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Abstract
Let � be a co-compact Fuchsian group of isometries on the Poincaré disk D and
� the corresponding hyperbolic Laplace operator. Any smooth eigenfunction
f of �, equivariant by � with real eigenvalue λ = −s(1 − s), where
s = 1

2 +it , admits an integral representation by a distribution Df,s (the Helgason
distribution) which is equivariant by � and supported at infinity ∂D = S

1.
The geodesic flow on the compact surface D/� is conjugate to a suspension
over a natural extension of a piecewise analytic map T : S

1 → S
1, the so-

called Bowen–Series transformation. Let Ls be the complex Ruelle transfer
operator associated with the Jacobian −s ln |T ′|. Pollicott showed that Df,s is
an eigenfunction of the dual operator L∗

s for the eigenvalue 1. Here we show
the existence of a (nonzero) piecewise real analytic eigenfunction ψf,s of Ls

for the eigenvalue 1, given by an integral formula

ψf,s(ξ) =
∫

J (ξ, η)

|ξ − η|2s
Df,s (dη),

where J (ξ, η) is a {0, 1}-valued piecewise constant function whose definition
depends upon the geometry of the Dirichlet fundamental domain representing
the surface D/�.

Mathematics Subject Classification: 37C30, 11F12, 11F72, 46F12

1. Introduction

Consider the Laplace operator � defined by

� = y2

(
∂2

∂x2
+

∂2

∂y2

)
,
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on the Lobatchevskii upper half-plane H = {w = x + iy ∈ C; y > 0}, equipped with the
hyperbolic metric dsH = |dw|

y
, and the eigenvalue problem

�f = −s(1 − s)f,

where s is of the form s = 1
2 + it , with t real. We shall also consider the same corresponding

Laplace operator

� = 1

4
(1 − |z|2)2

(
∂2

∂x2
+

∂2

∂y2

)
,

and eigenvalue problem

�f = −s(1 − s)f,

defined on the Poincaré disk D = {z = x + yi ∈ C; |z| < 1}, equipped with the metric
dsD = 2 |dz|

1−|z|2 .
Helgason showed in [11] and [12] that any eigenfunction f associated with this eigenvalue

problem can be obtained by means of a generalized Poisson representation


f (w) =
∫ ∞

−∞

(
(1 + t2)y

(x − t)2 + y2

)s

DH

f,s(t), for w ∈ H,

or

f (z) =
∫

∂ D

(
1 − |z|2
|z − ξ |2

)s

DD

f,s(ξ), for z ∈ D,

where DD

f,s or DH

f,s are analytic distributions called from now on Helgason’s distributions. We

have used the canonical isometry between z ∈ D and w ∈ H, namely w = i 1−z
1+z

or z = i−w
i+w

.
The hyperbolic metric is given in H and in D by

ds2
H

= dx2 + dy2

y2
, ds2

D
= 4(dx2 + dy2)

(1 − |z|2)2
.

We shall be interested in a more restricted problem, where the eigenfunction f is also
automorphic with respect to a co-compact Fuchsian group �, i.e. a discrete subgroup of the
group of Möbius transformations (see [5, 20, 25]) with compact fundamental domain. It is
known that the eigenvalues λ = s(1 − s) = 1

4 + t2 form a discrete set of positive real numbers
with finite multiplicity and accumulating at +∞ (see [13]).

Pollicott showed [21] that Helgason’s distribution can be seen as a generalized
eigenmeasure of the dual complex Ruelle transfer operator associated with a subshift of the
finite type defined at infinity. Let TL be the left Bowen–Series transformation that acts on the
boundary S

1 = ∂D and is associated with a particular set of generators of �. The precise
definition of TL has been given in [8, 22–24], and more geometrical descriptions have then
been given in [1,18]. Specific examples of the Bowen–Series transformation have been studied
in [4, 17] for the modular surface and in [3] for a symmetric compact fundamental domain of
genus two. The map TL is known to be piecewise �-Möbius constant, Markovian with respect
to a partition {IL

k } of intervals of S
1, on which the restriction of TL is constant and equal to an

element γk of �, transitive and orbit equivalent to �. Let LL
s be the complex Ruelle transfer

operator associated with the map TL and the potential AL = −s ln |T ′
L|, namely

(LL
s ψ)(ξ ′) =

∑
TL(ξ)=ξ ′

eAL(ξ)ψ(ξ) =
∑

TL(ξ)=ξ ′

ψ(ξ)

|T ′
L(ξ)|s ,

where the summation is taken over all preimages ξ of ξ ′ under TL. Here T ′
L denotes the Jacobian

of TL with respect to the canonical Lebesgue measure on S
1. In the case of an automorphic
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eigenfunction f of �, Pollicott showed that the corresponding Helgason distribution Df,s

satisfies the dual functional equation

(LL
s )∗(Df,s) = Df,s

or, according to Pollicott’s terminology, the parameter s is a (dual) Perron–Frobenius value,
that is, 1 is an eigenvalue for the dual Ruelle transfer operator.

Although suggested in [21], it is not clear whether s could be a Perron–Frobenius value,
that is, whether 1 could also be an eigenvalue for LL

s , not only for (LL
s )∗. Our goal in this paper

is to show that this is actually the case.
The three main ingredients we use are the following:

• Otal’s proof of Helgason’s distribution in [19], giving more precise information on Df,s

and enabling us to integrate piecewise C1 test functions, instead of real analytic globally
defined test functions;

• a more careful reading of [1, 8, 18, 24], or a careful study of a particular example in [16],
which enables us to construct a piecewise �-Möbius baker transformation (‘arithmetically’
conjugate to the geodesic billiard);

• the existence of a kernel that we introduced in [3], which enables us to permute past
and future coordinates and transfer a dual eigendistribution to a piecewise real analytic
eigenfunction. Haydn (in [10]) has introduced a similar kernel in a more abstract setting,
without geometric considerations.

