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Abstract Through this paper we analyze the ergodic properties of continuous time
Markov chains with values on the one-dimensional spin lattice {1, . . . , d}N (also known
as the Bernoulli space). Initially, we consider as the infinitesimal generator the opera-
tor L = LA − I , where LA is a discrete time Ruelle operator (transfer operator), and
A : {1, . . . , d}N → R is a given fixed Lipschitz function. The associated continuous time
stationary Markov chain will define the a priori probability.

Given a Lipschitz interaction V : {1, . . . , d}N → R, we are interested in Gibbs (equilib-
rium) state for such V . This will be another continuous time stationary Markov chain. In
order to analyze this problem we will use a continuous time Ruelle operator (transfer op-
erator) naturally associated to V . Among other things we will show that a continuous time
Perron-Frobenius Theorem is true in the case V is a Lipschitz function.

We also introduce an entropy, which is negative (see also Lopes et al. in Entropy and
Variational Principle for one-dimensional Lattice Systems with a general a-priori probabil-
ity: positive and zero temperature. Arxiv, 2012), and we consider a variational principle of
pressure. Finally, we analyze large deviations properties for the empirical measure in the
continuous time setting using results by Y. Kifer (Tamsui Oxf. J. Manag. Sci. 321(2):505–
524, 1990). In the last appendix of the paper we explain why the techniques we develop here
have the capability to be applied to the analysis of convergence of a certain version of the
Metropolis algorithm.

Keywords Continuous time Markov chain · Perron Theorem · Gibbs state · Ruelle
Operator · Equilibrium state · Entropy · Pressure · Large deviations · Deviation function

A. Lopes (B) · A. Neumann
UFRGS, Instituto de Matemática, Av. Bento Gonçalves, 9500, CEP 91509-900, Porto Alegre, Brazil
e-mail: arturoscar.lopes@gmail.com

A. Neumann
e-mail: aneumann@impa.br

P. Thieullen
Institut de Mathématiques, Université Bordeaux 1, Bourdeaux, France
e-mail: philippe.thieullen@math.u-bordeaux1.fr

mailto:arturoscar.lopes@gmail.com
mailto:aneumann@impa.br
mailto:philippe.thieullen@math.u-bordeaux1.fr


A Thermodynamic Formalism for Continuous Time Markov Chains 895

1 Introduction

In this paper we will consider thermodynamic formalism in a continuous time setting in a
similar way as in [3, 25], where the time is discrete. In order to be able to work in this new
context (continuous time) we need to consider first a stationary continuous time Markov
chain, and this will define the a priori probability, on the space of trajectories. The infinites-
imal generator of this continuous time Markov chain will be associated to a discrete time Ru-
elle operator. Namely, we consider as the infinitesimal generator the operator L = LA − I ,
where LA is a discrete time Ruelle operator.

In the continuous time setting we will be able to define a new Ruelle operator, in a similar
fashion as in [25]. The continuous time setting requires some extra effort to get results, as
can be seen in [2, 21]. However, we will be able to get here the analogous properties of the
Ruelle operator which appear in the discrete time setting (transfer operators). Based on the
theory of stochastic processes we can define the continuous time Ruelle operator, as well as
the entropy and the pressure in this new context.

The Heat-Bath Glauber dynamics is a continuous time Markov chain as described in [6].
Questions related to the Ising model on a regular tree are consider in this mentioned work.
The infinitesimal generator we consider here is a generalization of (1) in this paper. Our
setting is a general one where several possible models of Statistical Mechanics can fit well
(see for instance [37]).

In a future work we will apply the techniques we developed here to the analysis of a
special version of the Metropolis algorithm (see [13, 14, 22, 32]) which will be suitable for
applications in problems where the state space is the one-dimensional spin lattice. Suppose
A is fixed for good (in this way we fix an a priori probability). Given a certain function
V : {1, . . . , d}N → R we would like to find the point x ∈ {1, . . . , d}N which maximize this
function. For each value β > 0 one can consider the potential βV and the associated Gibbs
state P

βV which is a probability over the set of continuous time paths (a new continuous
time Markov chain). Now, from ergodicity, if we choose at random a continuous time sam-
ple path we get a good approximation for the occupation time probability on {1, . . . , d}N
(Monte-Carlo method). This path can be seen as a random algorithm which is exploring the
configuration space {1, . . . , d}N. In Appendix F we show that if we take β more and more
large, then, the sample path we choose will stay more an more time close to the maximimum
of V . For large and fixed β it is important, from the point of view of the algorithm, to un-
derstand the large deviation properties of the associated empirical probability of the path on
{1, . . . , d}N. This is related to the second part of our paper. This will be carefully explained
in the end of Appendix F.

We point out that some of the results we obtain in our paper are due to the good properties
already known for the classical Ruelle operators LA on discrete time (transfer operators).
So we begin by recalling some important topics of this subject.

Consider the shift σ acting on the one-dimensional spin lattice {1, . . . , d}N. We denote by
P (B) the pressure of the potential B : {1, . . . , d}N →R (see [8, 29, 30]). The value P (B) is
the supremum of h(μ) + ∫

B dμ, among all σ -invariant probabilities on {1, . . . , d}N, where
h(μ) is the Kolmogorov entropy of the invariant probability μ. If B is Lipschitz there exists a
unique μB such that P (B) = h(μB) + ∫

B dμB . We call μB the (discrete time) equilibrium
state for B (see [29, 30]). Each point x ∈ {1, . . . , d}N has a finite number of preimages
y ∈ {1, . . . , d}N by σ . For a Lipschitz potential B we define the Ruelle operator by

LB(f )(x) =
∑

σ(y)=x

eB(y)f (y),
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for any continuous function f : {1, . . . , d}N → R and x ∈ {1, . . . , d}N. We say a Lipschitz
potential A : {1, . . . , d}N →R is normalized if for any x ∈ {1, . . . , d}N we have

∑

σ(y)=x

eA(y) = 1.

To assume that all the potentials which we consider are Lipschitz is an essential issue (but,
it could be relaxed to Holder). Nice references in Thermodynamic Formalism are [4, 34].

The dual of LA is the operator L ∗
A , which acts on probabilities on {1, . . . , d}N in the

following way:
∫

g dL ∗
A(ν) =

∫
LA(g)dν,

for any continuous function g : {1, . . . , d}N → R. The probability ν such that L ∗
A(ν) =

ν is called the (discrete time) Gibbs probability. If A is a Lipschitz normalized potential,
we have P (A) = 0, and, one can show that L ∗

A(μA) = μA. There is a unique fixed point
probability for L ∗

A . In this case the Gibbs state for A is the equilibrium state for A (see [30]).
Equilibrium states describe the probabilities that naturally appear in problems in Statistical
Mechanics over the one-dimensional lattice {1, . . . , d}N.

