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Abstract

We show a positive Livciz type theorem for C2 Anosov diffeomor-
phisms f on a compact boundaryless manifold M and Hölder observ-
ables A. Given A : M → R, α-Hölder, we show there exist V : M → R,
β-Hölder, β < α and a probability measure µ, f -invariant such that

A ≤ V ◦ f − V +

∫

Adµ.

We apply this inequality to prove the existence of an open set Gβ of β-
Hölder functions, β small, which admit a unique maximizing measure
supported on a periodic orbit. Moreover the closure of Gβ, in the
β-Hölder topology, contains all α-Hölder functions, α close to one.

Dedicated to Jacob Palis

1 Introduction

We consider a compact riemannian manifold M of dimension d ≥ 2 without
boundary and a C2 transitive Anosov diffeomorphism f : M →M . The tan-
gent bundle TM admits a continuous Tf -invariant splitting TM = Eu

⊕

Es

of expanding and contracting tangent vectors. We assume M is equiped with
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a riemannian metric and there exist constants C(M), depending only on M
and the metric and constants depending on f

0 < Λs < λs < 1 < λu < Λu

such that for all n ∈ Z

{

C(M)−1λn
u ≤ ‖Txf

n · v‖ ≤ C(M)Λn
u for all v in Eu

x ,

C(M)−1Λn
s ≤ ‖Txf

n · v‖ ≤ C(M)λn
s for all v in Es

x.

Livciz theorem [4] asserts that, if A : M →M is a given Hölder function and
satisfies

∫

Adµ = 0 for all f -invariant probability measure µ, then A is equal
to a coboundary V (which is Hölder too), that is:

A = V ◦ f − V.

What hapens if we only assume
∫

Adµ ≥ 0 for all f -invariant probability
measure µ? We denote by M(f), the set of f -invariant probability measures.
We prove the following:

Theorem 1 Let f : M → M be a C2 transitive Anosov diffeomorphism on
a compact manifold M without boundary. For any given α-Hölder function
A : M → R, there exists a β-Hölder function V : M → R, that we call
sub-action, such that:

A ≤ V ◦ f − V +m(A, f),

where m(A, f) = sup{
∫

f dµ | µ ∈ M(f) }, M(f) is the set of f -invariant
probability measures and

β = α
ln(1/λs)

ln(Λu/λs)
, Höldβ(V ) ≤

C(M)

min(1− λ−α
u , 1− λα

s )2
Höldα(A)

where C(M) is some constant depending only on M and the metric.

By analogy with Hamiltonian mechanics and the way we define V from
A, we may interpret A as a lagrangian and V as a sub-action. This result
extends a similar one we obtained in [3] for expanding maps of the circle.
Although the proof we give is specific for smooth systems, the same result
holds for doubly infinite subshifts of finite type.
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Corollary 2 The hypothesis are the same as in theorem 1. The following
statements are equivalent:

(i) A ≥ V ◦ f − V for some bounded measurable function V ,

(ii)
∫

Adµ ≥ 0 for all f -invariant probability measure µ,

(iii)
∑p−1

k=0A ◦ f
k(x) ≥ 0 for all p ≥ 1 and point x periodic of period p,

(iv) A ≥ V ◦ f − V for some Hölder function V .

The proof of that corollary is straitforward and uses (for (iii) ⇒ (ii))
the fact that the convex hull of periodic measures is dense in the set of all
f -invariant probability measures for topological dynamical systems satisfy-
ing the shadowing lemma (see Lemma 5). F. Labourie suggested to us the
following corollary:

Corollary 3 The hypothesis are the same as in theorem 1. If A satisfies
∫

Adµ ≥ 0 for all µ ∈ M(f) and
∑p−1

k=0A ◦ f k(x) > 0 for at least one
periodic orbit x of period p then

∫

Adλ > 0 for all probability measure λ
giving positive mass to any open set.

Again the proof is straitforward: R = A − V ◦ f + V ≥ 0 for some
continuous V and

∫

Rdλ = 0 for such a measure λ implies R = 0 everywhere

and in particular
∑p−1

k=0A ◦ f(x) = 0 for all periodic orbit x.
Any measure µ satisfying

∫

Adµ = m(A, f) is called a maximizing mea-
sure and since A is continuous, such a measure always exists. It is then
natural to ask the following two questions : For which A, the set of max-
imizing measures is reduced to a single measure ? In the case there exists
a unique maximizing measure, to what kind of compact set, the support of
this measure looks like ?

