Eigenfunctions of the Laplacian and associated Ruelle operator

A O Lopes ${ }^{1}$ and Ph Thieullen ${ }^{2}$
${ }^{1}$ Instituto de Matemática, UFRGS, Porto Alegre 91501-970, Brazil
${ }^{2}$ Institut de Mathématiques, CNRS, Université Bordeaux 1, 341 cours de la libération, F-33405
Talence, France
E-mail: arturoscar.lopes@gmail.com and philippe.thieullen@math.u-bordeaux 1.fr

Received 25 November 2007, in final form 21 July 2008
Published 12 September 2008
Online at stacks.iop.org/Non/21/2239
Recommended by R de la Llave

Abstract

Let Γ be a co-compact Fuchsian group of isometries on the Poincaré disk \mathbb{D} and Δ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction f of Δ, equivariant by Γ with real eigenvalue $\lambda=-s(1-s)$, where $s=\frac{1}{2}+\mathrm{i} t$, admits an integral representation by a distribution $\mathcal{D}_{f, s}$ (the Helgason distribution) which is equivariant by Γ and supported at infinity $\partial \mathbb{D}=\mathbb{S}^{1}$. The geodesic flow on the compact surface \mathbb{D} / Γ is conjugate to a suspension over a natural extension of a piecewise analytic map $T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, the socalled Bowen-Series transformation. Let \mathcal{L}_{s} be the complex Ruelle transfer operator associated with the Jacobian $-s \ln \left|T^{\prime}\right|$. Pollicott showed that $\mathcal{D}_{f, s}$ is an eigenfunction of the dual operator \mathcal{L}_{s}^{*} for the eigenvalue 1 . Here we show the existence of a (nonzero) piecewise real analytic eigenfunction $\psi_{f, s}$ of \mathcal{L}_{s} for the eigenvalue 1 , given by an integral formula

$$
\psi_{f, s}(\xi)=\int \frac{J(\xi, \eta)}{|\xi-\eta|^{2 s}} \mathcal{D}_{f, s}(\mathrm{~d} \eta)
$$

where $J(\xi, \eta)$ is a $\{0,1\}$-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface \mathbb{D} / Γ.

Mathematics Subject Classification: 37C30, 11F12, 11F72, 46F12

1. Introduction

Consider the Laplace operator Δ defined by

$$
\Delta=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

on the Lobatchevskii upper half-plane $\mathbb{H}=\{w=x+\mathrm{i} y \in \mathbb{C} ; y>0\}$, equipped with the hyperbolic metric $\mathrm{d} s_{\mathbb{H}}=\frac{|\mathrm{d} w|}{y}$, and the eigenvalue problem

$$
\Delta f=-s(1-s) f
$$

where s is of the form $s=\frac{1}{2}+\mathrm{i} t$, with t real. We shall also consider the same corresponding Laplace operator

$$
\Delta=\frac{1}{4}\left(1-|z|^{2}\right)^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

and eigenvalue problem

$$
\Delta f=-s(1-s) f
$$

defined on the Poincaré disk $\mathbb{D}=\{z=x+y i \in \mathbb{C} ;|z|<1\}$, equipped with the metric $\mathrm{d} s_{\mathbb{D}}=2 \frac{|\mathrm{~d} z|}{1-|z|^{2}}$.

Helgason showed in [11] and [12] that any eigenfunction f associated with this eigenvalue problem can be obtained by means of a generalized Poisson representation

$$
\begin{cases}f(w)=\int_{-\infty}^{\infty}\left(\frac{\left(1+t^{2}\right) y}{(x-t)^{2}+y^{2}}\right)^{s} \mathcal{D}_{f, s}^{\mathbb{H}}(t), & \text { for } w \in \mathbb{H}, \\ \text { or } & \\ f(z)=\int_{\partial \mathbb{D}}\left(\frac{1-|z|^{2}}{|z-\xi|^{2}}\right)^{s} \mathcal{D}_{f, s}^{\mathbb{D}}(\xi), & \text { for } z \in \mathbb{D},\end{cases}
$$

where $\mathcal{D}_{f, s}^{\mathbb{D}}$ or $\mathcal{D}_{f, s}^{\mathbb{H}}$ are analytic distributions called from now on Helgason's distributions. We have used the canonical isometry between $z \in \mathbb{D}$ and $w \in \mathbb{H}$, namely $w=\mathrm{i} \frac{1-z}{1+z}$ or $z=\frac{\mathrm{i}-w}{\mathrm{i}+w}$. The hyperbolic metric is given in \mathbb{H} and in \mathbb{D} by

$$
\mathrm{d} s_{\mathbb{H}}^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{y^{2}}, \quad \mathrm{~d} s_{\mathbb{D}}^{2}=\frac{4\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)}{\left(1-|z|^{2}\right)^{2}}
$$

We shall be interested in a more restricted problem, where the eigenfunction f is also automorphic with respect to a co-compact Fuchsian group Γ, i.e. a discrete subgroup of the group of Möbius transformations (see [5,20,25]) with compact fundamental domain. It is known that the eigenvalues $\lambda=s(1-s)=\frac{1}{4}+t^{2}$ form a discrete set of positive real numbers with finite multiplicity and accumulating at $+\infty$ (see [13]).

Pollicott showed [21] that Helgason's distribution can be seen as a generalized eigenmeasure of the dual complex Ruelle transfer operator associated with a subshift of the finite type defined at infinity. Let T_{L} be the left Bowen-Series transformation that acts on the boundary $\mathbb{S}^{1}=\partial \mathbb{D}$ and is associated with a particular set of generators of Γ. The precise definition of T_{L} has been given in [8,22-24], and more geometrical descriptions have then been given in $[1,18]$. Specific examples of the Bowen-Series transformation have been studied in $[4,17]$ for the modular surface and in [3] for a symmetric compact fundamental domain of genus two. The map T_{L} is known to be piecewise Γ-Möbius constant, Markovian with respect to a partition $\left\{I_{k}^{\mathrm{L}}\right\}$ of intervals of \mathbb{S}^{1}, on which the restriction of T_{L} is constant and equal to an element γ_{k} of Γ, transitive and orbit equivalent to Γ. Let $\mathcal{L}_{s}^{\mathrm{L}}$ be the complex Ruelle transfer operator associated with the map T_{L} and the potential $A_{\mathrm{L}}=-s \ln \left|T_{\mathrm{L}}^{\prime}\right|$, namely

$$
\left(\mathcal{L}_{s}^{\mathrm{L}} \psi\right)\left(\xi^{\prime}\right)=\sum_{T_{\mathrm{L}}(\xi)=\xi^{\prime}} \mathrm{e}^{A_{\mathrm{L}}(\xi)} \psi(\xi)=\sum_{T_{\mathrm{L}}(\xi)=\xi^{\prime}} \frac{\psi(\xi)}{\left|T_{\mathrm{L}}^{\prime}(\xi)\right|^{s}}
$$

where the summation is taken over all preimages ξ of ξ^{\prime} under T_{L}. Here T_{L}^{\prime} denotes the Jacobian of T_{L} with respect to the canonical Lebesgue measure on \mathbb{S}^{1}. In the case of an automorphic
eigenfunction f of Δ, Pollicott showed that the corresponding Helgason distribution $\mathcal{D}_{f, s}$ satisfies the dual functional equation

$$
\left(\mathcal{L}_{s}^{\mathrm{L}}\right)^{*}\left(\mathcal{D}_{f, s}\right)=\mathcal{D}_{f, s}
$$

or, according to Pollicott's terminology, the parameter s is a (dual) Perron-Frobenius value, that is, 1 is an eigenvalue for the dual Ruelle transfer operator.

Although suggested in [21], it is not clear whether s could be a Perron-Frobenius value, that is, whether 1 could also be an eigenvalue for $\mathcal{L}_{s}^{\mathrm{L}}$, not only for $\left(\mathcal{L}_{s}^{\mathrm{L}}\right)^{*}$. Our goal in this paper is to show that this is actually the case.

The three main ingredients we use are the following:

- Otal's proof of Helgason's distribution in [19], giving more precise information on $\mathcal{D}_{f, s}$ and enabling us to integrate piecewise \mathcal{C}^{1} test functions, instead of real analytic globally defined test functions;
- a more careful reading of $[1,8,18,24]$, or a careful study of a particular example in [16], which enables us to construct a piecewise Γ-Möbius baker transformation ('arithmetically' conjugate to the geodesic billiard);
- the existence of a kernel that we introduced in [3], which enables us to permute past and future coordinates and transfer a dual eigendistribution to a piecewise real analytic eigenfunction. Haydn (in [10]) has introduced a similar kernel in a more abstract setting, without geometric considerations.

More precisely, we prove the following theorem:
Theorem 1. Let Γ be a co-compact Fuchsian group of the hyperbolic disk \mathbb{D} and Δ the corresponding hyperbolic Laplace operator. Let $\lambda=s(1-s)$, with $s=\frac{1}{2}+\mathrm{i}$, and let f be an eigenfunction of $-\Delta$, automorphic with respect to Γ, that is, $\Delta f=-\lambda f$ and $f \circ \gamma=f$, for every $\gamma \in \Gamma$. Then there exists a (nonzero) piecewise real analytic eigenfunction $\psi_{f, s}$ on \mathbb{S}^{1} that is a solution of the functional equation

$$
\mathcal{L}_{s}^{\mathrm{L}}\left(\psi_{f, s}\right)=\psi_{f, s},
$$

where $\mathcal{L}_{s}^{\mathrm{L}}$ is the complex Ruelle transfer operator associated with the left Bowen-Series transformation $T_{\mathrm{L}}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ and the potential $A_{\mathrm{L}}=-s \ln \left|T_{\mathrm{L}}^{\prime}\right|$.

Moreover, $\psi_{f, s}$ admits an integral representation via Helgason's distribution $\mathcal{D}_{f, s}^{\mathbb{D}}$, representing f at infinity, and a geometric positive kernel $k(\xi, \eta)$ defined on a finite set of disjoint rectangles $\cup_{k} I_{k}^{\mathrm{L}} \times Q_{k}^{\mathrm{R}} \subset \mathbb{S}^{1} \times \mathbb{S}^{1}$, namely,

$$
\psi_{f, s}(\xi)=\int_{Q_{k}^{\mathrm{R}}} k^{s}(\xi, \eta) \mathcal{D}_{f, s}^{\mathbb{D}}(\eta)=\int_{Q_{k}^{\mathrm{R}}} \frac{1}{|\xi-\eta|^{2 s}} \mathcal{D}_{f, s}^{\mathbb{D}}(\eta),
$$

for every $\xi \in I_{k}^{\mathrm{L}}$, where I_{k}^{L} and Q_{k}^{R} are intervals of \mathbb{S}^{1} with disjoint closure, and $\left\{I_{k}^{\mathrm{L}}\right\}_{k}$ is a partition of \mathbb{S}^{1} where T_{L} is injective, Markovian and piecewise Γ-Möbius constant.

