Nonlinearity **21** (2008) 2239–2253

Eigenfunctions of the Laplacian and associated Ruelle operator

A O Lopes¹ and Ph Thieullen²

 ¹ Instituto de Matemática, UFRGS, Porto Alegre 91501-970, Brazil
 ² Institut de Mathématiques, CNRS, Université Bordeaux 1, 341 cours de la libération, F-33405 Talence, France

E-mail: arturoscar.lopes@gmail.com and philippe.thieullen@math.u-bordeaux1.fr

Received 25 November 2007, in final form 21 July 2008 Published 12 September 2008 Online at stacks.iop.org/Non/21/2239

Recommended by R de la Llave

Abstract

Let Γ be a co-compact Fuchsian group of isometries on the Poincaré disk \mathbb{D} and Δ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction f of Δ , equivariant by Γ with real eigenvalue $\lambda = -s(1 - s)$, where $s = \frac{1}{2} + it$, admits an integral representation by a distribution $\mathcal{D}_{f,s}$ (the Helgason distribution) which is equivariant by Γ and supported at infinity $\partial \mathbb{D} = \mathbb{S}^1$. The geodesic flow on the compact surface \mathbb{D}/Γ is conjugate to a suspension over a natural extension of a piecewise analytic map $T : \mathbb{S}^1 \to \mathbb{S}^1$, the so-called Bowen–Series transformation. Let \mathcal{L}_s be the complex Ruelle transfer operator associated with the Jacobian $-s \ln |T'|$. Pollicott showed that $\mathcal{D}_{f,s}$ is an eigenfunction of the dual operator \mathcal{L}_s^* for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction $\psi_{f,s}$ of \mathcal{L}_s for the eigenvalue 1, given by an integral formula

$$\psi_{f,s}(\xi) = \int \frac{J(\xi,\eta)}{|\xi-\eta|^{2s}} \mathcal{D}_{f,s} (\mathrm{d}\eta),$$

where $J(\xi, \eta)$ is a {0, 1}-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface \mathbb{D}/Γ .

Mathematics Subject Classification: 37C30, 11F12, 11F72, 46F12

1. Introduction

Consider the Laplace operator Δ defined by

$$\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right),$$

0951-7715/08/102239+15\$30.00 © 2008 IOP Publishing Ltd and London Mathematical Society Printed in the UK 2239

on the Lobatchevskii upper half-plane $\mathbb{H} = \{w = x + iy \in \mathbb{C}; y > 0\}$, equipped with the hyperbolic metric $ds_{\mathbb{H}} = \frac{|dw|}{y}$, and the eigenvalue problem

$$\Delta f = -s(1-s)f,$$

where s is of the form $s = \frac{1}{2} + it$, with t real. We shall also consider the same corresponding Laplace operator

$$\Delta = \frac{1}{4}(1 - |z|^2)^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right),$$

and eigenvalue problem

$$\Delta f = -s(1-s)f,$$

defined on the Poincaré disk $\mathbb{D} = \{z = x + yi \in \mathbb{C}; |z| < 1\}$, equipped with the metric $ds_{\mathbb{D}} = 2\frac{|dz|}{1-|z|^2}$.

Helgason showed in [11] and [12] that any eigenfunction f associated with this eigenvalue problem can be obtained by means of a generalized Poisson representation

$$\begin{cases} f(w) = \int_{-\infty}^{\infty} \left(\frac{(1+t^2)y}{(x-t)^2 + y^2} \right)^s \mathcal{D}_{f,s}^{\mathbb{H}}(t), & \text{for } w \in \mathbb{H}, \\ \text{or} \\ f(z) = \int_{\partial \mathbb{D}} \left(\frac{1-|z|^2}{|z-\xi|^2} \right)^s \mathcal{D}_{f,s}^{\mathbb{D}}(\xi), & \text{for } z \in \mathbb{D}, \end{cases}$$

where $\mathcal{D}_{f,s}^{\mathbb{D}}$ or $\mathcal{D}_{f,s}^{\mathbb{H}}$ are analytic distributions called from now on *Helgason's distributions*. We have used the canonical isometry between $z \in \mathbb{D}$ and $w \in \mathbb{H}$, namely $w = i\frac{1-z}{1+z}$ or $z = \frac{i-w}{i+w}$. The hyperbolic metric is given in \mathbb{H} and in \mathbb{D} by

$$ds_{\mathbb{H}}^{2} = \frac{dx^{2} + dy^{2}}{y^{2}}, \qquad ds_{\mathbb{D}}^{2} = \frac{4(dx^{2} + dy^{2})}{(1 - |z|^{2})^{2}}.$$

We shall be interested in a more restricted problem, where the eigenfunction f is also automorphic with respect to a co-compact Fuchsian group Γ , i.e. a discrete subgroup of the group of Möbius transformations (see [5, 20, 25]) with compact fundamental domain. It is known that the eigenvalues $\lambda = s(1-s) = \frac{1}{4} + t^2$ form a discrete set of positive real numbers with finite multiplicity and accumulating at $+\infty$ (see [13]).

Pollicott showed [21] that Helgason's distribution can be seen as a generalized eigenmeasure of the dual complex Ruelle transfer operator associated with a subshift of the finite type defined at infinity. Let T_L be the left Bowen–Series transformation that acts on the boundary $\mathbb{S}^1 = \partial \mathbb{D}$ and is associated with a particular set of generators of Γ . The precise definition of T_L has been given in [8, 22–24], and more geometrical descriptions have then been given in [1,18]. Specific examples of the Bowen–Series transformation have been studied in [4, 17] for the modular surface and in [3] for a symmetric compact fundamental domain of genus two. The map T_L is known to be piecewise Γ -Möbius constant, Markovian with respect to a partition $\{I_k^L\}$ of intervals of \mathbb{S}^1 , on which the restriction of T_L is constant and equal to an element γ_k of Γ , transitive and orbit equivalent to Γ . Let \mathcal{L}_s^L be the *complex Ruelle transfer operator* associated with the map T_L and the potential $A_L = -s \ln |T_L'|$, namely

$$(\mathcal{L}_{s}^{\mathrm{L}}\psi)(\xi') = \sum_{T_{\mathrm{L}}(\xi) = \xi'} \mathrm{e}^{A_{\mathrm{L}}(\xi)}\psi(\xi) = \sum_{T_{\mathrm{L}}(\xi) = \xi'} \frac{\psi(\xi)}{|T_{\mathrm{L}}'(\xi)|^{s}},$$

where the summation is taken over all preimages ξ of ξ' under T_L . Here T'_L denotes the Jacobian of T_L with respect to the canonical Lebesgue measure on \mathbb{S}^1 . In the case of an automorphic

eigenfunction f of Δ , Pollicott showed that the corresponding Helgason distribution $\mathcal{D}_{f,s}$ satisfies the dual functional equation

$$(\mathcal{L}_s^{\mathsf{L}})^*(\mathcal{D}_{f,s}) = \mathcal{D}_{f,s}$$

or, according to Pollicott's terminology, the parameter *s* is a *(dual) Perron–Frobenius value*, that is, 1 is an eigenvalue for the dual Ruelle transfer operator.

Although suggested in [21], it is not clear whether *s* could be a *Perron–Frobenius value*, that is, whether 1 could also be an eigenvalue for \mathcal{L}_s^L , not only for $(\mathcal{L}_s^L)^*$. Our goal in this paper is to show that this is actually the case.

The three main ingredients we use are the following:

- Otal's proof of Helgason's distribution in [19], giving more precise information on $\mathcal{D}_{f,s}$ and enabling us to integrate piecewise \mathcal{C}^1 test functions, instead of real analytic globally defined test functions;
- a more careful reading of [1, 8, 18, 24], or a careful study of a particular example in [16], which enables us to construct a piecewise Γ -Möbius baker transformation ('arithmetically' conjugate to the geodesic billiard);
- the existence of a kernel that we introduced in [3], which enables us to permute past and future coordinates and transfer a dual eigendistribution to a piecewise real analytic eigenfunction. Haydn (in [10]) has introduced a similar kernel in a more abstract setting, without geometric considerations.

More precisely, we prove the following theorem:

Theorem 1. Let Γ be a co-compact Fuchsian group of the hyperbolic disk \mathbb{D} and Δ the corresponding hyperbolic Laplace operator. Let $\lambda = s(1 - s)$, with $s = \frac{1}{2} + it$, and let f be an eigenfunction of $-\Delta$, automorphic with respect to Γ , that is, $\Delta f = -\lambda f$ and $f \circ \gamma = f$, for every $\gamma \in \Gamma$. Then there exists a (nonzero) piecewise real analytic eigenfunction $\psi_{f,s}$ on \mathbb{S}^1 that is a solution of the functional equation

$$\mathcal{L}_{s}^{\mathsf{L}}(\psi_{f,s}) = \psi_{f,s},$$

where $\mathcal{L}_s^{\mathrm{L}}$ is the complex Ruelle transfer operator associated with the left Bowen–Series transformation $T_{\mathrm{L}}: \mathbb{S}^1 \to \mathbb{S}^1$ and the potential $A_{\mathrm{L}} = -s \ln |T'_{\mathrm{L}}|$.