After this brief introduction on discrete time dynamics, we consider now the setting in
which we will get our main results. Let D := D([0,+∞), {1, . . . , d}N) be the path space of
càdlàg (right continuous with left limits) trajectories taking values in {1, . . . , d}N (see [24,
31]). This space is usually endowed with the Skorohod metric (for more details about this
metric see [17]), and it is called the Skorohod space. A typical element of D is a function
ω : [0,∞) → {1, . . . , d}N which is right continuous and has left limit in all points. This
space is complete and has a countable dense set, in other words, it is a Polish space, but
it is not compact (see [17]). The continuous time dynamics that we consider here will be
given by the action of the continuous time shift Θt : D → D, t ≥ 0. Given t0 > 0 and a path
ω ∈ D on the Skorohod space, then, Θt0(ω) is the path η such that η(t) = ω(t + t0), for all
t ≥ 0. We consider here the dynamics associated to such semiflow, {Θt, t ≥ 0}. Notice that
the transformation Θt is not injective, because for a fixed t and for each η ∈ D there exists
an uncountable number of preimages ω ∈ D such that Θt(ω) = η.

We said that the probability P̃ on the Skorohod space is invariant if it is invariant
for the semiflow {Θt, t ≥ 0}; that is, for any Borel set K in D and t > 0, we have
P̃[Θ−1

t (K )] = P̃[K ]. In order to find invariant probabilities on the Skorohod space, it is
natural to consider a continuous time Markov chain taking values on the one-dimensional
spin lattice (we point out that not all invariant probabilities on the Skorohod space appear
on this way). In this direction, we will use a Ruelle operator (transfer operator) with Lips-
chitz normalized potential A : {1, . . . , d}N → R for defining the infinitesimal generator of a
continuous time Markov chain in the form

(LA − I )(f )(x) =
∑

σ(y)=x

eA(y)
[
f (y) − f (x)

]
,

for all bounded measurable function f : {1, . . . , d}N → R and x ∈ {1, . . . , d}N.
Denote by L := LA − I this infinitesimal generator. For x ∈ {1, . . . , d}N, consider an

initial probability measure δx on {1, . . . , d}N, and denote by Px the probability measure
on D , which is induced by the infinitesimal generator L and the initial probability δx . It
defines a Markov process {Xt ; t ≥ 0} with values on the state space {1, . . . , d}N (see [11, 15,
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21]). As usual, when necessary, we will consider the canonical version of the process, i.e.,
Xs(ω) = ω(s) := ωs , for any ω ∈ D and s ≥ 0. The stochastic semigroup generated by L is
{Pt := etL, t ≥ 0} (the operator L is bounded and L(1) ≡ 0). The expectation concerning Px

is denoted by Ex . Given μ an initial probability on {1, . . . , d}N, we can define the probability
Pμ on D as

Pμ[K ] =
∫

{1,...,d}N
Px[K ]dμ(x),

for all Borel set K ⊂ D .
The above process describes the behavior of a particle, such that when located at x ∈

{1, . . . , d}N, jumps to one of its σ -preimages y, with probabilities described by eA(y) and
after an exponential time of parameter 1. Notice that for almost every trajectory ω beginning
in x = ω0, all the values ωt , t ≥ 0, which are possibly attained belong to the total pre-orbit
set, by the shift σ , of the initial point x, that is, the set of y such that for some n ∈ N we have
σn(y) = x. The space {1, . . . , d}N is not countable. We point out that in most of the papers
in the literature the state space is finite (or, countable). In this last situation the infinitesimal
generator is a matrix which satisfies the condition of line sum zero. Here this matrix is
replaced by an operator described by the expression L = LA − I , where A is normalized.

The discrete Gibbs state probability μA over {1, . . . , d}N (see [30]) for the potential A :
{1, . . . , d}N →R clearly satisfies that

∫
L(f )dμA = 0,

for all f continuous function, where L = LA −I . This is the condition for stationarity of the
initial probability of the continuous time Markov chain generated by L (see [36]). Using that
Pt = etL, we get

∫
f dμA = ∫

Ptf dμA, for all f and t ≥ 0. Therefore, μA is a stationary
initial measure for the continuous time Markov chain associated to the stochastic semigroup
{Pt , t ≥ 0}. Notice that there is a unique probability such that L ∗

A(μA) = μA (see [30]).
This shows that the initial stationary probability for the Markov semigroup Pt is unique.
The associated probability PμA

on the Skorohod space is invariant for the semiflow {Θt, t ≥
0}. In this way by taking different potentials A we can get a large number of invariant
probabilities for the continuous time semiflow.

One can ask if this process {Xt = X
μA
t , t ≥ 0}, with initial condition μA, is ergodic, that

is, if the following is true: if for a given f we have that L(f ) = 0, μA—a.s., then, f is
constant. This is indeed the case and it will be proved in the beginning of next section.

The probability PμA
induced on D by L and the initial probability μA will be called the

a priori probability. The process {Xt = X
μA
t , t ≥ 0} is called the a priori process. We will

need all of the above in order to define the continuous time Ruelle operator.
One can ask if L = LA − I acting on the Hilbert space L2(μA) is symmetric. The answer

to this question is no, because L∗ = K − I , where K is the Koopman operator, g →
K (g) = g ◦ σ (according to [30]). Therefore, in our setting the process is not reversible. In
order to make the system reversible we could consider, as usual, the generator 1

2 (L + L∗).
For this new process the particle can jump either way: forward or backward (for the action
of σ ). We briefly consider such process in the end of the paper (see Appendix F).

In our reasoning we will consider a fixed choice of A and this defines an a priori prob-
ability. After this is settled, we want to analyze the disturbed system by the intervention of
an external Lipschitz potential V : {1, . . . , d}N → R. More precisely, we would like to ob-
tain a new continuous time Markov chain {Y V

T , T ≥ 0}, with state space {1, . . . , d}N, which
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plays the role of the continuous time Gibbs state for V . In order to obtain this new process
{Y V

T , T ≥ 0}, we need to define the continuous time Ruelle operator acting on functions de-
fined in the Bernoulli space, based in Feynman-Kac theory (see, for example, [21, 36]). We
will also need to show the existence of an eigenfunction F : {1, . . . , d}N → R in the case
that V is a Lipschitz function.

We will show that given a Lipschitz potential V there exists λ = λV and a positive func-
tion F = Fλ such that for any T ≥ 0,

eT (L+V )(F ) = eλV T F.

One can consider alternatively a continuous time Markov chain associated to a discrete
time Ruelle operator in a more general setting. In fact, this will naturally occur as we will
see in the analysis of the continuous time Gibbs state for V . When we defined the initial
Markov process {Xt, t ≥ 0}, we could have chosen another parameter for the exponential
clock (not constant equal to 1). Below we briefly present how to proceed in this situations.