Lewis [14] and, later, Lewis and Zagier [15], started a different approach to understand Maass wave forms. They were able to identify in a bijective way Maass wave forms of $P S L(2, \mathbb{Z})$ and solutions of a functional equation with three terms closely related to Mayer's transfer operator. Their setting is strongly dependent on the modular group. Our theorem 1 may be viewed as part of their programme for co-compact Fuchsian groups. The Helgason distribution has been used by Zelditch in [26] to generalize microlocal analysis on hyperbolic surfaces, by Flaminio and Forni in [9], to study invariant distributions by the horocycle flow, and by Anantharaman and Zelditch in [2], to understand the 'quantum unique ergodicity conjecture'.

2. Preliminary results

Let Γ be a co-compact Fuchsian group of the Poincaré disk \mathbb{D}. We denote by $\mathrm{d}(w, z)$ the hyperbolic distance between two points of \mathbb{D}, given by the Riemannian metric $\mathrm{d} s^{2}=$ $4\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right) /\left(1-|z|^{2}\right)^{2}$. Let $M=\mathbb{D} / \Gamma$ be the associated compact Riemann surface, $N=T^{1} M$ the unit tangent bundle and Δ the Laplace operator on M. Let $f: M \rightarrow \mathbb{R}$ be an eigenfunction of $-\Delta$ or, in other words, a Γ-automorphic function $f: \mathbb{D} \rightarrow \mathbb{R}$ satisfying $\Delta f=-s(1-s) f$ for the eigenvalue $\lambda=s(1-s)>\frac{1}{4}$ and such that $f \circ \gamma=f$, for every $\gamma \in \Gamma$. We know that f is \mathcal{C}^{∞} and uniformly bounded on \mathbb{D}. Thanks to Helgason's representation theorem, f can be represented as a superposition of horocycle waves, given by the Poisson kernel

$$
P(z, \xi):=\mathrm{e}^{b_{\xi}(\mathcal{O}, z)}=\frac{1-|z|^{2}}{|z-\xi|^{2}}
$$

where $b_{\xi}(w, z)$ is the Busemann cocycle between two points w and z inside the Poincaré disk, observed from a point at infinity $\xi \in \mathbb{S}^{1}$, defined by

$$
b_{\xi}(w, z):=‘ \mathrm{~d}(w, \xi)-\mathrm{d}(z, \xi)^{\prime}=\lim _{t \rightarrow \xi} \mathrm{~d}(w, t)-\mathrm{d}(z, t),
$$

where the limit is uniform in $t \rightarrow \xi$ in any hyperbolic cone at ξ. Helgason's theorem states that

$$
f(z)=\int_{\mathbb{D}} P^{s}(z, \xi) \mathcal{D}_{f, s}(\xi)=\left\langle\mathcal{D}_{f, s}, P^{s}(z, .)\right\rangle
$$

for some analytic distribution $\mathcal{D}_{f, s}$ acting on real analytic functions on \mathbb{S}^{1}. Unfortunately, Helgason's work is too general and is valid for any eigenfunction not necessarily equivariant by a group. For bounded \mathcal{C}^{2} functions f, Otal [19] has shown that the distribution $\mathcal{D}_{f, s}$ has stronger properties and can be defined in a simpler manner.

We first recall some standard notation in hyperbolic geometry. We call $\mathrm{d}\left(z, z_{0}\right)$ the hyperbolic distance between two points: for instance, the distance from the origin is given by $\mathrm{d}\left(\mathcal{O}, \tanh \left(\frac{r}{2}\right) \mathrm{e}^{\mathrm{i} \theta}\right)=r$. Let $\mathcal{C}(\mathcal{O}, r)$ denote the set of points in \mathbb{D} at hyperbolic distance r from the origin,

$$
\mathcal{C}(\mathcal{O}, r)=\left\{z \in \mathbb{D} ;|z|=\tanh \left(\frac{r}{2}\right)\right\}
$$

and, more generally, given any interval I at infinity and any point $z_{0} \in \mathbb{D}$, let $\mathcal{C}\left(z_{0}, r, I\right)$ denote the angular arc at the hyperbolic distance r from z_{0} delimited at infinity by I, that is,

$$
\mathcal{C}\left(z_{0}, r, I\right)=\left\{z \in \mathbb{D} ; z \in\left[\left[z_{0}, \xi\right]\right] \text { for some } \xi \in I \text { and } \mathrm{d}\left(z, z_{0}\right)=r\right\}
$$

where $\left[\left[z_{0}, \xi\right]\right]$ denotes the geodesic ray from z_{0} to the point ξ at infinity. Let $\frac{\partial}{\partial n}=\frac{\partial}{\partial r}$ denote the exterior normal derivative to $\mathcal{C}(\mathcal{O}, r)$ and $|\mathrm{d} z|_{\mathbb{D}}=\sinh (r) \mathrm{d} \theta$ the hyperbolic arc length on $\mathcal{C}(\mathcal{O}, r)$.
Theorem 2 ([19]). Let f be a bounded \mathcal{C}^{2} eigenfunction satisfying $\Delta f=-s(1-s) f$. Then:

1. There exists a continuous linear functional $\mathcal{D}_{f, s}$ acting on \mathcal{C}^{1} functions of \mathbb{S}^{1}, defined by

$$
\int \psi(\xi) \mathcal{D}_{f, s}(\xi):=\lim _{r \rightarrow+\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}, r)} \psi(z) \mathrm{e}^{-s r}\left(\frac{\partial f}{\partial n}+s f\right)|\mathrm{d} z|_{\mathbb{D}},
$$

where $c(s)$ is a nonzero normalizing constant such that $\left\langle\mathcal{D}_{f, s}, \mathbf{1}\right\rangle=f(0)$, and $\psi(z)$ is any \mathcal{C}^{1} extension of $\psi(\xi)$ to a neighbourhood of \mathbb{S}^{1}.
2. $\mathcal{D}_{f, s}$ represents f in the following sense:

$$
f(z)=\int[P(z, \xi)]^{s} \mathcal{D}_{f, s}(\xi), \quad \forall z \in \mathbb{D}
$$

$\mathcal{D}_{f, s}$ is unique and is called the Helgason distribution of f.
3. For all $0 \leqslant \alpha \leqslant 2 \pi$, the following limit exists:

$$
\tilde{\mathcal{D}}_{f, s}(\alpha):=\lim _{r \rightarrow+\infty} \frac{1}{c(s)} \int_{0}^{\alpha} \mathrm{e}^{-s r}\left(\frac{\partial f}{\partial n}+s f\right)\left(\tanh \left(\frac{r}{2}\right) \mathrm{e}^{\mathrm{i} \theta}\right) \sinh (r) \mathrm{d} \theta .
$$

The convergence is uniform in $\alpha \in[0,2 \pi]$ and $\tilde{\mathcal{D}}_{f, s}(0)=0$.
4. $\tilde{\mathcal{D}}_{f, s}$ can be extended to \mathbb{R} as a $\frac{1}{2}$-Hölder continuous function satisfying:
(a) $\tilde{\mathcal{D}}_{f, s}(\theta+2 \pi)=\tilde{\mathcal{D}}_{f, s}(\theta)+f(0)$, for every $\theta \in \mathbb{R}$,
(b) for any \mathcal{C}^{1} function $\psi: \mathbb{S}^{1} \rightarrow \mathbb{C}$, denoting $\tilde{\psi}(\theta)=\psi(\exp \mathrm{i} \theta)$,

$$
\int \psi(\xi) \mathcal{D}_{f, s}(\xi)=\tilde{\psi}(0) f(0)-\int_{0}^{2 \pi} \frac{\partial \tilde{\psi}^{2}}{\partial \theta} \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta
$$

Using similar technical tools as Otal, one can prove the following extension of $\mathcal{D}_{f, s}$ on piecewise \mathcal{C}^{1} functions, that is, on functions not necessarily continuous but which admit a \mathcal{C}^{1} extension on each interval $\left[\xi_{k}, \xi_{k+1}\right]$ of some finite and ordered subdivision $\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{r-1}\right\}$ of \mathbb{S}^{1}.

Proposition 3. Let f and $\mathcal{D}_{f, s}$ be as in theorem 2.

1. For any interval $I \subset \mathbb{S}^{1}$ and any function $\psi: I \rightarrow \mathbb{C}$, which is \mathcal{C}^{1} on the closure of I and null outside I, the following limit exists:

$$
\int \psi(\xi) \mathcal{D}_{f, s}(\xi):=\frac{1}{c(s)} \lim _{r \rightarrow+\infty} \int_{\mathcal{C}(\mathcal{O}, r, I)} \psi(z) \mathrm{e}^{-s r}\left(\frac{\partial f}{\partial n}+s f\right)|\mathrm{d} z|_{\mathbb{D}}
$$

where again $\psi(z)$ is any \mathcal{C}^{1} extension of $\psi(\xi)$ to a neighbourhood of \mathbb{S}^{1}.
2. For any $0 \leqslant \alpha<\beta \leqslant 2 \pi$ and any \mathcal{C}^{1} function ψ on the interval $I=[\exp (\mathrm{i} \alpha), \exp (\mathrm{i} \beta)]$,

$$
\int \psi(\xi) \mathcal{D}_{f, s}(\xi)=\tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f, s}(\beta)-\tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f, s}(\alpha)-\int_{\alpha}^{\beta} \frac{\partial \tilde{\psi}^{2}}{\partial \theta} \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta
$$

