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We consider a compact riemannian manifold M of dimension d > 2 without
boundary and a C? transitive Anosov diffeomorphism f : M — M. The tan-
gent bundle T'M admits a continuous Tf-invariant splitting TM = E* P E*
of expanding and contracting tangent vectors. We assume M is equiped with
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ASVof—VJr/Adu.

We apply this inequality to prove the existence of an open set Gz of -
Hoélder functions, 8 small, which admit a unique maximizing measure
supported on a periodic orbit. Moreover the closure of Gg, in the
(-Holder topology, contains all a-Holder functions, a close to one.

Dedicated to Jacob Palis

Introduction

*Instituto de Matemdtica, UFRGS, Porto Alegre 91501-970, Brasil. Partially supported

by PRONEX-CNPq - Sistemas Dinamicas.

"Département de Mathématiques, Université Paris-Sud, 91405 Orsay cedex France,
http://www.math.u-psud.fr/, mailto: //Philippe. Thieullen@math.u-psud.fr. Partially sup-

ported by CNRS URA 1169.



a riemannian metric and there exist constants C'(M), depending only on M
and the metric and constants depending on f

D<A <A <1< A, <Ay
such that for all n € Z

C(M)7INF < || T f™ - 0] < C(M)AZ for all v in EY,
C(M)7TA? < || Tof" - vl < C(M)A?  for all v in E?.

Livciz theorem [4] asserts that, if A: M — M is a given Hélder function and
satisfies [Adp = 0 for all f-invariant probability measure p, then A is equal
to a coboundary V' (which is Holder too), that is:

A=Vof-V.

What hapens if we only assume [Adu > 0 for all f-invariant probability
measure 7 We denote by M(f), the set of f-invariant probability measures.
We prove the following;:

Theorem 1 Let f : M — M be a C? transitive Anosov diffeomorphism on
a compact manifold M without boundary. For any given a-Holder function
A M — R, there exists a B-Holder function V : M — R, that we call

sub-action, such that:
A<Vof—-V+m(AYf),

where m(A, f) = sup{ [fdu | p € M(f)}, M(f) is the set of f-invariant

probability measures and

~In(1/A) . C(M)
b= ny (V) = e T

S

~ Hold, (A)

where C'(M) is some constant depending only on M and the metric.

By analogy with Hamiltonian mechanics and the way we define V' from
A, we may interpret A as a lagrangian and V' as a sub-action. This result
extends a similar one we obtained in [3] for expanding maps of the circle.
Although the proof we give is specific for smooth systems, the same result
holds for doubly infinite subshifts of finite type.



Corollary 2 The hypothesis are the same as in theorem 1. The following
statements are equivalent:

(i) A>V o f—V for some bounded measurable function V,
(it) [Adu >0 for all f-invariant probability measure y,
i) S Ao fR(z) >0 for all p> 1 and point x periodic of period p,
k=0
(iv) A>V o f—V for some Hélder function V.

The proof of that corollary is straitforward and uses (for (iii) = (ii))
the fact that the convex hull of periodic measures is dense in the set of all
f-invariant probability measures for topological dynamical systems satisfy-
ing the shadowing lemma (see Lemma 5). F. Labourie suggested to us the
following corollary:

Corollary 3 The hypothesis are the same as in theorem 1. If A satisfies
[Adu > 0 for all p € M(f) and 23 Ao ff(x) > 0 for at least one
periodic orbit x of period p then [AdX\ > 0 for all probability measure X
giving positive mass to any open set.

Again the proof is straitforward: R = A —V o f 4+ V > 0 for some
continuous V and [Rd\ = 0 for such a measure A implies R = 0 everywhere
and in particular Z;é Ao f(z) =0 for all periodic orbit x.

Any measure p satisfying [Adp = m(A, f) is called a maximizing mea-
sure and since A is continuous, such a measure always exists. It is then
natural to ask the following two questions : For which A, the set of max-
imizing measures is reduced to a single measure ? In the case there exists
a unique maximizing measure, to what kind of compact set, the support of
this measure looks like ?

