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I.1. Zero-temperature chaotic convergence

We want to understand whether some spin systems exhibit a
phenomenon called zero-temperature chaotic convergence introduced
by van Enter and Ruszel (2007).

Definition

Let 34(a7) = %" be a spin system over a finite alphabet </ and

¢ : X4(a/) — R be a continuous function (potential). Let ug, be any
invariant Gibbs measure for the potential Se.

The zero-temperature chaotic convergence is a phenomenon where
there exists a sequence (Bk)k=0, Sx — +0, and two disjoint invariant
compact sets Ko, K1 € $4(7) such that if pg,, is any invariant
Gibbs measure,

e any weaks limit of (p14,,,)k>0 is supported in Ky

e any weaks limit of (g, ,,)k=0 is supported in K

Ph. Thieullen Zero temperature 3/33



Summary Position of the problem Old results A new result Bibliography

1.2. Zero-temperature chaotic convergence

Remark

e By compactness argument, some subsequences (jg, )x>0 are con-
verging and are not chaotic. So the chaotic convergence cannot be
expected for all subsequences.

e Coronel, Rivera-Letelier (2015) introduced a stronger notion of
sensitive dependence of the chaotic convergence: for every sequence
Br — +0, for every € > 0, there exists ||ty — ¢| < € and a subse-
quence (By(x))k=0 such that (us, ¢ )k=0 has a chaotic convergence
at zero temperature.

o We will not discuss that notion, but van Enter’s method is robust
and it is likely that our results are also true in that case.
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1.3. General setting
Notation
o A spin system: </ a finite alphabet, %¢(/) = ,Qizd, the full shift

e The group of space translations o* : £4(o/) — L), k € Z¢

e The Hamiltonian is given by a Lipschitz function ¢ : ¥4(&/) — R

Hp(x) = Z apook(x), Aez? (1)

Remark

We will be interested in studying short range interactions ® = (dx)x
where X =k + [1, D]¢ is any square of fixed size D. Our Hamiltonian
is equivalent to the one defined by summing over all interactions

HY @)= 3 ®x(e), ola) = 53 ) Bx(a) )

XCcA 0eX
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I.4. Equilibrium measures/Gibbs measures

Definition
An equilibrium measure is a shift invariant probability measure pg,
solution of the variational principle: ug, minimizes the free energy

Fg(p) :=inf { Jcpdu — B 'Ent(p) : p shift invariant probability }

e shift invariance: aé“(,u) =pu, VkeZ4,

e Kolmogorov-Sinai entropy: & the canonical generating partition

Ent(p) = lim %Ent(u, \/ a_k@)

n—+00
ke [1,n]4

Remark
If ¢ : ©¢(o/) — R is Lipschitz, shift invariant Gibbs measures defined
by the DLR procedure and equilibrium measures are the same notions
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I.5. Main question
Let ¢3(¢) be the set of equilibrium measures or Gibbs measures.
Remark
e Thanks to Dobrushin’s argument, 45 (¢) is a single element at large
temperaure

o For simple systems (at least for short range ¢), ¥3(¢) may have
several pure states at small temperature. For the Ising model in
Z2

VB < Be card(@s(p)) =1, VB> Be, Yalp) = [uf,nz] (1)

Question

What are the limits of Gibbs measures as the temperature goes to
zero? More precisely what are the limits of the whole set ¥5(p) as
B8 — +00? For the Ising model

[,ug, psl— [#T,pu~], there is no chaotic convergence (2)
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1.6. Minimizing measures

What are the possible weak limits of (18)g—+00?
[ dns - 5 Entus) = Fate) ®)

Definition
e The ground energy level (by freezing the system 8 — +o0)

Fy(p) :=inf { Jgpdu : p shift invariant probability }

e A minimizing measure iy, is a shift invariant probability measure
satisfying

f@ dptmin = Fao () (4)

Theorem (Obvious)

o F(p) = Fin()

o Any accumulation point of (g)s=0 is a minimizing measure that
mazimizes the entropy of all minimizing measures.
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1.7. The set K of ground configurations

Observation
e Assume X := {¢© = min ¢} is shift invariant, then

* any weak limit of ug — i, satisfies supp(tmin) S X
* but is it is not true in general that any invariant measure sup-
ported on X is a candidate to be a limit of a Gibbs measure.

e If in addition X has a unique invariant measure fi,i,, then
95(p) = {fmin} (no chaotic convergence)

e In general ¢~ !(min¢) is not invariant. The existence or not of a
chaotic convergence will depend strongly on the complexity of