where $\tilde{\mathcal{D}}_{f, s}$ and $\tilde{\psi}(\theta)$ have been defined in theorem 2 .
Proof. Given $\alpha \in[0,2 \pi]$, let $I=\left\{\mathrm{e}^{\mathrm{i} \theta} \mid 0 \leqslant \theta \leqslant \alpha\right\}_{\sim}$ be an interval in S^{1}, and ψ a \mathcal{C}^{1} function defined on a neighbourhood of \mathbb{S}^{1}. Denote $\tilde{\psi}(r, \theta)=\psi\left(\tanh \left(\frac{r}{2}\right) \mathrm{e}^{\mathrm{i} \theta}\right)$ and $K(r, \theta)=\mathrm{e}^{-s r}\left(\frac{\partial f}{\partial n}+s f\right)\left(\tanh \left(\frac{r}{2} \mathrm{e}^{\mathrm{i} \theta}\right) \sinh (r)\right.$. Then

$$
\begin{aligned}
\frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}, r, I)} & \psi(z) \mathrm{e}^{-s r}\left(\frac{\partial f}{\partial n}+s f\right)|\mathrm{d} z| \mathbb{D} \\
& =\int_{0}^{\alpha} \tilde{\psi}(r, \beta) K(r, \beta) \mathrm{d} \beta \\
& =\int_{0}^{\alpha}\left[\tilde{\psi}(r, \alpha)+\int_{\beta}^{\alpha}-\frac{\partial \tilde{\psi}}{\partial \theta}(r, \theta) \mathrm{d} \theta\right] K(r, \beta) \mathrm{d} \beta \\
& =\tilde{\psi}(r, \alpha) \int_{0}^{\alpha} K(r, \beta) \mathrm{d} \beta-\int_{0}^{\alpha} \frac{\partial \tilde{\psi}}{\partial \theta}(r, \theta)\left[\int_{0}^{\theta} K(r, \beta) \mathrm{d} \beta\right] \mathrm{d} \theta
\end{aligned}
$$

Since $\int_{0}^{\alpha} K(r, \beta) \mathrm{d} \beta \rightarrow \tilde{\mathcal{D}}_{f, s}(\alpha)$ uniformly in $\alpha \in[0,2 \pi]$, the left-hand side of the previous equality converges to

$$
\int \psi(\xi) \mathbf{1}_{\{\xi \in I\}} \mathcal{D}_{f, s}(\xi)=\tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f, s}(\alpha)-\int_{0}^{\alpha} \frac{\partial \tilde{\psi}}{\partial \theta}(\theta) \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta
$$

The second part of the proposition follows subtracting such an expression from another one, such as:

$$
\int \psi(\xi) \mathbf{1}_{\left\{\xi=\mathrm{e}^{\mathrm{i} \theta} ; 0 \leqslant \theta \leqslant \beta\right\}} \tilde{\mathcal{D}}_{f, s}(\xi)-\int \psi(\xi) \mathbf{1}_{\left\{\xi=\mathrm{e}^{\mathrm{i} \theta} ; 0 \leqslant \theta \leqslant \alpha\right\}} \tilde{\mathcal{D}}_{f, s}(\xi) .
$$

If, in addition, we assume that f is equivariant with respect to a co-compact Fuchsian group Γ, Pollicott observed in [21] that $\mathcal{D}_{f, s}$, acting on real analytic functions, is equivariant by Γ, that is, satisfies $\gamma^{*}\left(\mathcal{D}_{f, s}\right)(\xi)=\left|\gamma^{\prime}(\xi)\right|^{s} \mathcal{D}_{f, s}(\xi)$, for all $\gamma \in \Gamma$. Because Otal's construction is more precise and implies that Helgason's distribution also acts on piecewise \mathcal{C}^{1} functions, the above equivariance property can be improved in the following way.

Proposition 4. Let $f: \mathbb{D} \rightarrow \mathbb{R}$ be a \mathcal{C}^{2} function, $I \subset \mathbb{S}^{1}$ an interval and $\psi: I \rightarrow \mathbb{C}$ a \mathcal{C}^{1} function on the closure of I. If f satisfies $f \circ \gamma=f$, for some $\gamma \in \Gamma$ (f is not necessarily automorphic), then

$$
\left\langle\mathcal{D}_{f, s}, \frac{\psi \circ \gamma^{-1}}{\left|\gamma^{\prime} \circ \gamma^{-1}\right|^{s}} \mathbf{1}_{\gamma(I)}\right\rangle=\left\langle\mathcal{D}_{f, s}, \psi \mathbf{1}_{I}\right\rangle
$$

The main difficulty here is to transfer the equivariance property $f \circ \gamma=f$ to an equivalent property for the extension of $\mathcal{D}_{f, s}$ to piecewise \mathcal{C}^{1} functions. If $I=\mathbb{S}^{1}$ and ψ is real analytic, then, by uniqueness of the representation, proposition 4 is easily proved. It seems that just knowing the fact that $\mathcal{D}_{f, s}$ is the derivative of some Hölder function is not enough to reach a conclusion. The following proof uses Otal's approach and, essentially, the extension of $\mathcal{D}_{f, s}$ described in part 1 of proposition 3.

Proof of proposition 4. First we prove the proposition for $\psi=1$. Let $g(z)=\exp (-s \mathrm{~d}(\mathcal{O}, z))$. By the definition of $\mathcal{D}_{f, s}$, we obtain

$$
\begin{aligned}
\int \mathbf{1}_{I}(\xi) \mathcal{D}_{f, s}(\xi) & =\lim _{r \rightarrow+\infty} \frac{1}{c(s)} \int_{\mathcal{C}\left(\mathcal{O}, r^{\prime}, I\right)}\left(g \frac{\partial f}{\partial n}-f \frac{\partial g}{\partial n}\right)|\mathrm{d} z|_{\mathbb{D}} \\
& =\lim _{r \rightarrow+\infty} \frac{1}{c(s)} \int_{\mathcal{C}\left(\mathcal{O}^{\prime}, r^{\prime}, \gamma(I)\right)}\left(g^{\prime} \frac{\partial f}{\partial n}-f \frac{\partial g^{\prime}}{\partial n}\right)|\mathrm{d} z|_{\mathbb{D}}
\end{aligned}
$$

where $r^{\prime}=r+\mathrm{d}\left(\mathcal{O}, \mathcal{O}^{\prime}\right), \mathcal{O}^{\prime}=\gamma(\mathcal{O})$ and $g^{\prime}=g \circ \gamma^{-1}$. Notice that the domain bounded by the circle $\mathcal{C}\left(\mathcal{O}^{\prime}, r^{\prime}\right)$ contains the $\operatorname{circle} \mathcal{C}(\mathcal{O}, r)$. Let $\overline{P Q}$ be the positively oriented $\operatorname{arc} \mathcal{C}(\mathcal{O}, r, \gamma(I))$ and $\overline{P^{\prime} Q^{\prime}}$ be the $\operatorname{arc} \mathcal{C}\left(\mathcal{O}^{\prime}, r^{\prime}, \gamma(I)\right)$. Then the two geodesic segments [$\left.\left[P, P^{\prime}\right]\right]$ and $\left[\left[Q, Q^{\prime}\right]\right]$ belong to the annulus $r \leqslant \mathrm{~d}(z, \mathcal{O}) \leqslant r+2 \mathrm{~d}\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$ and their length is uniformly bounded.

We now use Green's formula to compute the right-hand side of the above expression. Let Ω denote the domain delimited by $P, P^{\prime}, Q^{\prime}, Q$ using the corresponding arcs and geodesic segments, and let $\mathrm{d} v=\sinh (r) \mathrm{d} r \mathrm{~d} \theta$ be the hyperbolic volume element. We obtain

$$
\begin{aligned}
\int_{\overline{P^{\prime} Q^{\prime}}}\left(g^{\prime} \frac{\partial f}{\partial n}-\right. & \left.f \frac{\partial g^{\prime}}{\partial n}\right)|\mathrm{d} z|_{\mathbb{D}}=\int_{\overline{P Q}}\left(g^{\prime} \frac{\partial f}{\partial n}-f \frac{\partial g^{\prime}}{\partial n}\right)|\mathrm{d} z|_{\mathbb{D}} \\
& -\int_{\left[\left[P, P^{\prime}\right]\right]} \cdots|\mathrm{d} z|_{\mathbb{D}}-\int_{\left[\left[Q^{\prime}, Q\right]\right]} \cdots|\mathrm{d} z|_{\mathbb{D}}+\iint_{\Omega}\left(g^{\prime} \Delta f-f \Delta g^{\prime}\right) \mathrm{d} v .
\end{aligned}
$$

When r tends to infinity, the last three terms at the right-hand side tend to 0 , since along the geodesic segments [P, P^{\prime}] and $\left[Q, Q^{\prime}\right]$, the gradient ∇g^{\prime} is uniformly bounded by $\exp \left(-\frac{1}{2} r\right)$ and

$$
g^{\prime} \Delta f-f \Delta g^{\prime}=s g^{\prime} f \sinh \left(\mathrm{~d}\left(z, \mathcal{O}^{\prime}\right)\right)^{-2} \quad \text { and } \quad \frac{\partial}{\partial n} g^{\prime}+s g^{\prime}
$$

are uniformly bounded by a constant times $\exp \left(-\frac{5}{2} r\right)$ in the domain Ω, for the first expression, and by a constant times $\exp \left(-\frac{3}{2} r\right)$ on $\mathcal{C}(\mathcal{O}, r)$, for the second expression. It follows that

$$
\begin{aligned}
\int \mathbf{1}_{I}(\xi) \mathcal{D}_{f, s}(\xi) & =\lim _{r \rightarrow+\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}, r, \gamma(I))} g^{\prime}\left(\frac{\partial f}{\partial n}+s f\right)|\mathrm{d} z|_{\mathbb{D}} \\
& =\lim _{r \rightarrow+\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}, r, \gamma(I))}[\psi(z)]^{s} \mathrm{e}^{-s r}\left(\frac{\partial f}{\partial n}+s f\right)|\mathrm{d} z|_{\mathbb{D}}
\end{aligned}
$$

where $\psi(z)=\exp \left(\mathrm{d}(\mathcal{O}, z)-\mathrm{d}\left(\mathcal{O}, \gamma^{-1}(z)\right)\right)$. Now we observe that

$$
\begin{cases}\psi(z)=\exp s(\mathrm{~d}(\mathcal{O}, z)-\mathrm{d}(\gamma(\mathcal{O}), z)), & \text { for } z \in \mathbb{D} \\ \psi(\xi)=\exp b_{\xi}(\mathcal{O}, \gamma(\mathcal{O}))=\left|\gamma^{\prime} \circ \gamma^{-1}(\xi)\right|^{-1}, & \text { for } \xi \in \partial \mathbb{D}\end{cases}
$$

actually coincides with a real analytic function $\Psi(z)$ defined in a neighbourhood of \mathbb{S}^{1}, given explicitly by

$$
\Psi(z)=\left(\frac{(1+|z|)^{2}}{\left(1+\left|\gamma^{-1}(z)\right|\right)^{2}\left|\gamma^{\prime} \circ \gamma^{-1}(z)\right|}\right)^{s}
$$