Moreover, $\psi_{f,s}$ admits an integral representation via Helgason's distribution $\mathcal{D}_{f,s}^{\mathbb{D}}$, representing f at infinity, and a geometric positive kernel $k(\xi, \eta)$ defined on a finite set of disjoint rectangles $\bigcup_k I_k^{\mathrm{L}} \times \mathcal{Q}_k^{\mathrm{R}} \subset \mathbb{S}^1 \times \mathbb{S}^1$, namely,

$$\psi_{f,s}(\xi) = \int_{\mathcal{Q}_k^{\mathbb{R}}} k^s(\xi,\eta) \, \mathcal{D}_{f,s}^{\mathbb{D}}(\eta) = \int_{\mathcal{Q}_k^{\mathbb{R}}} \frac{1}{|\xi-\eta|^{2s}} \, \mathcal{D}_{f,s}^{\mathbb{D}}(\eta),$$

for every $\xi \in I_k^L$, where I_k^L and Q_k^R are intervals of \mathbb{S}^1 with disjoint closure, and $\{I_k^L\}_k$ is a partition of \mathbb{S}^1 where T_L is injective, Markovian and piecewise Γ -Möbius constant.

Lewis [14] and, later, Lewis and Zagier [15], started a different approach to understand Maass wave forms. They were able to identify in a bijective way Maass wave forms of $PSL(2, \mathbb{Z})$ and solutions of a functional equation with three terms closely related to Mayer's transfer operator. Their setting is strongly dependent on the modular group. Our theorem 1 may be viewed as part of their programme for co-compact Fuchsian groups. The Helgason distribution has been used by Zelditch in [26] to generalize microlocal analysis on hyperbolic surfaces, by Flaminio and Forni in [9], to study invariant distributions by the horocycle flow, and by Anantharaman and Zelditch in [2], to understand the 'quantum unique ergodicity conjecture'.

2. Preliminary results

Let Γ be a co-compact Fuchsian group of the Poincaré disk \mathbb{D} . We denote by d(w, z) the hyperbolic distance between two points of \mathbb{D} , given by the Riemannian metric $ds^2 = 4(dx^2 + dy^2)/(1 - |z|^2)^2$. Let $M = \mathbb{D}/\Gamma$ be the associated compact Riemann surface, $N = T^1M$ the unit tangent bundle and Δ the Laplace operator on M. Let $f : M \to \mathbb{R}$ be an eigenfunction of $-\Delta$ or, in other words, a Γ -automorphic function $f : \mathbb{D} \to \mathbb{R}$ satisfying $\Delta f = -s(1 - s)f$ for the eigenvalue $\lambda = s(1 - s) > \frac{1}{4}$ and such that $f \circ \gamma = f$, for every $\gamma \in \Gamma$. We know that f is C^{∞} and uniformly bounded on \mathbb{D} . Thanks to Helgason's representation theorem, f can be represented as a superposition of horocycle waves, given by the *Poisson kernel*

$$P(z,\xi) := e^{b_{\xi}(\mathcal{O},z)} = \frac{1-|z|^2}{|z-\xi|^2},$$

where $b_{\xi}(w, z)$ is the *Busemann cocycle* between two points w and z inside the Poincaré disk, observed from a point at infinity $\xi \in \mathbb{S}^1$, defined by

$$b_{\xi}(w, z) := \mathrm{'d}(w, \xi) - \mathrm{d}(z, \xi)' = \lim_{t \to \infty} \mathrm{d}(w, t) - \mathrm{d}(z, t),$$

where the limit is uniform in $t \to \xi$ in any hyperbolic cone at ξ . Helgason's theorem states that

$$f(z) = \int_{\mathbb{D}} P^{s}(z,\xi) \mathcal{D}_{f,s}(\xi) = \langle \mathcal{D}_{f,s}, P^{s}(z,.) \rangle$$

for some analytic distribution $\mathcal{D}_{f,s}$ acting on real analytic functions on \mathbb{S}^1 . Unfortunately, Helgason's work is too general and is valid for any eigenfunction not necessarily equivariant by a group. For bounded \mathcal{C}^2 functions f, Otal [19] has shown that the distribution $\mathcal{D}_{f,s}$ has stronger properties and can be defined in a simpler manner.

We first recall some standard notation in hyperbolic geometry. We call $d(z, z_0)$ the hyperbolic distance between two points: for instance, the distance from the origin is given by $d(\mathcal{O}, \tanh(\frac{r}{2})e^{i\theta}) = r$. Let $\mathcal{C}(\mathcal{O}, r)$ denote the set of points in \mathbb{D} at hyperbolic distance *r* from the origin,

$$\mathcal{C}(\mathcal{O}, r) = \{z \in \mathbb{D}; |z| = \tanh(\frac{r}{2})\}$$

and, more generally, given any interval *I* at infinity and any point $z_0 \in \mathbb{D}$, let $C(z_0, r, I)$ denote the angular arc at the hyperbolic distance *r* from z_0 delimited at infinity by *I*, that is,

$$\mathcal{C}(z_0, r, I) = \{z \in \mathbb{D}; z \in [[z_0, \xi]] \text{ for some } \xi \in I \text{ and } d(z, z_0) = r\},\$$

where $[[z_0, \xi]]$ denotes the geodesic ray from z_0 to the point ξ at infinity. Let $\frac{\partial}{\partial n} = \frac{\partial}{\partial r}$ denote the exterior normal derivative to $\mathcal{C}(\mathcal{O}, r)$ and $|dz|_{\mathbb{D}} = \sinh(r) d\theta$ the hyperbolic arc length on $\mathcal{C}(\mathcal{O}, r)$.

Theorem 2 ([19]). Let f be a bounded C^2 eigenfunction satisfying $\Delta f = -s(1-s)f$. Then: 1. There exists a continuous linear functional $D_{f,s}$ acting on C^1 functions of \mathbb{S}^1 , defined by

$$\int \psi(\xi) \, \mathcal{D}_{f,s}(\xi) := \lim_{r \to +\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O},r)} \psi(z) \mathrm{e}^{-sr} \left(\frac{\partial f}{\partial n} + sf \right) \, |\mathrm{d}z|_{\mathbb{D}},$$

where c(s) is a nonzero normalizing constant such that $\langle \mathcal{D}_{f,s}, \mathbf{1} \rangle = f(0)$, and $\psi(z)$ is any \mathcal{C}^1 extension of $\psi(\xi)$ to a neighbourhood of \mathbb{S}^1 .

2. $\mathcal{D}_{f,s}$ represents f in the following sense:

$$f(z) = \int \left[P(z,\xi) \right]^s \mathcal{D}_{f,s}(\xi), \qquad \forall z \in \mathbb{D}.$$

 $\mathcal{D}_{f,s}$ is unique and is called the Helgason distribution of f.

3. For all $0 \leq \alpha \leq 2\pi$ *, the following limit exists:*

$$\tilde{\mathcal{D}}_{f,s}(\alpha) := \lim_{r \to +\infty} \frac{1}{c(s)} \int_0^\alpha e^{-sr} \left(\frac{\partial f}{\partial n} + sf\right) \left(\tanh\left(\frac{r}{2}\right) e^{i\theta}\right) \sinh(r) d\theta.$$

The convergence is uniform in $\alpha \in [0, 2\pi]$ and $\tilde{\mathcal{D}}_{f,s}(0) = 0$.

- 4. $\tilde{\mathcal{D}}_{f,s}$ can be extended to \mathbb{R} as a $\frac{1}{2}$ -Hölder continuous function satisfying:
 - (a) $\tilde{\mathcal{D}}_{f,s}(\theta + 2\pi) = \tilde{\mathcal{D}}_{f,s}(\theta) + f(0)$, for every $\theta \in \mathbb{R}$,
 - (b) for any \mathcal{C}^1 function $\psi : \mathbb{S}^1 \to \mathbb{C}$, denoting $\tilde{\psi}(\theta) = \psi(\exp i\theta)$,

$$\int \psi(\xi) \mathcal{D}_{f,s}(\xi) = \tilde{\psi}(0) f(0) - \int_0^{2\pi} \frac{\partial \tilde{\psi}}{\partial \theta} \tilde{\mathcal{D}}_{f,s}(\theta) \, \mathrm{d}\theta.$$

Using similar technical tools as Otal, one can prove the following extension of $\mathcal{D}_{f,s}$ on piecewise \mathcal{C}^1 functions, that is, on functions not necessarily continuous but which admit a \mathcal{C}^1 extension on each interval $[\xi_k, \xi_{k+1}]$ of some finite and ordered subdivision $\{\xi_0, \xi_1, \ldots, \xi_{r-1}\}$ of \mathbb{S}^1 .

Proposition 3. Let f and $\mathcal{D}_{f,s}$ be as in theorem 2.