K= U {Supp(u) : g is minimizing: Jgpd,u = Fy (o) }

Hypothesis (minimal requirements)

e ¢:%%(e/) — {0,1} has finite range and depends on a finite number
of coordinates: we say ¢ is locally finite

o K is a computable subshift (or effectively closed subshift)
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1.8. Subshift of finite type

Definition
e A function ¢ : %¢(</) — {0,1} is said to be locally finite if there
exists D > 1 such that, for every x,y € X4 (&)

T[1,p]d = Y[1,p]¢ = o(x) = »(y)-

o A subshift X is a closed shift invariant subspace of ¥¢(7) that is
defined by a countable set # of forbidden patterns (words)

« Fcl| 271
n=1

* X =34, F) = {x e ) :YVwe.F, wa z}

e A subshift X is computable if F is enumerated by a Turing ma-
chine M by increasing size

e X is of finite type if there exists D > 1 such that .F < &[1.D1"
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A new result

Bibliography

A Turing machine is given by (<, {t}, 2, ) where

e o/ is a finite alphabet

o {f#i} is an extra symbol
*« 2= {lh, B QTL} U {Qini; inn}
[ ]
function)
[ ]

( ﬂﬁ7ﬁuw17~~

In a schematic way:
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6(b,q) = (v, 4, +)
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an infinite ribbon where finite words of the form
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1.10. Turing machine

Example: odometer

#1001
#l0j0]#|# 01+ 01—
slof1] #]#
sl 1]#]#
nne e
NN
1 %]«
wlo|1]#]# H# = H#+ 01# | 014#—
0|1 |#]|#
a0l 1] 4]
o #] # e
#lo]1 # 0+ 1+
#0|#|#|#
w1 #|u]e 1+ 0+ #lr
" l : : : The notations means the
41 [l #] % head reads a, then writes a’, and moves
#loj#|## forward.

= A Turing machine is equivalent to a tiling defined by a
finite number of local constraints
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1.11. Conclusion

e We want to understand whether a system is chaotic at zero
temperature: do there exists a subsequence 8 — +00 and
Ko, K, € ¥%(/), compact and disjoint, such that

* 93, () — measures supported on Ky
* 9, ., (¢) — measures supported on K
e we want an example of potential ¢ as simple as possible:

o=1g, Fc .;zf[[l’D]]d, [-#] denotes a cylinder
x we verify that ground configurations do exist
X =Y, F)={zeXd :poc®(z) =0, VkeZ¥} #» &
obviously the ground energy and ground measures satisfy
Fy(p) =0 and supp(pmin) € X
* we construct two disjoint compact invariant sets
K, |_| KicX

* we want to work in dimension d = 2: our main result is an
extension of Chazottes-Hochman (2010) in d > 3
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II.1. Transfer matrix method

Assume d =1, o/ = {1,2,--- ,n}, ¢ : /% — R is locally finite

o(x) = p(ig,i1), Yo =(..,i1]|10,01,...) € (1)

Lemma (Transfer method)
Gibbs measures are built using the following procedure
o Mpy(i,j) = e Bv(i.d)
o \g = the largest eigenvalue of Mg = (Mp(i,7))1<i,j<n

Lg, Rg are the left and right eigenvectors

normalization: Z Ls(i)Rp(i) =1
i=1

the unique Gibbs measure at temperature 371

poli - al) = PO exp (=3 3, olia,i) - @
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I1.2. Minimizing cycles

Assume ¢ : &/% — R has the form: ¢(z) = ¢(ig,41). Recall

Fy(p) = inf { Jg@du : 1 shift invariant probability } (1)

1 n—1
e Fio(p) = lim inf — Z poo®(x)
k=0

n—+0 zedZ N

e A minimizing cycle is a 7-periodic path (ig,41,...,i-—1) such that

1 T—1 o
= 37 lin,ike1) = Foole) (2)
.
k=0
e A transition is forbidden if it belongs to no minimizing cycle
o If F# = { forbidden transitions } then

K= U {supp(u) : g is minimizing } = >N, F) (3)
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I1.3. Example of convergence

Example 1: o7 = {1,2,3,4}, ¢(1,2) = —1, ¢(2,2) =0

U3 — tmin (1 measure of maximal entropy)

(==01>0 (——2D0
0]12 0[f2 —_— 0 0 lumin
p—+o0
. -1 . . -1 .
‘ ‘,‘,,_’<1—:§,> 0 &= >0