Thus we have proved that

$$
\int \mathbf{1}_{I}(\xi) \mathcal{D}_{f, s}(\xi)=\int \frac{\mathbf{1}_{\gamma(I)}(\xi)}{\left|\gamma^{\prime} \circ \gamma^{-1}(\xi)\right|^{s}} \mathcal{D}_{f, s}(\xi)
$$

Now we prove the general case. We use the same notation for the lifting $\gamma: \mathbb{R} \mapsto \mathbb{R}$ of a Möbius transformation $\gamma: \mathbb{S}^{1} \mapsto \mathbb{S}^{1}$. The lifting satisfies $\gamma(\alpha+2 \pi)=\gamma(\alpha)+2 \pi$, $\exp (\mathrm{i} \gamma(\alpha))=\gamma(\exp (\mathrm{i} \alpha))$ and $\gamma^{\prime}(\alpha)=\left|\gamma^{\prime}(\alpha)\right|$, for all $\alpha \in \mathbb{R}$. Using proposition 3, we obtain $\tilde{\mathcal{D}}_{f, s}(\beta)-\tilde{\mathcal{D}}_{f, s}(\alpha)$

$$
=\frac{\tilde{\mathcal{D}}_{f, s} \circ \gamma(\beta)}{\gamma^{\prime}(\beta)^{s}}-\frac{\tilde{\mathcal{D}}_{f, s} \circ \gamma(\alpha)}{\gamma^{\prime}(\alpha)^{s}}-\int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial}{\partial \theta}\left(\frac{1}{\left(\gamma^{\prime} \circ \gamma^{-1}(\theta)\right)^{s}}\right) \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta
$$

For any \mathcal{C}^{1} function $\psi(\xi)$ defined on I, we denote $\left.\tilde{\psi}(\theta)=\psi(\exp i \theta)\right)$, and obtain

$$
\begin{aligned}
L H S & :=\int \psi(\xi) \mathbf{1}_{I}(\xi) \mathcal{D}_{f, s}(\xi) \\
& =\tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f, s}(\beta)-\tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f, s}(\alpha)-\int_{\alpha}^{\beta} \frac{\partial \tilde{\psi}^{2}}{\partial \theta} \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta \\
& =\tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f, s}(\beta)-\tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f, s}(\alpha)-\int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial}{\partial \theta}\left(\tilde{\psi} \circ \gamma^{-1}(\theta)\right) \tilde{\mathcal{D}}_{f, s}\left(\gamma^{-1} \theta\right) \mathrm{d} \theta \\
& =\tilde{\psi}(\beta)\left(\tilde{\mathcal{D}}_{f, s}(\beta)-\tilde{\mathcal{D}}_{f, s}(\alpha)\right)-\int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial \tilde{\psi}\left(\gamma^{-1} \theta\right)}{\partial \theta}\left(\tilde{\mathcal{D}}_{f, s}\left(\gamma^{-1} \theta\right)-\tilde{\mathcal{D}}_{f, s}(\alpha)\right) \mathrm{d} \theta .
\end{aligned}
$$

We now use the above equivariance and replace both $\tilde{\mathcal{D}}_{f, s}(\beta)-\tilde{\mathcal{D}}_{f, s}(\alpha)$ and $\tilde{\mathcal{D}}_{f, s}\left(\gamma^{-1} \theta\right)-$ $\tilde{\mathcal{D}}_{f, s}(\alpha)$ by the corresponding formula involving $\tilde{\mathcal{D}}_{f, s} \circ \gamma(\beta), \tilde{\mathcal{D}}_{f, s} \circ \gamma(\alpha), \tilde{\mathcal{D}}_{f, s}(\theta)$. Thus

$$
\begin{aligned}
L H S & =\frac{\tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f, s} \circ \gamma(\beta)}{\gamma^{\prime}(\beta)^{s}}-\frac{\tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f, s} \circ \gamma(\alpha)}{\gamma^{\prime}(\alpha)^{s}}-\int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial}{\partial \theta}\left(\frac{\tilde{\psi}\left(\gamma^{-1} \theta\right)}{\gamma^{\prime}\left(\gamma^{-1} \theta\right)^{s}}\right) \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta \\
& =\int \frac{\psi \circ \gamma^{-1}(\xi)}{\left|\gamma^{\prime} \circ \gamma^{-1}(\xi)\right|^{s}} \mathbf{1}_{\gamma(I)} \mathcal{D}_{f, s}(\xi) .
\end{aligned}
$$

Following [1,8,18,22-24] for the general case and [16] for a specific example we recall the definition of the left T_{L} and right T_{R} Bowen-Series transformations. The hyperbolic surface we are interested in is given by the quotient of the hyperbolic disk \mathbb{D} by a co-compact Fuchsian group Γ. Given a point $\mathcal{O} \in \mathbb{D}$, let

$$
D_{\Gamma, \mathcal{O}}=\{z \in \mathbb{D} ; \mathrm{d}(z, \mathcal{O})<\mathrm{d}(z, \gamma(\mathcal{O})), \quad \forall \gamma \in \Gamma\}
$$

denote the corresponding Dirichlet domain, a convex fundamental domain with compact closure in \mathbb{D}, admitting an even number of geodesic sides and an even number of vertices, some of which may be elliptic. More precisely, the boundary of $D_{\Gamma, \mathcal{O}}$ is a disjoint union of semi-closed geodesic segments $S_{-r}^{\mathrm{L}}, \cdots, S_{-1}^{\mathrm{L}}, S_{1}^{\mathrm{L}}, \cdots, S_{r}^{\mathrm{L}}$, closed to the left and open to the right, or, equivalently, to a union of semi-closed geodesic segments $S_{-r}^{\mathrm{R}}, \cdots, S_{-1}^{\mathrm{R}}, S_{1}^{\mathrm{R}}, \cdots, S_{r}^{\mathrm{R}}$, closed to the right and open to the left; for each k, the intervals S_{k}^{L} and S_{k}^{R} have the same endpoints and S_{k}^{L} is associated with S_{-k}^{R} by an element $a_{k} \in \Gamma$ satisfying $a_{k}\left(S_{k}^{\mathrm{L}}\right)=S_{-k}^{\mathrm{R}}$. The elements a_{k} generate Γ and satisfy $a_{-k}=a_{k}^{-1}$, for $k= \pm 1, \cdots, \pm r$.

To define the two Bowen-Series transformations T_{L} and T_{R} geometrically, we need to impose a geometric condition on Γ : following [8,22,24], we say that Γ satisfies the even corner property if, for each $1 \leqslant|k| \leqslant r$, the complete geodesic line through S_{k}^{L} is equal to a disjoint union of Γ-translates of the sides S_{l}^{L}, with $1 \leqslant|l| \leqslant r$. Some Γ do not satisfy this geometric property. Nevertheless, any two co-compact Fuchsian groups Γ and Γ^{\prime}, with identical signature, are geometrically isomorphic, that is, there exists a group isomorphism $h_{*}: \Gamma \rightarrow \Gamma^{\prime}$ and a quasi-conformal orientation preserving homeomorphism $h: \mathbb{D} \rightarrow \mathbb{D}$ admitting an extension to a conjugating homeomorphism $h: \partial \mathbb{D} \rightarrow \partial \mathbb{D}$, that is,

$$
h(\gamma(z))=h_{*}(\gamma)(h(z)), \quad \forall \gamma \in \Gamma .
$$

An important observation in $[8,22,24]$ is that any co-compact Fuchsian group is geometrically isomorphic to a Fuchsian group with identical signature and satisfying the even corner property. We are going to recall the Bowen and Series construction in the case that Γ possesses the even corner property and will show that their main conclusions remain valid under geometric isomorphisms.

The complete geodesic line associated with a side S_{k}^{L} cuts the boundary at infinity \mathbb{S}^{1} at two points s_{k}^{L} and s_{k}^{R}, positively oriented with respect to s_{k}^{L}, the oriented geodesic line $\left.]\right] s_{k}^{\mathrm{L}}, s_{k}^{\mathrm{R}}[[$ seeing the origin \mathcal{O} to the left. Both end points s_{k}^{L} and s_{k}^{R} are neutrally stable with respect to the associated generator a_{k}, that is, $\left|a_{k}^{\prime}\left(s_{k}^{\mathrm{L}}\right)\right|=\left|a_{k}^{\prime}\left(s_{k}^{\mathrm{R}}\right)\right|=1$. The family of open intervals $] s_{k}^{\mathrm{L}}, s_{k}^{\mathrm{R}}$ [covers \mathbb{S}^{1}; since these intervals $] s_{k}^{\mathrm{L}}, s_{k}^{\mathrm{R}}$ [overlap each other, there is no canonical partition adapted to this covering. Nevertheless, we may associate two well-defined partitions, the left partition \mathcal{A}_{L} and the right partition \mathcal{A}_{R}. The former consists of disjoint half-closed intervals,

$$
\mathcal{A}_{\mathrm{L}}=\left\{A_{-r}^{\mathrm{L}}, \cdots, A_{-1}^{\mathrm{L}}, A_{1}^{\mathrm{L}}, \cdots, A_{r}^{\mathrm{L}}\right\},
$$

given by $A_{k}^{\mathrm{L}}=\left[s_{k}^{\mathrm{L}}, s_{l(k)}^{\mathrm{L}}\left[\right.\right.$ where $s_{l(k)}^{\mathrm{L}}$ denotes the nearest point s_{l}^{L} after s_{k}^{L}, according to a positive orientation. Each A_{k}^{L} belongs to the unstable domain of the hyperbolic element a_{k}, that is, $\left|a_{k}^{\prime}(\xi)\right| \geqslant 1$, for each $\xi \in A_{k}^{\mathrm{L}}$. By definition, the left Bowen-Series transformation $T_{\mathrm{L}}: \mathbb{S}^{1} \mapsto \mathbb{S}^{1}$ is given by

$$
T_{\mathrm{L}}(\xi)=a_{k}(\xi), \quad \text { if } \xi \in A_{k}^{\mathrm{L}}
$$