The following theorem gives a partial answer for ”generic” functions A.

Theorem 4 Let f : M → M be a C2 transitive Anosov diffeomorphism
and β < ln(1/λs)/ ln(Λu/λs). Then there exists an open set Gβ of β-Hölder
functions ( open in the Cβ-topology ) such that:

(i) any A in Gβ admits a unique maximizing measure µA;

(ii) the support of µA is equal to a periodic orbit and is locally constant with
respect to A ∈ Gβ;
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(iii) any α-Hölder function with α > β ln(Λu/λs)/ ln(1/λs) is contained in
the closure of Gβ (the closure is taken with respect to the Cβ-topology).

The proof of Theorem 4 is a simplification of what we gave in [3] in the
one-dimensional setting. The existence of sub-actions is in both cases the
main ingredient of the proof.

The plan of the proof of Theorem 1 is the following: Given a finite covering
of M by open sets {U1, . . . , Ul} with sufficiently small diameter, we construct
a Markov covering (and not a Markov partition) {R1, . . . , Rl} of rectangles:
each Ri contains Ui and satisfies

x ∈ Ui ∩ f
−1(Uj) ⇒ f(W s(x,Ri)) ⊂ W s(f(x), Rj),

where W s(x,Ri) denotes the local stable leaf through x restricted to Ri. We
then associate to each Ri a local sub-action Vi, defined on Ri by:

Vi(x) = sup{Sn(A−m) ◦ f−n(y) + ∆s(y, x) | n ≥ 0, y ∈ W s(x,Ri)}

where ∆s(y, x) is a kind of cocycle along the stable leaf W s(x):

∆s(y, x) =
∑

n≥0

(A ◦ fn(y)− A ◦ fn(x)).

This family {V1, . . . , Vl} of local sub-actions satisfies the inequality:

x ∈ Ui ∩ f
−1(Uj) ⇒ Vi(x) + A(x)−m ≤ Vj ◦ f(x)

and enable us to construct a global sub-action V :

V (x) =
l

∑

i=1

θi(x)Vi(x)

where {θ1, . . . , θl} is a smooth partition of unity associated to the covering
{U1, . . . , Ul}. The main difficulty is to prove that each Vi is Hölder on Ri.

2 Existence of sub-actions

We continue our description of the dynamics of transitive Anosov diffeomor-
phisms (for details information, see Bowen’s monography [2]). All the results
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we are going to use depend on a small constant of expansiveness ε∗ > 0 de-
pending on f and M in the following way:

ε∗ = C(M)−1 min(
λu − 1

‖D2f‖∞
,

1− λs

‖D2f‖∞
)

where C(M) ≥ 1 is a constant depending only on M and the riemannian
metric. At each point x, one can define its local stable manifold W s

ε (x) for
every ε < ε∗:

W s
ε (x) = { y ∈M | d(fn(x), fn(y)) ≤ ε ∀n ≥ 0 }

which are C2 embeded closed disks of dimension ds = dimEs
x and tangent to

Es
x. In the same manner, W u

ε (x) is defined replacing f by f−1. If two points
x, y are close enough, d(x, y) < δ, then W s

ε (x) and W u
ε (y) have a unique

point in common, called [x, y]:

[x, y] = W s
ε (x) ∩W u

ε (y) = W s
ε∗(x) ∩W

u
ε∗(y),

where ε = K∗δ and K∗ is again a large constant depending on M and f :

K∗ =
C(M)

min(1− λ−1
u , 1− λs)

.

This estimate is in fact a particular case of Bowen’s shadowing lemma:

Lemma 5 (Bowen) If δ is small enough, δ < ε∗/K∗, if (xn)n∈Z is a bi-
infinite δ-pseudo-orbit, that is, d(f(xn), xn+1) < δ for all n ∈ Z, then
there exists a unique true orbit {fn(x)}n∈Z which ε-shadow (xn)n∈Z, that is
d(fn(x), xn) < ε for all n ∈ Z with ε = K∗δ.