Let γ a continuous positive function and B a Lipschitz normalized potential, one could
also consider a more general operator

Lγ,B(f )(x) = γ (x)
∑

σ(y)=x

eB(y)
[
f (y) − f (x)

]
,

acting on bounded measurable functions f : {1, . . . , d}N → R. Notice that Lγ,B = γ (LB −
I ). We point out that most of the results we will prove in this paper are also true if the a priori
probability is defined via the stochastic semigroup {etLγ,B , t ≥ 0} (and the associated station-
ary initial probability), instead of {etL, t ≥ 0}. In this case, if we denote μB,γ = 1

γ

μB∫ 1
γ dμB

,

then, for any continuous function f : {1, . . . , d}N →R

∫
Lγ,B(f )dμB,γ = 0,

where μB is the discrete time equilibrium state for B . Then, μB,γ is the initial stationary
probability for the continuous time Markov process with infinitesimal generator Lγ,B . It is
also stationary for the flow {Θt, t ≥ 0}. Notice that μB,γ is not invariant for the discrete time
action of the shift σ . The probability μB is invariant for the discrete time shift σ .

We denote by {Zt, t ≥ 0} the continuous time Markov chain taking values in the one-
dimensional spin lattice {1, . . . , d}N generated by such Lγ,B and a given initial measure (not
necessarily the process needs to begin on a stationary probability). The process {Zt, t ≥ 0}
with infinitesimal generator Lγ,B can be described in the following: if the particle is located
at x ∈ {1, . . . , d}N, then it waits an exponential time of parameter γ (x), and, then it jumps
to a σ -preimage y with probability eB(y). As we will see in the third section of this paper,
there exist γ and B which naturally appear when we have to describe properties of what we
will call the continuous time Gibbs state for V .

Let’s come back to the original setting where the a priory probability on the Skorohod
space was defined by the process defined by the infinitesimal generator L = LA − I . In
order to present in advance the final solution, we can say that the continuous time Gibbs state
for V is the process {Y V

T , T ≥ 0}, which has the infinitesimal generator acting on bounded
mensurable functions f : {1, . . . , d}N →R given by

LV (f )(x) = γV (x)
∑

σ(y)=x

eBV (y)
[
f (y) − f (x)

]
,
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where BV (y) := A(y)− logγV (σ (y))+ logFV (y)− logFV (σ (y)), γV (x) := 1−V (x)+λV

and the function FV is such that

LA(FV )(x)

FV (x)
=

∑

σ(y)=x

eA(y)FV (y)

FV (x)
= 1 − V (x) + λV .

The appearance of the term γV in the infinitesimal generator LV introduce a new element
which was not present in the classical discrete time setting. This continuous time stationary
Markov chain describes the solution one naturally get, from the point of view of Statistical
Mechanics, for a system under the influence of an external potential V .

Now, we can ask: “Is there a maximizing pressure principle on this setting?” and “Can
we talk about entropy in this setting?” In other words: is this stationary Gibbs probability an
equilibrium measure in some sense? These questions appear naturally for the discrete time
Ruelle operator setting (thermodynamic formalism). Answering these questions is one of
the purposes of the present work. Given an a priory probability (associated to A) we will
define an entropy for a class of continuous time Markov chains. It will be a non-positive
number.

Lastly, we study the large deviation principle for the empirical measure associated to the
a priori process. So that one can consider, for each t ≥ 0 and each ω ∈ D , the empirical
probability Lω

t defined by the occupational time of the process {Xt, t ≥ 0} on a set, that is,
for any Borel Γ ⊂ {1, . . . , d}N, we have

Lω
t (Γ ) = 1

t

∫ t

0
1Γ

(
Xs(ω)

)
ds.

Then, under ergodicity, we have limt→∞ Lω
t = μA, PμA

-almost surely ω (see page 108 in
[36]). The Ergodic Theorem says little or nothing about the rate of convergence. Since Lω

t is
random, it is almost unavoidable to ask oneself about deviations from the stationary measure
μA.

Let M ({1, . . . , d}N) be the set of all measures on {1, . . . , d}N. The large deviation rate
function I : M ({1, . . . , d}N) → R, associated to this continuous time process {Xt, t ≥ 0},
helps to estimate the exponential decay of the asymptotic empirical probability of deviations
from the stationary measure μA, when the time parameter t goes to infinity. Thus, we are
naturally led to the investigation and identification of the large deviations rate function in
the set of the measures on Bernoulli space. We will analyze large deviation properties of
the empirical probability (as we mentioned before the system we consider is not reversible).
This is also known as level two large deviation theory (see [15, 16, 19]). The level one large
deviation principle follows by standard procedures: Orey’s contraction principle (see for
instance [27]).

It is important to remark that the understanding of previous results which were obtained
for a general potential V plays a fundamental role in the large deviation properties of the
unperturbed system (with infinitesimal generator L = LA − I ). This follows the general
philosophy of [10, 11, 19, 20].

Suppose λV is the main eigenvalue we get from the continuous time Ruelle-Perron Op-
erator for V . We denote by C the set of continuous functions and by C + the set of strictly
positive continuous functions.

Our main result in the second part of the paper is:
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Theorem A A large deviation principle at level two for the a priori process {Xt =
X

μA
t , t ≥ 0} generated by L = LA − I is true with the deviation function I given

I (ν) = sup
V ∈C

(∫
V dν − Q(V )

)

,

where Q(V ) is a function which is equal to the main eigenvalue λV when V is Lipschitz.
Moreover,

I (ν) = − inf
u∈C+

∫
L(u)

u
dν.

We point out that the above Theorem 25 in [19] (see also [20]) is presented in a different
setting: the state space is a Riemannian manifold and it is considered a certain class of
differential operators as infinitesimal generators. We do not consider here such differentiable
structure.

The paper is divide in sections as follows: in Sect. 2, we present the continuous time
Ruelle operator and we prove the continuous time Perron-Frobenius Theorem. In Sect. 3, we
present the continuous time Gibbs state for V . This is a continuous time stationary process.
In Sect. 4, we define relative entropy, pressure and equilibrium state for V , and we also
prove a variational principle for the Gibbs state. In Sect. 5, the main result that we will get
is the large deviation principle for the empirical measure associated to the a priori process.
Finally, in the Appendix we show many technical results using basic tools of continuous time
Markov chains. Among them: we present a Radon-Nikodym derivative result, we briefly
comment on the spectrum of LA − I + V on L

2(μ), where μ is a natural probability on
the Bernoulli space {1, . . . , d}N, and, finally, some remarks on the associated symmetric
process. In this last section we consider a fixed potential V and we ask about the limit of
the invariant probability (invariant for the continuous time equilibrium Gibbs state for βV ,
when β is large) over {1, . . . , d}N when temperature goes to zero.

2 Disturbing the System by an External Lipschitz Potential V : The Continuous Time
Perron-Frobenius Theorem

First of all we recall the definition of the a priori process. A Lipschitz normalized potential
A will be considered fixed through the whole paper. We denote by {Pt , t ≥ 0}, the stochastic
semigroup generated by L = LA − I . We need an a priori continuous time stationary proba-
bility for our reasoning, for this reason we are considering PμA

the probability obtained from
the semigroup {Pt , t ≥ 0} and the initial probability μA. As we have said, this probability
PμA

plays the role of the a priori measure (see [3, 25]). The associated stochastic process
will be denoted by {Xt = X

μA
t , t ≥ 0}.

