Sub-actions for Anosov diffeomorphisms

A.O. Lopes * Ph. Thieullen ${ }^{\dagger}$

November 12, 2002

Abstract

We show a positive Livciz type theorem for \mathcal{C}^{2} Anosov diffeomorphisms f on a compact boundaryless manifold M and Hölder observables A. Given $A: M \rightarrow \mathbb{R}, \alpha$-Hölder, we show there exist $V: M \rightarrow \mathbb{R}$, β-Hölder, $\beta<\alpha$ and a probability measure μ, f-invariant such that $$
A \leq V \circ f-V+\int A d \mu
$$

We apply this inequality to prove the existence of an open set \mathcal{G}_{β} of β Hölder functions, β small, which admit a unique maximizing measure supported on a periodic orbit. Moreover the closure of \mathcal{G}_{β}, in the β-Hölder topology, contains all α-Hölder functions, α close to one.

Dedicated to Jacob Palis

1 Introduction

We consider a compact riemannian manifold M of dimension $d \geq 2$ without boundary and a \mathcal{C}^{2} transitive Anosov diffeomorphism $f: M \rightarrow M$. The tangent bundle $T M$ admits a continuous $T f$-invariant splitting $T M=E^{u} \bigoplus E^{s}$ of expanding and contracting tangent vectors. We assume M is equiped with

[^0]a riemannian metric and there exist constants $C(M)$, depending only on M and the metric and constants depending on f
$$
0<\Lambda_{s}<\lambda_{s}<1<\lambda_{u}<\Lambda_{u}
$$
such that for all $n \in \mathbb{Z}$
\[

$$
\begin{cases}C(M)^{-1} \lambda_{u}^{n} \leq\left\|T_{x} f^{n} \cdot v\right\| \leq C(M) \Lambda_{u}^{n} & \text { for all } v \text { in } E_{x}^{u}, \\ C(M)^{-1} \Lambda_{s}^{n} \leq\left\|T_{x} f^{n} \cdot v\right\| \leq C(M) \lambda_{s}^{n} & \text { for all } v \text { in } E_{x}^{s} .\end{cases}
$$
\]

Livciz theorem [4] asserts that, if $A: M \rightarrow M$ is a given Hölder function and satisfies $\int A d \mu=0$ for all f-invariant probability measure μ, then A is equal to a coboundary V (which is Hölder too), that is:

$$
A=V \circ f-V
$$

What hapens if we only assume $\int A d \mu \geq 0$ for all f-invariant probability measure μ ? We denote by $\mathcal{M}(f)$, the set of f-invariant probability measures. We prove the following:

Theorem 1 Let $f: M \rightarrow M$ be a \mathcal{C}^{2} transitive Anosov diffeomorphism on a compact manifold M without boundary. For any given α-Hölder function $A: M \rightarrow \mathbb{R}$, there exists a β-Hölder function $V: M \rightarrow \mathbb{R}$, that we call sub-action, such that:

$$
A \leq V \circ f-V+m(A, f)
$$

where $m(A, f)=\sup \left\{\int f d \mu \mid \mu \in \mathcal{M}(f)\right\}, \mathcal{M}(f)$ is the set of f-invariant probability measures and

$$
\beta=\alpha \frac{\ln \left(1 / \lambda_{s}\right)}{\ln \left(\Lambda_{u} / \lambda_{s}\right)}, \quad \operatorname{Höld}_{\beta}(V) \leq \frac{C(M)}{\min \left(1-\lambda_{u}^{-\alpha}, 1-\lambda_{s}^{\alpha}\right)^{2}} \operatorname{Höld}_{\alpha}(A)
$$

where $C(M)$ is some constant depending only on M and the metric.
By analogy with Hamiltonian mechanics and the way we define V from A, we may interpret A as a lagrangian and V as a sub-action. This result extends a similar one we obtained in [3] for expanding maps of the circle. Although the proof we give is specific for smooth systems, the same result holds for doubly infinite subshifts of finite type.

Corollary 2 The hypothesis are the same as in theorem 1. The following statements are equivalent:
(i) $A \geq V \circ f-V$ for some bounded measurable function V,
(ii) $\int A d \mu \geq 0$ for all f-invariant probability measure μ,
(iii) $\sum_{k=0}^{p-1} A \circ f^{k}(x) \geq 0$ for all $p \geq 1$ and point x periodic of period p,
(iv) $A \geq V \circ f-V$ for some Hölder function V.

The proof of that corollary is straitforward and uses (for (iii) \Rightarrow (ii)) the fact that the convex hull of periodic measures is dense in the set of all f-invariant probability measures for topological dynamical systems satisfying the shadowing lemma (see Lemma 5). F. Labourie suggested to us the following corollary:

Corollary 3 The hypothesis are the same as in theorem 1. If A satisfies $\int A d \mu \geq 0$ for all $\mu \in \mathcal{M}(f)$ and $\sum_{k=0}^{p-1} A \circ f^{k}(x)>0$ for at least one periodic orbit x of period p then $\int A d \lambda>0$ for all probability measure λ giving positive mass to any open set.

Again the proof is straitforward: $R=A-V \circ f+V \geq 0$ for some continuous V and $\int R d \lambda=0$ for such a measure λ implies $R=0$ everywhere and in particular $\sum_{k=0}^{p-1} A \circ f(x)=0$ for all periodic orbit x.