1. For any interval $I \subset \mathbb{S}^1$ and any function $\psi : I \to \mathbb{C}$, which is \mathcal{C}^1 on the closure of I and null outside I, the following limit exists:

$$\int \psi(\xi) \, \mathcal{D}_{f,s}(\xi) := \frac{1}{c(s)} \lim_{r \to +\infty} \int_{\mathcal{C}(\mathcal{O},r,I)} \psi(z) \mathrm{e}^{-sr} \left(\frac{\partial f}{\partial n} + sf \right) |\mathrm{d}z|_{\mathbb{D}},$$

where again $\psi(z)$ is any C^1 extension of $\psi(\xi)$ to a neighbourhood of \mathbb{S}^1 .

2. For any $0 \leq \alpha < \beta \leq 2\pi$ and any C^1 function ψ on the interval $I = [\exp(i\alpha), \exp(i\beta)]$,

$$\int \psi(\xi) \, \mathcal{D}_{f,s}(\xi) = \tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f,s}(\beta) - \tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f,s}(\alpha) - \int_{\alpha}^{\beta} \frac{\partial \psi}{\partial \theta} \tilde{\mathcal{D}}_{f,s}(\theta) \, \mathrm{d}\theta,$$

where $\tilde{\mathcal{D}}_{f,s}$ and $\tilde{\psi}(\theta)$ have been defined in theorem 2.

Proof. Given $\alpha \in [0, 2\pi]$, let $I = \{e^{i\theta} \mid 0 \leq \theta \leq \alpha\}$ be an interval in S^1 , and ψ a \mathcal{C}^1 function defined on a neighbourhood of \mathbb{S}^1 . Denote $\tilde{\psi}(r, \theta) = \psi(\tanh(\frac{r}{2})e^{i\theta})$ and $K(r, \theta) = e^{-sr} \left(\frac{\partial f}{\partial n} + sf\right) \left(\tanh(\frac{r}{2}e^{i\theta}\right)\sinh(r)$. Then $\frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}, r, I)} \psi(z)e^{-sr} \left(\frac{\partial f}{\partial n} + sf\right) |dz|_{\mathbb{D}}$ $= \int_0^{\alpha} \tilde{\psi}(r, \beta)K(r, \beta) d\beta$ $= \int_0^{\alpha} \left[\tilde{\psi}(r, \alpha) + \int_{\beta}^{\alpha} -\frac{\partial \tilde{\psi}}{\partial \theta}(r, \theta) d\theta\right]K(r, \beta) d\beta$

$$= \tilde{\psi}(r,\alpha) \int_0^\alpha K(r,\beta) \,\mathrm{d}\beta - \int_0^\alpha \frac{\partial \psi}{\partial \theta}(r,\theta) \Big[\int_0^\theta K(r,\beta) \,\mathrm{d}\beta \Big] \,\mathrm{d}\theta.$$

Since $\int_0^{\alpha} K(r, \beta) d\beta \to \tilde{\mathcal{D}}_{f,s}(\alpha)$ uniformly in $\alpha \in [0, 2\pi]$, the left-hand side of the previous equality converges to

$$\int \psi(\xi) \mathbf{1}_{\{\xi \in I\}} \mathcal{D}_{f,s}(\xi) = \tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f,s}(\alpha) - \int_0^\alpha \frac{\partial \tilde{\psi}}{\partial \theta}(\theta) \tilde{\mathcal{D}}_{f,s}(\theta) \, \mathrm{d}\theta.$$

The second part of the proposition follows subtracting such an expression from another one, such as:

$$\int \psi(\xi) \mathbf{1}_{\{\xi=\mathsf{e}^{\mathsf{i}\theta}; \ 0\leqslant\theta\leqslant\beta\}} \tilde{\mathcal{D}}_{f,s}(\xi) - \int \psi(\xi) \mathbf{1}_{\{\xi=\mathsf{e}^{\mathsf{i}\theta}; \ 0\leqslant\theta\leqslant\alpha\}} \tilde{\mathcal{D}}_{f,s}(\xi).$$

If, in addition, we assume that f is equivariant with respect to a co-compact Fuchsian group Γ , Pollicott observed in [21] that $\mathcal{D}_{f,s}$, acting on real analytic functions, is equivariant by Γ , that is, satisfies $\gamma^*(\mathcal{D}_{f,s})(\xi) = |\gamma'(\xi)|^s \mathcal{D}_{f,s}(\xi)$, for all $\gamma \in \Gamma$. Because Otal's construction is more precise and implies that Helgason's distribution also acts on piecewise \mathcal{C}^1 functions, the above equivariance property can be improved in the following way.

Proposition 4. Let $f : \mathbb{D} \to \mathbb{R}$ be a C^2 function, $I \subset \mathbb{S}^1$ an interval and $\psi : I \to \mathbb{C}$ a C^1 function on the closure of I. If f satisfies $f \circ \gamma = f$, for some $\gamma \in \Gamma$ (f is not necessarily automorphic), then

$$\langle \mathcal{D}_{f,s}, \frac{\psi \circ \gamma^{-1}}{|\gamma' \circ \gamma^{-1}|^s} \mathbf{1}_{\gamma(I)} \rangle = \langle \mathcal{D}_{f,s}, \psi \mathbf{1}_I \rangle.$$

The main difficulty here is to transfer the equivariance property $f \circ \gamma = f$ to an equivalent property for the extension of $\mathcal{D}_{f,s}$ to piecewise \mathcal{C}^1 functions. If $I = \mathbb{S}^1$ and ψ is real analytic, then, by uniqueness of the representation, proposition 4 is easily proved. It seems that just knowing the fact that $\mathcal{D}_{f,s}$ is the derivative of some Hölder function is not enough to reach a conclusion. The following proof uses Otal's approach and, essentially, the extension of $\mathcal{D}_{f,s}$ described in part 1 of proposition 3.

Proof of proposition 4. First we prove the proposition for $\psi = 1$. Let $g(z) = \exp(-sd(\mathcal{O}, z))$. By the definition of $\mathcal{D}_{f,s}$, we obtain

$$\int \mathbf{1}_{I}(\xi) \mathcal{D}_{f,s}(\xi) = \lim_{r \to +\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}, r', I)} \left(g \frac{\partial f}{\partial n} - f \frac{\partial g}{\partial n} \right) |\mathrm{d}z|_{\mathbb{D}}$$
$$= \lim_{r \to +\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O}', r', \gamma(I))} \left(g' \frac{\partial f}{\partial n} - f \frac{\partial g'}{\partial n} \right) |\mathrm{d}z|_{\mathbb{D}}.$$

where $r' = r + d(\mathcal{O}, \mathcal{O}')$, $\mathcal{O}' = \gamma(\mathcal{O})$ and $g' = g \circ \gamma^{-1}$. Notice that the domain bounded by the circle $\mathcal{C}(\mathcal{O}', r')$ contains the circle $\mathcal{C}(\mathcal{O}, r)$. Let \overline{PQ} be the positively oriented arc $\mathcal{C}(\mathcal{O}, r, \gamma(I))$ and $\overline{P'Q'}$ be the arc $\mathcal{C}(\mathcal{O}', r', \gamma(I))$. Then the two geodesic segments [[P, P']] and [[Q, Q']] belong to the annulus $r \leq d(z, \mathcal{O}) \leq r + 2d(\mathcal{O}, \mathcal{O}')$ and their length is uniformly bounded.

We now use Green's formula to compute the right-hand side of the above expression. Let Ω denote the domain delimited by P, P', Q', Q using the corresponding arcs and geodesic segments, and let $dv = \sinh(r) dr d\theta$ be the hyperbolic volume element. We obtain

$$\begin{split} \int_{\overline{P'Q'}} \left(g' \frac{\partial f}{\partial n} - f \frac{\partial g'}{\partial n} \right) |\mathrm{d}z|_{\mathbb{D}} &= \int_{\overline{PQ}} \left(g' \frac{\partial f}{\partial n} - f \frac{\partial g'}{\partial n} \right) |\mathrm{d}z|_{\mathbb{D}} \\ &- \int_{[[P,P']]} \cdots |\mathrm{d}z|_{\mathbb{D}} - \int_{[[Q',Q]]} \cdots |\mathrm{d}z|_{\mathbb{D}} + \int_{\Omega} \left(g' \Delta f - f \Delta g' \right) \, \mathrm{d}v. \end{split}$$