More precisely, we prove the following theorem:

Theorem 1. Let � be a co-compact Fuchsian group of the hyperbolic disk D and � the
corresponding hyperbolic Laplace operator. Let λ = s(1 − s), with s = 1

2 + it , and let f be
an eigenfunction of −�, automorphic with respect to �, that is, �f = −λf and f ◦ γ = f ,
for every γ ∈ �. Then there exists a (nonzero) piecewise real analytic eigenfunction ψf,s on
S

1 that is a solution of the functional equation

LL
s (ψf,s) = ψf,s,

where LL
s is the complex Ruelle transfer operator associated with the left Bowen–Series

transformation TL : S
1 → S

1 and the potential AL = −s ln |T ′
L|.

Moreover, ψf,s admits an integral representation via Helgason’s distribution DD

f,s ,
representing f at infinity, and a geometric positive kernel k(ξ, η) defined on a finite set of
disjoint rectangles ∪kI

L
k × QR

k ⊂ S
1 × S

1, namely,

ψf,s(ξ) =
∫

QR
k

ks(ξ, η) DD

f,s(η) =
∫

QR
k

1

|ξ − η|2s
DD

f,s(η),

for every ξ ∈ IL
k , where IL

k and QR
k are intervals of S

1 with disjoint closure, and {IL
k }k is a

partition of S
1 where TL is injective, Markovian and piecewise �-Möbius constant.

Lewis [14] and, later, Lewis and Zagier [15], started a different approach to understand
Maass wave forms. They were able to identify in a bijective way Maass wave forms of
PSL(2, Z) and solutions of a functional equation with three terms closely related to Mayer’s
transfer operator. Their setting is strongly dependent on the modular group. Our theorem 1
may be viewed as part of their programme for co-compact Fuchsian groups. The Helgason
distribution has been used by Zelditch in [26] to generalize microlocal analysis on hyperbolic
surfaces, by Flaminio and Forni in [9], to study invariant distributions by the horocycle flow,
and by Anantharaman and Zelditch in [2], to understand the ‘quantum unique ergodicity
conjecture’.
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2. Preliminary results

Let � be a co-compact Fuchsian group of the Poincaré disk D. We denote by d(w, z)

the hyperbolic distance between two points of D, given by the Riemannian metric ds2 =
4(dx2 + dy2)/(1 − |z|2)2. Let M = D/� be the associated compact Riemann surface,
N = T 1M the unit tangent bundle and � the Laplace operator on M . Let f : M → R be
an eigenfunction of −� or, in other words, a �-automorphic function f : D → R satisfying
�f = −s(1 − s)f for the eigenvalue λ = s(1 − s) > 1

4 and such that f ◦ γ = f , for
every γ ∈ �. We know that f is C∞ and uniformly bounded on D. Thanks to Helgason’s
representation theorem, f can be represented as a superposition of horocycle waves, given by
the Poisson kernel

P(z, ξ) := ebξ (O,z) = 1 − |z|2
|z − ξ |2 ,

where bξ (w, z) is the Busemann cocycle between two points w and z inside the Poincaré disk,
observed from a point at infinity ξ ∈ S

1, defined by

bξ (w, z) := ‘d(w, ξ) − d(z, ξ)’ = lim
t→ ξ

d(w, t) − d(z, t),

where the limit is uniform in t → ξ in any hyperbolic cone at ξ . Helgason’s theorem states
that

f (z) =
∫

D

P s(z, ξ) Df,s(ξ) = 〈Df,s, P
s(z, .)〉

for some analytic distribution Df,s acting on real analytic functions on S
1. Unfortunately,

Helgason’s work is too general and is valid for any eigenfunction not necessarily equivariant
by a group. For bounded C2 functions f , Otal [19] has shown that the distribution Df,s has
stronger properties and can be defined in a simpler manner.

We first recall some standard notation in hyperbolic geometry. We call d(z, z0) the
hyperbolic distance between two points: for instance, the distance from the origin is given
by d(O, tanh( r

2 )eiθ ) = r . Let C(O, r) denote the set of points in D at hyperbolic distance r

from the origin,

C(O, r) = {z ∈ D; |z| = tanh( r
2 )}

and, more generally, given any interval I at infinity and any point z0 ∈ D, let C(z0, r, I ) denote
the angular arc at the hyperbolic distance r from z0 delimited at infinity by I , that is,

C(z0, r, I ) = {z ∈ D; z ∈ [[z0, ξ ]] for some ξ ∈ I and d(z, z0) = r},
where [[z0, ξ ]] denotes the geodesic ray from z0 to the point ξ at infinity. Let ∂

∂n
= ∂

∂r
denote

the exterior normal derivative to C(O, r) and |dz|D = sinh(r) dθ the hyperbolic arc length on
C(O, r).

Theorem 2 ([19]). Let f be a bounded C2 eigenfunction satisfying �f = −s(1 − s)f . Then:

1. There exists a continuous linear functional Df,s acting on C1 functions of S
1, defined by∫

ψ(ξ) Df,s(ξ) := lim
r→+∞

1

c(s)

∫
C(O,r)

ψ(z)e−sr

(
∂f

∂n
+ sf

)
|dz|D,

where c(s) is a nonzero normalizing constant such that 〈Df,s, 1〉 = f (0), and ψ(z) is any
C1 extension of ψ(ξ) to a neighbourhood of S

1.
2. Df,s represents f in the following sense:

f (z) =
∫ [

P(z, ξ)
]s Df,s(ξ), ∀ z ∈ D.

Df,s is unique and is called the Helgason distribution of f .
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3. For all 0 � α � 2π , the following limit exists:

D̃f,s(α) := lim
r→+∞

1

c(s)

∫ α

0
e−sr

(
∂f

∂n
+ sf

) (
tanh

( r

2

)
eiθ

)
sinh(r)dθ.