Any measure μ satisfying $\int A d \mu=m(A, f)$ is called a maximizing measure and since A is continuous, such a measure always exists. It is then natural to ask the following two questions : For which A, the set of maximizing measures is reduced to a single measure ? In the case there exists a unique maximizing measure, to what kind of compact set, the support of this measure looks like?

The following theorem gives a partial answer for "generic" functions A.
Theorem 4 Let $f: M \rightarrow M$ be a \mathcal{C}^{2} transitive Anosov diffeomorphism and $\beta<\ln \left(1 / \lambda_{s}\right) / \ln \left(\Lambda_{u} / \lambda_{s}\right)$. Then there exists an open set \mathcal{G}_{β} of β-Hölder functions (open in the \mathcal{C}^{β}-topology) such that:
(i) any A in \mathcal{G}_{β} admits a unique maximizing measure μ_{A};
(ii) the support of μ_{A} is equal to a periodic orbit and is locally constant with respect to $A \in \mathcal{G}_{\beta}$;
(iii) any α-Hölder function with $\alpha>\beta \ln \left(\Lambda_{u} / \lambda_{s}\right) / \ln \left(1 / \lambda_{s}\right)$ is contained in the closure of \mathcal{G}_{β} (the closure is taken with respect to the \mathcal{C}^{β}-topology).

The proof of Theorem 4 is a simplification of what we gave in [3] in the one-dimensional setting. The existence of sub-actions is in both cases the main ingredient of the proof.

The plan of the proof of Theorem 1 is the following: Given a finite covering of M by open sets $\left\{U_{1}, \ldots, U_{l}\right\}$ with sufficiently small diameter, we construct a Markov covering (and not a Markov partition) $\left\{R_{1}, \ldots, R_{l}\right\}$ of rectangles: each R_{i} contains U_{i} and satisfies

$$
x \in U_{i} \cap f^{-1}\left(U_{j}\right) \Rightarrow f\left(W^{s}\left(x, R_{i}\right)\right) \subset W^{s}\left(f(x), R_{j}\right)
$$

where $W^{s}\left(x, R_{i}\right)$ denotes the local stable leaf through x restricted to R_{i}. We then associate to each R_{i} a local sub-action V_{i}, defined on R_{i} by:

$$
V_{i}(x)=\sup \left\{S_{n}(A-m) \circ f^{-n}(y)+\Delta^{s}(y, x) \mid n \geq 0, \quad y \in W^{s}\left(x, R_{i}\right)\right\}
$$

where $\Delta^{s}(y, x)$ is a kind of cocycle along the stable leaf $W^{s}(x)$:

$$
\Delta^{s}(y, x)=\sum_{n \geq 0}\left(A \circ f^{n}(y)-A \circ f^{n}(x)\right) .
$$

This family $\left\{V_{1}, \ldots, V_{l}\right\}$ of local sub-actions satisfies the inequality:

$$
x \in U_{i} \cap f^{-1}\left(U_{j}\right) \Rightarrow V_{i}(x)+A(x)-m \leq V_{j} \circ f(x)
$$

and enable us to construct a global sub-action V :

$$
V(x)=\sum_{i=1}^{l} \theta_{i}(x) V_{i}(x)
$$

where $\left\{\theta_{1}, \ldots, \theta_{l}\right\}$ is a smooth partition of unity associated to the covering $\left\{U_{1}, \ldots, U_{l}\right\}$. The main difficulty is to prove that each V_{i} is Hölder on R_{i}.

2 Existence of sub-actions

We continue our description of the dynamics of transitive Anosov diffeomorphisms (for details information, see Bowen's monography [2]). All the results
we are going to use depend on a small constant of expansiveness $\epsilon^{*}>0$ depending on f and M in the following way:

$$
\epsilon^{*}=C(M)^{-1} \min \left(\frac{\lambda_{u}-1}{\left\|D^{2} f\right\|_{\infty}}, \frac{1-\lambda_{s}}{\left\|D^{2} f\right\|_{\infty}}\right)
$$

where $C(M) \geq 1$ is a constant depending only on M and the riemannian metric. At each point x, one can define its local stable manifold $W_{\epsilon}^{s}(x)$ for every $\epsilon<\epsilon^{*}$:

$$
W_{\epsilon}^{s}(x)=\left\{y \in M \mid d\left(f^{n}(x), f^{n}(y)\right) \leq \epsilon \quad \forall n \geq 0\right\}
$$

which are \mathcal{C}^{2} embeded closed disks of dimension $d^{s}=\operatorname{dim} E_{x}^{s}$ and tangent to E_{x}^{s}. In the same manner, $W_{\epsilon}^{u}(x)$ is defined replacing f by f^{-1}. If two points x, y are close enough, $d(x, y)<\delta$, then $W_{\epsilon}^{s}(x)$ and $W_{\epsilon}^{u}(y)$ have a unique point in common, called $[x, y]$:

$$
[x, y]=W_{\epsilon}^{s}(x) \cap W_{\epsilon}^{u}(y)=W_{\epsilon^{*}}^{s}(x) \cap W_{\epsilon^{*}}^{u}(y),
$$

where $\epsilon=K^{*} \delta$ and K^{*} is again a large constant depending on M and f :

$$
K^{*}=\frac{C(M)}{\min \left(1-\lambda_{u}^{-1}, 1-\lambda_{s}\right)} .
$$

This estimate is in fact a particular case of Bowen's shadowing lemma:
Lemma 5 (Bowen) If δ is small enough, $\delta<\epsilon^{*} / K^{*}$, if $\left(x_{n}\right)_{n \in \mathbb{Z}}$ is a biinfinite δ-pseudo-orbit, that is, $d\left(f\left(x_{n}\right), x_{n+1}\right)<\delta$ for all $n \in \mathbb{Z}$, then there exists a unique true orbit $\left\{f^{n}(x)\right\}_{n \in \mathbb{Z}}$ which ϵ-shadow $\left(x_{n}\right)_{n \in \mathbb{Z}}$, that is $d\left(f^{n}(x), x_{n}\right)<\epsilon$ for all $n \in \mathbb{Z}$ with $\epsilon=K^{*} \delta$.

