q

0 “ t22, a
p2q

0 u,

‚ build by induction A
p1q

k`1 “ t1ℓk , a
p1q

k`1u, assume k even

a
p1q

k`1 “ a
p1q

k a
p1q

k ¨ ¨ ¨ a
p1q

k
Nk`1 times

, a
p2q

k`1 “ a
p2q

k 2ℓk ¨ ¨ ¨ ¨ ¨ ¨ 2ℓk
pNk`1´2qℓk times

a
p2q

k

‚ assume k is odd, permute p1q and p2q
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II.5. Step 3/6

‚ assume k even

a
p1q

k`1 “ a
p1q

k a
p1q

k ¨ ¨ ¨ a
p1q

k
Nk`1 times

, a
p2q

k`1 “ a
p2q

k 2ℓk ¨ ¨ ¨ ¨ ¨ ¨ 2ℓk
pNk`1´2qℓk times

a
p2q

k

‚ define f
piq
k to be the frequency of 0 in the word a

piq
k

‚ because each ak contains at least one 0

#

for k even, f
p1q

k ! f
p2q

k

for k odd, f
p2q

k ! f
p1q

k

‚ the complexity could have been measured by the entropy (but as
we will see, entropy is not the right notion)

Observation
F can be constructed recursively (provided pNkqkě0 is also recursive).
That is, there exists a Turing machine M that enumerates the words of
F by increasing size and polynomial time enumeration TM function;
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II.6. Step 4/6

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0 1 1

11

1 1

1

11

1

‚ Embed a 1d subshift into a 2d subshit by
vertically repeating the symbols

˜̃X “ Σ2pÃ ,
˜̃F q

‚ notice

Entp ˜̃Xq “ 0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0 1 1

11

1 1

1

11

1

‚ Extend the 2d subshift by adding additional
colors

Π : X̂ Ñ
˜̃X

‚ Find a finite set of local constraints between
the colors and the digits so that the verti-

cally aligned subshift ˜̃X is revealed by eras-
ing the colors
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II.7. Step 5/6

Theorem (Aubrun, Sablik (2013))
Let F̃ be a 1d computable set of forbidden words on the alphabet Ã .

Let X̃ the corresponding subshift and ˜̃X the vertically aligned extended

subshift. Then ˜̃X is sofic.

‚ One can decorate the original symbols: Â “ Ã ˆ B

‚ There exists D ě 1 and F̂ Ă Â J1,DK2 such that X̂ :“ Σ2pÂ , F̂ q

is a shift equivariant extension of ˜̃X:

‹ There exists a commuting diagram

X̂
σ

ÝÝÝÝÑ X̂
§

§

đ
Π

§

§

đ
Π

˜̃X
σ

ÝÝÝÝÑ
˜̃X

‹ Π is surjective and is defined by erasing the decorations, by
using a one-bloc factor map π : Â Ñ Ã , (the first projection)
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II.8. Step 6/6

The entropy of Aubrun-Sablik has also zero entropy. For the purpose
of the rest of the proof we need alternating subshifts of large and
small entropies.

0''

0'

0'

0'

0''

1

1

1

1

1

0'

0''

0'

0''

0'' 1 1

11

1 1

1

11

1

‚ Duplicate the symbol 0

Â “ t0, 1, 2u ˆ B Ñ A “ t01, 02, 1, 2u ˆ B

‚ Duplicate the forbidden words

F̂ Ñ F Ă A J1,DK2

‚ We constructed successively

X̃ Ð
˜̃X Ð X̂ Ð X

X̃ “
č

kě0

X̃k, X̃k Ą X̃
p1q

k

ğ

X̃
p2q

k

Entropy estimate: EntpX
p1q

k q “ logp2qf
p1q

k
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II.9. Our contribution

Our contribution in that problem is to recognize two estimates in
Chazottes-Hochman that were not explicitly written in their proof.

Definition (Shift reconstruction function)
Let F be a set of forbidden patterns and X “ Σ2pA ,F q be the
corresponding subshift.

‚ A finite pattern p P A J1,nK2 is locally admissible if no forbidden
pattern appears in p.

‚ A finite pattern is globally admissible if it is a sub-pattern of an
(infinite) configuration x P X

p

2R (n)+1

2n+1
‚ The reconstruction function is the function
that associates for every n ě 1, the smallest
size R ě n such that if pJ´Rpnq,RpnqK2 is any
locally admissible pattern, then pJ´n,nK2 is
globally admissible.
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II.10. Reconstruction function

Lemma
Let F̃ be a 1d computable set of forbidden patterns. Assume

‚ The time enumeration function TF̃ “ OpP pnq|A |nq

‚ The reconstruction function RF̃ pnq “ Opnq

Then the Aubrun-Sablik extension X̂ “ Σ2pÂ , F̂ q satisfies

lim sup
nÑ`8

1

n
logRF̂ pnq ă `8

Notice that we don’t say that the growth of the reconstruction function
is computable

Remark
The set F̃ constructed before satisfies the hypothesis of the lemma
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II.11. Relative complexity function

Definition
Let Π : X̂ “ Σ2pÂ , F̂ q Ñ X “ Σ2pA ,F q be an extension with a

one-bloc factor map π : Â Ñ A . For every n ě 1, for every globally
admissible pattern p P A J1,nK2 , let L pn, pq be the set of globally

admissible patterns p̂ P Â J1,nK2 that project onto p.

The relative complexity function is

CF̂ pnq :“ sup
p

cardpL pn, pqq

The Aubrun-Sablik extension is more than a zero-entropy extension.

Lemma
The Aubrun-Sablik extension satisfies

lim
nÑ`8

1

n
logCF̂ “ 0.
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II.12. Final remarks

‚ We use Aubrun-Sablik as a black box: we don’t really understand
the reason in general why some tiling exhibits a chaotic
convergence. How to recognize that a 2d tiling with a finite set of
rules contains a hidden 1d subsystem that is chaotic?

‚ All the quantities we use are computable (obtained by an explicit
algorithm). But there is a countable number of such objects. For
instance the sequence of temperature pβkqkě0 is also computable.

‚ What can we say for general sequence of temperatures? These
sequences form an uncountable set of sequences and are not
therefore computable.

‚ The alphabet of the Aubrun-Sablik extension is too large and
there is no possible experiment to be done.

‚ What can we say for non-invariant Gibbs measures?

‚ What can we say for positive temperature?
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