When *r* tends to infinity, the last three terms at the right-hand side tend to 0, since along the geodesic segments [P, P'] and [Q, Q'], the gradient $\nabla g'$ is uniformly bounded by $\exp(-\frac{1}{2}r)$ and

$$g'\Delta f - f\Delta g' = sg'f\sinh(d(z, \mathcal{O}'))^{-2}$$
 and $\frac{\partial}{\partial n}g' + sg'$

are uniformly bounded by a constant times $\exp(-\frac{5}{2}r)$ in the domain Ω , for the first expression, and by a constant times $\exp(-\frac{3}{2}r)$ on $\mathcal{C}(\mathcal{O}, r)$, for the second expression. It follows that

$$\int \mathbf{1}_{I}(\xi) \mathcal{D}_{f,s}(\xi) = \lim_{r \to +\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O},r,\gamma(I))} g'\left(\frac{\partial f}{\partial n} + sf\right) |\mathrm{d}z|_{\mathbb{D}}$$
$$= \lim_{r \to +\infty} \frac{1}{c(s)} \int_{\mathcal{C}(\mathcal{O},r,\gamma(I))} \left[\psi(z)\right]^{s} \mathrm{e}^{-sr}\left(\frac{\partial f}{\partial n} + sf\right) |\mathrm{d}z|_{\mathbb{D}},$$

where $\psi(z) = \exp(d(\mathcal{O}, z) - d(\mathcal{O}, \gamma^{-1}(z)))$. Now we observe that

$$\begin{cases} \psi(z) = \exp s \left(d(\mathcal{O}, z) - d(\gamma(\mathcal{O}), z) \right), & \text{for } z \in \mathbb{D}, \\ \psi(\xi) = \exp b_{\xi}(\mathcal{O}, \gamma(\mathcal{O})) = |\gamma' \circ \gamma^{-1}(\xi)|^{-1}, & \text{for } \xi \in \partial \mathbb{D}, \end{cases}$$

actually coincides with a real analytic function $\Psi(z)$ defined in a neighbourhood of \mathbb{S}^1 , given explicitly by

$$\Psi(z) = \left(\frac{(1+|z|)^2}{(1+|\gamma^{-1}(z)|)^2|\gamma' \circ \gamma^{-1}(z)|}\right)^s.$$

Thus we have proved that

$$\int \mathbf{1}_{I}(\xi) \, \mathcal{D}_{f,s}(\xi) = \int \frac{\mathbf{1}_{\gamma(I)}(\xi)}{|\gamma' \circ \gamma^{-1}(\xi)|^{s}} \, \mathcal{D}_{f,s}(\xi).$$

Now we prove the general case. We use the same notation for the lifting $\gamma : \mathbb{R} \to \mathbb{R}$ of a Möbius transformation $\gamma : \mathbb{S}^1 \to \mathbb{S}^1$. The lifting satisfies $\gamma(\alpha + 2\pi) = \gamma(\alpha) + 2\pi$, $\exp(i\gamma(\alpha)) = \gamma(\exp(i\alpha))$ and $\gamma'(\alpha) = |\gamma'(\alpha)|$, for all $\alpha \in \mathbb{R}$. Using proposition 3, we obtain $\tilde{\mathcal{D}}_{f,s}(\beta) - \tilde{\mathcal{D}}_{f,s}(\alpha)$

$$=\frac{\tilde{\mathcal{D}}_{f,s}\circ\gamma(\beta)}{\gamma'(\beta)^s}-\frac{\tilde{\mathcal{D}}_{f,s}\circ\gamma(\alpha)}{\gamma'(\alpha)^s}-\int_{\gamma(\alpha)}^{\gamma(\beta)}\frac{\partial}{\partial\theta}\left(\frac{1}{(\gamma'\circ\gamma^{-1}(\theta))^s}\right)\tilde{\mathcal{D}}_{f,s}(\theta)\,\mathrm{d}\theta.$$

For any C^1 function $\psi(\xi)$ defined on *I*, we denote $\tilde{\psi}(\theta) = \psi(\exp i\theta)$), and obtain

$$LHS := \int \psi(\xi) \mathbf{1}_{I}(\xi) \mathcal{D}_{f,s}(\xi)$$

$$= \tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f,s}(\beta) - \tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f,s}(\alpha) - \int_{\alpha}^{\beta} \frac{\partial \tilde{\psi}}{\partial \theta} \tilde{\mathcal{D}}_{f,s}(\theta) \, \mathrm{d}\theta$$

$$= \tilde{\psi}(\beta) \tilde{\mathcal{D}}_{f,s}(\beta) - \tilde{\psi}(\alpha) \tilde{\mathcal{D}}_{f,s}(\alpha) - \int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial}{\partial \theta} \left(\tilde{\psi} \circ \gamma^{-1}(\theta) \right) \tilde{\mathcal{D}}_{f,s}(\gamma^{-1}\theta) \, \mathrm{d}\theta$$

$$= \tilde{\psi}(\beta) \left(\tilde{\mathcal{D}}_{f,s}(\beta) - \tilde{\mathcal{D}}_{f,s}(\alpha) \right) - \int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial \tilde{\psi}(\gamma^{-1}\theta)}{\partial \theta} \left(\tilde{\mathcal{D}}_{f,s}(\gamma^{-1}\theta) - \tilde{\mathcal{D}}_{f,s}(\alpha) \right) \, \mathrm{d}\theta.$$

We now use the above equivariance and replace both $\tilde{\mathcal{D}}_{f,s}(\beta) - \tilde{\mathcal{D}}_{f,s}(\alpha)$ and $\tilde{\mathcal{D}}_{f,s}(\gamma^{-1}\theta) - \tilde{\mathcal{D}}_{f,s}(\alpha)$ by the corresponding formula involving $\tilde{\mathcal{D}}_{f,s} \circ \gamma(\beta)$, $\tilde{\mathcal{D}}_{f,s} \circ \gamma(\alpha)$, $\tilde{\mathcal{D}}_{f,s}(\theta)$. Thus

$$LHS = \frac{\tilde{\psi}(\beta)\tilde{\mathcal{D}}_{f,s}\circ\gamma(\beta)}{\gamma'(\beta)^{s}} - \frac{\tilde{\psi}(\alpha)\tilde{\mathcal{D}}_{f,s}\circ\gamma(\alpha)}{\gamma'(\alpha)^{s}} - \int_{\gamma(\alpha)}^{\gamma(\beta)} \frac{\partial}{\partial\theta} \left(\frac{\tilde{\psi}(\gamma^{-1}\theta)}{\gamma'(\gamma^{-1}\theta)^{s}}\right)\tilde{\mathcal{D}}_{f,s}(\theta) \,\mathrm{d}\theta$$
$$= \int \frac{\psi\circ\gamma^{-1}(\xi)}{|\gamma'\circ\gamma^{-1}(\xi)|^{s}} \mathbf{1}_{\gamma(I)} \,\mathcal{D}_{f,s}(\xi).$$

Following [1,8,18,22–24] for the general case and [16] for a specific example we recall the definition of the left T_L and right T_R Bowen–Series transformations. The hyperbolic surface we are interested in is given by the quotient of the hyperbolic disk \mathbb{D} by a co-compact Fuchsian group Γ . Given a point $\mathcal{O} \in \mathbb{D}$, let

$$D_{\Gamma,\mathcal{O}} = \{ z \in \mathbb{D}; d(z, \mathcal{O}) < d(z, \gamma(\mathcal{O})), \quad \forall \gamma \in \Gamma \}$$

denote the corresponding Dirichlet domain, a convex fundamental domain with compact closure in \mathbb{D} , admitting an even number of geodesic sides and an even number of vertices, some of which may be elliptic. More precisely, the boundary of $D_{\Gamma,\mathcal{O}}$ is a disjoint union of semi-closed geodesic segments $S_{-r}^{L}, \dots, S_{-1}^{L}, S_{1}^{L}, \dots, S_{r}^{L}$, closed to the left and open to the right, or, equivalently, to a union of semi-closed geodesic segments $S_{-r}^{R}, \dots, S_{r}^{R}$, closed to the right and open to the left; for each k, the intervals S_{k}^{L} and S_{k}^{R} have the same endpoints and S_{k}^{L} is associated with S_{-k}^{R} by an element $a_{k} \in \Gamma$ satisfying $a_{k}(S_{k}^{L}) = S_{-k}^{R}$. The elements a_{k} generate Γ and satisfy $a_{-k} = a_{k}^{-1}$, for $k = \pm 1, \dots, \pm r$.

To define the two Bowen–Series transformations T_L and T_R geometrically, we need to impose a geometric condition on Γ : following [8, 22, 24], we say that Γ satisfies the *even corner* property if, for each $1 \leq |k| \leq r$, the complete geodesic line through S_k^L is equal to a disjoint union of Γ -translates of the sides S_l^L , with $1 \leq |l| \leq r$. Some Γ do not satisfy this geometric property. Nevertheless, any two co-compact Fuchsian groups Γ and Γ' , with identical signature, are geometrically isomorphic, that is, there exists a group isomorphism $h_* : \Gamma \to \Gamma'$ and a quasi-conformal orientation preserving homeomorphism $h : \mathbb{D} \to \mathbb{D}$ admitting an extension to a conjugating homeomorphism $h : \partial \mathbb{D} \to \partial \mathbb{D}$, that is,

$$h(\gamma(z)) = h_*(\gamma)(h(z)), \quad \forall \gamma \in \Gamma.$$

An important observation in [8, 22, 24] is that any co-compact Fuchsian group is geometrically isomorphic to a Fuchsian group with identical signature and satisfying the *even corner* property. We are going to recall the Bowen and Series construction in the case that Γ possesses the *even corner* property and will show that their main conclusions remain valid under geometric isomorphisms.