This lemma is the main ingredient for constructing (dynamical) rectangles. A rectangle R is a closed set of diameter less than ϵ^{*} / K^{*} satisfying:

$$
x, y \in R \Rightarrow[x, y] \in R .
$$

We will not use the notion of proper rectangles but will use instead the notion of Markov covering.

Definition 6 Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{l}\right\}$ be a covering of M by open sets of diameter less than $\epsilon^{*} /\left(K^{*}\right)^{2}$. We call Markov covering associated to \mathcal{U}, a finite set $\mathcal{R}=\left\{R_{1}, \ldots, R_{l}\right\}$ of rectangles of diameter less than ϵ^{*} / K^{*} satisfying:

$$
\begin{aligned}
& U_{i} \subset R_{i} \\
& x \in U_{i} \cap f^{-1}\left(U_{j}\right) \Rightarrow f\left(W^{s}\left(x, R_{i}\right)\right) \subset W^{s}\left(f(x), R_{j}\right) \\
& y \in f\left(U_{i}\right) \cap U_{j} \quad \Rightarrow f^{-1}\left(W^{u}\left(y, R_{j}\right)\right) \subset W^{u}\left(f^{-1}(y), R_{i}\right)
\end{aligned}
$$

where $W^{s}\left(x, R_{i}\right)=W_{\epsilon^{*}}^{s}(x) \cap R_{i}$ and $W^{u}\left(y, R_{j}\right)=W_{\epsilon^{*}}^{u}(y) \cap R_{j}$.
An easy consequence of the shadowing lemma shows there always exist such Markov coverings:

Proposition $\mathbf{7}$ For every covering \mathcal{U} of M by open sets such that the diameter of each U_{i} is less than $\epsilon^{*} /\left(K^{*}\right)^{2}$, there exists a Markov covering \mathcal{R} by rectangles of diameter less than ϵ^{*} / K^{*}.

Proof. Given $\mathcal{U}=\left\{U_{1}, \ldots, U_{l}\right\}$ such a covering, we define the following compact space of $\epsilon^{*} /\left(K^{*}\right)^{2}$ pseudo-orbits:

$$
\Sigma=\left\{\omega=\left(\ldots, \omega_{-2}, \omega_{-1} \mid \omega_{0}, \omega_{1}, \ldots\right) \quad \text { s.t. } \quad U_{\omega_{n}} \cap f^{-1}\left(U_{\omega_{n+1}}\right) \neq \emptyset\right\} .
$$

Here ω is a sequence of indices in $\{1, \ldots, l\}$ and Σ is a subshift of finite type where $i \rightarrow j$ is a possible transition iff $U_{i} \cap f^{-1}\left(U_{j}\right)$ is not empty. Given such $\omega \in \Sigma$, we choose for all $n \in \mathbb{Z}, x_{n} \in U_{\omega_{n}}$ so that $f\left(x_{n}\right) \in U_{\omega_{n+1}}$. Then $\left(x_{n}\right)_{n \in \mathbb{Z}}$ is a $\epsilon^{*} /\left(K^{*}\right)^{2}$ pseudo-orbit which corresponds to a unique true orbit $\left(f^{n}(x)\right)_{n \in \mathbb{Z}}$ satisfying:

$$
d\left(f^{n}(x), U_{\omega_{n}}\right)<\epsilon^{*} / K^{*} \quad \forall n \in \mathbb{Z} .
$$

Since ϵ^{*} is a constant of expansiveness, there can exists at most one point x satisfying the previous inequality for all n. We call that point $\pi(\omega)$ and notice that the map

$$
\pi: \Sigma \rightarrow M
$$

is surjective (for \mathcal{U} is a covering), commutes with the left shift $\sigma, f \circ \pi=$ $\pi \circ \sigma$, is continuous by expansiveness (in fact Hölder if Σ is equiped with the standard metric). Also notice that π may not be finite-to-one. We first construct a Markov cover on Σ as usual by the braket

$$
\left[\omega, \omega^{\prime}\right]=\left(\cdots, \omega_{-2}^{\prime}, \omega_{-1}^{\prime} \mid \omega_{0}, \omega_{1}, \cdots\right)
$$

where $\omega=\left(\omega_{n}\right)_{n \in \mathbb{Z}}, \omega^{\prime}=\left(\omega_{n}^{\prime}\right)_{n \in \mathbb{Z}}$ and $\omega_{0}^{\prime}=\omega_{0}$. By uniqueness in the construction of $\pi(\omega)$, we get

$$
\begin{aligned}
& \pi\left(\left[\omega, \omega^{\prime}\right]\right)=\left[\pi(\omega), \pi\left(\omega^{\prime}\right)\right] \\
& \pi([i])=R_{i} \quad \text { is a rectangle of } M \text { containing } U_{i} \\
& \pi\left(W^{s}(\omega,[i])\right)=W^{s}\left(\pi(\omega), R_{i}\right) \quad \text { whenever } \omega_{0}=i
\end{aligned}
$$