The following theorem gives a partial answer for ”generic” functions A.

Theorem 4 Let f : M — M be a C* transitive Anosov diffeomorphism
and < In(1/Xs)/In(Ay/As). Then there exists an open set Gg of B-Hdélder
functions ( open in the CP-topology ) such that:

(1) any A in Gz admits a unique maximizing measure fi;

(11) the support of 4 is equal to a periodic orbit and is locally constant with
respect to A € Gg;



(1i) any a-Holder function with o > B1In(A,/Xs)/In(1/Xs) is contained in
the closure of G (the closure is taken with respect to the CP-topology).

The proof of Theorem 4 is a simplification of what we gave in [3] in the
one-dimensional setting. The existence of sub-actions is in both cases the
main ingredient of the proof.

The plan of the proof of Theorem 1 is the following: Given a finite covering
of M by open sets {Uq, ..., U} with sufficiently small diameter, we construct
a Markov covering (and not a Markov partition) { Ry, ..., R;} of rectangles:
each R; contains U; and satisfies

v e U;N f7YU) = fWVe(x, Ry)) € Wo(f(x), Ry),

where W#(z, R;) denotes the local stable leaf through z restricted to R;. We
then associate to each R; a local sub-action V;, defined on R; by:

Vi(x) = sup{Sp(A =m) o f"(y) + A(y,x) [n 20, y € W(z, Ri)}

where A®(y, x) is a kind of cocycle along the stable leaf W*(z):

A(y,x) =) (Ao f"(y) = Ao f"(x)).

n>0

This family {V1,...,V;} of local sub-actions satisfies the inequality:
e U N fYU;) = Vi(z) + A(x) —m < Vjo f(z)

and enable us to construct a global sub-action V:

where {61,...,0,} is a smooth partition of unity associated to the covering
{Uy,...,U;}. The main difficulty is to prove that each V; is Hélder on R;.

2 Existence of sub-actions

We continue our description of the dynamics of transitive Anosov diffeomor-
phisms (for details information, see Bowen’s monography [2]). All the results
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we are going to use depend on a small constant of expansiveness €¢* > 0 de-
pending on f and M in the following way:

A —1 1=
D2 flloe™ 1D f1loe
where C'(M) > 1 is a constant depending only on M and the riemannian

metric. At each point x, one can define its local stable manifold W2 (x) for
every € < €*:

€ = C(M) ™! min(

)

We(z) ={yeM|d(f"(x), ["(y)) <e Vn=0}

which are C? embeded closed disks of dimension d* = dim E¢ and tangent to
E?. In the same manner, W*(z) is defined replacing f by f~!. If two points

x,y are close enough, d(z,y) < 0, then W?(z) and W¥(y) have a unique
point in common, called [z, y]:

[z, y] = W2 () N W(y) = We(z) N WE(y),
where ¢ = K*) and K* is again a large constant depending on M and f:

C(M)

K* = .
min(l — A 11— A)

This estimate is in fact a particular case of Bowen’s shadowing lemma:

Lemma 5 (Bowen) If ¢ is small enough, 6 < ¢*/K*, if (xn)nez is a bi-
infinite 0-pseudo-orbit, that is, d(f(x,),Tns1) < 0 for all n € 7Z, then
there exists a unique true orbit {f™(x)}nez which e-shadow (x,)nez, that is

d(f™(z), x,) < € for alln € Z with e = K*4.

This lemma is the main ingredient for constructing (dynamical) rectan-
gles. A rectangle R is a closed set of diameter less than €*/K* satisfying:

r,y € R=[z,y] € R.

We will not use the notion of proper rectangles but will use instead the notion
of Markov covering.