The convergence is uniform in α ∈ [0, 2π ] and D̃f,s(0) = 0.
4. D̃f,s can be extended to R as a 1

2 -Hölder continuous function satisfying:

(a) D̃f,s(θ + 2π) = D̃f,s(θ) + f (0), for every θ ∈ R,
(b) for any C1 function ψ : S

1 → C, denoting ψ̃(θ) = ψ(exp iθ),∫
ψ(ξ) Df,s(ξ) = ψ̃(0)f (0) −

∫ 2π

0

∂ψ̃

∂θ
D̃f,s(θ) dθ.

Using similar technical tools as Otal, one can prove the following extension of Df,s on
piecewise C1 functions, that is, on functions not necessarily continuous but which admit a C1

extension on each interval [ξk, ξk+1] of some finite and ordered subdivision {ξ0, ξ1, . . . , ξr−1}
of S

1.

Proposition 3. Let f and Df,s be as in theorem 2.

1. For any interval I ⊂ S
1 and any function ψ : I → C, which is C1 on the closure of I and

null outside I , the following limit exists:∫
ψ(ξ) Df,s(ξ) := 1

c(s)
lim

r→+∞

∫
C(O,r,I )

ψ(z)e−sr

(
∂f

∂n
+ sf

)
|dz|D,

where again ψ(z) is any C1 extension of ψ(ξ) to a neighbourhood of S
1.

2. For any 0 � α < β � 2π and any C1 function ψ on the interval I = [exp(iα), exp(iβ)],∫
ψ(ξ) Df,s(ξ) = ψ̃(β)D̃f,s(β) − ψ̃(α)D̃f,s(α) −

∫ β

α

∂ψ̃

∂θ
D̃f,s(θ) dθ,

where D̃f,s and ψ̃(θ) have been defined in theorem 2.

Proof. Given α ∈ [0, 2π ], let I = {eiθ | 0 � θ � α} be an interval in S1, and ψ

a C1 function defined on a neighbourhood of S
1. Denote ψ̃(r, θ) = ψ(tanh( r

2 )eiθ ) and

K(r, θ) = e−sr
(

∂f

∂n
+ sf

)(
tanh( r

2 eiθ
)

sinh(r). Then

1

c(s)

∫
C(O,r,I )

ψ(z)e−sr

(
∂f

∂n
+ sf

)
|dz|D

=
∫ α

0
ψ̃(r, β)K(r, β) dβ

=
∫ α

0

[
ψ̃(r, α) +

∫ α

β

−∂ψ̃

∂θ
(r, θ) dθ

]
K(r, β) dβ

= ψ̃(r, α)

∫ α

0
K(r, β) dβ −

∫ α

0

∂ψ̃

∂θ
(r, θ)

[ ∫ θ

0
K(r, β) dβ

]
dθ.

Since
∫ α

0 K(r, β) dβ → D̃f,s(α) uniformly in α ∈ [0, 2π ], the left-hand side of the previous
equality converges to∫

ψ(ξ)1{ξ∈I }Df,s(ξ) = ψ̃(α)D̃f,s(α) −
∫ α

0

∂ψ̃

∂θ
(θ)D̃f,s(θ) dθ.
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The second part of the proposition follows subtracting such an expression from another one,
such as: ∫

ψ(ξ)1{ξ=eiθ ; 0�θ�β}D̃f,s(ξ) −
∫

ψ(ξ)1{ξ=eiθ ; 0�θ�α}D̃f,s(ξ). �

If, in addition, we assume that f is equivariant with respect to a co-compact Fuchsian
group �, Pollicott observed in [21] that Df,s , acting on real analytic functions, is equivariant by
�, that is, satisfies γ ∗(Df,s)(ξ) = |γ ′(ξ)|sDf,s(ξ), for all γ ∈ �. Because Otal’s construction
is more precise and implies that Helgason’s distribution also acts on piecewise C1 functions,
the above equivariance property can be improved in the following way.

Proposition 4. Let f : D → R be a C2 function, I ⊂ S
1 an interval and ψ : I → C a C1

function on the closure of I . If f satisfies f ◦ γ = f , for some γ ∈ � (f is not necessarily
automorphic), then

〈Df,s,
ψ ◦ γ −1

|γ ′ ◦ γ −1|s 1γ (I )〉 = 〈Df,s, ψ1I 〉.

The main difficulty here is to transfer the equivariance property f ◦γ = f to an equivalent
property for the extension of Df,s to piecewise C1 functions. If I = S

1 and ψ is real analytic,
then, by uniqueness of the representation, proposition 4 is easily proved. It seems that just
knowing the fact that Df,s is the derivative of some Hölder function is not enough to reach a
conclusion. The following proof uses Otal’s approach and, essentially, the extension of Df,s

described in part 1 of proposition 3.

Proof of proposition 4. First we prove the proposition for ψ = 1. Let g(z) = exp(−sd(O, z)).
By the definition of Df,s , we obtain∫

1I (ξ) Df,s(ξ) = lim
r→+∞

1

c(s)

∫
C(O,r ′,I )

(
g

∂f

∂n
− f

∂g

∂n

)
|dz|D

= lim
r→+∞

1

c(s)

∫
C(O′,r ′,γ (I ))

(
g′ ∂f

∂n
− f

∂g′

∂n

)
|dz|D,

where r ′ = r +d(O, O′), O′ = γ (O) and g′ = g◦γ −1. Notice that the domain bounded by the
circle C(O′, r ′) contains the circle C(O, r). Let PQ be the positively oriented arc C(O, r, γ (I ))

and P ′Q′ be the arc C(O′, r ′, γ (I )). Then the two geodesic segments [[P, P ′]] and [[Q, Q′]]
belong to the annulus r � d(z, O) � r + 2d(O, O′) and their length is uniformly bounded.