The complete geodesic line associated with a side S_k^L cuts the boundary at infinity \mathbb{S}^1 at two points s_k^L and s_k^R , positively oriented with respect to s_k^L , the oriented geodesic line]] s_k^L , s_k^R [[seeing the origin \mathcal{O} to the left. Both end points s_k^L and s_k^R are neutrally stable with respect to the associated generator a_k , that is, $|a'_k(s_k^L)| = |a'_k(s_k^R)| = 1$. The family of open intervals $]s_k^L$, s_k^R [covers \mathbb{S}^1 ; since these intervals $]s_k^L$, s_k^R [overlap each other, there is no canonical partition adapted to this covering. Nevertheless, we may associate two well-defined partitions, the left partition \mathcal{A}_L and the right partition \mathcal{A}_R . The former consists of disjoint half-closed intervals,

$$\mathcal{A}_{\rm L} = \{A_{-r}^{\rm L}, \cdots, A_{-1}^{\rm L}, A_{1}^{\rm L}, \cdots, A_{r}^{\rm L}\},\$$

given by $A_k^{\rm L} = [s_k^{\rm L}, s_{l(k)}^{\rm L}]$ where $s_{l(k)}^{\rm L}$ denotes the nearest point $s_l^{\rm L}$ after $s_k^{\rm L}$, according to a positive orientation. Each $A_k^{\rm L}$ belongs to the unstable domain of the hyperbolic element a_k , that is, $|a'_k(\xi)| \ge 1$, for each $\xi \in A_k^{\rm L}$. By definition, the left Bowen–Series transformation $T_{\rm L} : \mathbb{S}^1 \mapsto \mathbb{S}^1$ is given by

$$T_{\mathrm{L}}(\xi) = a_k(\xi), \qquad \text{if } \xi \in A_k^{\mathrm{L}}$$

Analogously, \mathbb{S}^1 can be partitioned into half-closed intervals

$$\mathcal{A}_{\mathrm{R}} = \{A_{-r}^{\mathrm{R}}, \cdots, A_{-1}^{\mathrm{R}}, A_{1}^{\mathrm{R}}, \cdots, A_{r}^{\mathrm{R}}\},\$$

where $A_k^{\rm R} = [s_{j(k)}^{\rm R}, s_k^{\rm R}]$, and $s_{j(k)}^{\rm R}$ denotes the nearest $s_j^{\rm R}$ before $s_k^{\rm R}$, according to a positive orientation. The right Bowen–Series transformation is given by

$$T_{\mathbf{R}}(\eta) = a_k(\eta), \quad \text{if } \eta \in A_k^{\mathbf{R}}.$$

The two partitions A^{L} and A^{R} generate two ways of coding a trajectory. Let $\gamma_{L} : \mathbb{S}^{1} \mapsto \Gamma$ and $\gamma_{R} : \mathbb{S}^{1} \mapsto \Gamma$ be the left and right symbolic coding defined by

$$\gamma_L[\xi] = a_k, \quad \text{if } \xi \in A_k^L, \quad \text{and} \quad \gamma_R[\eta] = a_k, \quad \text{if } \eta \in A_k^R.$$

In particular, $T_{\rm R}(\eta) = \gamma_{\rm R}\eta$ and $T_{\rm L}(\xi) = \gamma_{\rm L}\xi$, for each $\xi \in \mathbb{S}^1$. Also, it is known that $T_{\rm R}^2$ and $T_{\rm L}^2$ are expanding. Series, in [22–24], and later, Adler and Flatto in [1], proved that $T_{\rm L}$ (respectively, $T_{\rm R}$) is Markov with respect to a partition of $\mathcal{I}^{\rm L} = \{I_k^{\rm L}\}_{k=1}^q$ (respectively, $\mathcal{I}^{\rm R} = \{I_k^{\rm R}\}_{l=1}^q$) that is finer than $\mathcal{A}_{\rm L}$ (respectively, $\mathcal{A}_{\rm R}$). The semi-closed intervals $I_k^{\rm L}$ and $I_l^{\rm R}$ are of the same kind as $A_k^{\rm L}$ and $A_l^{\rm R}$, and have the same closure.

Definition 5. A dynamical system $(\mathbb{S}^1, T, \{I_k\})$ is said to be a piecewise Γ -Möbius Markov transformation if $T : \mathbb{S}^1 \to \mathbb{S}^1$ is a surjective map, and $\{I_k\}$ is a finite partition of \mathbb{S}^1 into intervals such that:

- 1. for each k, $T(I_k)$ is a union of adjacent intervals I_l ;
- 2. for each k, the restriction of T to I_k coincides with an element $\gamma_k \in \Gamma$;
- *3. some finite iterate of T is uniformly expanding.*

Theorem 6 ([8,24]). For any co-compact Fuchsian group Γ , there exists a piecewise Γ -Möbius Markov transformation (\mathbb{S}^1 , T, { I_k }) which is transitive and orbit equivalent to Γ .

The Ruelle transfer operator can be defined for any piecewise C^2 Markov transformation $(\mathbb{S}^1, T, \{I_k\})$ and any potential function *A*. Actually, we need a particular complex transfer operator given by the potential

$$A = -s \ln |T'|.$$

For any function $\psi : \mathbb{S}^1 \to \mathbb{C}$, define

$$(\mathcal{L}_{s}(\psi))(\xi') = \sum_{T(\xi)=\xi'} e^{A(\xi)} \psi(\xi) = \sum_{T(\xi)=\xi'} \frac{\psi(\xi)}{|T'(\xi)|^{s}},$$

where the summation is taken over all preimages ξ of ξ' under T. We modify \mathcal{L}_s slightly, so that it acts on the space of piecewise \mathcal{C}^1 functions. Let $\{I_k\}_{k=1}^q$ be a partition of S^1 . Given a piecewise \mathcal{C}^1 function and $\bigoplus_{k=1}^q \psi_k \in \bigoplus_{k=1}^q \mathcal{C}^1(\bar{I}_k)$ set

$$\mathcal{L}_s^{\mathrm{L}} \psi = \bigoplus_{l=1}^q \phi_l, \qquad \text{where } \phi_l = \sum_{I_l \subset T(I_k)} \frac{\psi_k \circ T_{k,l}^{-1}}{|T' \circ T_{k,l}^{-1}|^s},$$

and $T_{k,l}^{-1}$ denotes the restriction to I_l of the inverse of $T: I_k \to T(I_k) \supset I_l$.

Proposition 7. Let Γ be a co-compact Fuchsian group. Let $s = \frac{1}{2}$ +it and f be an automorphic eigenfunction of $-\Delta$, that is, $\Delta f = -s(1-s)f$. Let $(\mathbb{S}^1, T, \{I_k\})$ be a piecewise Γ -Möbius Markov transformation and \mathcal{L}_s be the Ruelle transfer operator corresponding to the observable $A = -s \ln |T'|$. Then the Helgason distribution $\mathcal{D}_{f,s}$ satisfies

$$(\mathcal{L}_s)^*\mathcal{D}_{f,s}=\mathcal{D}_{f,s}$$

Proof. Let $\bigoplus_{k=1}^{q} \psi_k$ be a piecewise \mathcal{C}^1 function in $\bigoplus_{k=1}^{q} \mathcal{C}^1(\overline{I}_k)$. Using proposition 4,

$$\int (\mathcal{L}_{s}\psi)(\xi) \mathcal{D}_{f,s}(\xi) = \sum_{l=1}^{q} \int_{I_{l}} (\mathcal{L}_{s}\psi)_{l}(\xi) \mathcal{D}_{f,s}(\xi)$$

$$= \sum_{T(I_{k})\supset I_{l}} \int_{I_{l}} \frac{\psi_{k} \circ T_{k,l}^{-1}}{|T' \circ T_{k,l}^{-1}|^{s}}(\xi) \mathcal{D}_{f,s}(\xi)$$

$$= \sum_{T(I_{k})\supset I_{l}} \int_{T^{-1}(I_{l})\cap I_{k}} \psi_{k}(\xi) \mathcal{D}_{f,s}(\xi)$$

$$= \sum_{k=1}^{q} \int_{I_{k}} \psi_{k}(\xi) \mathcal{D}_{f,s}(\xi) = \int \psi(\xi) \mathcal{D}_{f,s}(\xi).$$

Series in [24], Adler and Flatto in [1] and Morita in [18] noticed that T_L admits a natural extension $\hat{T} : \hat{\Sigma} \mapsto \hat{\Sigma}$ strongly related to T_R . We also showed the existence of such a \hat{T} in [16], and it was an important step in the proof of theorem 3 of [16]. The following definition explains how the two maps T_L and T_R are glued together in an abstract way.

Definition 8. Let Γ be a co-compact Fuchsian group. A dynamical system $(\hat{\Sigma}, \hat{T}, \{I_k^L\}, \{I_l^R\}, J)$ is said to be a piecewise Γ -Möbius baker transformation if it admits a description as follows.