Definition 6 Let & = {Uy,...,U;} be a covering of M by open sets of
diameter less than €* /(K*)?. We call Markov covering associated to U, a finite
set R = {Ry,..., R} of rectangles of diameter less than ¢*/K* satisfying:

U; C R;
€ UiN fHU;) = f(Wo(x, R)) C W*(f(x), R;)
RS f(UZ) N Uj :>f_1(Wu(y7 Rj)) C Wu(f_l(y)7 Rz)

where W*(z, R;) = W (z) N R; and W*(y, R;) = Wk(y) N R;.

An easy consequence of the shadowing lemma shows there always exist
such Markov coverings:

Proposition 7 For every covering U of M by open sets such that the diam-
eter of each U; is less than €*/(K*)?, there exists a Markov covering R by
rectangles of diameter less than €*/K*.

Proof. Given U = {Uy,...,U;} such a covering, we define the following
compact space of ¢*/(K*)? pseudo-orbits:

Y= {w = ( oW, W | Wo, W1, - - ) s.t. an N f71<an+1) 7§ (Z)}

Here w is a sequence of indices in {1,...,{} and X is a subshift of finite type
where ¢ — j is a possible transition iff U; N f~1(U;) is not empty. Given
such w € ¥, we choose for all n € Z, x,, € U,,, so that f(x,) € U,,,,. Then
(Tp)nez is a € /(K*)? pseudo-orbit which corresponds to a unique true orbit

(f"(x))nez satisfying:
d(f"(x),U,,) < €/K* ¥n € Z.

Since €* is a constant of expansiveness, there can exists at most one point
x satisfying the previous inequality for all n. We call that point 7(w) and
notice that the map

m:x—M

is surjective (for U is a covering), commutes with the left shift o, fom =
7 o g, is continuous by expansiveness (in fact Holder if ¥ is equiped with
the standard metric). Also notice that 7 may not be finite-to-one. We first
construct a Markov cover on Y as usual by the braket

[wawl] = ( >WL27wL1 ‘ w07w1"“)
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where w = (Wp)nez, W = (W))nez and w) = wy. By uniqueness in the

construction of 7w(w), we get

m(
7([i]) = R; is a rectangle of M containing Uj;
T(W?(w,[i])) = W*(m(w), R;) whenever wy =i

w, W) = [r(w), ()]

where [i], i = 1,---,l, is the cylinder {w € ¥ | wy =i} and W*(w, [i]) is the
symbolic stable set {w’' € ¥ | w!, = w,, VYn > 0}. (For the proof of the last
equality, we just notice : if v = 7(w), y € W*(z, R;) and y = w(w’) then
7([w,w']) =y and |w,w'] € W*(w, [i]).) To finish the proof we only show

v UM U = FW*(a, R)) € W*(f(2), Ry).
Indeed, z = 7(w) for some w = (-+- ,w_q | 7,J,ws, ) and
o(W*(w, [i]) € W*(o(w), [1])-

To conclude, we apply 7 on both sides. [ |

Definition 8 Let R = {R;, -, R;} be a Markov covering of M associated
to some open covering U = {Uy,--- ,U;}. We define a local sub-action by

Vi(z) = sup{ Sp(A —m) o f[7"(y) + A(y,z) | n > 0, y € W*(z, Ri) }

where S, B =Y"1—) Bo f*, A%(y,x) = >, 50(Ao fF(y) — Ao f¥(x)) and the
supremum is taken over all n > 0 and points y € W*(z, R;).

Before showing V; is a (finite!) Holder function on each R;, let’s conclude
the proof of Theorem 1:

Poof of Theorem 1. Let U = {U;,---,U;} be an open covering of M,
{Ry,--+, R} a Markov covering associated to U and {61, --- ,6;} a partition
of unity adapted to U. Let {V1,---,V;} constructed as above and

Suppose we have proved that x € U; N f~!(U;) implies
Viz) + (A=m)(x) < Vjo f(z).

7



Multiplying this inequality by 6;(x)f0; o f(x) and summing over ¢ and j, we
get
V(izg)+ (A—m)(z) < Vo f(x) (VxeM).