This lemma is the main ingredient for constructing (dynamical) rectan-
gles. A rectangle R is a closed set of diameter less than ε∗/K∗ satisfying:

x, y ∈ R⇒ [x, y] ∈ R.

We will not use the notion of proper rectangles but will use instead the notion
of Markov covering.
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Definition 6 Let U = {U1, . . . , Ul} be a covering of M by open sets of
diameter less than ε∗/(K∗)2. We call Markov covering associated to U , a finite
set R = {R1, . . . , Rl} of rectangles of diameter less than ε∗/K∗ satisfying:

Ui ⊂ Ri

x ∈ Ui ∩ f
−1(Uj) ⇒f(W s(x,Ri)) ⊂ W s(f(x), Rj)

y ∈ f(Ui) ∩ Uj ⇒f−1(W u(y, Rj)) ⊂ W u(f−1(y), Ri)

where W s(x,Ri) = W s
ε∗(x) ∩Ri and W u(y, Rj) = W u

ε∗(y) ∩ Rj.

An easy consequence of the shadowing lemma shows there always exist
such Markov coverings:

Proposition 7 For every covering U of M by open sets such that the diam-
eter of each Ui is less than ε∗/(K∗)2, there exists a Markov covering R by
rectangles of diameter less than ε∗/K∗.

Proof. Given U = {U1, . . . , Ul} such a covering, we define the following
compact space of ε∗/(K∗)2 pseudo-orbits:

Σ = {ω = (. . . , ω−2, ω−1 | ω0, ω1, . . . ) s.t. Uωn
∩ f−1(Uωn+1

) 6= ∅}.

Here ω is a sequence of indices in {1, . . . , l} and Σ is a subshift of finite type
where i → j is a possible transition iff Ui ∩ f−1(Uj) is not empty. Given
such ω ∈ Σ, we choose for all n ∈ Z, xn ∈ Uωn

so that f(xn) ∈ Uωn+1
. Then

(xn)n∈Z is a ε∗/(K∗)2 pseudo-orbit which corresponds to a unique true orbit
(fn(x))n∈Z satisfying:

d(fn(x), Uωn
) < ε∗/K∗ ∀n ∈ Z.

Since ε∗ is a constant of expansiveness, there can exists at most one point
x satisfying the previous inequality for all n. We call that point π(ω) and
notice that the map

π : Σ →M

is surjective (for U is a covering), commutes with the left shift σ, f ◦ π =
π ◦ σ, is continuous by expansiveness (in fact Hölder if Σ is equiped with
the standard metric). Also notice that π may not be finite-to-one. We first
construct a Markov cover on Σ as usual by the braket

[ω, ω′] = (· · · , ω′−2, ω
′
−1 | ω0, ω1, · · · )
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where ω = (ωn)n∈Z, ω′ = (ω′n)n∈Z and ω′0 = ω0. By uniqueness in the
construction of π(ω), we get

π([ω, ω′]) = [π(ω), π(ω′)]

π([i]) = Ri is a rectangle of M containing Ui

π(W s(ω, [i])) = W s(π(ω), Ri) whenever ω0 = i

where [i], i = 1, · · · , l, is the cylinder {ω ∈ Σ | ω0 = i} and W s(ω, [i]) is the
symbolic stable set {ω′ ∈ Σ | ω′n = ωn ∀n ≥ 0}. (For the proof of the last
equality, we just notice : if x = π(ω), y ∈ W s(x,Ri) and y = π(ω′) then
π([ω, ω′]) = y and [ω, ω′] ∈ W s(ω, [i]).) To finish the proof we only show

x ∈ Ui ∩ f
−1(Uj) ⇒ f(W s(x,Ri)) ⊂ W s(f(x), Rj).

Indeed, x = π(ω) for some ω = (· · · , ω−1 | i, j, ω2, · · · ) and

σ(W s(ω, [i]) ⊂ W s(σ(ω), [j]).