1. $\{I_k^L\}$ and $\{I_l^R\}$ are finite partitions of \mathbb{S}^1 into disjoint intervals; J(k, l) is a $\{0, 1\}$ -valued function, and $\hat{\Sigma}$ is the subset of $\mathbb{S}^1 \times \mathbb{S}^1$ defined by

$$\hat{\Sigma} = \coprod_{J(k,l)=1} I_k^{\mathrm{L}} \times I_l^{\mathrm{R}}$$

- 2. For each k, $Q_k^{\mathsf{R}} = \coprod \{I_l^{\mathsf{R}}; J(k, l) = 1\}$ is an interval whose closure is disjoint from $\overline{I}_k^{\mathsf{L}}$. For each l, $Q_l^{\mathsf{L}} = \coprod \{I_k^{\mathsf{L}}; J(k, l) = 1\}$ is an interval whose closure is disjoint from $\overline{I}_l^{\mathsf{R}}$. Let $I^{\mathsf{L}}(\xi) = I_k^{\mathsf{L}}$ and $Q^{\mathsf{R}}(\xi) = Q_k^{\mathsf{R}}$, for $\xi \in I_k^{\mathsf{L}}$. Let $I^{\mathsf{R}}(\eta) = I_l^{\mathsf{R}}$ and $Q^{\mathsf{L}}(\eta) = Q_l^{\mathsf{L}}$, for $\eta \in I_l^{\mathsf{R}}$.
- 3. $\hat{T}: \hat{\Sigma} \to \hat{\Sigma}$ is bijective and is given by

$$\begin{cases} \hat{T}(\xi,\eta) = (T_{\rm L}(\xi), S_{\rm R}(\xi,\eta)), \\ \hat{T}^{-1}(\xi',\eta') = (S_{\rm L}(\xi',\eta'), T_{\rm R}(\eta')), \end{cases}$$

for certain maps $T_L, T_R : \mathbb{S}^1 \to \mathbb{S}^1$ and $S_L, S_R : \hat{\Sigma} \to \mathbb{S}^1$.

4. $(\mathbb{S}^1, T_L, \{I_k^L\})$ and $(\mathbb{S}^1, T_R, \{I_l^R\})$ are piecewise Γ -Möbius Markov transformations. There exist two functions $\gamma_L : \mathbb{S}^1 \to \Gamma$, respectively $\gamma_R : \mathbb{S}^1 \to \Gamma$, that are piecewise constant on each I_k^L , respectively $\{I_l^R\}$, and satisfying

$$\begin{cases} \hat{T}(\xi,\eta) = (\gamma_{L}\xi, \gamma_{L}[\xi](\eta)), \\ \hat{T}^{-1}(\xi',\eta') = (\gamma_{R}[\eta'](\xi'), \gamma_{R}\eta'). \end{cases}$$

The maps T_L and T_R are called the left and right Bowen–Series transformations, whereas γ_L and γ_R are the left and right Bowen–Series codings. Finally, we say that J is the incidence matrix, which we extend as a function on $\mathbb{S}^1 \times \mathbb{S}^1$ defining

$$\begin{aligned} J(\xi,\eta) &= 1, & \text{if } (\xi,\eta) \in \hat{\Sigma}, \\ J(\xi,\eta) &= 0, & \text{if } (\xi,\eta) \notin \hat{\Sigma}. \end{aligned}$$

Notice that this definition is equivariant by geometric isomorphisms. For co-compact Fuchsian groups satisfying the *even corner* property, Adler and Flatto in [1], Series in [24] (and, for a particular example, in [16]) obtained geometrically the existence of a piecewise Γ -Möbius baker transformation with left $T_{\rm L}$ and right $T_{\rm R}$ maps orbit equivalent to Γ . By geometric isomorphism considerations, we obtain more generally the following.

Proposition 9 ([1,16,24]). For any co-compact Fuchsian group Γ , there exists a piecewise Γ -Möbius baker transformation with left and right Bowen–Series transformations that are transitive and orbit equivalent to Γ .

The two maps $T_{\rm L}$ and $T_{\rm R}$ are related to the action of the group Γ on the boundary \mathbb{S}^1 . The baker transformation $(\hat{\Sigma}, \hat{T})$ encodes this action into a unique dynamical system. For later reference, we state two further properties of this encoding.

Remark 10.

1. The two codings γ_L and γ_R are reciprocal, in the following sense:

$$\eta' = \gamma_{\rm L}^{-1}[\xi],$$
 whenever $(\xi', \eta') = T(\xi, \eta)$

2. For any ξ' and η in \mathbb{S}^1 , there is a bijection between the two finite sets

$$\{\xi; (\xi, \eta) \in \Sigma \text{ and } T_{\mathcal{L}}(\xi) = \xi'\}, \qquad \{\eta'; (\xi', \eta') \in \Sigma \text{ and } T_{\mathcal{R}}(\eta') = \eta\}.$$

In order to better understand this baker transformation, we briefly explain how $(\hat{\Sigma}, \hat{T})$ is conjugate to a specific Poincaré section of the geodesic flow on the surface $N = T^1 M$. We assume for the rest of this section that Γ satisfies the *even corner* property.

Since $D_{\Gamma,\mathcal{O}}$ is a convex fundamental domain, every geodesic (modulo Γ) cuts $\partial D_{\Gamma,\mathcal{O}}$ at two distinct points p and q, unless the geodesic is tangent to one of the sides of $D_{\Gamma,\mathcal{O}}$. These tangent geodesics correspond to a finite union of closed geodesics. We could have parametrized the set of oriented geodesics by all pairs $(p, q) \in \partial D_{\Gamma,\mathcal{O}} \times \partial D_{\Gamma,\mathcal{O}}$, with p and q not belonging to the same side of $D_{\Gamma,\mathcal{O}}$, but we prefer to introduce the space X of all $(x, y) \in \mathbb{S}^1 \times \mathbb{S}^1$ oriented geodesics [[y, x]], either cutting the interior of $D_{\Gamma,\mathcal{O}}$ or passing through one of the corners of $D_{\Gamma,\mathcal{O}}$ and seeing \mathcal{O} to the left. Using this notation, we define the two intersection points $p = p(x, y) \in \partial D_{\Gamma,\mathcal{O}}$ and $q = q(x, y) \in \partial D_{\Gamma,\mathcal{O}}$ for every oriented geodesic [[y, x]], $(x, y) \in X$, such that $[[q, p]] = [[y, x]] \cap \overline{D}_{\Gamma,\mathcal{O}}$ has the same orientation as [[y, x]].

For a geodesic passing through a corner, p = q, unless the geodesic is tangent to a side of $D_{\Gamma,\mathcal{O}}$. We are now in a position to define a geometric Poincaré section $B : X \to X$. If $(x, y) \in X$, the geodesic [[y, x]] leaves $D_{\Gamma,\mathcal{O}}$ at $p = p(x, y) \in S_i$, for some side S_i^{L} . Since S_i^{L} and S_{-i}^{R} are permuted by the generator a_i , the new geodesic $a_i([[y, x]]) = [[y', x']]$ enters again the fundamental domain at a new point q' = q(x', y') with $q' = a_i(p) \in S_{-i}^{R}$. By definition, B(x, y) = (x', y') and the map $B : X \to X$ is called a geodesic billiard, such as the codings for T_{L} and T_{R} , we introduce two geometric codings $\gamma_B : X \to \Gamma$ and $\overline{\gamma}_B : X \to \Gamma$ given by

$$\begin{cases} \gamma_B[x, y] = a_i & \text{if } p(x, y) \in S_i^L, \\ \bar{\gamma}_B[x, y] = a_i & \text{if } q(x, y) \in S_i^R. \end{cases}$$

Now the geodesic billiard can be defined by

$$\begin{cases} B(x, y) = (\gamma_B[x, y](x), \gamma_B[x, y](y)), \\ B^{-1}(x', y') = (\bar{\gamma}_B[x', y'](x'), \bar{\gamma}_B[x', y'](y')). \end{cases}$$

Notice that $\bar{\gamma}_B \circ B = \gamma_B^{-1}$. The map *B* is very close to being a baker transformation: *B* and B^{-1} have the same structure as \hat{T} and \hat{T}^{-1} , and γ_B (respectively, $\bar{\gamma}_B$) plays the role of γ_L (respectively, γ_R). The main difference is that $\gamma_B[x, y]$ depends on both *x* and *y*, but $\gamma_L[\xi]$ depends only on ξ . Nevertheless, we have the following crucial result.

Theorem 11 ([1,16,24]). There exists a Γ -Möbius baker transformation $(\hat{\Sigma}, \hat{T})$ conjugate to (X, B). More precisely, there exists a map $\rho : X \to \Gamma$ such that $\pi(x, y) = (\rho[x, y](x), \rho[x, y](y))$, defines a conjugating map $\pi : X \to \hat{\Sigma}$ between \hat{T} and B, such that $\hat{T} \circ \pi = \pi \circ B$. Equivalently, $\gamma_L \circ \pi$ and γ_B are cohomologous over (X, B), that is, $\gamma_L \circ \pi \rho = \rho \circ B\gamma_B$, and $\gamma_R \circ \pi$ and $\bar{\gamma}_B$ are cohomologous over (X, B), that is, $\gamma_R \circ \pi \rho = \rho \circ B^{-1} \bar{\gamma}_B$.

3. Proof of theorem 1

We want to associate with any eigenfunction f of the Laplace operator a nonzero piecewise real analytic function $\psi_{f,s}$ that is a solution of the functional equation

$$\mathcal{L}_{s}^{\mathrm{L}}(\psi_{f,s}) = \psi_{f,s}, \qquad \text{where } \mathcal{L}_{s}^{\mathrm{L}}(\psi)(\xi') = \sum_{T_{\mathrm{L}}(\xi) = \xi'} \frac{\psi(\xi)}{|T_{\mathrm{L}}'(\xi)|^{s}}.$$

The main idea is to use a kernel $k(\xi, \eta)$ introduced in theorem 7 of [3], as well by Haydn in [10], and by Bogomolny and Carioli in [6,7], in the context of double-sided subshifts of the finite type. We begin by extending this definition to include baker transformations.