where $[i], i=1, \cdots, l$, is the cylinder $\left\{\omega \in \Sigma \mid \omega_{0}=i\right\}$ and $W^{s}(\omega,[i])$ is the symbolic stable set $\left\{\omega^{\prime} \in \Sigma \mid \omega_{n}^{\prime}=\omega_{n} \forall n \geq 0\right\}$. (For the proof of the last equality, we just notice : if $x=\pi(\omega), y \in W^{s}\left(x, R_{i}\right)$ and $y=\pi\left(\omega^{\prime}\right)$ then $\pi\left(\left[\omega, \omega^{\prime}\right]\right)=y$ and $\left.\left[\omega, \omega^{\prime}\right] \in W^{s}(\omega,[i]).\right)$ To finish the proof we only show

$$
x \in U_{i} \cap f^{-1}\left(U_{j}\right) \Rightarrow f\left(W^{s}\left(x, R_{i}\right)\right) \subset W^{s}\left(f(x), R_{j}\right)
$$

Indeed, $x=\pi(\omega)$ for some $\omega=\left(\cdots, \omega_{-1} \mid i, j, \omega_{2}, \cdots\right)$ and

$$
\sigma\left(W^{s}(\omega,[i]) \subset W^{s}(\sigma(\omega),[j])\right.
$$

To conclude, we apply π on both sides.

Definition 8 Let $\mathcal{R}=\left\{R_{1}, \cdots, R_{l}\right\}$ be a Markov covering of M associated to some open covering $\mathcal{U}=\left\{U_{1}, \cdots, U_{l}\right\}$. We define a local sub-action by

$$
V_{i}(x)=\sup \left\{S_{n}(A-m) \circ f^{-n}(y)+\Delta^{s}(y, x) \mid n \geq 0, y \in W^{s}\left(x, R_{i}\right)\right\}
$$

where $S_{n} B=\sum_{k=0}^{n-1} B \circ f^{k}, \Delta^{s}(y, x)=\sum_{k \geq 0}\left(A \circ f^{k}(y)-A \circ f^{k}(x)\right)$ and the supremum is taken over all $n \geq 0$ and points $y \in W^{s}\left(x, R_{i}\right)$.

Before showing V_{i} is a (finite!) Hölder function on each R_{i}, let's conclude the proof of Theorem 1:
Poof of Theorem 1. Let $\mathcal{U}=\left\{U_{1}, \cdots, U_{l}\right\}$ be an open covering of M, $\left\{R_{1}, \cdots, R_{l}\right\}$ a Markov covering associated to \mathcal{U} and $\left\{\theta_{1}, \cdots, \theta_{l}\right\}$ a partition of unity adapted to \mathcal{U}. Let $\left\{V_{1}, \cdots, V_{l}\right\}$ constructed as above and

$$
V=\sum_{i} \theta_{i} V_{i} .
$$

Suppose we have proved that $x \in U_{i} \cap f^{-1}\left(U_{j}\right)$ implies

$$
V_{i}(x)+(A-m)(x) \leq V_{j} \circ f(x) .
$$

Multiplying this inequality by $\theta_{i}(x) \theta_{j} \circ f(x)$ and summing over i and j, we get

$$
V(x)+(A-m)(x) \leq V \circ f(x) \quad(\forall x \in M)
$$

We now prove the local sub-cohomological equation: if $x \in U_{i} \cap f^{-1}\left(U_{j}\right)$ and $y \in W^{s}\left(x, R_{i}\right)$, then $f(y) \in W^{s}\left(f(x), R_{j}\right)$ and

$$
\begin{aligned}
S_{n}(A-m) & \circ f^{-n}(y)+\Delta^{s}(y, x)+(A-m)(x) \\
& =S_{n+1}(A-m) \circ f^{-(n+1)} \circ f(y)+\Delta^{s}(f(y), f(x)) \leq V_{j} \circ f(x) .
\end{aligned}
$$

Taking the supremum over all $n \geq 0$ and all $y \in W^{s}\left(x, R_{i}\right)$, we get indeed

$$
V_{i}(x)+(A-m)(x) \leq V_{j} \circ f(x)
$$

That finishes the proof of theorem 1.
We now come to our main technical lemma. We notice that, even in the case where A is Lipschitz, we only obtain a Hölder sub-action.

Lemma 9 If A is α-Hölder on M, R is a rectangle and V is defined as in Definition 8, then V is β-Hölder on R with exponent

$$
\beta=\alpha \frac{\left|\ln \lambda_{s}\right|}{\Lambda_{u}+\left|\ln \lambda_{s}\right|}<\alpha .
$$