Analogously, \mathbb{S}^{1} can be partitioned into half-closed intervals

$$
\mathcal{A}_{\mathrm{R}}=\left\{A_{-r}^{\mathrm{R}}, \cdots, A_{-1}^{\mathrm{R}}, A_{1}^{\mathrm{R}}, \cdots, A_{r}^{\mathrm{R}}\right\},
$$

where $\left.\left.A_{k}^{\mathrm{R}}=\right] s_{j(k)}^{\mathrm{R}}, s_{k}^{\mathrm{R}}\right]$, and $s_{j(k)}^{\mathrm{R}}$ denotes the nearest s_{j}^{R} before s_{k}^{R}, according to a positive orientation. The right Bowen-Series transformation is given by

$$
T_{\mathrm{R}}(\eta)=a_{k}(\eta), \quad \text { if } \eta \in A_{k}^{\mathrm{R}}
$$

The two partitions A^{L} and A^{R} generate two ways of coding a trajectory. Let $\gamma_{\mathrm{L}}: \mathbb{S}^{1} \mapsto \Gamma$ and $\gamma_{\mathrm{R}}: \mathbb{S}^{1} \mapsto \Gamma$ be the left and right symbolic coding defined by

$$
\gamma_{L}[\xi]=a_{k}, \quad \text { if } \xi \in A_{k}^{\mathrm{L}}, \quad \text { and } \quad \gamma_{\mathrm{R}}[\eta]=a_{k}, \quad \text { if } \eta \in A_{k}^{\mathrm{R}}
$$

In particular, $T_{\mathrm{R}}(\eta)=\gamma_{\mathrm{R}}\eta$ and $T_{\mathrm{L}}(\xi)=\gamma_{\mathrm{L}}\xi$, for each $\xi \in \mathbb{S}^{1}$. Also, it is known that T_{R}^{2} and T_{L}^{2} are expanding. Series, in [22-24], and later, Adler and Flatto in [1], proved that T_{L} (respectively, T_{R}) is Markov with respect to a partition of $\mathcal{I}^{\mathrm{L}}=\left\{I_{k}^{\mathrm{L}}\right\}_{k=1}^{q}$ (respectively, $\mathcal{I}^{\mathrm{R}}=\left\{I_{l}^{\mathrm{R}}\right\}_{l=1}^{q}$) that is finer than \mathcal{A}_{L} (respectively, \mathcal{A}_{R}). The semi-closed intervals I_{k}^{L} and I_{l}^{R} are of the same kind as A_{k}^{L} and A_{l}^{R}, and have the same closure.

Definition 5. A dynamical system $\left(\mathbb{S}^{1}, T,\left\{I_{k}\right\}\right)$ is said to be a piecewise Γ-Möbius Markov transformation if $T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is a surjective map, and $\left\{I_{k}\right\}$ is a finite partition of \mathbb{S}^{1} into intervals such that:

1. for each $k, T\left(I_{k}\right)$ is a union of adjacent intervals I_{l};
2. for each k, the restriction of T to I_{k} coincides with an element $\gamma_{k} \in \Gamma$;
3. some finite iterate of T is uniformly expanding.

Theorem $6([8,24])$. For any co-compact Fuchsian group Γ, there exists a piecewise Γ-Möbius Markov transformation $\left(\mathbb{S}^{1}, T,\left\{I_{k}\right\}\right)$ which is transitive and orbit equivalent to Γ.

The Ruelle transfer operator can be defined for any piecewise \mathcal{C}^{2} Markov transformation $\left(\mathbb{S}^{1}, T,\left\{I_{k}\right\}\right)$ and any potential function A. Actually, we need a particular complex transfer operator given by the potential

$$
A=-s \ln \left|T^{\prime}\right| .
$$

For any function $\psi: \mathbb{S}^{1} \rightarrow \mathbb{C}$, define

$$
\left(\mathcal{L}_{s}(\psi)\right)\left(\xi^{\prime}\right)=\sum_{T(\xi)=\xi^{\prime}} \mathrm{e}^{A(\xi)} \psi(\xi)=\sum_{T(\xi)=\xi^{\prime}} \frac{\psi(\xi)}{\left|T^{\prime}(\xi)\right|^{s}},
$$

where the summation is taken over all preimages ξ of ξ^{\prime} under T. We modify \mathcal{L}_{s} slightly, so that it acts on the space of piecewise \mathcal{C}^{1} functions. Let $\left\{I_{k}\right\}_{k=1}^{q}$ be a partition of S^{1}. Given a piecewise C^{1} function and $\oplus_{k=1}^{q} \psi_{k} \in \oplus_{k=1}^{q} \mathcal{C}^{1}\left(\bar{I}_{k}\right)$ set

$$
\mathcal{L}_{s}^{\mathrm{L}} \psi=\oplus_{l=1}^{q} \phi_{l}, \quad \text { where } \phi_{l}=\sum_{I_{l} \subset T\left(I_{k}\right)} \frac{\psi_{k} \circ T_{k, l}^{-1}}{\left|T^{\prime} \circ T_{k, l}^{-1}\right|^{s}},
$$

and $T_{k, l}^{-1}$ denotes the restriction to I_{l} of the inverse of $T: I_{k} \rightarrow T\left(I_{k}\right) \supset I_{l}$.
Proposition 7. Let Γ be a co-compact Fuchsian group. Let $s=\frac{1}{2}+\mathrm{i}$ and f be an automorphic eigenfunction of $-\Delta$, that is, $\Delta f=-s(1-s) f$. Let $\left(\mathbb{S}^{1}, T,\left\{I_{k}\right\}\right)$ be a piecewise Γ-Möbius Markov transformation and \mathcal{L}_{s} be the Ruelle transfer operator corresponding to the observable $A=-s \ln \left|T^{\prime}\right|$. Then the Helgason distribution $\mathcal{D}_{f, s}$ satisfies

$$
\left(\mathcal{L}_{s}\right)^{*} \mathcal{D}_{f, s}=\mathcal{D}_{f, s}
$$

Proof. Let $\oplus_{k=1}^{q} \psi_{k}$ be a piecewise \mathcal{C}^{1} function in $\oplus_{k=1}^{q} \mathcal{C}^{1}\left(\bar{I}_{k}\right)$. Using proposition 4,

$$
\begin{aligned}
\int\left(\mathcal{L}_{s} \psi\right)(\xi) \mathcal{D}_{f, s}(\xi) & =\sum_{l=1}^{q} \int_{I_{l}}\left(\mathcal{L}_{s} \psi\right)_{l}(\xi) \mathcal{D}_{f, s}(\xi) \\
& =\sum_{T\left(I_{k}\right) \supset I_{l}} \int_{I_{l}} \frac{\psi_{k} \circ T_{k, l}^{-1}}{\left|T^{\prime} \circ T_{k, l}^{-1}\right|^{s}}(\xi) \mathcal{D}_{f, s}(\xi) \\
& =\sum_{T\left(I_{k}\right) \supset I_{l}} \int_{T^{-1}\left(I_{l}\right) \cap I_{k}} \psi_{k}(\xi) \mathcal{D}_{f, s}(\xi) \\
& =\sum_{k=1}^{q} \int_{I_{k}} \psi_{k}(\xi) \mathcal{D}_{f, s}(\xi)=\int \psi(\xi) \mathcal{D}_{f, s}(\xi) .
\end{aligned}
$$

Series in [24], Adler and Flatto in [1] and Morita in [18] noticed that T_{L} admits a natural extension $\hat{T}: \hat{\Sigma} \mapsto \hat{\Sigma}$ strongly related to T_{R}. We also showed the existence of such a \hat{T} in [16], and it was an important step in the proof of theorem 3 of [16]. The following definition explains how the two maps T_{L} and T_{R} are glued together in an abstract way.

Definition 8. Let Γ be a co-compact Fuchsian group. A dynamical system $\left(\hat{\Sigma}, \hat{T},\left\{I_{k}^{\mathrm{L}}\right\},\left\{I_{l}^{\mathrm{R}}\right\}, J\right)$ is said to be a piecewise Γ-Möbius baker transformation if it admits a description as follows.

1. $\left\{I_{k}^{\mathrm{L}}\right\}$ and $\left\{I_{l}^{\mathrm{R}}\right\}$ are finite partitions of \mathbb{S}^{1} into disjoint intervals; $J(k, l)$ is a $\{0,1\}$-valued function, and $\hat{\Sigma}$ is the subset of $\mathbb{S}^{1} \times \mathbb{S}^{1}$ defined by

$$
\hat{\Sigma}=\coprod_{J(k, l)=1} I_{k}^{\mathrm{L}} \times I_{l}^{\mathrm{R}}
$$

2. For each $k, Q_{k}^{\mathrm{R}}=\coprod\left\{I_{l}^{\mathrm{R}} ; J(k, l)=1\right\}$ is an interval whose closure is disjoint from \bar{I}_{k}^{L}. For each $l, Q_{l}^{\mathrm{L}}=\bigsqcup\left\{I_{k}^{\mathrm{L}} ; J(k, l)=1\right\}$ is an interval whose closure is disjoint from \bar{I}_{l}^{R}. Let $I^{\mathrm{L}}(\xi)=I_{k}^{\mathrm{L}}$ and $Q^{\mathrm{R}}(\xi)=Q_{k}^{\mathrm{R}}$, for $\xi \in I_{k}^{\mathrm{L}}$. Let $I^{\mathrm{R}}(\eta)=I_{l}^{\mathrm{R}}$ and $Q^{\mathrm{L}}(\eta)=Q_{l}^{\mathrm{L}}$, for $\eta \in I_{l}^{\mathrm{R}}$.
3. $\hat{T}: \hat{\Sigma} \rightarrow \hat{\Sigma}$ is bijective and is given by

$$
\left\{\begin{array}{l}
\hat{T}(\xi, \eta)=\left(T_{\mathrm{L}}(\xi), S_{\mathrm{R}}(\xi, \eta)\right), \\
\hat{T}^{-1}\left(\xi^{\prime}, \eta^{\prime}\right)=\left(S_{\mathrm{L}}\left(\xi^{\prime}, \eta^{\prime}\right), T_{\mathrm{R}}\left(\eta^{\prime}\right)\right),
\end{array}\right.
$$

for certain maps $T_{\mathrm{L}}, T_{\mathrm{R}}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ and $S_{\mathrm{L}}, S_{\mathrm{R}}: \hat{\Sigma} \rightarrow \mathbb{S}^{1}$.
4. $\left(\mathbb{S}^{1}, T_{\mathrm{L}},\left\{I_{k}^{\mathrm{L}}\right\}\right)$ and $\left(\mathbb{S}^{1}, T_{\mathrm{R}},\left\{I_{l}^{\mathrm{R}}\right\}\right)$ are piecewise Γ-Möbius Markov transformations. There exist two functions $\gamma_{\mathrm{L}}: \mathbb{S}^{1} \rightarrow \Gamma$, respectively $\gamma_{\mathrm{R}}: \mathbb{S}^{1} \rightarrow \Gamma$, that are piecewise constant on each I_{k}^{L}, respectively $\left\{I_{l}^{\mathrm{R}}\right\}$, and satisfying

$$
\left\{\begin{array}{l}
\hat{T}(\xi, \eta)=\left(\gamma_{\mathrm{L}}\xi, \gamma_{\mathrm{L}}[\xi](\eta)\right), \\
\hat{T}^{-1}\left(\xi^{\prime}, \eta^{\prime}\right)=\left(\gamma_{\mathrm{R}}\left[\eta^{\prime}\right]\left(\xi^{\prime}\right), \gamma_{\mathrm{R}}\left[\eta^{\prime}\right]\left(\eta^{\prime}\right)\right)
\end{array}\right.
$$