Example 2:

s = (i + tiin) (2 measures of maximal entropy)

] a1 I T
------ 224 —m —
f—+oo
-1 ) 1 _
@=—===3D0 @——=@D>0 Fmn
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I1.4. A exact result of convergence

Theorem (Brémont (2003))

Letd=1, p: X (a) — R be a locally finite potential. Then

(1) ma ppg = p,  (without taking a subsequence)
-+

U(2) p*,, is a minimizing measure (possibly non ergodic)
(8) Ent(uk,,,.) = sup{Ent(un) : p is minimizing }
(4) pk.. is a barycenter of minimizing measures of maximal entropy

supported on disjoint SFTs. (The coefficients of the barycenter are
algebraic numbers).

Remark

(1) The proof uses tools in semi-algebraic theory.

(2) The set K := |J{supp(p) : p is minimizing } that supports all
minimizing measures has a simple description: a subshift of finite
type.
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II.5. Examples of chaotic convergence
If the set K := | J{supp() : p is minimizing } has a large complexity,
one may expect a chaotic convergence at zero temperature.

Theorem (Chazottes-Hochman (2010))

There exists an invariant compact set K = X1(a/) such that the
potential p(x) = d(x, K) is chaotic at zero temperature.

But the set of minimizing measures can be as simple as possible.

Theorem (Garibaldi, Bissacot, Th. (2018))

There exists a Lipschitz potential ¢ : {0,1}% — [0, +00) such that
e o and d1= are the only two ergodic minimizing measures
e ¢ is chaotic at zero temperature

e one defines an energy barrier h : X1 x 1 — [0, +00) and in order
to have chaotic convergence, we must have

h(0%,1%°) = h(1°,0%°) = 0
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II1.1. Main result

Theorem (Barbieri, Bissacot, Dalle Vedove, Th. (2022))

There exists a locally finite potential ¢ : %(/) — R that is chaotic at
zero temperature.

Remark
e Chazottes, Hochman (2010) proved the previous result for d > 3

e Simultaneously to us, Chazottes, Shinoda (2021), extended their
previous result to d = 2. Their proof is different: Kleene fixed-
point theorem.

Theorem (Gayral, Sablik, Taati (2023))

If X is a finite simplex of periodic measures (or Ila-computable
simplex), there exists p : X2(a/) — R locally finite such that

o diam(%3(p)) — 0

o any € X is an accumulation point of a choice of (Lay)a—+w
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II1.2. General strategy
e Find a set of forbidden patterns .# < &/[1DP1” of size D > 1,
e Define the potential ¢ = 1[4

e Make sure that
X =Y, F)={zeX®(d):poct(z) =0, Vke Z?} + &
e Find a special cooling sequence 8y — +00

e Take any Gibbs measure

Jﬁkgo dug, — Ent(ug,) = inf { fﬁkgo dp — Ent(p) : p is invariant }
e Show that

1 2 1 2
HBakr1 = Pmins B2k = Hmins  Hmin 7 Mmin

e Notice that

SUPP(Kiin)s SUPP(Hyin) © X
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I1.3. Step 1/6
We construct a 1d set of forbidden words with alternating complexity
o/ ={0,1,2}, 0 is a marker,
oM ={0,1}, @ ={0,2}
e construct inductively two languages of words of length £

a{V = 1%}, AP = (2", 0
e choose a finite set .%;, such that

J o (o, Fe) = {bi—inﬁnite configurations obtained as

concatenation of words in dk(l) and %k@)
e construct similarly

XM= s, 7Y) and X ==Y, F)
o« 7 = | | Z, the first subshift we construct

X =3 = () X
k=0
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I1.4. Step 2/6
we summarize X = ﬂkzo | X
Xeo XPux® XM 0,132, X < {0,2)%
impose an alternating complexity

for k even, Freq(f((l)) & Freq(f(@))
for k odd, Freq(X ) & Freq(X(l))

start with agl) = 01, a(()z) = 02, build

Y= {11,&61)}, ‘%(2) = {227‘1(()2)}’

build by induction &/k(}r)l = {12’6,@,(621}, assume k even

(€] o @, @1 () (2) 9k
(Nk4+1—2)4 times k

Opy1 = Qg Qg -0y py1 =
Nk+1 times

QZk a(z)

assume k is odd, permute (1) and (2)
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I1.5. Step 3/6

e assume k even

1 1 1 1 2 2 0
O S N
Nj 41 times

...... olk (2
(Nk+1—2)£) times k

define flii) to be the frequency of 0 in the word ag)

e because each a; contains at least one 0

for k even, él) « f,g)
for k odd, f& « iV

the complexity could have been measured by the entropy (but as
we will see, entropy is not the right notion)