Proof. We divide the proof into four steps:
Step one. If $d\left(x, x^{\prime}\right)<\epsilon^{*}$ and x, x^{\prime} are on the same stable leaf, then

$$
\Delta^{s}\left(x, x^{\prime}\right) \leq \sum_{n \geq 0}\left|A \circ f^{n}(x)-A \circ f^{n}\left(x^{\prime}\right)\right| \leq C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{1-\lambda_{s}^{\alpha}} d\left(x, x^{\prime}\right)^{\alpha},
$$

for some constant $C(M)$ depending only on M and the metric.
Indeed, it follows from the contraction $d\left(f^{k}(x), f^{k}\left(x^{\prime}\right)\right) \leq C(M) \lambda_{s}^{k} d\left(x, x^{\prime}\right)$ for $k \geq 0$ and the fact that A is α-Hölder.
Step two. For every $n \geq 1, x, x^{\prime} \in M$ such that $d\left(f^{k}(x), f^{k}\left(x^{\prime}\right)\right)<\epsilon^{*} / K^{*}$ for all $0 \leq k \leq n$, then

$$
\begin{gathered}
\sum_{k=0}^{n-1}\left|A \circ f^{k}(x)-A \circ f^{k}\left(x^{\prime}\right)\right| \leq K(M, f) \max \left(d\left(x, x^{\prime}\right)^{\alpha}, d\left(f^{n}(x), f^{n}\left(x^{\prime}\right)\right)^{\alpha}\right) \\
\text { where } \quad K(M, f)=C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{\min \left(1-\lambda_{u}^{-\alpha}, 1-\lambda_{s}^{\alpha}\right)^{2}}
\end{gathered}
$$

Indeed, one can build $w=\left[x, x^{\prime}\right]$; then on the one hand, $d(x, w) \leq \epsilon^{*}$ and x, w are on the same stable leaf; on the other hand, $d\left(f^{n}(w), f^{n}\left(x^{\prime}\right)\right) \leq \epsilon^{*}$ and $f^{n}(w)$ and $f^{n}\left(x^{\prime}\right)$ are on the same unstable leaf. We conclude by applying step one and the estimates:

$$
d(x, w) \leq K^{*} d\left(x, x^{\prime}\right), \quad d\left(f^{n}(w), f^{n}\left(x^{\prime}\right)\right) \leq K^{*} d\left(f^{n}(x), f^{n}\left(x^{\prime}\right)\right)
$$

Step three. We show that $V(x)$ is finite for every $x \in R$. It is precisely here that the choice of the normalizing constant $m(A, f)$ is important.

Indeed, since a transitive Anosov diffeomorphism is mixing, there exists an integer $\tau^{*} \geq 1$ such that, for every finite orbit $\left\{f^{-n}(y), \cdots, f^{-1}(y), y\right\}$, n arbitrary, $f^{\tau^{*}}\left(B\left(y, \epsilon^{*} / K^{*}\right)\right)$ contains $f^{-n}(y)$. Thanks to the shadowing lemma, there exists a periodic orbit z, of period $n+\tau^{*}$, satisfying

$$
d\left(f^{-k}(z), f^{-k}(y)\right) \leq \epsilon^{*} \quad(\forall k=0,1, \cdots, n) .
$$

Using step two, $\sum_{k=1}^{n}\left(A \circ f^{-k}(y)-A \circ f^{-k}(z)\right)$ is uniformly bounded in n by some constant $C(M, f)$ and using $\sum_{k=1}^{n+\tau^{*}} A \circ f^{-k}(z) \leq\left(n+\tau^{*}\right) m(A, f)$, we get

$$
\begin{aligned}
\sum_{k=1}^{n} A \circ f^{-k}(y) & \leq C(M, f)+\sum_{k=1}^{n+\tau^{*}} A \circ f^{-k}(z)+\tau^{*}\|A\|_{\infty} \\
& \leq C(M, f)+2 \tau^{*}\|A\|_{\infty}
\end{aligned}
$$

Step four. We finally prove that V is Hölder on R. Let $n \geq 0, x, x^{\prime} \in R$, $y \in W^{s}(x, R)$ and define $y^{\prime}=\left[x^{\prime}, y\right]$ belonging to R since R is a rectangle and to the same local unstable manifold as y. Then for some N we are going to choose soon: let $B=A-m(A, f)$,

$$
\begin{aligned}
S_{n} B \circ f^{-n}(y)+\Delta^{s}(y, x) & \leq S_{n} B \circ f^{-n}\left(y^{\prime}\right)+\Delta^{s}\left(y^{\prime}, x^{\prime}\right) & & \\
& +\sum_{k=-n}^{N-1}\left|A \circ f^{k}(y)-A \circ f^{k}\left(y^{\prime}\right)\right| & & \left(=\Sigma_{1}\right) \\
& +\sum_{k=0}^{N-1}\left|A \circ f^{k}(x)-A \circ f^{k}\left(x^{\prime}\right)\right| & & \left(=\Sigma_{2}\right) \\
& +\left|\Delta^{s}\left(f^{N}(y), f^{N}(x)\right)\right| & & \left(=\Sigma_{3}\right) \\
& +\left|\Delta^{s}\left(f^{N}\left(y^{\prime}\right), f^{N}\left(x^{\prime}\right)\right)\right| & & \left(=\Sigma_{4}\right)
\end{aligned}
$$

We now bound from above each Σ_{i} with respect to $d\left(x, x^{\prime}\right)$:

$$
\begin{aligned}
\Sigma_{1} & \leq C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{1-\lambda_{u}^{-\alpha}} d\left(f^{N}(y), f^{N}\left(y^{\prime}\right)\right)^{\alpha}, \\
\Sigma_{2} & \leq C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{\min \left(1-\lambda_{u}^{-\alpha}, 1-\lambda_{s}^{\alpha}\right)^{2}} \max \left(d\left(x, x^{\prime}\right)^{\alpha}, d\left(f^{N}(x), f^{N}\left(x^{\prime}\right)\right)^{\alpha}\right), \\
\Sigma_{3} & \leq C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{1-\lambda_{s}^{\alpha}} d\left(f^{N}(y), f^{N}(x)\right), \\
\Sigma_{4} & \leq C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{1-\lambda_{s}^{\alpha}} d\left(f^{N}\left(y^{\prime}\right), f^{N}\left(x^{\prime}\right)\right)^{\alpha} .
\end{aligned}
$$