We now prove the local sub-cohomological equation: if x € U; N f~1(U;) and
y € W3z, R;), then f(y) € W*(f(x), R;) and
Su(A=m)o [ (y) + A%(y, ) + (A —m)(z)
= Spri(A—m)o f-" Vo f(y) + A(f(y), f(x)) < Vjo f(a).

Taking the supremum over all n > 0 and all y € W*(x, R;), we get indeed
Vi) + (A =m)(z) <Vjo f(z).

That finishes the proof of theorem 1. [ |

We now come to our main technical lemma. We notice that, even in the
case where A is Lipschitz, we only obtain a Holder sub-action.
Lemma 9 If A is a-Holder on M, R is a rectangle and V is defined as in
Definition 8, then V is B-Holder on R with exponent

| In A

f=a———<«

Ay + [ In Ay '

Proof. We divide the proof into four steps:
Step one. If d(z,2') < € and z, 2/ are on the same stable leaf, then

A(z,2') < |Ao f(x) — Ao fr(a')] < C(M)%a)(ﬁ)d(x, '),
n>0 s

for some constant C'(M) depending only on M and the metric.
Indeed, it follows from the contraction d(f*(x), f¥(2")) < C(M)N\d(x, 2")
for k > 0 and the fact that A is a-Holder.

Step two. For every n > 1, 2,2’ € M such that d(f*(x), f¥(2')) < €*/K*
for all 0 < k < n, then

2 [Ao fH(x) — Ao fH(a)] < K(M, f) max(d(z,2)*, d(f"(x), ["(2))"),

Hold, (A)
min(l — A, 1 —A\2)?

where K (M, f)=C(M)



Indeed, one can build w = [z, 2']; then on the one hand, d(z,w) < €* and
x,w are on the same stable leaf; on the other hand, d(f™(w), f*(z')) < €* and
f™(w) and f"(x’) are on the same unstable leaf. We conclude by applying
step one and the estimates:

d(z,w) < K*d(z,2"), d(f"(w), f"(2)) < K*d(f"(x), ["(2)).

Step three. We show that V(z) is finite for every x € R. It is precisely
here that the choice of the normalizing constant m(A, f) is important.

Indeed, since a transitive Anosov diffeomorphism is mixing, there exists
an integer 7* > 1 such that, for every finite orbit {f"(y),---, [ (y),y},
n arbitrary, f7 (B(y,e*/K*)) contains f~"(y). Thanks to the shadowing
lemma, there exists a periodic orbit z, of period n + 7*, satisfying

d(f (), f ) < (Vk=0,1,---,n).

Using step two, > ,_, (Ao f~"(y) — Ao f7*(z)) is uniformly bounded in n by
some constant C'(M, f) and using S2777 Ao f75(2) < (n+ 7)m(A, f), we
get

n+71*
ZAo y) < C(M, f)+ ZAo 2)+ 7Aoo
< C(M, f) +2T ||A||oo.

Step four. We finally prove that V' is Holder on R. Let n > 0, z, 2" € R,
y € W#(x, R) and define y = [2/,y] belonging to R since R is a rectangle
and to the same local unstable manifold as y. Then for some N we are going
to choose soon: let B = A —m(A, f),

SpBo f(y) + A%y, x) < SpBo fT(y) + A%y, 2")

£ 3 Ao i) — Ao | (=)

£ Ao fAa) — Ao i) (=)
k=0

A ), Y @) (= %)

AT (Y, £V () (= %)



We now bound from above each ¥; with respect to d(x,z’):

1 < CON TS ). 57,

S < COM) e () o). (),
% < CON T A ). 1),

i < CONTE 2 ). £

We now choose N = N(z,2’) by Me* = Ald(z,2'), N = [t] + 1 and then
choose € > €* so that A\é = AYd(x,2’). Then

d(f" (@), ¥ (2") < C(M)Ad(z,2') < C(M)ATE,
d(f™(y), [ (@) or (f¥(y). [ (2) < CM)ATe < C(M)A]'€
In particuliar, we get first d(f™(y), f¥(y')) < 3C(M)AYé and next:
Hold, (A)
min(l — A7, 1 — \2)?
SuB o fT(y) + A%y, x) < SuBo f(y) + A(y,a') + K(M, f)(ATe),
Vi) < V() + KM, f)(AYe).