The maps T_{L} and T_{R} are called the left and right Bowen-Series transformations, whereas γ_{L} and γ_{R} are the left and right Bowen-Series codings. Finally, we say that J is the incidence matrix, which we extend as a function on $\mathbb{S}^{1} \times \mathbb{S}^{1}$ defining

$$
\begin{cases}J(\xi, \eta)=1, & \text { if }(\xi, \eta) \in \hat{\Sigma}, \\ J(\xi, \eta)=0, & \text { if }(\xi, \eta) \notin \hat{\Sigma} .\end{cases}
$$

Notice that this definition is equivariant by geometric isomorphisms. For co-compact Fuchsian groups satisfying the even corner property, Adler and Flatto in [1], Series in [24] (and, for a particular example, in [16]) obtained geometrically the existence of a piecewise Γ-Möbius baker transformation with left T_{L} and right T_{R} maps orbit equivalent to Γ. By geometric isomorphism considerations, we obtain more generally the following.
Proposition $9([1,16,24])$. For any co-compact Fuchsian group Γ, there exists a piecewise Γ-Möbius baker transformation with left and right Bowen-Series transformations that are transitive and orbit equivalent to Γ.

The two maps T_{L} and T_{R} are related to the action of the group Γ on the boundary \mathbb{S}^{1}. The baker transformation ($\hat{\Sigma}, \hat{T}$) encodes this action into a unique dynamical system. For later reference, we state two further properties of this encoding.

Remark 10.

1. The two codings γ_{L} and γ_{R} are reciprocal, in the following sense:

$$
\gamma_{\mathrm{R}}\left[\eta^{\prime}\right]=\gamma_{\mathrm{L}}^{-1}[\xi], \quad \text { whenever }\left(\xi^{\prime}, \eta^{\prime}\right)=\hat{T}(\xi, \eta)
$$

2. For any ξ^{\prime} and η in \mathbb{S}^{1}, there is a bijection between the two finite sets

$$
\left\{\xi ;(\xi, \eta) \in \hat{\Sigma} \text { and } T_{\mathrm{L}}(\xi)=\xi^{\prime}\right\}, \quad\left\{\eta^{\prime} ;\left(\xi^{\prime}, \eta^{\prime}\right) \in \hat{\Sigma} \text { and } T_{\mathrm{R}}\left(\eta^{\prime}\right)=\eta\right\}
$$

In order to better understand this baker transformation, we briefly explain how $(\hat{\Sigma}, \hat{T})$ is conjugate to a specific Poincaré section of the geodesic flow on the surface $N=T^{1} M$. We assume for the rest of this section that Γ satisfies the even corner property.

Since $D_{\Gamma, \mathcal{O}}$ is a convex fundamental domain, every geodesic (modulo Γ) cuts $\partial D_{\Gamma, \mathcal{O}}$ at two distinct points p and q, unless the geodesic is tangent to one of the sides of $D_{\Gamma, \mathcal{O}}$. These tangent geodesics correspond to a finite union of closed geodesics. We could have parametrized the set of oriented geodesics by all pairs $(p, q) \in \partial D_{\Gamma, \mathcal{O}} \times \partial D_{\Gamma, \mathcal{O}}$, with p and q not belonging to the same side of $D_{\Gamma, \mathcal{O}}$, but we prefer to introduce the space X of all $(x, y) \in \mathbb{S}^{1} \times \mathbb{S}^{1}$ oriented geodesics [$[y, x]$], either cutting the interior of $D_{\Gamma, \mathcal{O}}$ or passing through one of the corners of $D_{\Gamma, \mathcal{O}}$ and seeing \mathcal{O} to the left. Using this notation, we define the two intersection points $p=p(x, y) \in \partial D_{\Gamma, \mathcal{O}}$ and $q=q(x, y) \in \partial D_{\Gamma, \mathcal{O}}$ for every oriented geodesic [$\left.[y, x]\right]$, $(x, y) \in X$, such that $[[q, p]]=[[y, x]] \cap \bar{D}_{\Gamma, \mathcal{O}}$ has the same orientation as $[[y, x]]$.

For a geodesic passing through a corner, $p=q$, unless the geodesic is tangent to a side of $D_{\Gamma, \mathcal{O}}$. We are now in a position to define a geometric Poincaré section $B: X \rightarrow X$. If $(x, y) \in X$, the geodesic $[[y, x]]$ leaves $D_{\Gamma, \mathcal{O}}$ at $p=p(x, y) \in S_{i}$, for some side S_{i}^{L}. Since S_{i}^{L} and S_{-i}^{R} are permuted by the generator a_{i}, the new geodesic $a_{i}([[y, x]])=\left[\left[y^{\prime}, x^{\prime}\right]\right]$ enters again the fundamental domain at a new point $q^{\prime}=q\left(x^{\prime}, y^{\prime}\right)$ with $q^{\prime}=a_{i}(p) \in S_{-i}^{\mathrm{R}}$. By definition, $B(x, y)=\left(x^{\prime}, y^{\prime}\right)$ and the map $B: X \rightarrow X$ is called a geodesic billiard, such as the codings for T_{L} and T_{R}, we introduce two geometric codings $\gamma_{B}: X \rightarrow \Gamma$ and $\bar{\gamma}_{B}: X \rightarrow \Gamma$ given by

$$
\begin{cases}\gamma_{B}[x, y]=a_{i} & \text { if } p(x, y) \in S_{i}^{\mathrm{L}}, \\ \bar{\gamma}_{B}[x, y]=a_{i} & \text { if } q(x, y) \in S_{i}^{\mathrm{R}} .\end{cases}
$$

Now the geodesic billiard can be defined by

$$
\left\{\begin{array}{l}
B(x, y)=\left(\gamma_{B}[x, y](x), \gamma_{B}[x, y](y)\right), \\
B^{-1}\left(x^{\prime}, y^{\prime}\right)=\left(\bar{\gamma}_{B}\left[x^{\prime}, y^{\prime}\right]\left(x^{\prime}\right), \bar{\gamma}_{B}\left[x^{\prime}, y^{\prime}\right]\left(y^{\prime}\right)\right) .
\end{array}\right.
$$

Notice that $\bar{\gamma}_{B} \circ B=\gamma_{B}^{-1}$. The map B is very close to being a baker transformation: B and B^{-1} have the same structure as \hat{T} and \hat{T}^{-1}, and γ_{B} (respectively, $\bar{\gamma}_{B}$) plays the role of γ_{L} (respectively, γ_{R}). The main difference is that $\gamma_{B}[x, y]$ depends on both x and y, but $\gamma_{\mathrm{L}}[\xi]$ depends only on ξ. Nevertheless, we have the following crucial result.

Theorem $11([1,16,24])$. There exists a Γ-Möbius baker transformation $(\hat{\Sigma}, \hat{T})$ conjugate to (X, B). More precisely, there exists a map $\rho: X \rightarrow \Gamma$ such that $\pi(x, y)=$ $(\rho[x, y](x), \rho[x, y](y))$, defines a conjugating map $\pi: X \rightarrow \hat{\Sigma}$ between \hat{T} and B, such that $\hat{T} \circ \pi=\pi \circ B$. Equivalently, $\gamma_{\mathrm{L}} \circ \pi$ and γ_{B} are cohomologous over (X, B), that is, $\gamma_{\mathrm{L}} \circ \pi \rho=\rho \circ B \gamma_{B}$, and $\gamma_{\mathrm{R}} \circ \pi$ and $\bar{\gamma}_{B}$ are cohomologous over (X, B), that is, $\gamma_{\mathrm{R}} \circ \pi \rho=\rho \circ B^{-1} \bar{\gamma}_{B}$.

3. Proof of theorem 1

We want to associate with any eigenfunction f of the Laplace operator a nonzero piecewise real analytic function $\psi_{f, s}$ that is a solution of the functional equation

$$
\mathcal{L}_{s}^{\mathrm{L}}\left(\psi_{f, s}\right)=\psi_{f, s}, \quad \text { where } \mathcal{L}_{s}^{\mathrm{L}}(\psi)\left(\xi^{\prime}\right)=\sum_{T_{\mathrm{L}}(\xi)=\xi^{\prime}} \frac{\psi(\xi)}{\left|T_{\mathrm{L}}^{\prime}(\xi)\right|^{s}}
$$

The main idea is to use a kernel $k(\xi, \eta)$ introduced in theorem 7 of [3], as well by Haydn in [10], and by Bogomolny and Carioli in [6,7], in the context of double-sided subshifts of the finite type. We begin by extending this definition to include baker transformations.