We now choose $N=N\left(x, x^{\prime}\right)$ by $\lambda_{s}^{t} \epsilon^{*}=\Lambda_{u}^{t} d\left(x, x^{\prime}\right), N=[t]+1$ and then choose $\tilde{\epsilon} \geq \epsilon^{*}$ so that $\lambda_{s}^{N} \tilde{\epsilon}=\Lambda_{u}^{N} d\left(x, x^{\prime}\right)$. Then

$$
\begin{gathered}
d\left(f^{N}(x), f^{N}\left(x^{\prime}\right)\right) \leq C(M) \Lambda_{u}^{N} d\left(x, x^{\prime}\right) \leq C(M) \lambda_{s}^{N} \tilde{\epsilon}, \\
d\left(f^{N}(y), f^{N}(x)\right) \text { or }\left(f^{N}\left(y^{\prime}\right), f^{N}\left(x^{\prime}\right)\right) \leq C(M) \lambda_{s}^{N} \epsilon^{*} \leq C(M) \lambda_{s}^{N} \tilde{\epsilon} .
\end{gathered}
$$

In particuliar, we get first $d\left(f^{N}(y), f^{N}\left(y^{\prime}\right)\right) \leq 3 C(M) \lambda_{s}^{N} \tilde{\epsilon}$ and next:

$$
\begin{gathered}
\Sigma_{1}+\cdots+\Sigma_{4} \leq 6 C(M) \frac{\operatorname{Höld}_{\alpha}(A)}{\min \left(1-\lambda_{u}^{-\alpha}, 1-\lambda_{s}^{\alpha}\right)^{2}}\left(\lambda_{s}^{N} \tilde{\epsilon}\right)^{\alpha}=K(M, f)\left(\lambda_{s}^{N} \tilde{\epsilon}\right)^{\alpha}, \\
S_{n} B \circ f^{-n}(y)+\Delta^{s}(y, x) \leq S_{n} B \circ f^{-n}\left(y^{\prime}\right)+\Delta^{s}\left(y^{\prime}, x^{\prime}\right)+K(M, f)\left(\lambda_{s}^{N} \tilde{\epsilon}\right)^{\alpha}, \\
V(x) \leq V\left(x^{\prime}\right)+K(M, f)\left(\lambda_{s}^{N} \tilde{\epsilon}\right)^{\alpha} .
\end{gathered}
$$

But

$$
\lambda_{s}^{N} \tilde{\epsilon}=d\left(x, x^{\prime}\right)^{\ln \left(1 / \lambda_{s}\right) / \ln \left(\Lambda_{u} / \lambda_{s}\right)} .
$$

Remark 10 We have not used explicitely the fact that the stable foliation W^{s} is Hölder but our proof (step four) is close to showing W^{s} is Hölder of exponent $\gamma=\ln \left(\lambda_{u} / \lambda_{s}\right) / \ln \left(\Lambda_{u} / \lambda_{s}\right)$.

Proof. We show that if $\epsilon<\epsilon^{*} / K^{*}, d\left(x, x^{\prime}\right) \leq \epsilon, y \in W_{\epsilon}^{s}(x), y^{\prime} \in W_{\epsilon}^{s}\left(x^{\prime}\right)$ and $y \in W_{\epsilon^{*}}^{u}\left(y^{\prime}\right)$ then

$$
d\left(y, y^{\prime}\right) \leq 3 C(M)^{2} d\left(x, x^{\prime}\right)^{\gamma}
$$

where $\gamma=\ln \left(\lambda_{u} / \lambda_{s}\right) / \ln \left(\Lambda_{u} / \lambda_{s}\right)$.

Indeed we choose $t>0$ real such that $\lambda_{s}^{t} \epsilon=\Lambda_{u}^{t} d\left(x, x^{\prime}\right), N=[t]+1$, and $\tilde{\epsilon}$ close to ϵ so that $\lambda_{s}^{N} \tilde{\epsilon}=\Lambda_{u}^{N} d\left(x, x^{\prime}\right)$ where $\tilde{\epsilon} / \epsilon$ varies between 1 and $\Lambda_{u} / \lambda_{s}$. Then

$$
\begin{gathered}
d\left(f^{N}(x), f^{N}(y)\right) \text { or } d\left(f^{N}\left(x^{\prime}\right), f^{N}\left(y^{\prime}\right)\right) \text { or } d\left(f^{N}(x), f^{N}\left(x^{\prime}\right)\right) \leq C(M) \lambda_{s}^{N} \tilde{\epsilon}, \\
\\
d\left(f^{N}(y), f^{N}\left(y^{\prime}\right)\right) \leq 3 C(M) \lambda_{s}^{N} \tilde{\epsilon}, \\
d\left(y, y^{\prime}\right) \leq 3 C(M)^{2}\left(\lambda_{s} / \lambda_{u}\right)^{N} \tilde{\epsilon}=3 C(M)^{2} d\left(x, x^{\prime}\right)^{\gamma} .
\end{gathered}
$$

3 Maximizing periodic measures

The proof of Theorem 4 requires two ingredients: the first one is the notion of sub-actions we have already studied, the second is the notion of strongly non-wandering points we are going to explain.