We now use Green’s formula to compute the right-hand side of the above expression. Let

 denote the domain delimited by P, P ′, Q′, Q using the corresponding arcs and geodesic
segments, and let dv = sinh(r) dr dθ be the hyperbolic volume element. We obtain∫

P ′Q′

(
g′ ∂f

∂n
− f

∂g′

∂n

)
|dz|D =

∫
PQ

(
g′ ∂f

∂n
− f

∂g′

∂n

)
|dz|D

−
∫

[[P,P ′]]
· · · |dz|D −

∫
[[Q′,Q]]

· · · |dz|D +
∫ ∫




(
g′�f − f �g′) dv.

When r tends to infinity, the last three terms at the right-hand side tend to 0, since along the
geodesic segments [P, P ′] and [Q, Q′], the gradient ∇g′ is uniformly bounded by exp(− 1

2 r)

and

g′�f − f �g′ = sg′f sinh(d(z, O′))−2 and
∂

∂n
g′ + sg′
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are uniformly bounded by a constant times exp(− 5
2 r) in the domain 
, for the first expression,

and by a constant times exp(− 3
2 r) on C(O, r), for the second expression. It follows that∫

1I (ξ) Df,s(ξ) = lim
r→+∞

1

c(s)

∫
C(O,r,γ (I ))

g′
(

∂f

∂n
+ sf

)
|dz|D

= lim
r→+∞

1

c(s)

∫
C(O,r,γ (I ))

[
ψ(z)

]s
e−sr

(
∂f

∂n
+ sf

)
|dz|D,

where ψ(z) = exp
(
d(O, z) − d(O, γ −1(z))

)
. Now we observe that{

ψ(z) = exp s (d(O, z) − d(γ (O), z)) , for z ∈ D,

ψ(ξ) = exp bξ (O, γ (O)) = |γ ′ ◦ γ −1(ξ)|−1, for ξ ∈ ∂D,

actually coincides with a real analytic function �(z) defined in a neighbourhood of S
1, given

explicitly by

�(z) =
(

(1 + |z|)2

(1 + |γ −1(z)|)2|γ ′ ◦ γ −1(z)|
)s

.

Thus we have proved that∫
1I (ξ) Df,s(ξ) =

∫
1γ (I )(ξ)

|γ ′ ◦ γ −1(ξ)|s Df,s(ξ).

Now we prove the general case. We use the same notation for the lifting γ : R 
→ R

of a Möbius transformation γ : S
1 
→ S

1. The lifting satisfies γ (α + 2π) = γ (α) + 2π ,
exp(iγ (α)) = γ (exp(iα)) and γ ′(α) = |γ ′(α)|, for all α ∈ R. Using proposition 3, we obtain

D̃f,s(β) − D̃f,s(α)

= D̃f,s ◦ γ (β)

γ ′(β)s
− D̃f,s ◦ γ (α)

γ ′(α)s
−

∫ γ (β)

γ (α)

∂

∂θ

(
1

(γ ′ ◦ γ −1(θ))s

)
D̃f,s(θ) dθ.

For any C1 function ψ(ξ) defined on I , we denote ψ̃(θ) = ψ(exp iθ)), and obtain

LHS :=
∫

ψ(ξ)1I (ξ) Df,s(ξ)

= ψ̃(β)D̃f,s(β) − ψ̃(α)D̃f,s(α) −
∫ β

α

∂ψ̃

∂θ
D̃f,s(θ) dθ

= ψ̃(β)D̃f,s(β) − ψ̃(α)D̃f,s(α) −
∫ γ (β)

γ (α)

∂

∂θ

(
ψ̃ ◦ γ −1(θ)

)
D̃f,s(γ

−1θ) dθ

= ψ̃(β)
(
D̃f,s(β) − D̃f,s(α)

)
−

∫ γ (β)

γ (α)

∂ψ̃(γ −1θ)

∂θ

(
D̃f,s(γ

−1θ) − D̃f,s(α)
)

dθ.

We now use the above equivariance and replace both D̃f,s(β) − D̃f,s(α) and D̃f,s(γ
−1θ) −

D̃f,s(α) by the corresponding formula involving D̃f,s ◦ γ (β), D̃f,s ◦ γ (α), D̃f,s(θ). Thus

LHS = ψ̃(β)D̃f,s ◦ γ (β)

γ ′(β)s
− ψ̃(α)D̃f,s ◦ γ (α)

γ ′(α)s
−

∫ γ (β)

γ (α)

∂

∂θ

(
ψ̃(γ −1θ)

γ ′(γ −1θ)s

)
D̃f,s(θ) dθ

=
∫

ψ ◦ γ −1(ξ)

|γ ′ ◦ γ −1(ξ)|s 1γ (I ) Df,s(ξ). �
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Following [1,8,18,22–24] for the general case and [16] for a specific example we recall the
definition of the left TL and right TR Bowen–Series transformations. The hyperbolic surface
we are interested in is given by the quotient of the hyperbolic disk D by a co-compact Fuchsian
group �. Given a point O ∈ D, let

D�,O = {z ∈ D; d(z, O) < d(z, γ (O)), ∀ γ ∈ �}

denote the corresponding Dirichlet domain, a convex fundamental domain with compact
closure in D, admitting an even number of geodesic sides and an even number of vertices,
some of which may be elliptic. More precisely, the boundary of D�,O is a disjoint union of
semi-closed geodesic segments SL

−r , · · · , SL
−1, S

L
1 , · · · , SL

r , closed to the left and open to the
right, or, equivalently, to a union of semi-closed geodesic segments SR