Definition 12. Let $(\hat{\Sigma}, \hat{T})$ be a piecewise Γ-Möbius baker transformation, with T_{L} and T_{R} the left and right Bowen-Series transformations. Let $A_{\mathrm{L}}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ and $A_{\mathrm{R}}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ be two potential functions. We say that A_{L} and A_{R} are in involution if there exists a nonzero kernel $k: \hat{\Sigma} \rightarrow \mathbb{C}^{*}$, called an involution kernel, such that

$$
k(\xi, \eta) \mathrm{e}^{A_{\mathrm{L}}(\xi)}=k\left(\xi^{\prime}, \eta^{\prime}\right) \mathrm{e}^{A_{\mathrm{R}}\left(\eta^{\prime}\right)}, \quad \text { whenever }\left(\xi^{\prime}, \eta^{\prime}\right)=\hat{T}(\xi, \eta) \in \hat{\Sigma}
$$

The kernel k is extended to $\mathbb{S}^{1} \times \mathbb{S}^{1}$ by $k(\xi, \eta)=0$, for $(\xi, \eta) \notin \hat{\Sigma}$.

Remark 13.

1. Let $W(\xi, \eta)=\ln k(\xi, \eta)$, for $(\xi, \eta) \in \hat{\Sigma}$. Then A_{L} and A_{R} are cohomologous, that is $A_{\mathrm{L}}-A_{\mathrm{R}} \circ \hat{T}=W \circ \hat{T}-W$.
2. If $A_{\mathrm{L}}(\xi)$ is Hölder, then there exists a Hölder function $A_{\mathrm{R}}(\eta)$ (depending only on η) in involution with A_{L} with a Hölder involution kernel.
3. If \mathcal{L}_{L} and \mathcal{L}_{R} are the two Ruelle transfer operators associated with A_{L} and A_{R}, if A_{L} and A_{R} are in involution with respect to a kernel k, and if v is an eigenmeasure of \mathcal{L}_{R}, that is, $\mathcal{L}_{\mathrm{R}}^{*}(\nu)=\lambda \nu$, then $\psi(\xi)=\int k(\xi, \eta) \mathrm{d} \nu(\eta)$ is an eigenfunction of \mathcal{L}_{L}, that is, $\mathcal{L}_{\mathrm{L}}(\psi)=\lambda \psi$.

These remarks appeared first in [10] and were later rediscovered in [3], in the context of a subshift of the finite type. The proofs in this general context can be easily reproduced. The third remark suggests a strategy to obtain the eigenfunction $\psi_{f, s}$, by taking $A_{\mathrm{L}}=-s \ln \left|T_{\mathrm{L}}^{\prime}\right|$, $A_{\mathrm{R}}=-s \ln \left|T_{\mathrm{R}}^{\prime}\right|$ and replacing v by the distribution $\mathcal{D}_{f, s}$. All there is left to prove is that $-\ln \left|T_{\mathrm{L}}^{\prime}\right|$ and $-\ln \left|T_{\mathrm{R}}^{\prime}\right|$ are in involution with respect to a piecewise \mathcal{C}^{1} involution kernel. It so happens that this involution kernel exists and is given by the Gromov distance.

Definition 14. The Gromov distance $\mathrm{d}(\xi, \eta)$ between two points ξ and η at infinity is given by

$$
\mathrm{d}^{2}(\xi, \eta)=\exp \left(-b_{\xi}(\mathcal{O}, z)-b_{\eta}(\mathcal{O}, z)\right)
$$

for any point z on the geodesic line $[[\xi, \eta]]$. Notice that this definition depends on the choice of the origin \mathcal{O} (but not on $z \in[[\xi, \eta]])$.

In the Poincaré disk model, $(\xi, \eta) \in \mathbb{S}^{1} \times \mathbb{S}^{1}$, or in the upper half-plane, $(s, t) \in \mathbb{R} \times \mathbb{R}$, the Gromov distance takes the simple form

$$
\mathrm{d}^{2}(\xi, \eta)=\frac{1}{4}|\xi-\eta|^{2}, \quad \text { or } \quad \mathrm{d}^{2}(s, t)=\frac{|s-t|^{2}}{\left(1+s^{2}\right)\left(1+t^{2}\right)}
$$

Lemma 15. Let $T_{\mathrm{L}}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ and $T_{\mathrm{R}}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be the two left and right Bowen-Series transformations of a Γ-Möbius Markov baker transformation $(\hat{\Sigma}, \hat{T})$. Then the two potential functions $A_{\mathrm{L}}(\xi)=-\ln \left|T_{\mathrm{L}}^{\prime}(\xi)\right|$ and $A_{\mathrm{R}}(\eta)=-\ln \left|T_{\mathrm{R}}^{\prime}(\eta)\right|$ are in involution and

$$
A_{\mathrm{L}}(\xi)-A_{\mathrm{R}}\left(\eta^{\prime}\right)=W\left(\xi^{\prime}, \eta^{\prime}\right)-W(\xi, \eta), \quad \text { for }\left(\xi^{\prime}, \eta^{\prime}\right)=\hat{T}(\xi, \eta) \in \hat{\Sigma}
$$

where $W(\xi, \eta)=b_{\xi}(\mathcal{O}, z)+b_{\eta}(\mathcal{O}, z)$ and z is any point of the geodesic line $[[\xi, \eta]]$. In particular, $k(\xi, \eta)=\exp (W(\xi, \eta))=4 / \mathrm{d}^{2}(\xi, \eta)$ is an involution kernel.

Proof of lemma 15. To simplify the notation, we call $\left(\xi^{\prime}, \eta^{\prime}\right)=\hat{T}(\xi, \eta), \gamma_{\mathrm{L}}=\gamma_{\mathrm{L}}[\xi]$, and $\gamma_{\mathrm{R}}=\gamma_{\mathrm{R}}\left[\eta^{\prime}\right]$. We also recall the relation $\gamma_{\mathrm{R}}=\gamma_{\mathrm{L}}^{-1}$. Then, choosing any point $z \in[[\xi, \eta]]$, we get

$$
\begin{aligned}
A_{\mathrm{L}}(\xi)-A_{\mathrm{R}}\left(\eta^{\prime}\right) & =-b_{\xi}\left(\mathcal{O}, \gamma_{\mathrm{L}}^{-1} \mathcal{O}\right)+b_{\eta^{\prime}}\left(\mathcal{O}, \gamma_{\mathrm{R}}^{-1} \mathcal{O}\right) \\
& =-b_{\xi}(\mathcal{O}, z)-b_{\xi}\left(z, \gamma_{\mathrm{L}}^{-1} \mathcal{O}\right)+b_{\eta^{\prime}}\left(\mathcal{O}, \gamma_{\mathrm{L}}(z)\right)+b_{\eta^{\prime}}\left(\gamma_{\mathrm{L}}(z), \gamma_{\mathrm{R}}^{-1} \mathcal{O}\right) \\
& =W\left(\xi^{\prime}, \eta^{\prime}\right)-W(\xi, \eta)
\end{aligned}
$$

where $W\left(\xi^{\prime}, \eta^{\prime}\right)=b_{\eta^{\prime}}\left(\mathcal{O}, \gamma_{\mathrm{L}}(z)\right)-b_{\xi}\left(z, \gamma_{\mathrm{L}}^{-1} \mathcal{O}\right)$ and $W(\xi, \eta)=b_{\xi}(\mathcal{O}, z)-b_{\eta^{\prime}}\left(\gamma_{\mathrm{L}}(z), \gamma_{\mathrm{R}}^{-1} \mathcal{O}\right)$.

Notice that if $A(\xi)$ and $\bar{A}(\eta)$ are in involution by a positive kernel $k(\xi, \eta)$, then $s A(\xi)$ and $s \bar{A}(\eta)$ are in involution by $k(\xi, \eta)^{s}$.
Lemma 16. Let $T_{\mathrm{L}}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ and $T_{\mathrm{R}}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be the two left and right Bowen-Series transformations of a Γ-Möbius Markov baker transformation $(\hat{\Sigma}, \hat{T})$. Let $A_{\mathrm{L}}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and $A_{\mathbb{R}}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ be two potential functions in involution with respect to a kernel $k(\xi, \eta)$. Let \mathcal{L}_{L} and \mathcal{L}_{R} be the two Ruelle transfer operators associated with A_{L} and A_{R}. Then, for any $\xi^{\prime} \in \mathbb{S}^{1}$ and $\eta \in \mathbb{S}^{1}$,

$$
\mathcal{L}_{\mathrm{R}}\left(k\left(\xi^{\prime}, \cdot\right)\right)(\eta)=\mathcal{L}_{\mathrm{L}}(k(\cdot, \eta))\left(\xi^{\prime}\right)
$$

Proof. Given $\xi^{\prime} \in \mathbb{S}^{1}$ and $\eta \in \mathbb{S}^{1}$, the two finite sets

$$
\left\{\eta^{\prime} \in \mathbb{S}^{1} ; T_{\mathrm{R}}\left(\eta^{\prime}\right)=\eta, \quad J\left(\xi^{\prime}, \eta^{\prime}\right)=1\right\}, \quad\left\{\xi \in \mathbb{S}^{1} ; T_{\mathrm{L}}(\xi)=\xi^{\prime}, \quad J(\xi, \eta)=1\right\}
$$

are in bijection. Thus, we obtain

$$
\begin{aligned}
\mathcal{L}_{\mathrm{R}}\left(k\left(\xi^{\prime}, \cdot\right)\right)(\eta) & =\sum_{T_{\mathrm{R}}\left(\eta^{\prime}\right)=\eta} k\left(\xi^{\prime}, \eta^{\prime}\right) \mathrm{e}^{A_{\mathrm{R}}\left(\eta^{\prime}\right)} \\
& =\sum_{T_{\mathrm{L}}(\xi)=\xi^{\prime}} k(\xi, \eta) \mathrm{e}^{A_{\mathrm{L}}(\xi)}=\mathcal{L}_{\mathrm{L}}(k(\cdot, \eta))\left(\xi^{\prime}\right) .
\end{aligned}
$$

Theorem 1 now follows immediately from lemmas 15 and 16.
Proof of theorem 1. We first prove that $\psi_{f, s}(\xi)=\int k(\xi, \eta)^{s} \mathcal{D}_{f, s}(\eta)$, with $k(\xi, \eta)=$ $J(\xi, \eta) / \mathrm{d}^{2}(\xi, \eta)$, is a solution of the equation $\mathcal{L}_{s}^{\mathrm{L}} \psi_{f}=\psi_{f}$. In fact, we have

$$
\begin{aligned}
\psi_{f, s}\left(\xi^{\prime}\right) & =\int k^{s}\left(\xi^{\prime}, \eta^{\prime}\right) \mathcal{D}_{f, s}\left(\eta^{\prime}\right)=\int \mathcal{L}_{s}^{\mathrm{R}}\left(k^{s}\left(\xi^{\prime}, \cdot\right)\right)(\eta) \mathcal{D}_{f, s}(\eta) \\
& =\int \mathcal{L}_{s}^{\mathrm{L}}\left(k^{s}(\cdot, \eta)\left(\xi^{\prime}\right) \mathcal{D}_{f, s}(\eta)=\left(\mathcal{L}_{s}^{\mathrm{L}} \psi_{f, s}\right)\left(\xi^{\prime}\right)\right.
\end{aligned}
$$