To conclude, we apply π on both sides. �

Definition 8 Let R = {R1, · · · , Rl} be a Markov covering of M associated
to some open covering U = {U1, · · · , Ul}. We define a local sub-action by

Vi(x) = sup{Sn(A−m) ◦ f−n(y) + ∆s(y, x) | n ≥ 0, y ∈ W s(x,Ri) }

where SnB =
∑n−1

k=0 B ◦ f k, ∆s(y, x) =
∑

k≥0(A ◦ f
k(y)−A ◦ f k(x)) and the

supremum is taken over all n ≥ 0 and points y ∈ W s(x,Ri).

Before showing Vi is a (finite!) Hölder function on each Ri, let’s conclude
the proof of Theorem 1:

Poof of Theorem 1. Let U = {U1, · · · , Ul} be an open covering of M ,
{R1, · · · , Rl} a Markov covering associated to U and {θ1, · · · , θl} a partition
of unity adapted to U . Let {V1, · · · , Vl} constructed as above and

V =
∑

i

θiVi.

Suppose we have proved that x ∈ Ui ∩ f
−1(Uj) implies

Vi(x) + (A−m)(x) ≤ Vj ◦ f(x).
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Multiplying this inequality by θi(x)θj ◦ f(x) and summing over i and j, we
get

V (x) + (A−m)(x) ≤ V ◦ f(x) (∀x ∈M).

We now prove the local sub-cohomological equation: if x ∈ Ui ∩ f
−1(Uj) and

y ∈ W s(x,Ri), then f(y) ∈ W s(f(x), Rj) and

Sn(A−m) ◦ f−n(y) + ∆s(y, x) + (A−m)(x)

= Sn+1(A−m) ◦ f−(n+1) ◦ f(y) + ∆s(f(y), f(x)) ≤ Vj ◦ f(x).

Taking the supremum over all n ≥ 0 and all y ∈ W s(x,Ri), we get indeed

Vi(x) + (A−m)(x) ≤ Vj ◦ f(x).

That finishes the proof of theorem 1. �

We now come to our main technical lemma. We notice that, even in the
case where A is Lipschitz, we only obtain a Hölder sub-action.

Lemma 9 If A is α-Hölder on M , R is a rectangle and V is defined as in
Definition 8, then V is β-Hölder on R with exponent

β = α
| lnλs|

Λu + | lnλs|
< α.

Proof. We divide the proof into four steps:
Step one. If d(x, x′) < ε∗ and x, x′ are on the same stable leaf, then

∆s(x, x′) ≤
∑

n≥0

|A ◦ fn(x)− A ◦ fn(x′)| ≤ C(M)
Höldα(A)

1− λα
s

d(x, x′)α,

for some constant C(M) depending only on M and the metric.
Indeed, it follows from the contraction d(f k(x), f k(x′)) ≤ C(M)λk

sd(x, x
′)

for k ≥ 0 and the fact that A is α-Hölder.

Step two. For every n ≥ 1, x, x′ ∈ M such that d(f k(x), f k(x′)) < ε∗/K∗

for all 0 ≤ k ≤ n, then

n−1
∑

k=0

|A ◦ f k(x)− A ◦ f k(x′)| ≤ K(M, f) max(d(x, x′)α, d(fn(x), fn(x′))α),

where K(M, f) = C(M)
Höldα(A)

min(1− λ−α
u , 1− λα

s )2
.
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Indeed, one can build w = [x, x′]; then on the one hand, d(x, w) ≤ ε∗ and
x, w are on the same stable leaf; on the other hand, d(fn(w), fn(x′)) ≤ ε∗ and
fn(w) and fn(x′) are on the same unstable leaf. We conclude by applying
step one and the estimates:

d(x, w) ≤ K∗d(x, x′), d(fn(w), fn(x′)) ≤ K∗d(fn(x), fn(x′)).

Step three. We show that V (x) is finite for every x ∈ R. It is precisely
here that the choice of the normalizing constant m(A, f) is important.

Indeed, since a transitive Anosov diffeomorphism is mixing, there exists
an integer τ ∗ ≥ 1 such that, for every finite orbit {f−n(y), · · · , f−1(y), y},
n arbitrary, f τ∗(B(y, ε∗/K∗)) contains f−n(y). Thanks to the shadowing
lemma, there exists a periodic orbit z, of period n + τ ∗, satisfying

d(f−k(z), f−k(y)) ≤ ε∗ (∀k = 0, 1, · · · , n).