−r , · · · , SR
−1, S

R
1 , · · · , SR

r ,
closed to the right and open to the left; for each k, the intervals SL

k and SR
k have the same

endpoints and SL
k is associated with SR

−k by an element ak ∈ � satisfying ak(S
L
k ) = SR

−k . The
elements ak generate � and satisfy a−k = a−1

k , for k = ±1, · · · , ±r .
To define the two Bowen–Series transformations TL and TR geometrically, we need to

impose a geometric condition on �: following [8, 22, 24], we say that � satisfies the even
corner property if, for each 1 � |k| � r , the complete geodesic line through SL

k is equal to
a disjoint union of �-translates of the sides SL

l , with 1 � |l| � r . Some � do not satisfy
this geometric property. Nevertheless, any two co-compact Fuchsian groups � and �′, with
identical signature, are geometrically isomorphic, that is, there exists a group isomorphism
h∗ : � → �′ and a quasi-conformal orientation preserving homeomorphism h : D → D

admitting an extension to a conjugating homeomorphism h : ∂D → ∂D, that is,

h(γ (z)) = h∗(γ )(h(z)), ∀ γ ∈ �.

An important observation in [8, 22, 24] is that any co-compact Fuchsian group is
geometrically isomorphic to a Fuchsian group with identical signature and satisfying the even
corner property. We are going to recall the Bowen and Series construction in the case that
� possesses the even corner property and will show that their main conclusions remain valid
under geometric isomorphisms.

The complete geodesic line associated with a side SL
k cuts the boundary at infinity S

1 at
two points sL

k and sR
k , positively oriented with respect to sL

k , the oriented geodesic line ]]sL
k , sR

k [[
seeing the origin O to the left. Both end points sL

k and sR
k are neutrally stable with respect

to the associated generator ak , that is, |a′
k(s

L
k )| = |a′

k(s
R
k )| = 1. The family of open intervals

]sL
k , sR

k [ covers S
1; since these intervals ]sL

k , sR
k [ overlap each other, there is no canonical

partition adapted to this covering. Nevertheless, we may associate two well-defined partitions,
the left partition AL and the right partition AR. The former consists of disjoint half-closed
intervals,

AL = {AL
−r , · · · , AL

−1, A
L
1 , · · · , AL

r },

given by AL
k = [sL

k , sL
l(k)[ where sL

l(k) denotes the nearest point sL
l after sL

k , according to a
positive orientation. Each AL

k belongs to the unstable domain of the hyperbolic element ak ,
that is, |a′

k(ξ)| � 1, for each ξ ∈ AL
k . By definition, the left Bowen–Series transformation

TL : S
1 
→ S

1 is given by

TL(ξ) = ak(ξ), if ξ ∈ AL
k .
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Analogously, S
1 can be partitioned into half-closed intervals

AR = {AR
−r , · · · , AR

−1, A
R
1 , · · · , AR

r },
where AR

k = ]sR
j (k), s

R
k ], and sR

j (k) denotes the nearest sR
j before sR

k , according to a positive
orientation. The right Bowen–Series transformation is given by

TR(η) = ak(η), if η ∈ AR
k .

The two partitions AL and AR generate two ways of coding a trajectory. Let γL : S
1 
→ � and

γR : S
1 
→ � be the left and right symbolic coding defined by

γL[ξ ] = ak, if ξ ∈ AL
k , and γR[η] = ak, if η ∈ AR

k .

In particular, TR(η) = γR[η](η) and TL(ξ) = γL[ξ ](ξ), for each ξ ∈ S
1. Also, it is known

that T 2
R and T 2

L are expanding. Series, in [22–24], and later, Adler and Flatto in [1], proved
that TL (respectively, TR) is Markov with respect to a partition of IL = {IL

k }qk=1 (respectively,
IR = {IR

l }ql=1) that is finer than AL (respectively, AR). The semi-closed intervals IL
k and IR

l

are of the same kind as AL
k and AR

l , and have the same closure.

Definition 5. A dynamical system (S1, T , {Ik}) is said to be a piecewise �-Möbius Markov
transformation if T : S

1 → S
1 is a surjective map, and {Ik} is a finite partition of S

1 into
intervals such that:

1. for each k, T (Ik) is a union of adjacent intervals Il;
2. for each k, the restriction of T to Ik coincides with an element γk ∈ �;
3. some finite iterate of T is uniformly expanding.

Theorem 6 ([8, 24]). For any co-compact Fuchsian group �, there exists a piecewise
�-Möbius Markov transformation (S1, T , {Ik}) which is transitive and orbit equivalent to �.

The Ruelle transfer operator can be defined for any piecewise C2 Markov transformation
(S1, T , {Ik}) and any potential function A. Actually, we need a particular complex transfer
operator given by the potential

A = −s ln |T ′|.
For any function ψ : S

1 → C, define

(Ls(ψ))(ξ ′) =
∑

T (ξ)=ξ ′
eA(ξ)ψ(ξ) =

∑
T (ξ)=ξ ′

ψ(ξ)

|T ′(ξ)|s ,

where the summation is taken over all preimages ξ of ξ ′ under T . We modify Ls slightly, so
that it acts on the space of piecewise C1 functions. Let {Ik}qk=1 be a partition of S1. Given a
piecewise C1 function and ⊕q

k=1ψk ∈ ⊕q

k=1C1(Īk) set

LL
s ψ = ⊕q

l=1φl, where φl =
∑

Il⊂T (Ik)

ψk ◦ T −1
k,l

|T ′ ◦ T −1
k,l |s ,

and T −1
k,l denotes the restriction to Il of the inverse of T : Ik → T (Ik) ⊃ Il .