S 4+ By < 6C(M) S\ = K(M, f)(AYee,

But
ANE = d(, o)) m(Auf2s)

Remark 10 We have not used explicitely the fact that the stable foliation

W is Hélder but our proof (step four) is close to showing W* is Hélder of
exponent v = In(\,/\;)/ In(A,/As).

Proof. We show that if € < ¢*/K*, d(z,2") <e¢€,y € Wi (x), vy € W2(2') and
y € WX(y') then
d(y,y) < 3C(M)*d(x,a')"

where v = In(A,/As)/ In(Ay, /).
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Indeed we choose ¢t > 0 real such that \ie = Al d(x,2’), N = [t] + 1, and
€ close to € so that A\Né = ANd(x,2") where é/¢ varies between 1 and A, /).
Then

d(f* (@), F¥(y)) or d(f¥(a"), f¥(y)) or d(f¥(x), ¥ (2)) < C(M)A]E

d(f™ (), F7 () < 3C(M)ATE,
d(y,y) < 3C(M)*(As/ )™ €= 3C(M)*d(z, /).

3 Maximizing periodic measures

The proof of Theorem 4 requires two ingredients: the first one is the notion
of sub-actions we have already studied, the second is the notion of strongly
non-wandering points we are going to explain.

Definition 11 Given A € C#(M) and m = m(A, f), a point z € M is said
to be strongly non-wandering with respect to A, if for any € > 0, there exist
n > 1 and y € M such that

y € B(z,¢), f"(y) € B(z,e) and |ZA m) (y)] < e

where B(z,€) denotes the ball centered at x and radius e. We call (A, f)
the set of strongly non-wandering points.

The first non-trivial but easy observation is that (A, f) is non-empty;
more precisely:

Lemma 12 The set Q(A, f) is compact forward and backward f-invariant
and contains the support of any mazimizing measure.

Proof. If p is maximizing, by Atkinson’s theorem [1], for almost p-point z,
the Birkhoff’s sums 31—, (A —m) o f* are recurrent ( in the sense of random
walk theory ) to [(A —m)du = 0: that is, for any Borel set B of positive
p-measure and for any € > 0, the set

—_

n—

{xEB\EInzl f"(z) € B and | (A—m)ofk(x)|<6}

i

0
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has positive u-measure. Since by definition of the support of a measure, any

ball B(z, €) has positive p-measure, we have proved that supp(u) is included
in Q(A, f). [

The second observation is that any Holder function A is cohomologuous
to m(A, f) on Q(A, f), more precisely:

Lemma 13 Let A be a C°-function and assume A admits a C° sub-action
V', then

and any f-invariant measure p whose support in contained in QA, f) is
maximizing.

The set Xy (A, f) will play an important role later and it is convenient to
to give it a name:

Definition 14 Let A be a C°-function and V be a sub-action of A.

(i) We call the set Sy(A, f) = {z € M | A—m = Vo f—V}, the
V-action-set of A.