Definition 12. Let $(\hat{\Sigma}, \hat{T})$ be a piecewise Γ -Möbius baker transformation, with T_L and T_R the left and right Bowen–Series transformations. Let $A_L : \mathbb{S}^1 \to \mathbb{C}$ and $A_R : \mathbb{S}^1 \to \mathbb{C}$ be two potential functions. We say that A_L and A_R are in involution if there exists a nonzero kernel $k : \hat{\Sigma} \to \mathbb{C}^*$, called an involution kernel, such that

$$k(\xi,\eta)e^{A_{\mathrm{L}}(\xi)} = k(\xi',\eta')e^{A_{\mathrm{R}}(\eta')}, \qquad \text{whenever } (\xi',\eta') = \hat{T}(\xi,\eta) \in \hat{\Sigma}.$$

The kernel k is extended to $\mathbb{S}^1 \times \mathbb{S}^1$ by $k(\xi, \eta) = 0$, for $(\xi, \eta) \notin \hat{\Sigma}$.

Remark 13.

- 1. Let $W(\xi, \eta) = \ln k(\xi, \eta)$, for $(\xi, \eta) \in \hat{\Sigma}$. Then A_L and A_R are cohomologous, that is $A_L A_R \circ \hat{T} = W \circ \hat{T} W$.
- 2. If $A_{\rm L}(\xi)$ is Hölder, then there exists a Hölder function $A_{\rm R}(\eta)$ (depending only on η) in involution with $A_{\rm L}$ with a Hölder involution kernel.
- 3. If \mathcal{L}_{L} and \mathcal{L}_{R} are the two Ruelle transfer operators associated with A_{L} and A_{R} , if A_{L} and A_{R} are in involution with respect to a kernel k, and if ν is an eigenmeasure of \mathcal{L}_{R} , that is, $\mathcal{L}_{R}^{*}(\nu) = \lambda \nu$, then $\psi(\xi) = \int k(\xi, \eta) d\nu(\eta)$ is an eigenfunction of \mathcal{L}_{L} , that is, $\mathcal{L}_{L}(\psi) = \lambda \psi$.

These remarks appeared first in [10] and were later rediscovered in [3], in the context of a subshift of the finite type. The proofs in this general context can be easily reproduced. The third remark suggests a strategy to obtain the eigenfunction $\psi_{f,s}$, by taking $A_L = -s \ln |T'_L|$, $A_R = -s \ln |T'_R|$ and replacing ν by the distribution $\mathcal{D}_{f,s}$. All there is left to prove is that $-\ln |T'_L|$ and $-\ln |T'_R|$ are in involution with respect to a piecewise C^1 involution kernel. It so happens that this involution kernel exists and is given by the Gromov distance.

Definition 14. The Gromov distance $d(\xi, \eta)$ between two points ξ and η at infinity is given by

$$d^{2}(\xi,\eta) = \exp\left(-b_{\xi}(\mathcal{O},z) - b_{\eta}(\mathcal{O},z)\right),$$

for any point z on the geodesic line $[[\xi, \eta]]$. Notice that this definition depends on the choice of the origin \mathcal{O} (but not on $z \in [[\xi, \eta]]$).

In the Poincaré disk model, $(\xi, \eta) \in \mathbb{S}^1 \times \mathbb{S}^1$, or in the upper half-plane, $(s, t) \in \mathbb{R} \times \mathbb{R}$, the Gromov distance takes the simple form

$$d^{2}(\xi, \eta) = \frac{1}{4} |\xi - \eta|^{2},$$
 or $d^{2}(s, t) = \frac{|s - t|^{2}}{(1 + s^{2})(1 + t^{2})}$

Lemma 15. Let $T_{\rm L} : \mathbb{S}^1 \to \mathbb{S}^1$ and $T_{\rm R} : \mathbb{S}^1 \to \mathbb{S}^1$ be the two left and right Bowen–Series transformations of a Γ -Möbius Markov baker transformation $(\hat{\Sigma}, \hat{T})$. Then the two potential functions $A_{\rm L}(\xi) = -\ln |T'_{\rm L}(\xi)|$ and $A_{\rm R}(\eta) = -\ln |T'_{\rm R}(\eta)|$ are in involution and

$$A_{\mathrm{L}}(\xi) - A_{\mathrm{R}}(\eta') = W(\xi', \eta') - W(\xi, \eta), \qquad \text{for } (\xi', \eta') = \hat{T}(\xi, \eta) \in \hat{\Sigma},$$

where $W(\xi, \eta) = b_{\xi}(\mathcal{O}, z) + b_{\eta}(\mathcal{O}, z)$ and z is any point of the geodesic line $[[\xi, \eta]]$. In particular, $k(\xi, \eta) = \exp(W(\xi, \eta)) = 4/d^2(\xi, \eta)$ is an involution kernel.

Proof of lemma 15. To simplify the notation, we call $(\xi', \eta') = \hat{T}(\xi, \eta)$, $\gamma_L = \gamma_L[\xi]$, and $\gamma_R = \gamma_R[\eta']$. We also recall the relation $\gamma_R = \gamma_L^{-1}$. Then, choosing any point $z \in [[\xi, \eta]]$, we get

$$\begin{aligned} A_{\rm L}(\xi) - A_{\rm R}(\eta') &= -b_{\xi}(\mathcal{O}, \gamma_{\rm L}^{-1}\mathcal{O}) + b_{\eta'}(\mathcal{O}, \gamma_{\rm R}^{-1}\mathcal{O}) \\ &= -b_{\xi}(\mathcal{O}, z) - b_{\xi}(z, \gamma_{\rm L}^{-1}\mathcal{O}) + b_{\eta'}(\mathcal{O}, \gamma_{\rm L}(z)) + b_{\eta'}(\gamma_{\rm L}(z), \gamma_{\rm R}^{-1}\mathcal{O}) \\ &= W(\xi', \eta') - W(\xi, \eta), \end{aligned}$$

where $W(\xi', \eta') = b_{\eta'}(\mathcal{O}, \gamma_{\mathrm{L}}(z)) - b_{\xi}(z, \gamma_{\mathrm{L}}^{-1}\mathcal{O})$ and $W(\xi, \eta) = b_{\xi}(\mathcal{O}, z) - b_{\eta'}(\gamma_{\mathrm{L}}(z), \gamma_{\mathrm{R}}^{-1}\mathcal{O}).$

Notice that if $A(\xi)$ and $\bar{A}(\eta)$ are in involution by a positive kernel $k(\xi, \eta)$, then $sA(\xi)$ and $s\bar{A}(\eta)$ are in involution by $k(\xi, \eta)^s$.

Lemma 16. Let $T_{L} : \mathbb{S}^{1} \to \mathbb{S}^{1}$ and $T_{R} : \mathbb{S}^{1} \to \mathbb{S}^{1}$ be the two left and right Bowen–Series transformations of a Γ -Möbius Markov baker transformation $(\hat{\Sigma}, \hat{T})$. Let $A_{L} : \mathbb{S}^{1} \to \mathbb{R}$ and $A_{R} : \mathbb{S}^{1} \to \mathbb{R}$ be two potential functions in involution with respect to a kernel $k(\xi, \eta)$. Let \mathcal{L}_{L} and \mathcal{L}_{R} be the two Ruelle transfer operators associated with A_{L} and A_{R} . Then, for any $\xi' \in \mathbb{S}^{1}$ and $\eta \in \mathbb{S}^{1}$,

$$\mathcal{L}_{\mathrm{R}}(k(\xi', \cdot))(\eta) = \mathcal{L}_{\mathrm{L}}(k(\cdot, \eta))(\xi')$$

Proof. Given $\xi' \in \mathbb{S}^1$ and $\eta \in \mathbb{S}^1$, the two finite sets

$$\{\eta' \in \mathbb{S}^1; \ T_{\mathbf{R}}(\eta') = \eta, \ J(\xi', \eta') = 1\}, \quad \{\xi \in \mathbb{S}^1; \ T_{\mathbf{L}}(\xi) = \xi', \ J(\xi, \eta) = 1\}$$

are in bijection. Thus, we obtain

$$\mathcal{L}_{\mathrm{R}}(k(\xi',\cdot))(\eta) = \sum_{T_{\mathrm{R}}(\eta')=\eta} k(\xi',\eta') e^{A_{\mathrm{R}}(\eta')}$$
$$= \sum_{T_{\mathrm{L}}(\xi)=\xi'} k(\xi,\eta) e^{A_{\mathrm{L}}(\xi)} = \mathcal{L}_{\mathrm{L}}(k(\cdot,\eta))(\xi').$$

Theorem 1 now follows immediately from lemmas 15 and 16.