Proposition 7. Let � be a co-compact Fuchsian group. Let s = 1
2 +it and f be an automorphic

eigenfunction of −�, that is, �f = −s(1 − s)f . Let (S1, T , {Ik}) be a piecewise �-Möbius
Markov transformation and Ls be the Ruelle transfer operator corresponding to the observable
A = −s ln |T ′|. Then the Helgason distribution Df,s satisfies

(Ls)
∗Df,s = Df,s .
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Proof. Let ⊕q

k=1ψk be a piecewise C1 function in ⊕q

k=1C1(Īk). Using proposition 4,∫
(Lsψ)(ξ) Df,s(ξ) =

q∑
l=1

∫
Il

(Lsψ)l(ξ) Df,s(ξ)

=
∑

T (Ik)⊃Il

∫
Il

ψk ◦ T −1
k,l

|T ′ ◦ T −1
k,l |s (ξ) Df,s(ξ)

=
∑

T (Ik)⊃Il

∫
T −1(Il )∩Ik

ψk(ξ) Df,s(ξ)

=
q∑

k=1

∫
Ik

ψk(ξ) Df,s(ξ) =
∫

ψ(ξ) Df,s(ξ). �

Series in [24], Adler and Flatto in [1] and Morita in [18] noticed that TL admits a natural
extension T̂ : �̂ 
→ �̂ strongly related to TR. We also showed the existence of such a T̂

in [16], and it was an important step in the proof of theorem 3 of [16]. The following definition
explains how the two maps TL and TR are glued together in an abstract way.

Definition 8. Let � be a co-compact Fuchsian group. A dynamical system
(�̂, T̂ , {IL

k }, {IR
l }, J ) is said to be a piecewise �-Möbius baker transformation if it admits

a description as follows.

1. {IL
k } and {IR

l } are finite partitions of S
1 into disjoint intervals; J (k, l) is a {0, 1}-valued

function, and �̂ is the subset of S
1 × S

1 defined by

�̂ =
∐

J (k,l)=1

IL
k × IR

l .

2. For each k, QR
k = ∐{IR

l ; J (k, l) = 1} is an interval whose closure is disjoint from ĪL
k .

For each l, QL
l = ∐{IL

k ; J (k, l) = 1} is an interval whose closure is disjoint from ĪR
l .

Let IL(ξ) = IL
k and QR(ξ) = QR

k , for ξ ∈ IL
k . Let IR(η) = IR

l and QL(η) = QL
l , for

η ∈ IR
l .

3. T̂ : �̂ → �̂ is bijective and is given by{
T̂ (ξ, η) = (TL(ξ), SR(ξ, η)),

T̂ −1(ξ ′, η′) = (SL(ξ ′, η′), TR(η′)),

for certain maps TL, TR : S
1 → S

1 and SL, SR : �̂ → S
1.

4. (S1, TL, {IL
k }) and (S1, TR, {IR

l }) are piecewise �-Möbius Markov transformations. There
exist two functions γL : S

1 → �, respectively γR : S
1 → �, that are piecewise constant

on each IL
k , respectively {IR

l }, and satisfying{
T̂ (ξ, η) = (γL[ξ ](ξ), γL[ξ ](η)),

T̂ −1(ξ ′, η′) = (γR[η′](ξ ′), γR[η′](η′)).

The maps TL and TR are called the left and right Bowen–Series transformations, whereas γL

and γR are the left and right Bowen–Series codings. Finally, we say that J is the incidence
matrix, which we extend as a function on S

1 × S
1 defining{

J (ξ, η) = 1, if (ξ, η) ∈ �̂,

J (ξ, η) = 0, if (ξ, η) �∈ �̂.
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Notice that this definition is equivariant by geometric isomorphisms. For co-compact
Fuchsian groups satisfying the even corner property, Adler and Flatto in [1], Series in [24]
(and, for a particular example, in [16]) obtained geometrically the existence of a piecewise
�-Möbius baker transformation with left TL and right TR maps orbit equivalent to �. By
geometric isomorphism considerations, we obtain more generally the following.

Proposition 9 ([1, 16, 24]). For any co-compact Fuchsian group �, there exists a piecewise
�-Möbius baker transformation with left and right Bowen–Series transformations that are
transitive and orbit equivalent to �.

The two maps TL and TR are related to the action of the group � on the boundary S
1. The

baker transformation (�̂, T̂ ) encodes this action into a unique dynamical system. For later
reference, we state two further properties of this encoding.

Remark 10.

1. The two codings γL and γR are reciprocal, in the following sense:

γR[η′] = γ −1
L [ξ ], whenever (ξ ′, η′) = T̂ (ξ, η).

2. For any ξ ′ and η in S
1, there is a bijection between the two finite sets

{ξ ; (ξ, η) ∈ �̂ and TL(ξ) = ξ ′}, {η′; (ξ ′, η′) ∈ �̂ and TR(η′) = η}.
In order to better understand this baker transformation, we briefly explain how (�̂, T̂ ) is

conjugate to a specific Poincaré section of the geodesic flow on the surface N = T 1M . We
assume for the rest of this section that � satisfies the even corner property.

Since D�,O is a convex fundamental domain, every geodesic (modulo �) cuts ∂D�,O at two
distinct points p and q, unless the geodesic is tangent to one of the sides of D�,O. These tangent
geodesics correspond to a finite union of closed geodesics. We could have parametrized the
set of oriented geodesics by all pairs (p, q) ∈ ∂D�,O × ∂D�,O, with p and q not belonging
to the same side of D�,O, but we prefer to introduce the space X of all (x, y) ∈ S

1 × S
1

oriented geodesics [[y, x]], either cutting the interior of D�,O or passing through one of the
corners of D�,O and seeing O to the left. Using this notation, we define the two intersection
points p = p(x, y) ∈ ∂D�,O and q = q(x, y) ∈ ∂D�,O for every oriented geodesic [[y, x]],
(x, y) ∈ X, such that [[q, p]] = [[y, x]] ∩ D̄�,O has the same orientation as [[y, x]].