The probability μA is ergodic for the continuous time action, that is, the following is
true: if for a given f we have that L(f ) = 0, μA—a.e.w., then, f is constant. This follows
from the following simple argument suggested by D. Smania: suppose LA(f ) = f for a
μA-integrable f , then, for a given ε we can write f = g + w, where w is integrable with
L1(μA) norm smaller than ε and g is Lipschitz. Then, f = L n

A(f ) = L n
A(g) + L n

A(w).
Note that L n

A(w) has L1 norm smaller then ε. Moreover, L n
A(g) converges to a constant

ag , where ag is
∫

f dμA up to ε (see Theorem 2.2 (iv) [30]). Therefore, taking the limit in
n we get that f − ag has norm smaller than ε. Now, taking ε → 0, we get that ag converges
to

∫
f dmA. Therefore, for all x, μA—a.e.w., we have that f (x) = ∫

f dmA.
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In the same spirit of classical thermodynamic formalism (see [30]), given a potential V

(an interaction), we want to get here another continuous time Markov process which will be
the equilibrium stationary process for the system under the influence of the potential V .

Let V : {1, . . . , d}N → R a Lipschitz function and consider the operator L + V =
LA − I + V , which acts on mensurable and bounded functions f : {1, . . . , d}N → R by
the expression

(L + V )(f )(x) = (LA − I )(f )(x) + V (x)f (x),

for all x ∈ {1, . . . , d}N. For T ≥ 0, we consider

P V
T (f )(x) := Ex

[
e

∫ T
0 V (Xr )drf (XT )

]
, (1)

for all continuous function f : {1, . . . , d}N → R and x ∈ {1, . . . , d}N. By Feynman-Kac,
{P V

T ,T ≥ 0} defines a semigroup associated to the infinitesimal operator L + V = LA −
I + V (see Appendix 1.7 in [21]).

Let C be the space of continuous functions from {1, . . . , d}N to R endowed with uni-
form topology. Denote by C + the subspace of functions of C which are strictly positive.
Let P({1, . . . , d}N) be the space of probabilities on the Borel sigma-algebra of the one-
dimensional spin lattice {1, . . . , d}N. Define M ({1, . . . , d}N) as the space of measures on
the Borel sigma-algebra of the Bernoulli space {1, . . . , d}N.

Notice that, in general, this semigroup in not stochastic, because P V
T (1)(x) 
= 1. We want

to associate to this semigroup, another one which is also stochastic, this will be only possible
due to the next result, which we consider the main one in this section.

Theorem 1 (Continuous time Perron-Frobenius Theorem) Suppose that V is a Lipschitz
function. Then, there exists a strictly positive Lipschitz eigenfunction F : {1, . . . , d}N →
(0,+∞) for the family of operators P V

T : C → C , T ≥ 0, associated to an eigenvalue eλV T ,
where λ = λV depends only on V . By this we mean: for any T ≥ 0,

P V
T (F ) = eλV T F.

The eigenvalue λV is simple and it is equal to the spectral radius (maximal). Moreover, there
exists a eigenprobability νV in P({1, . . . , d}N) such that

(
P V

T

)∗
(νV ) = eλV T νV , ∀T ≥ 0.

The proof of this theorem we will present in Sects. 2.1 and 2.2.
As a consequence of this theorem we will be able to normalize the semigroup

{P V
T ,T ≥ 0} in order to get another stochastic semigroup, and, then we will finally obtain

what we call the Gibbs state in the continuous time setting.
A quite simple version of this result was presented in [2]. In this paper, V depends just

on X0 and the state space is {1,2, . . . , d}.

Example 2 To clarify ideas, we present a simple example where is easy to verify the validity
of the above theorem. Given 0 < p1 < 1, 0 < p2 < 1, the stochastic matrix

(
1 − p1 p1

p2 1 − p2

)

,
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defines a Ruelle operator LA acting on the one-dimensional spin lattice {1,2}N such that,
LA(1) = 1. More precisely, eA(1,1,x2,... ) = 1 − p1, eA(2,1,x2,... ) = p1 and eA(1,2,x2,... ) = p2,
eA(2,2,x2,... ) = 1 − p2. Notice that

L =
(

1 − p1 p1

p2 1 − p2

)

−
(

1 0
0 1

)

=
(−p1 p1

p2 −p2

)

defines a line sum zero matrix. One can consider a potential V such that is constant in
the cylinders of size one, i.e., V (1, x1, x2, . . . ) = V1, and V (2, x1, x2, . . . ) = V2 In this case
L + V is the matrix

(−p1 + V1 p1

p2 −p2 + V2

)

If V1,V2 are positive and large then the positive cone goes inside the positive cone. Then,
there is a positive eigenvalue and a positive eigenfunction. One can add a constant to V in
order to get an eigenvector with just positive entries.

We will consider on the Bernoulli space the usual metric d . Let 0 < θ < 1, then for all
x = {xi}, y = {yi} ∈ {1, . . . , d}N

d(x, y) := θN,

where N is such that xi = yi , ∀i ≤ N and xN+1 
= yN+1. In the following, when a ∈
{1, . . . , d} and x ∈ {1, . . . , d}N the notation ax means (a, x1, x2, . . . ) ∈ {1, . . . , d}N, i.e., ax

is a preimage of x by shift operator.
We point out that d(ax, ay) ≤ θd(x, y), for all x, y ∈ {1, . . . , d}N and a ∈ {1, . . . , d}, this

is a central idea in Lemma 5, when we estimate the ratio
PV

T
(f )(x)

PV
T

(f )(y)
. First, we will characterize

the operator P V
T , in Lemma 3. This characterization allow us to conclude that the family of

operators {P V
T ,T ≥ 0} describes a natural generalization of the discrete time Ruelle operator

(see [2]).

Lemma 3 Let f ∈ C , T ≥ 0, and x ∈ {1, . . . , d}N. Consequently, P V
T (f )(x) =

Ex[e
∫ T

0 V (Xr )drf (XT )] can be rewritten as

eT V (x)f (x)e−T +
+∞∑

n=1

d∑

a1=1

· · ·
d∑

an=1

eA(a1x) . . . eA(an...a1x)f (an . . . a1x)I T
V (an . . . a1x),

where

I T
V (an . . . a1x)

=
∫ ∞

0
dtn . . .

∫ ∞

0
dt0e

t0V (x)+···+(T −∑n−1
i=0 ti )V (an...a1x)1[∑n−1

i=0 ti≤T <
∑n

i=0 ti ]e
−t0 . . . e−tn .

As the proof of this lemma is very technical we present it in Appendix B.
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Observe that, if one consider V ≡ 0, the previous lemma says that

PT (f )(x) = Ex

[
f (XT )

]

= e−T

{

f (x) +
+∞∑

n=1

T n

n!
d∑

a1=1

· · ·
d∑

an=1

eA(a1x) . . . eA(an...a1x)f (an . . . a1x)

}

= e−T

{

f (x) +
+∞∑

n=1

T n

n!
(
L n

A(f )
)
(x)

}

,

because
∫ ∞

0
dtn . . .