Proof of theorem 1. We first prove that $\psi_{f,s}(\xi) = \int k(\xi, \eta)^s \mathcal{D}_{f,s}(\eta)$, with $k(\xi, \eta) = J(\xi, \eta)/d^2(\xi, \eta)$, is a solution of the equation $\mathcal{L}_s^{\mathrm{L}}\psi_f = \psi_f$. In fact, we have

$$\psi_{f,s}(\xi') = \int k^s(\xi',\eta') \mathcal{D}_{f,s}(\eta') = \int \mathcal{L}_s^{\mathbb{R}}(k^s(\xi',\cdot))(\eta) \mathcal{D}_{f,s}(\eta)$$
$$= \int \mathcal{L}_s^{\mathbb{L}}(k^s(\cdot,\eta)(\xi') \mathcal{D}_{f,s}(\eta) = (\mathcal{L}_s^{\mathbb{L}}\psi_{f,s})(\xi').$$

We next prove that $\psi_{f,s} \neq 0$. Suppose on the contrary that $\psi_{f,s}(\xi') = 0$ for each $\xi' \in \mathbb{S}^1$. Following Haydn [10], we introduce step functions of the form

$$\bar{\chi}(\xi',\eta') = \chi \circ pr_1 \circ T^{-1}(\xi',\eta'),$$

where $\chi = \chi(\xi)$ depends only on ξ . For instance, for some fixed ξ' , let χ be the characteristic function of the interval $I^{L}(n,\xi) = \bigcap_{k=0}^{n} T_{L}^{-k}(I^{L} \circ T_{L}^{k}(\xi))$, for some ξ such that $T_{L}^{n}(\xi) = \xi'$. Let $Q^{R}(\xi) = \{\eta \in \mathbb{S}^{1}; J(\xi, \eta) = 1\}$ and write

$$\gamma_{\rm L}[n,\xi] = \gamma_{\rm L}[T_{\rm L}^{n-1}(\xi)] \cdots \gamma_{\rm L}[T_{\rm L}(\xi)] \gamma_{\rm L}[\xi], \quad Q^{\rm R}(n,\xi) = \gamma_{\rm L}[n,\xi] Q^{\rm R}(\xi).$$

Then $\bar{\chi}$ equals the characteristic function of the rectangle $I^{L}(\xi') \times Q^{R}(n,\xi)$ and $Q^{R}(\xi')$ is equal to the disjoint union of the intervals $Q^{R}(n,\xi)$, for all ξ such that $T_{L}^{n}(\xi) = \xi'$. We also denote by $\Delta(\xi')$ the set of endpoints of $Q^{R}(n,\xi)$, for all $T_{L}^{n}(\xi) = \xi'$, and observe that $\Delta(\xi')$ is a dense subset of $Q^{R}(\xi')$. Using the same ideas as in lemma 16, we obtain

$$\int \bar{\chi}(\xi',\eta')k^s(\xi',\eta')\mathcal{D}_{f,s}(\eta') = (\mathcal{L}_s^{\mathrm{L}})^n(\chi\psi_{f,s})(\xi') = 0, \qquad \forall \, \xi' \in \mathbb{S}^1.$$

In particular, if $\tilde{\alpha}(\xi') < \tilde{\beta}(\xi') < \tilde{\alpha}(\xi') + 2\pi$ are chosen such that $\exp i\tilde{\alpha}(\xi')$ and $\exp i\tilde{\beta}(\xi')$ are the two endpoints of the interval $Q^{R}(\xi')$, if $\tilde{k}(\theta) = k(\xi', \exp i\theta)$, then

$$\tilde{k}(\beta)\tilde{\mathcal{D}}_{f,s}(\beta) = \tilde{k}(\tilde{\alpha}(\xi'))\tilde{\mathcal{D}}_{f,s}(\tilde{\alpha}(\xi')) + \int_{\tilde{\alpha}(\xi')}^{\beta} \frac{\partial \tilde{k}}{\partial \theta}\tilde{\mathcal{D}}_{f,s}(\theta) \,\mathrm{d}\theta$$

for every $\beta \in [\tilde{\alpha}(\xi'), \tilde{\beta}(\xi')] \cap \Delta(\xi')$. Since $\tilde{k}(\theta) \neq 0$, for each $\theta \in [\tilde{\alpha}(\xi'), \tilde{\beta}(\xi')]$, we conclude that the above equality applies to all $\beta \in [\tilde{\alpha}(\xi'), \tilde{\beta}(\xi')]$, the two functions $\tilde{k}(\beta)\tilde{\mathcal{D}}_{f,s}(\beta)$ and $\tilde{\mathcal{D}}_{f,s}(\beta)$ are \mathcal{C}^1 , and

$$\int_{\tilde{\alpha}(\xi'))}^{\beta} k(\theta) \frac{\partial \tilde{\mathcal{D}}_{f,s}}{\partial \theta} \, \mathrm{d}\theta = 0, \qquad \forall \beta \in [\tilde{\alpha}(\xi'), \tilde{\beta}(\xi')].$$

Therefore, $\tilde{\mathcal{D}}_{f,s}(\theta)$ is a constant function on each $[\tilde{\alpha}(\xi'), \tilde{\beta}(\xi')]$, thus everywhere on \mathbb{S}^1 . It follows that the distribution $\mathcal{D}_{f,s}$ would have to be equal to zero, which is impossible, because it represents a nonzero eigenfunction f.

Acknowledgments

The authors would like to thank I Efrat for showing them reference [6], F Ledrappier for references [14, 15] and C Doering for helping them with corrections in their text. The author A O Lopes was partially supported by CNPq, Fapergs, Instituto do Milenio, beneficiário de auxílio financeiro CAPES - Brasil. Finally, they would like to thank the referees for their careful reading and comments.

References

- Adler R and Flatto L 1991 Geodesic flows, interval maps and symbolic dynamics Bull. Am. Math. Soc. 25 229–334
- [2] Anantharaman N and Zelditch S 2007 Patterson–Sullivan distributions and quantum ergodicity Ann. H Poincaré 8 361–426
- Baraviera A, Lopes A O and Thieullen Ph 2006 A large deviation principle for equilibrium states of Hölder potentials: the zero temperature case *Stochastics Dyn.* 6 77–96
- [4] Bedford T, Keane M and Series C 1991 Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces (Oxford: Oxford University Press)

- [5] Bekka M and Mayer M 2000 Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (Oxford: Oxford University Press)
- [6] Bogomolny E B and Carioli M 1992 Quantum maps of geodesic flows on surfaces of constant negative curvature 4th Int. Conf. 'Path Integrals from meV to MeV' (Tutzing, May 1992) pp 18–21
- [7] Bogomolny E B and Carioli M 1993 Quantum maps from transfer operator *Physica* D **67** 88–112
- [8] Bowen R and Series C 1979 Markov maps associated to Fuchsian groups Publ. Math. IHES 50 153-70
- [9] Flaminio L and Forni G 2003 Invariant distributions and the time averages for horocycle flows *Duke Math. J.* 119 465–526
- [10] Haydn N 1990 Gibbs' functionals on subshifts Commun. Math. Phys. 134 217-36
- [11] Helgason S 1972 Analysis on Lie Groups and Homogeneous Spaces (Providence, RI: American Mathematical Society)
- [12] Helgason S 1981 Topics in Harmonic Analysis on Homogeneous Spaces (Basel: Birkhauser)
- [13] Iwaniec H 2002 Spectral Methods of Automorphic Forms (Providence, RI: American Mathematical Society)
- [14] Lewis J B 1997 Spaces of holomorphic functions equivalent to the even Maass cusp forms *Invent. Math.* 127 271–306
- [15] Lewis J and Zagier D 2001 Period functions for Maass wave forms Ann. Math. 153 191-258
- [16] Lopes A O and Thieullen P 2006 Mather theory and the Bowen–Series transformation Ann. Inst. H Poincaré, Anal. Non-Linéaire 23 663–82
- [17] Mayer D H 1991 Thermodynamic formalism approach to Selberg's zeta function for PSL (2, Z) Bull. Am. Math. Soc. 25 55–60
- [18] Morita T 1997 Markov systems and transfer operators associated with cofinite Fuchsian groups Ergod. Theory Dyn. Syst. 17 1147–81
- [19] Otal J-P 1998 Sur les fonctions propres du laplacien du disque hyperbolique C. R. Acad. Sci. Paris Sér. I Math. 327 161–6
- [20] Patterson S J 1976 The limit set of a Fuchsian group Acta Math. 136 241-73
- [21] Pollicott M 1991 Some applications of thermodynamic formalism to manifolds with constant negative curvature Adv. Math. 85 161–92
- [22] Series C 1981 Symbolic dynamics for geodesic flows Acta Math. 146 103-28
- [23] Series C 1985 The modular surface and continuous fractions J. Lond. Math. Soc. 31 69-80
- [24] Series C 1986 Geometrical Markov coding on surfaces of constant negative curvature Ergod. Theory Dyn. Syst. 6 601–25
- [25] Sullivan D 1979 The density at infinity of a discrete group of hyperbolic motions Publ. Math. IHES 50 171-202
- [26] Zelditch S 1987 Uniform distribution of eigenfunctions on compact hyperbolic surfaces Duke Math. J. 55 919-41