Using step two,
∑n

k=1(A ◦ f
−k(y)−A ◦ f−k(z)) is uniformly bounded in n by

some constant C(M, f) and using
∑n+τ∗

k=1 A ◦ f−k(z) ≤ (n + τ ∗)m(A, f), we
get

n
∑

k=1

A ◦ f−k(y) ≤ C(M, f) +
n+τ∗
∑

k=1

A ◦ f−k(z) + τ ∗‖A‖∞

≤ C(M, f) + 2τ ∗‖A‖∞.

Step four. We finally prove that V is Hölder on R. Let n ≥ 0, x, x′ ∈ R,
y ∈ W s(x,R) and define y′ = [x′, y] belonging to R since R is a rectangle
and to the same local unstable manifold as y. Then for some N we are going
to choose soon: let B = A−m(A, f),

SnB ◦ f−n(y) + ∆s(y, x) ≤ SnB ◦ f−n(y′) + ∆s(y′, x′)

+
N−1
∑

k=−n

|A ◦ f k(y)− A ◦ f k(y′)| (= Σ1)

+

N−1
∑

k=0

|A ◦ f k(x)− A ◦ f k(x′)| (= Σ2)

+ |∆s(fN(y), fN(x))| (= Σ3)

+ |∆s(fN(y′), fN(x′))| (= Σ4)

9



We now bound from above each Σi with respect to d(x, x′):

Σ1 ≤ C(M)
Höldα(A)

1− λ−α
u

d(fN(y), fN(y′))α,

Σ2 ≤ C(M)
Höldα(A)

min(1− λ−α
u , 1− λα

s )2
max(d(x, x′)α, d(fN(x), fN(x′))α),

Σ3 ≤ C(M)
Höldα(A)

1− λα
s

d(fN(y), fN(x)),

Σ4 ≤ C(M)
Höldα(A)

1− λα
s

d(fN(y′), fN(x′))α.

We now choose N = N(x, x′) by λt
sε
∗ = Λt

ud(x, x
′), N = [t] + 1 and then

choose ε̃ ≥ ε∗ so that λN
s ε̃ = ΛN

u d(x, x
′). Then

d(fN(x), fN(x′)) ≤ C(M)ΛN
u d(x, x

′) ≤ C(M)λN
s ε̃,

d(fN(y), fN(x)) or (fN(y′), fN(x′)) ≤ C(M)λN
s ε

∗ ≤ C(M)λN
s ε̃.

In particuliar, we get first d(fN(y), fN(y′)) ≤ 3C(M)λN
s ε̃ and next:

Σ1 + · · ·+ Σ4 ≤ 6C(M)
Höldα(A)

min(1− λ−α
u , 1− λα

s )2
(λN

s ε̃)
α = K(M, f)(λN

s ε̃)
α,

SnB ◦ f−n(y) + ∆s(y, x) ≤ SnB ◦ f−n(y′) + ∆s(y′, x′) +K(M, f)(λN
s ε̃)

α,

V (x) ≤ V (x′) +K(M, f)(λN
s ε̃)

α.

But
λN

s ε̃ = d(x, x′)ln(1/λs)/ln(Λu/λs).

�

Remark 10 We have not used explicitely the fact that the stable foliation
W s is Hölder but our proof (step four) is close to showing W s is Hölder of
exponent γ = ln(λu/λs)/ ln(Λu/λs).

Proof. We show that if ε < ε∗/K∗, d(x, x′) ≤ ε, y ∈ W s
ε (x), y′ ∈ W s

ε (x′) and
y ∈ W u

ε∗(y
′) then

d(y, y′) ≤ 3C(M)2d(x, x′)γ

where γ = ln(λu/λs)/ ln(Λu/λs).
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Indeed we choose t > 0 real such that λt
sε = Λt

ud(x, x
′), N = [t] + 1, and

ε̃ close to ε so that λN
s ε̃ = ΛN

u d(x, x
′) where ε̃/ε varies between 1 and Λu/λs.