We next prove that $\psi_{f, s} \neq 0$. Suppose on the contrary that $\psi_{f, s}\left(\xi^{\prime}\right)=0$ for each $\xi^{\prime} \in \mathbb{S}^{1}$. Following Haydn [10], we introduce step functions of the form

$$
\bar{\chi}\left(\xi^{\prime}, \eta^{\prime}\right)=\chi \circ p r_{1} \circ \hat{T}^{-1}\left(\xi^{\prime}, \eta^{\prime}\right)
$$

where $\chi=\chi(\xi)$ depends only on ξ. For instance, for some fixed ξ^{\prime}, let χ be the characteristic function of the interval $I^{\mathrm{L}}(n, \xi)=\cap_{k=0}^{n} T_{\mathrm{L}}^{-k}\left(I^{\mathrm{L}} \circ T_{\mathrm{L}}^{k}(\xi)\right)$, for some ξ such that $T_{\mathrm{L}}^{n}(\xi)=\xi^{\prime}$. Let $Q^{\mathrm{R}}(\xi)=\left\{\eta \in \mathbb{S}^{1} ; J(\xi, \eta)=1\right\}$ and write

$$
\gamma_{\mathrm{L}}[n, \xi]=\gamma_{\mathrm{L}}\left[T_{\mathrm{L}}^{n-1}(\xi)\right] \cdots \gamma_{\mathrm{L}}\left[T_{\mathrm{L}}(\xi)\right] \gamma_{\mathrm{L}}[\xi], \quad Q^{\mathrm{R}}(n, \xi)=\gamma_{\mathrm{L}}[n, \xi] Q^{\mathrm{R}}(\xi)
$$

Then $\bar{\chi}$ equals the characteristic function of the rectangle $I^{\mathrm{L}}\left(\xi^{\prime}\right) \times Q^{\mathrm{R}}(n, \xi)$ and $Q^{\mathrm{R}}\left(\xi^{\prime}\right)$ is equal to the disjoint union of the intervals $Q^{\mathrm{R}}(n, \xi)$, for all ξ such that $T_{\mathrm{L}}^{n}(\xi)=\xi^{\prime}$. We also denote by $\Delta\left(\xi^{\prime}\right)$ the set of endpoints of $Q^{\mathrm{R}}(n, \xi)$, for all $T_{\mathrm{L}}^{n}(\xi)=\xi^{\prime}$, and observe that $\Delta\left(\xi^{\prime}\right)$ is a dense subset of $Q^{\mathrm{R}}\left(\xi^{\prime}\right)$. Using the same ideas as in lemma 16, we obtain

$$
\int \bar{\chi}\left(\xi^{\prime}, \eta^{\prime}\right) k^{s}\left(\xi^{\prime}, \eta^{\prime}\right) \mathcal{D}_{f, s}\left(\eta^{\prime}\right)=\left(\mathcal{L}_{s}^{\mathrm{L}}\right)^{n}\left(\chi \psi_{f, s}\right)\left(\xi^{\prime}\right)=0, \quad \forall \xi^{\prime} \in \mathbb{S}^{1}
$$

In particular, if $\tilde{\alpha}\left(\xi^{\prime}\right)<\tilde{\beta}\left(\xi^{\prime}\right)<\tilde{\alpha}\left(\xi^{\prime}\right)+2 \pi$ are chosen such that $\exp \mathrm{i} \tilde{\alpha}\left(\xi^{\prime}\right)$ and $\operatorname{expi} \tilde{\beta}\left(\xi^{\prime}\right)$ are the two endpoints of the interval $Q^{\mathrm{R}}\left(\xi^{\prime}\right)$, if $\tilde{k}(\theta)=k\left(\xi^{\prime}, \exp \mathrm{i} \theta\right)$, then

$$
\tilde{k}(\beta) \tilde{\mathcal{D}}_{f, s}(\beta)=\tilde{k}\left(\tilde{\alpha}\left(\xi^{\prime}\right)\right) \tilde{\mathcal{D}}_{f, s}\left(\tilde{\alpha}\left(\xi^{\prime}\right)\right)+\int_{\tilde{\alpha}\left(\xi^{\prime}\right)}^{\beta} \frac{\partial \tilde{k}^{\partial \theta}}{\partial \theta} \tilde{\mathcal{D}}_{f, s}(\theta) \mathrm{d} \theta
$$

for every $\beta \in\left[\tilde{\alpha}\left(\xi^{\prime}\right), \tilde{\beta}\left(\xi^{\prime}\right)\right] \cap \Delta\left(\xi^{\prime}\right)$. Since $\tilde{k}(\theta) \neq 0$, for each $\theta \in\left[\tilde{\alpha}\left(\xi^{\prime}\right), \tilde{\beta}\left(\xi^{\prime}\right)\right]$, we conclude that the above equality applies to all $\beta \in\left[\tilde{\alpha}\left(\xi^{\prime}\right), \tilde{\beta}\left(\xi^{\prime}\right)\right]$, the two functions $\tilde{k}(\beta) \tilde{\mathcal{D}}_{f, s}(\beta)$ and $\tilde{\mathcal{D}}_{f, s}(\beta)$ are \mathcal{C}^{1}, and

$$
\int_{\left.\tilde{\alpha}\left(\xi^{\prime}\right)\right)}^{\beta} k(\theta) \frac{\partial \tilde{\mathcal{D}}_{f, s}}{\partial \theta} \mathrm{~d} \theta=0, \quad \forall \beta \in\left[\tilde{\alpha}\left(\xi^{\prime}\right), \tilde{\beta}\left(\xi^{\prime}\right)\right]
$$

Therefore, $\tilde{\mathcal{D}}_{f, s}(\theta)$ is a constant function on each $\left[\tilde{\alpha}\left(\xi^{\prime}\right), \tilde{\beta}\left(\xi^{\prime}\right)\right]$, thus everywhere on \mathbb{S}^{1}. It follows that the distribution $\mathcal{D}_{f, s}$ would have to be equal to zero, which is impossible, because it represents a nonzero eigenfunction f.

Acknowledgments

The authors would like to thank I Efrat for showing them reference [6], F Ledrappier for references $[14,15]$ and C Doering for helping them with corrections in their text. The author A O Lopes was partially supported by CNPq, Fapergs, Instituto do Milenio, beneficiário de auxílio financeiro CAPES - Brasil. Finally, they would like to thank the referees for their careful reading and comments.

References

[1] Adler R and Flatto L 1991 Geodesic flows, interval maps and symbolic dynamics Bull. Am. Math. Soc. 25 229-334
[2] Anantharaman N and Zelditch S 2007 Patterson-Sullivan distributions and quantum ergodicity Ann. H Poincaré 8 361-426
[3] Baraviera A, Lopes A O and Thieullen Ph 2006 A large deviation principle for equilibrium states of Hölder potentials: the zero temperature case Stochastics Dyn. 677-96
[4] Bedford T, Keane M and Series C 1991 Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces (Oxford: Oxford University Press)
[5] Bekka M and Mayer M 2000 Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (Oxford: Oxford University Press)
[6] Bogomolny E B and Carioli M 1992 Quantum maps of geodesic flows on surfaces of constant negative curvature 4th Int. Conf. 'Path Integrals from meV to MeV' (Tutzing, May 1992) pp 18-21
[7] Bogomolny E B and Carioli M 1993 Quantum maps from transfer operator Physica D 67 88-112
[8] Bowen R and Series C 1979 Markov maps associated to Fuchsian groups Publ. Math. IHES 50 153-70
[9] Flaminio L and Forni G 2003 Invariant distributions and the time averages for horocycle flows Duke Math. J. 119 465-526
[10] Haydn N 1990 Gibbs' functionals on subshifts Commun. Math. Phys. 134 217-36
[11] Helgason S 1972 Analysis on Lie Groups and Homogeneous Spaces (Providence, RI: American Mathematical Society)
[12] Helgason S 1981 Topics in Harmonic Analysis on Homogeneous Spaces (Basel: Birkhauser)
[13] Iwaniec H 2002 Spectral Methods of Automorphic Forms (Providence, RI: American Mathematical Society)
[14] Lewis J B 1997 Spaces of holomorphic functions equivalent to the even Maass cusp forms Invent. Math. 127 271-306
[15] Lewis J and Zagier D 2001 Period functions for Maass wave forms Ann. Math. 153 191-258
[16] Lopes A O and Thieullen P 2006 Mather theory and the Bowen-Series transformation Ann. Inst. H Poincaré, Anal. Non-Linéaire 23 663-82
[17] Mayer D H 1991 Thermodynamic formalism approach to Selberg's zeta function for PSL (2, Z $)$ Bull. Am. Math. Soc. 25 55-60
[18] Morita T 1997 Markov systems and transfer operators associated with cofinite Fuchsian groups Ergod. Theory Dyn. Syst. 17 1147-81
[19] Otal J-P 1998 Sur les fonctions propres du laplacien du disque hyperbolique C. R. Acad. Sci. Paris Sér. I Math. 327 161-6
[20] Patterson S J 1976 The limit set of a Fuchsian group Acta Math. 136 241-73
[21] Pollicott M 1991 Some applications of thermodynamic formalism to manifolds with constant negative curvature Adv. Math. 85 161-92
[22] Series C 1981 Symbolic dynamics for geodesic flows Acta Math. 146 103-28
[23] Series C 1985 The modular surface and continuous fractions J. Lond. Math. Soc. 31 69-80
[24] Series C 1986 Geometrical Markov coding on surfaces of constant negative curvature Ergod. Theory Dyn. Syst. 6 601-25
[25] Sullivan D 1979 The density at infinity of a discrete group of hyperbolic motions Publ. Math. IHES 50 171-202
[26] Zelditch S 1987 Uniform distribution of eigenfunctions on compact hyperbolic surfaces Duke Math. J. 55 919-41