∫ ∞

0
dt01[∑n−1

i=0 ti≤T <
∑n

i=0 ti ]e
−t0 . . . e−tn = e−T T n

n! .

Thus, PT (f )(x) = 1
eT eT LA(f )(x), which is in accordance with the fact that {PT ,T ≥ 0}

is the semigroup associated to the generator L = LA − I .

Lemma 4 For any non-negative continuous function f such that there exist x ∈ {1, . . . , d}N
and T > 0 satisfying PT (f )(x) = 0, we have that f ≡ 0.

Proof By Lemma 3, f (an, . . . , a1x) = 0, for all ai ∈ {1,2, . . . , d}, i = 1, . . . , n, for any
n ∈ N. Then f (z) = 0, for any z ∈ {y; there exists n such that σn(y) = x}. But this set is
dense in {1, . . . , d}N and f is continuous, thus f (z) = 0, for any z ∈ {1, . . . , d}N. �

Lemma 5 If the function f satisfies f (x) ≤ eCf d(x,y)f (y), for all x, y ∈ {1, . . . , d}N, where
Cf is a constant depending only on f , then

P V
T (f )(x) ≤ exp

{[
(CAθ + T CV )(1 − θ)−1 + Cf θ

]
d(x, y)

}
P V

T (f )(y),

for all T ≥ 0.

The proof of this lemma is in Appendix B (it is similar to the proof of Lemma 3).

2.1 Eigenprobability

In this subsection we will present the proof of existence of eigenprobability. Without loss
of generality, we will assume that the perturbation V is positive and its minimum is large
enough (just add a large constant to the initial V ). We will find an eigenprobability for
LA − I + V . The constant we eventually add to the in initial potential will not harm our
argument.

First we need to analyze the dual of LA − I + V acting on signed measures.
As we know (LA − I + V )∗ acts on measures on the Bernoulli space via the expression:

given ν, then
〈
f, (LA − I + V )∗(ν)

〉 = 〈
(LA − I + V )(f ), ν

〉
,

for any f ∈ C . This leads us to consider the operator G on probabilities of the one-
dimensional spin lattice. Given ν probability on {1, . . . , d}N, G acts on ν as

〈
f,G(ν)

〉 = 〈(LA − I + V )(f ), ν〉
〈(LA − I + V )(1), ν〉 = 〈(LA − I + V )(f ), ν〉

〈V,ν〉 ,
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for any f ∈ C . The function G is well defined by the hypothesis on V . This G is continuous,
because it is the ratio of two continuous functions. From Schauder-Tychonoff Theorem, we
get the existence of a fixed point probability νV for G. Therefore, there exists λV = ∫

V dνV

such that
∫

(LA − I + V )(f )dνV = 〈
(LA − I + V )(f ), νV

〉 = λV 〈f, νV 〉 = λV

∫
f dνV ,

for any f ∈ C . Since L = LA − I , we have
∫

(L + V − λV )(f )dνV = 0, (2)

for any f ∈ C . By Feynman-Kac, the semigroup associated to operator L+V −λV is
PV

T

eλV T .
Using the Trotter-Kato Theorem (see Chap. IX Sect. 12 in [38]), we get

P V
T (f )

eλV T
= lim

n→∞

(

I − T

n
(L + V − λV )

)n

(f ).

Observe that is true
∫ (

I − T

n
(L + V − λV )

)n

(f )dνV =
∫

f dνV , ∀n,

and, this is a consequence of two properties: the first one is that when the operator L + V −
λV acts on C its image is contained C too; the second one is the equality (2). Then we get

∫
P V

T (f )

eλV T
dνV =

∫
f dνV , (3)

for any f ∈ C . Consequently,
∫

f d
[(

P V
T

)∗
(νV )

] = eλV T

∫
f dνV ,

for any f ∈ C .

2.2 Eigenfunction

Here, we present the existence of an eigenprobability.
Suppose that θ ≤ 1/2. Let

Λ =
{

f ∈ C ;0 ≤ f ≤ 1 and f (x) ≤ exp

{
CA + CV

1 − θ
d(x, y)

}

f (y),∀x, y ∈ {1, . . . , d}N
}

.

The set Λ is convex, because for all f,g ∈ Λ and t ∈ (0,1)

tf (x) + (1 − t)g(x) ≤ exp

{
CA + CV

1 − θ
d(x, y)

}
(
tf (y) + (1 − t)g(y)

)
.

Let {fn} ⊂ Λ, then ‖fn‖∞ ≤ 1 and

∣
∣fn(x) − fn(y)

∣
∣ ≤ ‖fn‖∞

(

exp

{
CA + CV

1 − θ
d(x, y)

}

− 1

)
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≤ CA + CV

1 − θ
d(x, y) exp

{
CA + CV

1 − θ

}

,

for all n ∈ N. By Arzelà-Ascoli Theorem, the sequence {fn} has a limit point. Therefore, Λ

is a compact set.
By Lemma 5, for all f ∈ Λ, we have

P V
T (f )(x) ≤ exp

{[
CAθ + T CV

1 − θ
+ CA + CV

1 − θ
θ

]

d(x, y)

}

P V
T (f )(y), ∀T ≥ 0.

Take T ≤ θ , then

P V
T (f )(x) ≤ exp

{

2
CA + CV

1 − θ
θ d(x, y)

}

P V
T (f )(y) ≤ exp

{
CA + CV

1 − θ
d(x, y)

}

P V
T (f )(y).

The last inequality is due to the assumption about θ . Unfortunately, P V
T (f ) can be greater

than one, then we need to define for all n ∈ N, the operator Qn
T that acts on g ∈ Λ as

Qn
T (g) := P V

T (g + 1/n)

‖P V
T (g + 1/n)‖∞

.

Notice that, for all n ∈N, the function constant equal to 1/n belongs to Λ, then

P V
T (1/n)(x) ≤ exp

{
CA + CV

1 − θ
d(x, y)

}

P V
T (1/n)(y),

for all T ∈ [0, θ ]. This allows us to show that Qn
T : Λ → Λ, for all n ∈ N.

Since Λ is convex and a compact set, we can apply the Schauder-Tychonoff Fixed Point
Theorem to each Qn

T : Λ → Λ and see that there exists hT
n ∈ Λ such that

P V
T (hT

n + 1/n)

‖P V
T (hT

n + 1/n)‖∞
= hT

n , ∀n,∀T ∈ [0, θ ]. (4)

Now, for fixed T ∈ [0, θ ], there exists FT ∈ Λ a limit point of the sequence {hT
n }n ⊂ Λ,

because Λ is compact. By the continuity of the operator P V
T , the expression above becomes

P V
T (FT ) = ∥

∥P V
T (FT )

∥
∥

∞FT , ∀T ∈ [0, θ ]. (5)

First of all, we would like to prove that FT > 0. Hence, we begin to analyze the norm
‖P V

T (FT )‖∞. By (4), we have

∥
∥P V

T

(
hT

n + 1/n
)∥∥

∞hT
n (x) = Ex

[
e

∫ T
0 V (Xr )dr

(
hT

n + 1/n
)
(XT )

] ≥ [(
infhT

n

) + 1/n
]
e−T ‖V ‖∞ ,

for all x. Then,

(∥∥P V
T

(
hT

n + 1/n
)∥∥∞ − e−T ‖V ‖∞)

infhT
n ≥ (1/n)e−T ‖V ‖∞ > 0.