Definition 11 Given $A \in \mathcal{C}^{\beta}(M)$ and $m=m(A, f)$, a point $x \in M$ is said to be strongly non-wandering with respect to A, if for any $\epsilon>0$, there exist $n \geq 1$ and $y \in M$ such that

$$
y \in B(x, \epsilon), \quad f^{n}(y) \in B(x, \epsilon) \quad \text { and } \quad\left|\sum_{k=0}^{n-1}(A-m) \circ f^{k}(y)\right|<\epsilon
$$

where $B(x, \epsilon)$ denotes the ball centered at x and radius ϵ. We call $\Omega(A, f)$ the set of strongly non-wandering points.

The first non-trivial but easy observation is that $\Omega(A, f)$ is non-empty; more precisely:

Lemma 12 The set $\Omega(A, f)$ is compact forward and backward f-invariant and contains the support of any maximizing measure.

Proof. If μ is maximizing, by Atkinson's theorem [1], for almost μ-point x, the Birkhoff's sums $\sum_{k=0}^{n-1}(A-m) \circ f^{k}$ are recurrent (in the sense of random walk theory) to $\int(A-m) d \mu=0$: that is, for any Borel set B of positive μ-measure and for any $\epsilon>0$, the set

$$
\left\{x \in B \mid \exists n \geq 1 \quad f^{n}(x) \in B \quad \text { and } \quad\left|\sum_{k=0}^{n-1}(A-m) \circ f^{k}(x)\right|<\epsilon\right\}
$$

has positive μ-measure. Since by definition of the support of a measure, any ball $B(x, \epsilon)$ has positive μ-measure, we have proved that $\operatorname{supp}(\mu)$ is included in $\Omega(A, f)$.

The second observation is that any Hölder function A is cohomologuous to $m(A, f)$ on $\Omega(A, f)$, more precisely:

Lemma 13 Let A be a \mathcal{C}^{0}-function and assume A admits a \mathcal{C}^{0} sub-action V, then

$$
\Omega(A, f) \subseteq \Sigma_{V}(A, f)=\{x \in M \mid A-m=V \circ f-V\}
$$

and any f-invariant measure μ whose support in contained in $\Omega(A, f)$ is maximizing.

The set $\Sigma_{V}(A, f)$ will play an important role later and it is convenient to to give it a name:

Definition 14 Let A be a \mathcal{C}^{0}-function and V be a sub-action of A.
(i) We call the set $\Sigma_{V}(A, f)=\{x \in M \mid A-m=V \circ f-V\}$, the V-action-set of A.
(ii) Two points x, y of the V-action-set are said to be V-connected and we shall write $x \xrightarrow{V} y$, if for every $\epsilon>0$, there exist $n \geq 1$ and $z \in M$ (not necessarily in $\left.\Sigma_{V}(A, f)\right)$ such that

$$
x \in B(z, \epsilon), \quad y \in B\left(f^{n}(z), \epsilon\right), \quad\left|S_{N}(A-m)(z)-(V(y)-V(x))\right|<\epsilon .
$$

Notice that, if V is β-Hölder for some $\beta>0$, using the shadowing lemma, one can prove that $x \xrightarrow{V} y$ and $y \xrightarrow{V} z$ imply $x \xrightarrow{V} z$.
Proof of Lemma 13. Define $R=V \circ f-V-A+m$ and choose $x \in \Omega(A, f)$. Then $\sum_{k=0}^{n_{i}-1}(A-m) \circ f^{k}\left(y_{i}\right)$ converges to 0 for a sequence of points y_{i} and a sequence of integers n_{i} such that y_{i} converges to x, n_{i} converges to $+\infty$ and $f^{n_{i}}\left(y_{i}\right)$ converges to x. Since R is non-negative,

$$
0 \leq R\left(y_{i}\right) \leq \sum_{k=0}^{n_{i}-1} R \circ f^{k}\left(y_{i}\right)=V \circ f^{n_{i}}\left(y_{i}\right)-V\left(y_{i}\right)-\sum_{k=0}^{n_{i}-1}(A-m) \circ f^{k}\left(y_{i}\right)
$$

converges to 0 and by continuity of $R: R(x)=0$.

Definition 15 For any $\beta>0$, define

$$
\mathcal{G}_{\beta}=\left\{A \in \mathcal{C}^{\beta}(M) \mid \Omega(A, f) \text { is a periodic orbit }\right\} .
$$

Our next goal is to show that \mathcal{G}_{β} is open in \mathcal{C}^{β}. We could have choosen a bigger set : the set of A in $\mathcal{C}^{\beta}(M)$ such that $\Omega(A, f)$ is minimal and is dynamically isolated (i.e. there exists U, open, containing $\Omega(A, f)$ as the only f-invariant compact set inside U) and the proof below would again be the same.

Lemma 16 For any $\beta>0, \mathcal{G}_{\beta}$ is open in \mathcal{C}^{β} and $\Omega(A, f)$ is locally constant as a function of A in \mathcal{G}_{β}.

Proof. Let $A \in \mathcal{G}_{\beta}$. We want to show that $\Omega(A, f)=\Omega(B, f)$ whenever B is sufficiently close to A in the \mathcal{C}^{β} topology. By contradiction: let U be an isolating open set of the periodic orbit $\Omega(A, f)=\operatorname{orb}(p)$ and $\left\{A_{n}\right\}$ be a sequence of β-Hölder observables converging to A in the \mathcal{C}^{β} topology such that $\Omega(A, f)$ is not included in U for each n.