(ii) Two points x, y of the V-action-set are said to be V-connected and we

shall write z 5 y, if for every € > 0, there exist n > 1 and z € M ( not
necessarily in 3y (A, f) ) such that

v € B(z,¢), yeB(f'(2),6), |Sv(A-m)(z) - (V(y) = V(z))| <e

Notice that, if V' is g-Holder for some 8 > 0, using the shadowing lemma,
one can prove that x AR y and y Y imply x Yz
Proof of Lemma 13. Define R =V o f—V — A+ m and choose = € Q(A, f).
Then >3 ' (A —m) o f*(y;) converges to 0 for a sequence of points y; and a
sequence of integers n; such that y; converges to x, n; converges to +o0o and
f™(y;) converges to x. Since R is non-negative,

n;—1 n;—1
0 < R(y) < Z Ro f*y) = Vo ff(y:) = V(y) — Z(A —m) o f*(ys)
k=0 k=0
converges to 0 and by continuity of R : R(x) = 0. [
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Definition 15 For any 3 > 0, define
Gs ={A € C’(M)|Q(A, f) is a periodic orbit }.

Our next goal is to show that Gg is open in C®. We could have choosen
a bigger set : the set of A in C?(M) such that Q(A4, f) is minimal and is
dynamically isolated (i.e. there exists U, open, containing Q(A, f) as the
only f-invariant compact set inside U) and the proof below would again be
the same.

Lemma 16 For any 3 > 0, Gs is open in CP and Q(A, f) is locally constant
as a function of A in Gg.

Proof. Let A € Gg. We want to show that Q(A, f) = Q(B, f) whenever
B is sufficiently close to A in the C? topology. By contradiction : let U be
an isolating open set of the periodic orbit (A, f) = orb(p) and {A,} be a
sequence of S-Holder observables converging to A in the C? topology such
that (A, f) is not included in U for each n.

Each A,, admits (Theorem 1) a -Hélder subaction V,, with ~-Hoélder
norm uniformly bounded and v = Fln(1/Xs)/In(A,/As). By Ascoli, {V,,}
admits a subsequence converging in the C° topology to some ~-Holder func-
tion V. Since the set of non-empty compact sets is compact with respect to
the Hausdorff topology, we may assume that {Q(A,, f)} has a sub-sequence
converging to some compact invariant set K. Each A, satisfies :

Ay —m(An, f) < Voo f =V,  (Yz e M),
Ay —m(An, f)=Viof—V. (Yo € QA f)).

By continuity of m(A, f) with respect to A (for the C° topology),
A-mA,f)<Vof—-V (YeeM)
A-m(A,f)=Vof-V (VzrekK).

We have assumed that each Q(A,, f) \ U is not empty, then K \ U is not
empty too. Let o € K\ U, the w-limit set w(xy) and the a-limit set a(xg)
of xy are compact invariant sets included in Q(A, f), necessarily :

w(zo) = azg) = orb(p) C orb(xg) C Xy (A, f).
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Since p is V-connected to xy and xzy is V-connected to p, xg is V-connected
to itself which is equivalent to zq € Q(A, f). We just have obtained a con-
tradiction. |

Proof of Theorem 4. Let (8 given and A, a-Holder with:

- (1A

= R

According to Theorem 1, there exists V, 3-Holder, satisfying :
A—-m<Vof-V Ve e M).

Define R=Vo f -V —A+m, ¢, =min(R,1/n) and B, = A+ ¢,. Then
6, is f-Holder with Hold5(6,) < Hold(R) and

A-m<B,—m<Vof-V (Ve e M)
B,—m=Vof-V (Vx e {R < 1/n}).
In particular m(B,, f) = m(A, f) and the V-action set of B, contains a
neighborhood {R < 1/n} of Q(A, f). Using the shadowing lemma, we con-

struct a periodic orbit orb(p) inside {R < 1/n} and we just have proved a
perturbation B, of A satisfies

orb(p) UQ(A, f) C Q(B,, f).

Let 1, be any S-Holder function with small -Holder norm satisfying:

Un(x) =0 (Vo € orb(p))
Up(z) >0 (Vx € M \ orb(p)).

Then A, = B, — ¥, = A+ ¢, — 1, satisfies Q(A,, f) = orb(p), has small C°
norm and (possibly large) uniform [-Holder norm. Therefore (A,,) converges
to A in the C%-topology and each A, has a unique maximizing measure which
is supported on a periodic orbit. |
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