This implies that

∥
∥P V

T

(
hT

n + 1/n
)∥∥∞ > e−T ‖V ‖∞ , ∀n.
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Recalling that FT is a limit point of {hT
n }n, the last inequality is transformed in

∥
∥P V

T (FT )
∥
∥

∞ ≥ e−T ‖V ‖∞ . (6)

Finally, suppose that FT (x0) = 0, for some x0 ∈ {1, . . . , d}N. Due to the fact that FT is
eigenfunction of the operator P V

T , we have P V
T (FT )(x0) = 0. Using Lemma 4, we get that

FT ≡ 0. But it is a contraction in relation to (6), because P V
T is linear. As a result FT > 0.

Now, we will characterize the eigenvalue, in order to do this we use the eigenprobability
νV . Equations (5) and (3) together imply that

∥
∥P V

T (FT )
∥
∥

∞

∫
FT dνV =

∫
P V

T (FT )dνV = eλV T

∫
FT dνV .

Since FT ≥ 0, we get ‖P V
T (FT )‖∞ = eλV T , and using (5) one can conclude P V

T (FT ) =
eλV T FT , ∀T ∈ [0, θ ].

The next step is to prove that eλV T is a simple eigenvalue for P V
T . We suppose that

for each T ∈ [0, θ ] there exists GT such that P V
T (GT ) = eλV T GT . Define αT

0 := infx
GT (x)

FT (x)
.

Since the Bernoulli space is compact, there exist x0 ∈ {1, . . . , d}N such that GT (x0) −
αT

0 FT (x0) = 0. Observe that HT := GT (x) − αT
0 FT (x) is a non-negative eigenfunction of

P V
T . Then P V

T (HT )(x0) = 0. By Lemma 4, HT ≡ 0. Thus, GT is a scalar multiple of FT .
This shows that eλV T is a simple eigenvalue.

We will try to eliminate the dependence on T ∈ [0, θ ] in the functions FT . Recall that θ ≤
1/2. Let n0 := min{n; 2−n ≤ θ}. Denote by F := F2−n0 . We claim that P V

2−n (F ) = eλV 2−n
F ,

∀n ≥ n0. To prove this note that by the semigroup property we have that P V

2−n0
(F2−n ) can

be rewritten as P V
2−n . . . P V

2−n (F2−n ), ∀n ≥ n0. Applying 2n−n0 times the fact that F2−n is

eigenfunction of the operator P V
2−n , we have P V

2−n0
(F2−n ) = eλV 2−n0

F2−n , ∀n ≥ n0. Since

eλV 2−n0 is simple eigenvalue to the operator P V

2−n0
, we get F2−n = F , ∀n ≥ n0. This finishes

the claim.
The last claim and the fact that the semigroup {P V

T ,T ≥ 0} is associated to the operator
L + V imply that

(L + V )(F ) = lim
n→∞

P V
2−n (F ) − F

2−n
= lim

n→∞
eλV 2−n − 1

2−n
F = λV F.

Since the operator L+V = LA − I +V is a bounded operator, using the equality above we
get

P V
T (F )(x) = eT (L+V )(F )(x) =

∞∑

n=0

T n

n! (L + V )n(F )(x) =
∞∑

n=0

T n

n! λn
V F (x) = eλV T F (x),

for any T ≥ 0.
Therefore, with these final considerations, we finished the proof of one of our main re-

sults, which is Theorem 1 (Perron-Frobenius). Notice that λV is both eigenvalue for the
eigenfunction (see Sect. 2.2) and also eigenvalue for the dual operator (Sect. 2.1).

In terms of discrete time dynamics we just showed the following result:

Corollary 6 Given a normalized Lipschitz potential A : {1, . . . , d}N → R and a Lipschitz
function V : {1, . . . , d}N →R, there exists Lipschitz function F = FV : {1, . . . , d}N → R and
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λ = λV such that, for all x ∈ {1, . . . , d}N

LA(F )(x)

F (x)
=

∑

σ(y)=x

eA(y)F (y)

F (x)
= 1 − V (x) + λ. (7)

Notice that the addition of a constant to V produces an additive change in the eventual
eigenvalue λ.

3 The Continuous Time Gibbs State for V

From the Perron-Frobenius Theorem associated to V , we can define a new continuous time
Markov chain which will be the Gibbs state for V . Remember that L + V = LA − I + V

generates the semigroup {P V
T ,T ≥ 0}.

For T ≥ 0, if one defines

PV
T (f )(x) = Ex

[

e
∫ T

0 V (Xr )dr F (XT )

eλV T F (x)
f (XT )

]

= P V
T (Ff )(x)

eλV T F (x)
, (8)

where F and λV are the eigenfunction and the eigenvalue, respectively. Then PV
T (1)(x) = 1,

∀x ∈ {1, . . . , d}N. This will define the stochastic semigroup we were looking for. From this
we will get a new continuous time Markov chain which will help to define the Gibbs state
for V .

We point out that LA(F)

F
(y) = 1 − V (y) + λV = γV (x) > c > 0, for some positive c. We

can say that because F and LA(F ) are continuous strictly positive functions and the state
space is compact.

From the above, it is natural to consider a new normalized Lipschitz potential BV and a
function γV defined by

BV (y) := A(y) − log
(
1 − V

(
σ(y)

) + λV

) + logF(y) − logF
(
σ(y)

)
,

∀y ∈ {1, . . . , d}N and

γV (x) := 1 − V (x) + λV , ∀x ∈ {1, . . . , d}N,

(9)

where V , F and λV were introduced before.

Proposition 7 If V is a Lipschitz function we define the operator LV acting on bounded
mensurable functions f : {1, . . . , d}N →R as

LV (f )(x) = γV (x)
∑

σ(y)=x

eBV (y)
[
f (y) − f (x)

]
, (10)

where BV (y) and γV are defined in (9). Then, this operator, LV is the infinitesimal generator
associated to a semigroup {PV

T , T ≥ 0} defined in (8).

Proof We begin proving that the {PV
T , T ≥ 0} is a semigroup. Recalling its definition, we

get

PV
t

(
PV

s (f )
)
(x) = P V

t (FPV
s (f ))(x)

eλV tF (x)
,
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we need to analyze P V
t (FPV

s (f ))(x). In this way,

P V
t

(
FPV

s (f )
)
(x) = Ex

[
e

∫ t
0 V (Xr )drF (Xt)P

V
s (f )(Xt)

]

= Ex

[

e
∫ t

0 V (Xr )dr F (Xt)

eλV sF (Xt)
P V

s (Ff )(Xt )

]

= 1

eλV s
P V

t+s(Ff )(x).