Then

d(fN(x), fN(y)) or d(fN(x′), fN(y′)) or d(fN(x), fN(x′)) ≤ C(M)λN
s ε̃,

d(fN(y), fN(y′)) ≤ 3C(M)λN
s ε̃,

d(y, y′) ≤ 3C(M)2(λs/λu)
N ε̃ = 3C(M)2d(x, x′)γ .

�

3 Maximizing periodic measures

The proof of Theorem 4 requires two ingredients: the first one is the notion
of sub-actions we have already studied, the second is the notion of strongly
non-wandering points we are going to explain.

Definition 11 Given A ∈ Cβ(M) and m = m(A, f), a point x ∈ M is said
to be strongly non-wandering with respect to A, if for any ε > 0, there exist
n ≥ 1 and y ∈M such that

y ∈ B(x, ε), fn(y) ∈ B(x, ε) and |
n−1
∑

k=0

(A−m) ◦ f k(y)| < ε

where B(x, ε) denotes the ball centered at x and radius ε. We call Ω(A, f)
the set of strongly non-wandering points.

The first non-trivial but easy observation is that Ω(A, f) is non-empty;
more precisely:

Lemma 12 The set Ω(A, f) is compact forward and backward f -invariant
and contains the support of any maximizing measure.

Proof. If µ is maximizing, by Atkinson’s theorem [1], for almost µ-point x,
the Birkhoff’s sums

∑n−1
k=0(A−m)◦f k are recurrent ( in the sense of random

walk theory ) to
∫

(A − m) dµ = 0: that is, for any Borel set B of positive
µ-measure and for any ε > 0, the set

{

x ∈ B | ∃n ≥ 1 fn(x) ∈ B and |
n−1
∑

k=0

(A−m) ◦ f k(x)| < ε

}
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has positive µ-measure. Since by definition of the support of a measure, any
ball B(x, ε) has positive µ-measure, we have proved that supp(µ) is included
in Ω(A, f). �

The second observation is that any Hölder function A is cohomologuous
to m(A, f) on Ω(A, f), more precisely:

Lemma 13 Let A be a C0-function and assume A admits a C0 sub-action
V , then

Ω(A, f) ⊆ ΣV (A, f) =
{

x ∈M | A−m = V ◦ f − V
}

and any f -invariant measure µ whose support in contained in Ω(A, f) is
maximizing.

The set ΣV (A, f) will play an important role later and it is convenient to
to give it a name:

Definition 14 Let A be a C0-function and V be a sub-action of A.

(i) We call the set ΣV (A, f) =
{

x ∈ M | A − m = V ◦ f − V
}

, the
V -action-set of A.

(ii) Two points x, y of the V -action-set are said to be V -connected and we

shall write x
V
→ y, if for every ε > 0, there exist n ≥ 1 and z ∈M ( not

necessarily in ΣV (A, f) ) such that

x ∈ B(z, ε), y ∈ B(fn(z), ε), |SN(A−m)(z)− (V (y)− V (x))| < ε.

Notice that, if V is β-Hölder for some β > 0, using the shadowing lemma,

one can prove that x
V
→ y and y

V
→ z imply x

V
→ z.

Proof of Lemma 13. Define R = V ◦f −V −A+m and choose x ∈ Ω(A, f).
Then

∑ni−1
k=0 (A−m) ◦ f k(yi) converges to 0 for a sequence of points yi and a

sequence of integers ni such that yi converges to x, ni converges to +∞ and
fni(yi) converges to x. Since R is non-negative,

0 ≤ R(yi) ≤
ni−1
∑

k=0

R ◦ f k(yi) = V ◦ fni(yi)− V (yi)−
ni−1
∑

k=0

(A−m) ◦ f k(yi)

converges to 0 and by continuity of R : R(x) = 0. �
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Definition 15 For any β > 0, define

Gβ = {A ∈ Cβ(M) | Ω(A, f) is a periodic orbit }.

Our next goal is to show that Gβ is open in Cβ. We could have choosen
a bigger set : the set of A in Cβ(M) such that Ω(A, f) is minimal and is
dynamically isolated (i.e. there exists U , open, containing Ω(A, f) as the
only f -invariant compact set inside U) and the proof below would again be
the same.