Observation

F can be constructed recursively (provided (Ny)g>o is also recursive).
That is, there exists a Turing machine M that enumerates the words of
Z by increasing size and polynomial time enumeration Ty function;
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I1.6. Step 4/6

Embed a 1d subshift into a 2d subshit by
vertically repeating the symbols

X =33, .F)
notice
Ent(X) = 0
Extend the 2d subshift by adding additional

colors
m: X — ):(

Find a finite set of local constraints between
the colors and the digits so that the verti-

cally aligned subshift X is revealed by eras-
ing the colors

Thieullen Zero temperature 26/33
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I1.7. Step 5/6

Theorem (Aubrun, Sablik (2013))
Let F be a 1d computable set of forbidden words on the alphabet o .
Let X the corresponding subshift and ):{' the vertically aligned extended
subshift. Then X is sofic.

e One can decorate the original symbols: o = x B

o There exists D > 1 and F < PV such that X = 22(@77 ﬂ;)

s a shift equivariant extension ofX:
* There exists a commuting diagram

X —2,X
|»

|n

X —2 , X

* 11 is surjective and is defined by erasing the decorations, by
using a one-bloc factor map m : d — d, (the first projection)
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I1.8. Step 6/6

The entropy of Aubrun-Sablik has also zero entropy. For the purpose
of the rest of the proof we need alternating subshifts of large and
small entropies.

e Duplicate the symbol 0
o ={0,1,2} x B — o ={0,0",1,2} x B

e Duplicate the forbidden words

F — Fc gl

o We constructed successively

X « X « X « X

X=X %o XM X
k=0

Entropy estimate: Ent(X,El)) = log(2) ,il)

Ph. Thieullen Zero temperature 28/33



Summary Position of the problem Old results A new result Bibliography

11.9. Our contribution

Our contribution in that problem is to recognize two estimates in
Chazottes-Hochman that were not explicitly written in their proof.
Definition (Shift reconstruction function)

Let .7 be a set of forbidden patterns and X = ¥?(«/,.%) be the
corresponding subshift.

e A finite pattern p € lLnl® g locally admissible if no forbidden
pattern appears in p.

e A finite pattern is globally admissible if it is a sub-pattern of an
(infinite) configuration = € X

2R (n)+1

: e The reconstruction function is the function
— that associates for every n > 1, the smallest
size R > n such that if pj_g() r(n))2 is any
locally admissible pattern, then pj_, »j2 is
globally admissible.

2n+
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I1.10. Reconstruction function

Lemma
Let F be a 1d computable set of forbidden patterns. Assume

o The time enumeration function Tz = O(P(n)|</|")
e The reconstruction function Rz(n) = O(n)
Then, the Aubrun-Sablik extension X = $2(o/,.7) satisfies

1
limsup —log R #(n) < +0
n

n— -+

Notice that we don’t say that the growth of the reconstruction function
18 computable

Remark
The set % constructed before satisfies the hypothesis of the lemma
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I1.11. Relative complexity function

Definition o

Let I: X = ¥%(«/,.7) > X = X2(&/,. ) be an extension with a
one-bloc factor map 7 : o — . For every n = 1, for every globally
admissible pattern p € &L let & (n,p) be the set of globally
admissible patterns p € /ILnI” that project onto p.

The relative complexity function is

Cz(n):= sup card(Z (n,p))

The Aubrun-Sablik extension is more than a zero-entropy extension.

Lemma
The Aubrun-Sablik extension satisfies

1
lim —logC; = 0.

n—+a 1
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I1.12. Final remarks

e We use Aubrun-Sablik as a black box: we don’t really understand
the reason in general why some tiling exhibits a chaotic
convergence. How to recognize that a 2d tiling with a finite set of
rules contains a hidden 1d subsystem that is chaotic?

e All the quantities we use are computable (obtained by an explicit
algorithm). But there is a countable number of such objects. For
instance the sequence of temperature (8x)k=0 is also computable.

e What can we say for general sequence of temperatures? These
sequences form an uncountable set of sequences and are not
therefore computable.

e The alphabet of the Aubrun-Sablik extension is too large and
there is no possible experiment to be done.

e What can we say for non-invariant Gibbs measures?

e What can we say for positive temperature?
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