Each A_{n} admits (Theorem 1) a γ-Hölder subaction V_{n} with γ-Hölder norm uniformly bounded and $\gamma=\beta \ln \left(1 / \lambda_{s}\right) / \ln \left(\Lambda_{u} / \lambda_{s}\right)$. By Ascoli, $\left\{V_{n}\right\}$ admits a subsequence converging in the \mathcal{C}^{0} topology to some γ-Hölder function V. Since the set of non-empty compact sets is compact with respect to the Hausdorff topology, we may assume that $\left\{\Omega\left(A_{n}, f\right)\right\}$ has a sub-sequence converging to some compact invariant set K. Each A_{n} satisfies :

$$
\begin{array}{cc}
A_{n}-m\left(A_{n}, f\right) \leq V_{n} \circ f-V_{n} & (\forall x \in M), \\
A_{n}-m\left(A_{n}, f\right)=V_{n} \circ f-V_{n} & \left(\forall x \in \Omega\left(A_{n}, f\right)\right) .
\end{array}
$$

By continuity of $m(A, f)$ with respect to A (for the \mathcal{C}^{0} topology),

$$
\begin{array}{ll}
A-m(A, f) \leq V \circ f-V & (\forall x \in M) \\
A-m(A, f)=V \circ f-V & (\forall x \in K) .
\end{array}
$$

We have assumed that each $\Omega\left(A_{n}, f\right) \backslash U$ is not empty, then $K \backslash U$ is not empty too. Let $x_{0} \in K \backslash U$, the ω-limit set $\omega\left(x_{0}\right)$ and the α-limit set $\alpha\left(x_{0}\right)$ of x_{0} are compact invariant sets included in $\Omega(A, f)$, necessarily :

$$
\omega\left(x_{0}\right)=\alpha\left(x_{0}\right)=\operatorname{orb}(p) \subset \overline{\operatorname{orb}\left(x_{0}\right)} \subset \Sigma_{V}(A, f) .
$$

Since p is V-connected to x_{0} and x_{0} is V-connected to p, x_{0} is V-connected to itself which is equivalent to $x_{0} \in \Omega(A, f)$. We just have obtained a contradiction.

Proof of Theorem 4. Let β given and A, α-Hölder with:

$$
\beta<\tilde{\beta}=\alpha \frac{\ln \left(1 / \lambda_{s}\right)}{\ln \left(\Lambda_{u} / \lambda_{s}\right)}
$$

According to Theorem 1, there exists $V, \tilde{\beta}$-Hölder, satisfying :

$$
A-m \leq V \circ f-V \quad(\forall x \in M)
$$

Define $R=V \circ f-V-A+m, \phi_{n}=\min (R, 1 / n)$ and $B_{n}=A+\phi_{n}$. Then ϕ_{n} is $\tilde{\beta}$-Hölder with $\operatorname{Höld}_{\tilde{\beta}}\left(\phi_{n}\right) \leq \operatorname{Höld}_{\tilde{\beta}}(R)$ and

$$
\begin{array}{lr}
A-m \leq B_{n}-m \leq V \circ f-V & (\forall x \in M) \\
B_{n}-m=V \circ f-V & (\forall x \in\{R<1 / n\})
\end{array}
$$

In particular $m\left(B_{n}, f\right)=m(A, f)$ and the V-action set of B_{n} contains a neighborhood $\{R<1 / n\}$ of $\Omega(A, f)$. Using the shadowing lemma, we construct a periodic orbit $\operatorname{orb}(p)$ inside $\{R<1 / n\}$ and we just have proved a perturbation B_{n} of A satisfies

$$
\operatorname{orb}(p) \cup \Omega(A, f) \subset \Omega\left(B_{n}, f\right)
$$

Let ψ_{n} be any $\tilde{\beta}$-Hölder function with small $\tilde{\beta}$-Hölder norm satisfying:

$$
\begin{array}{cc}
\psi_{n}(x)=0 & (\forall x \in \operatorname{orb}(p)) \\
\psi_{n}(x)>0 & (\forall x \in M \backslash \operatorname{orb}(p)) .
\end{array}
$$

Then $A_{n}=B_{n}-\psi_{n}=A+\phi_{n}-\psi_{n}$ satisfies $\Omega\left(A_{n}, f\right)=\operatorname{orb}(p)$, has small \mathcal{C}^{0} norm and (possibly large) uniform $\tilde{\beta}$-Hölder norm. Therefore $\left(A_{n}\right)$ converges to A in the \mathcal{C}^{β}-topology and each A_{n} has a unique maximizing measure which is supported on a periodic orbit.

References

[1] G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc. (2), 13 (1976) 486-488.
[2] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer Verlag, Berlin, Heidelberg, New York, 1975.
[3] G. Contreras, A.O. Lopes, Ph. Thieullen. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. \& and Dynam. Sys. (2001), 21, 1-31.
[4] A. Livciz. Some homology properties of Y-systems. Mathematical Notes of the USSR Academy of Sciences, 10 (1971), 758-763.

[^0]: *Instituto de Matemática, UFRGS, Porto Alegre 91501-970, Brasil. Partially supported by PRONEX-CNPq - Sistemas Dinâmicas.
 †Département de Mathématiques, Université Paris-Sud, 91405 Orsay cedex France, http://www.math.u-psud.fr/, mailto://Philippe.Thieullen@math.u-psud.fr. Partially supported by CNRS URA 1169.