One can conclude that {PV
T , T ≥ 0} is a semigroup.

To prove that the infinitesimal generator (10) is associated to this semigroup, we need to
observe that

PV
t (f )(x) − f (x)

t
= 1

eλV tF (x)

(
P V

t (Ff )(x) − (Ff )(x)

t

)

+ f (x)

(
e−λV t − 1

t

)

.

Taking the limit as t goes to zero the expression above converges to

1

F(x)
(L + V )(Ff )(x) − f (x)λ = −λf (x) + V (x)f (x) + 1

F(x)
L(Ff )(x), (11)

which we denote by LV (f )(x). Using the hypotheses about V and equation (7) of Lemma 6,
we get that LV (f )(x) is equal to

∑

σ(y)=x

eA(y)F (y)

F (x)
f (y) − (

1 − V (x) + λ
)
f (x) =

∑

σ(y)=x

eA(y)F (y)

F (x)

[
f (y) − f (x)

]
.

Again, we use Lemma 6 to obtain γV (x)F (x) = LA(F )(x). Thus, the expression above can
be rewritten as

γV (x)
∑

σ(y)=x

eA(y)F (y)

LA(F )(x)

[
f (y) − f (x)

] = γV (x)
∑

σ(y)=x eBV (y)
[
f (y) − f (x)

]
.

�

Corollary 8 For all f ∈ C +, x ∈ {1, . . . , d}N and t > 0 small

log

(
PV

t (f )(x)

f (x)

)

∼ tLV (f )(x)

f (x)
,

where an ∼ bn means that an/bn → 1, as n → ∞.

Proof In the proof above we obtained that

lim
t→0

PV
t (f )(x) − f (x)

t
= LV (f )(x),

where LV (f )(x) = −λf (x) + V (x)f (x) + 1

F(x)
L(Ff )(x). Then, for t small

PV
t (f )(x)

f (x)
− 1 ∼ tLV (f )(x)

f (x)
,
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for all f ∈ C +. Since for all x fixed and t small we get

log

(
PV

t (f )(x)

f (x)

)

∼ PV
t (f )(x)

f (x)
− 1,

we finished the proof. �

We will elaborate now on the initial stationary probability μBV ,γV
. Notice that all of

the above depends on the choice of the initial a priori probability (which, in our case, is
associated to the generator L = LA − I ). The stationary measure for the continuous time
process generated by LV (with exponential time of jump equal to γ = γV = 1 −V (x)+λV )
is

dμBV ,γV
(x) = 1

γV (x)

dμBV
(x)

∫
1

γV
dμBV

, (12)

where μBV
is discrete time equilibrium for the normalized Lipschitz potential BV (y) =

A(y) + logF(y) − logF(σ(y)) − logγV (σ (y)). In other words, for any f ∈ C , we have

∫
LV (f )dμBV ,γV

= 0.

As we said before, the appearance of the term 1
γV

introduce a new element, which was
not present in the classical discrete time setting.

Definition 9 Given a Lipschitz function V , we define a continuous time Markov process
{Y V

T , T ≥ 0} with state space {1, . . . , d}N whose infinitesimal generator LV acts on bounded
mensurable functions f : {1, . . . , d}N →R by the expression

LV (f )(x) = γV (x)
∑

σ(y)=x

eBV (y)
[
f (y) − f (x)

]
, (13)

where BV and γV are defined in (9). Now, we consider the initial stationary probability
μBV ,γV

defined in (12). We call this process {Y V
T , T ≥ 0} the continuous time Gibbs state for

the potential V . This defines a probability P
V := P

V
μBV ,γV

on the Skorohod space D which
we call the Gibbs probability for the interaction V .

Notice that for {Y V
T , T ≥ 0}, the exponential time of jumping tends to be larger when we

are close to the maximum of V . For a generic continuous time path, the particle stays more
time on this region.

If V is of the form −L(u)

u
, for some u ∈ C +, then, λ = 0, and μA = μBV

. In this case
γ = LA(u)

u
.

4 Relative Entropy, Pressure and the Equilibrium State for V

One can ask: “Did the Gibbs state of the last section satisfy a variational principle?” We will
address this question in the present section.
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Definition 10 The probability P̃μ = P̃
γ̃ ,Ã
μ on D is called admissible, if it is generated by

the initial measure μ and the continuous time Markov chain with infinitesimal generator L̃,
which acts on bounded mensurable functions f : {1, . . . , d}N → R by

L̃(f )(x) = γ̃ (x)
∑

σ(y)=x

eÃ(y)
[
f (y) − f (x)

]
, (14)

where γ̃ is a strictly positive continuous function, and, Ã is a normalized Lipschitz potential.
We point out that μ do not have to be stationary for this chain.

Notice that according to the last section all the Gibbs Markov chains P
V
μBV ,γV

one gets

from a generic V are admissible. If we take any μ on {1, . . . , d}N, and we denote by Pμ the
one we get when Ã = A and γ̃ = 1, i.e., the one we get from the unperturbed system with
the initial measure μ, then Pμ is also admissible.

In the same way as in (12), the stationary measure for the continuous time process with
generator (14) is

dμÃ,γ̃ (x) = 1

γ̃ (x)

dμÃ(x)
∫

1
γ̃

dμÃ

, (15)

where μÃ is discrete time equilibrium for Ã.
From now on, we will consider a certain Lipschitz potential V fixed until the end of

this section. The different probabilities P̃γ̃ ,Ã
μ

Ã,γ̃
on D will describe the possible candidates for

being the stationary equilibrium continuous time Markov chain for V as we will explain
later in our reasoning.

Given V we will consider a variational problem in the continuous time setting which is
analogous to the pressure problem in the discrete time setting (thermodynamic formalism).
This requires a meaning for entropy. A continuous time stationary Markov chain, which
maximizes our variational problem, will be the continuous time equilibrium state for V . By
changing γ̃ and Ã, we get a set of different infinitesimal generators that are candidates to
define the continuous time equilibrium state for the given potential V . Nevertheless, it just
makes sense to look for candidates among the admissible ones. We will show in the end
that the continuous time equilibrium state for V is indeed the Gibbs state P

V
μBV ,γV

of the last
section.