Lemma 16 For any β > 0, Gβ is open in Cβ and Ω(A, f) is locally constant
as a function of A in Gβ.

Proof. Let A ∈ Gβ. We want to show that Ω(A, f) = Ω(B, f) whenever
B is sufficiently close to A in the Cβ topology. By contradiction : let U be
an isolating open set of the periodic orbit Ω(A, f) = orb(p) and {An} be a
sequence of β-Hölder observables converging to A in the Cβ topology such
that Ω(A, f) is not included in U for each n.

Each An admits (Theorem 1) a γ-Hölder subaction Vn with γ-Hölder
norm uniformly bounded and γ = β ln(1/λs)/ ln(Λu/λs). By Ascoli, {Vn}
admits a subsequence converging in the C0 topology to some γ-Hölder func-
tion V . Since the set of non-empty compact sets is compact with respect to
the Hausdorff topology, we may assume that {Ω(An, f)} has a sub-sequence
converging to some compact invariant set K. Each An satisfies :

An −m(An, f) ≤ Vn ◦ f − Vn (∀ x ∈M),

An −m(An, f) = Vn ◦ f − Vn (∀ x ∈ Ω(An, f)).

By continuity of m(A, f) with respect to A (for the C0 topology),

A−m(A, f) ≤ V ◦ f − V (∀ x ∈ M)

A−m(A, f) = V ◦ f − V (∀ x ∈ K).

We have assumed that each Ω(An, f) \ U is not empty, then K \ U is not
empty too. Let x0 ∈ K \ U , the ω-limit set ω(x0) and the α-limit set α(x0)
of x0 are compact invariant sets included in Ω(A, f), necessarily :

ω(x0) = α(x0) = orb(p) ⊂ orb(x0) ⊂ ΣV (A, f).
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Since p is V -connected to x0 and x0 is V -connected to p, x0 is V -connected
to itself which is equivalent to x0 ∈ Ω(A, f). We just have obtained a con-
tradiction. �

Proof of Theorem 4. Let β given and A, α-Hölder with:

β < β̃ = α
ln(1/λs)

ln(Λu/λs)
.

According to Theorem 1, there exists V , β̃-Hölder, satisfying :

A−m ≤ V ◦ f − V (∀ x ∈M).

Define R = V ◦ f − V − A +m, φn = min(R, 1/n) and Bn = A + φn. Then
φn is β̃-Hölder with Höldβ̃(φn) ≤ Höldβ̃(R) and

A−m ≤ Bn −m ≤ V ◦ f − V (∀ x ∈M)

Bn −m = V ◦ f − V (∀ x ∈ {R < 1/n}).

In particular m(Bn, f) = m(A, f) and the V -action set of Bn contains a
neighborhood {R < 1/n} of Ω(A, f). Using the shadowing lemma, we con-
struct a periodic orbit orb(p) inside {R < 1/n} and we just have proved a
perturbation Bn of A satisfies

orb(p) ∪ Ω(A, f) ⊂ Ω(Bn, f).

Let ψn be any β̃-Hölder function with small β̃-Hölder norm satisfying:

ψn(x) = 0 (∀ x ∈ orb(p))

ψn(x) > 0 (∀ x ∈M \ orb(p)).

Then An = Bn − ψn = A+ φn − ψn satisfies Ω(An, f) = orb(p), has small C0

norm and (possibly large) uniform β̃-Hölder norm. Therefore (An) converges
to A in the Cβ-topology and each An has a unique maximizing measure which
is supported on a periodic orbit. �

14



References

[1] G. Atkinson, Recurrence of cocycles and random walks, J. London Math.
Soc. (2), 13 (1976) 486–488.

[2] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeo-
morphisms. Lecture Notes in Mathematics, vol. 470. Springer Verlag,
Berlin, Heidelberg, New York, 1975.

[3] G. Contreras, A.O. Lopes, Ph. Thieullen. Lyapunov minimizing mea-
sures for expanding maps of the circle. Ergod. Th. & and Dynam. Sys.
(2001), 21, 1–31.

[4] A. Livciz. Some homology properties of Y -systems. Mathematical Notes
of the USSR Academy of Sciences, 10 (1971), 758–763.

15