For a geodesic passing through a corner, p = q, unless the geodesic is tangent to a side
of D�,O. We are now in a position to define a geometric Poincaré section B : X → X. If
(x, y) ∈ X, the geodesic [[y, x]] leaves D�,O at p = p(x, y) ∈ Si , for some side SL

i . Since
SL

i and SR
−i are permuted by the generator ai , the new geodesic ai([[y, x]]) = [[y ′, x ′]] enters

again the fundamental domain at a new point q ′ = q(x ′, y ′) with q ′ = ai(p) ∈ SR
−i . By

definition, B(x, y) = (x ′, y ′) and the map B : X → X is called a geodesic billiard, such as
the codings for TL and TR, we introduce two geometric codings γB : X → � and γ̄B : X → �

given by {
γB[x, y] = ai if p(x, y) ∈ SL

i ,

γ̄B[x, y] = ai if q(x, y) ∈ SR
i .

Now the geodesic billiard can be defined by{
B(x, y) = (γB[x, y](x), γB[x, y](y)),

B−1(x ′, y ′) = (γ̄B[x ′, y ′](x ′), γ̄B[x ′, y ′](y ′)).

Notice that γ̄B ◦ B = γ −1
B . The map B is very close to being a baker transformation: B and

B−1 have the same structure as T̂ and T̂ −1, and γB (respectively, γ̄B) plays the role of γL

(respectively, γR). The main difference is that γB[x, y] depends on both x and y, but γL[ξ ]
depends only on ξ . Nevertheless, we have the following crucial result.
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Theorem 11 ([1, 16, 24]). There exists a �-Möbius baker transformation (�̂, T̂ ) conjugate
to (X, B). More precisely, there exists a map ρ : X → � such that π(x, y) =
(ρ[x, y](x), ρ[x, y](y)), defines a conjugating map π : X → �̂ between T̂ and B, such
that T̂ ◦ π = π ◦ B. Equivalently, γL ◦ π and γB are cohomologous over (X, B), that
is, γL ◦ πρ = ρ ◦ BγB , and γR ◦ π and γ̄B are cohomologous over (X, B), that is,
γR ◦ πρ = ρ ◦ B−1γ̄B .

3. Proof of theorem 1

We want to associate with any eigenfunction f of the Laplace operator a nonzero piecewise
real analytic function ψf,s that is a solution of the functional equation

LL
s (ψf,s) = ψf,s, where LL

s (ψ)(ξ ′) =
∑

TL(ξ)=ξ ′

ψ(ξ)

|T ′
L(ξ)|s .

The main idea is to use a kernel k(ξ, η) introduced in theorem 7 of [3], as well by Haydn
in [10], and by Bogomolny and Carioli in [6,7], in the context of double-sided subshifts of the
finite type. We begin by extending this definition to include baker transformations.

Definition 12. Let (�̂, T̂ ) be a piecewise �-Möbius baker transformation, with TL and TR the
left and right Bowen–Series transformations. Let AL : S

1 → C and AR : S
1 → C be two

potential functions. We say that AL and AR are in involution if there exists a nonzero kernel
k : �̂ → C

∗, called an involution kernel, such that

k(ξ, η)eAL(ξ) = k(ξ ′, η′)eAR(η′), whenever (ξ ′, η′) = T̂ (ξ, η) ∈ �̂.

The kernel k is extended to S
1 × S

1 by k(ξ, η) = 0, for (ξ, η) �∈ �̂.

Remark 13.

1. Let W(ξ, η) = ln k(ξ, η), for (ξ, η) ∈ �̂. Then AL and AR are cohomologous, that is
AL − AR ◦ T̂ = W ◦ T̂ − W .

2. If AL(ξ) is Hölder, then there exists a Hölder function AR(η) (depending only on η) in
involution with AL with a Hölder involution kernel.

3. If LL and LR are the two Ruelle transfer operators associated with AL and AR, if AL

and AR are in involution with respect to a kernel k, and if ν is an eigenmeasure of LR,
that is, L∗

R(ν) = λν, then ψ(ξ) = ∫
k(ξ, η) dν(η) is an eigenfunction of LL, that is,

LL(ψ) = λψ .

These remarks appeared first in [10] and were later rediscovered in [3], in the context of
a subshift of the finite type. The proofs in this general context can be easily reproduced. The
third remark suggests a strategy to obtain the eigenfunction ψf,s , by taking AL = −s ln |T ′

L|,
AR = −s ln |T ′

R| and replacing ν by the distribution Df,s . All there is left to prove is that
− ln |T ′

L| and − ln |T ′
R| are in involution with respect to a piecewise C1 involution kernel. It so

happens that this involution kernel exists and is given by the Gromov distance.

Definition 14. The Gromov distance d(ξ, η) between two points ξ and η at infinity is given by

d2(ξ, η) = exp
(

− bξ (O, z) − bη(O, z)
)
,

for any point z on the geodesic line [[ξ, η]]. Notice that this definition depends on the choice
of the origin O (but not on z ∈ [[ξ, η]]).
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In the Poincaré disk model, (ξ, η) ∈ S
1 × S

1, or in the upper half-plane, (s, t) ∈ R × R,
the Gromov distance takes the simple form

d2(ξ, η) = 1

4
|ξ − η|2, or d2(s, t) = |s − t |2

(1 + s2)(1 + t2)
.

Lemma 15. Let TL : S
1 → S

1 and TR : S
1 → S

1 be the two left and right Bowen–Series
transformations of a �-Möbius Markov baker transformation (�̂, T̂ ). Then the two potential
functions AL(ξ) = − ln |T ′

L(ξ)| and AR(η) = − ln |T ′
R(η)| are in involution and

AL(ξ) − AR(η′) = W(ξ ′, η′) − W(ξ, η), for (ξ ′, η′) = T̂ (ξ, η) ∈ �̂,

where W(ξ, η) = bξ (O, z) + bη(O, z) and z is any point of the geodesic line [[ξ, η]]. In
particular, k(ξ, η) = exp(W(ξ, η)) = 4/d2(ξ, η) is an involution kernel.

Proof of lemma 15. To simplify the notation, we call (ξ ′, η′) = T̂ (ξ, η), γL = γL[ξ ],
and γR = γR[η′]. We also recall the relation γR = γ −1

L . Then, choosing any point z ∈ [[ξ, η]],
we get

AL(ξ) − AR(η′) = −bξ (O, γ −1
L O) + bη′(O, γ −1

R O)

= −bξ (O, z) − bξ (z, γ
−1
L O) + bη′(O, γL(z)) + bη′(γL(z), γ −1

R O)

= W(ξ ′, η′) − W(ξ, η),

where W(ξ ′, η′) = bη′(O, γL(z))−bξ (z, γ
−1
L O) and W(ξ, η) = bξ (O, z)−bη′(γL(z), γ −1

R O).
�

Notice that if A(ξ) and Ā(η) are in involution by a positive kernel k(ξ, η), then sA(ξ) and
sĀ(η) are in involution by k(ξ, η)s .

Lemma 16. Let TL : S
1 → S

1 and TR : S
1 → S

1 be the two left and right Bowen–Series
transformations of a �-Möbius Markov baker transformation (�̂, T̂ ). Let AL : S

1 → R and
AR : S

1 → R be two potential functions in involution with respect to a kernel k(ξ, η). Let
LL and LR be the two Ruelle transfer operators associated with AL and AR. Then, for any
ξ ′ ∈ S

1 and η ∈ S
1,

LR(k(ξ ′, ·))(η) = LL(k(·, η))(ξ ′).

Proof. Given ξ ′ ∈ S
1 and η ∈ S

1, the two finite sets

{η′ ∈ S
1; TR(η′) = η, J (ξ ′, η′) = 1}, {ξ ∈ S

1; TL(ξ) = ξ ′, J (ξ, η) = 1}
are in bijection. Thus, we obtain

LR(k(ξ ′, ·))(η) =
∑

TR(η′)=η

k(ξ ′, η′)eAR(η′)

=
∑

TL(ξ)=ξ ′
k(ξ, η)eAL(ξ) = LL(k(·, η))(ξ ′). �

Theorem 1 now follows immediately from lemmas 15 and 16.

Proof of theorem 1. We first prove that ψf,s(ξ) = ∫
k(ξ, η)sDf,s(η), with k(ξ, η) =

J (ξ, η)/d2(ξ, η), is a solution of the equation LL
s ψf = ψf . In fact, we have

ψf,s(ξ
′) =

∫
ks(ξ ′, η′) Df,s(η

′) =
∫

LR
s (ks(ξ ′, ·))(η) Df,s(η)

=
∫

LL
s (ks(·, η)(ξ ′) Df,s(η) = (LL

s ψf,s)(ξ
′).
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We next prove that ψf,s �= 0. Suppose on the contrary that ψf,s(ξ
′) = 0 for each ξ ′ ∈ S

1.
Following Haydn [10], we introduce step functions of the form

χ̄(ξ ′, η′) = χ ◦ pr1 ◦ T̂ −1(ξ ′, η′),

where χ = χ(ξ) depends only on ξ . For instance, for some fixed ξ ′, let χ be the characteristic
function of the interval IL(n, ξ) = ∩n

k=0T
−k

L (IL ◦ T k
L (ξ)), for some ξ such that T n

L (ξ) = ξ ′.
Let QR(ξ) = {η ∈ S

1; J (ξ, η) = 1} and write

γL[n, ξ ] = γL[T n−1
L (ξ)] · · · γL[TL(ξ)]γL[ξ ], QR(n, ξ) = γL[n, ξ ]QR(ξ).

Then χ̄ equals the characteristic function of the rectangle IL(ξ ′) × QR(n, ξ) and QR(ξ ′) is
equal to the disjoint union of the intervals QR(n, ξ), for all ξ such that T n

L (ξ) = ξ ′. We also
denote by �(ξ ′) the set of endpoints of QR(n, ξ), for all T n

L (ξ) = ξ ′, and observe that �(ξ ′)
is a dense subset of QR(ξ ′). Using the same ideas as in lemma 16, we obtain∫

χ̄(ξ ′, η′)ks(ξ ′, η′)Df,s(η
′) = (LL

s )n(χψf,s)(ξ
′) = 0, ∀ ξ ′ ∈ S

1.

In particular, if α̃(ξ ′) < β̃(ξ ′) < α̃(ξ ′) + 2π are chosen such that exp iα̃(ξ ′) and exp iβ̃(ξ ′) are
the two endpoints of the interval QR(ξ ′), if k̃(θ) = k(ξ ′, exp iθ), then

k̃(β)D̃f,s(β) = k̃(α̃(ξ ′))D̃f,s(α̃(ξ ′)) +
∫ β

α̃(ξ ′)

∂k̃

∂θ
D̃f,s(θ) dθ

for every β ∈ [α̃(ξ ′), β̃(ξ ′)]∩�(ξ ′). Since k̃(θ) �= 0, for each θ ∈ [α̃(ξ ′), β̃(ξ ′)], we conclude
that the above equality applies to all β ∈ [α̃(ξ ′), β̃(ξ ′)], the two functions k̃(β)D̃f,s(β) and
D̃f,s(β) are C1, and∫ β

α̃(ξ ′))
k(θ)

∂D̃f,s

∂θ
dθ = 0, ∀ β ∈ [α̃(ξ ′), β̃(ξ ′)].

Therefore, D̃f,s(θ) is a constant function on each [α̃(ξ ′), β̃(ξ ′)], thus everywhere on S
1. It

follows that the distribution Df,s would have to be equal to zero, which is impossible, because
it represents a nonzero eigenfunction f . �
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