We will fix a certain μ on P({1, . . . , d}N) (no restrictions about it). First, we want to
give a meaning for the relative entropy of any admissible probability P̃μ concerning Pμ. The
reason why we use the same initial measure μ for both processes is that we need that the
associated probabilities, P̃μ and Pμ, on D are absolutely continuous with respect to each
other. Anyway, the final numerical result for the value of entropy will not depend on the
common μ we chose as the initial probability, as can be seen in Lemma 13. The common μ

could de eventually μA. For a fixed T ≥ 0, we consider the relative entropy of the P̃μ = P̃
γ̃ ,Ã
μ ,

for some γ̃ , Ã, concerning Pμ up to time T ≥ 0 by

HT (P̃μ|Pμ) = −
∫

D

log

(
dP̃μ

dPμ

∣
∣
∣
∣
FT

)

(ω)dP̃μ(ω). (16)

Using the property that the logarithm is a concave function and Jensen’s inequality, we
obtain that for any g we have

∫
logg dμ ≤ log

∫
g dμ. Then HT (P̃μ|Pμ) ≤ 0. Negative en-
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tropies appear in a natural way when one analyzes a dynamical system with the property
that each point has an uncountable number of preimages (see [25, 28]).

By Proposition 27 in Appendix C, the logarithm of the Radon-Nikodym derivative de-
scribed above can be written as

log

(
dP̃μ

dPμ

∣
∣
∣
∣
FT

)

(ω) =
∫ T

0

[
1 − γ̃ (ωs)

]
ds

+
∑

s≤T

1{σ(ωs )=ωs− }
[
Ã(ωs) − A(ωs) + log

(
γ̃
(
σ(ωs)

))]
. (17)

Lemma 11 For all G ∈ C , it is true that

∫

D

∑

s≤T

1{σ(ωs )=ωs− }G(ωs)dP̃μ(ω) =
∫

D

∫ T

0
γ̃ (ωs)G(ωs)ds dP̃μ(ω)

=
∫ T

0

∫

{1,...,d}N
P̃s(γ̃G)(x)dμ(x)ds,

where {P̃s , s ≥ 0} is the semigroup associated to the Markov chain that it was generated by
L̃, see (14).

The proof of this lemma is in Appendix D.
Now, from (16), (17) and the lemma above we obtain

HT (P̃μ|Pμ) =
∫ T

0

∫

{1,...,d}N
P̃s(γ̃ − 1)(x)dμ(x)ds

+
∫ T

0

∫

{1,...,d}N
P̃s

(
γ̃ [A − Ã − log γ̃ ◦ σ ])(x)dμ(x)ds. (18)

From the previous expression and ergodicity we get that there exists the limit
limT →∞ 1

T
HT (P̃μ|Pμ).

Definition 12 For a fixed initial probability μ on P({1, . . . , d}N), the limit

lim
T →∞

1

T
HT (P̃μ|Pμ)

is called the relative entropy of the measure P̃μ concerning the measure Pμ (recall that Pμ

is associated to the initial fixed potential A). Moreover, we denote this limit by H(P̃μ|Pμ).

The goal of the next result is characterize the relative entropy of the measure P̃μ concerning
Pμ.

Lemma 13 The relative entropy H(P̃μ|Pμ) can be written as

∫

{1,...,d}N
(
γ̃ (x) − 1

)
dμÃ,γ̃ (x) +

∫

{1,...,d}N
γ̃ (x)

[
A(x) − Ã(x) − log(γ̃ ◦ σ)(x)

]
dμÃ,γ̃ (x).
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Proof This proof follows by Definition 12, expression (18) and Ergodic Theorem. �

Definition 14 For A fixed, and a given Lipschitz potential V , we denote the Pressure (or,
Free Energy) of V as the value

P (V ) := sup
P̃μ

admissible

H(P̃μ|Pμ) +
∫

{1,...,d}N
V (x)dμÃ,γ̃ (x),

where μÃ,γ̃ is the initial stationary probability for the infinitesimal generator L̃, defined in
(14). Moreover, any admissible element which maximizes P (V ) is called a continuous time
equilibrium state for V .

Finally, we can state the main result of this section:

Proposition 15 The pressure of the potential V is given by

P (V ) = H
(
P

V
μ |Pμ

) +
∫

{1,...,d}N
V (x)dμBV ,γV

(x) = λV .

Therefore, the equilibrium state for V is the Gibbs state for V .

Proof Recalling the definition of the measure μÃ,γ̃ in (15) and the fact that the measure μÃ

is invariant for the shift, we get that the second term in (18) can be rewritten as

[∫
1

γ̃
dμÃ

]−1 ∫

{1,...,d}N
(
A(x) − Ã(x)

)
dμÃ(x) −

∫

{1,...,d}N
γ̃ (x) log γ̃ (x)dμÃ,γ̃ (x).

Let V be a Lipschitz function. Thus,

H(P̃μ|Pμ) +
∫

{1,...,d}N
V (x)dμÃ,γ̃ (x)

=
∫

{1,...,d}N
(
γ̃ (x) − γ̃ (x) log γ̃ (x) − 1 + V (x)

)
dμÃ,γ̃ (x)

+
[∫

1

γ̃
dμÃ

]−1 ∫

{1,...,d}N
(
A(x) − Ã(x)

)
dμÃ(x).

From (7), we can express the function V as λV + 1 − γV (x). Then the expression above
becomes

H(P̃μ|Pμ) +
∫

{1,...,d}N
V (x)dμÃ,γ̃ (x)

= λV +
[∫

1

γ̃
dμÃ

]−1 ∫

{1,...,d}N

(

1 − log γ̃ (x) − γV (x)

γ̃ (x)

)

dμÃ(x)

+
[∫

1

γ̃
dμÃ

]−1 ∫

{1,...,d}N
(
A(x) − Ã(x)

)
dμÃ(x). (19)
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The last integral above is equal to
∫

AdμÃ + h(μÃ). In order to analyze the second term in
(19), we add and subtract logγV (x) in the integrand and we use 1 + logy − y ≤ 0, for all
y ∈ (0,∞). Thus,

1 − log γ̃ (x) − γV (x)

γ̃ (x)
≤ − log

LA(F )(x)

F (x)
,

because γV (x) = LA(F )(x)

F (x)
, for any x ∈ {1, . . . , d}N. This implies that

H(P̃μ|Pμ) +
∫

{1,...,d}N
V (x)dμÃ,γ̃ (x)

≤ λV +
[∫

1

γ̃
dμÃ

]−1[

−
∫

{1,...,d}N
log

LA(F )(x)

F (x)
dμÃ(x) +

∫

{1,...,d}N
AdμÃ + h(μÃ)

]

.

By [26] (see Theorem 4) and [19], we have

∫

{1,...,d}N
AdμÃ + h(μÃ) = inf

u∈C+

∫

{1,...,d}N
log

LA(u)(x)

u(x)
dμÃ(x).

Since F ∈ C + and
∫

1
γ̃

dμÃ > 0, we obtain

H(P̃μ|Pμ) +
∫

{1,...,d}N
V (x)dμÃ,γ̃ (x) ≤ λV .

One special case is when the measure P̃μ is PV
μ , i.e.,

γ̃ (x) = γV (x) = 1 − V (x) + λV = LA(F )(x)

F (x)
,

and

Ã(x) = BV (x) = A(x) + logF(x) − logLA(F )
(
σ(x)

)
.

In this case, the expression (19) becomes

H
(
P

V
μ |Pμ

) +
∫

{1,...,d}N
V (x)dμBV ,γV

(x)

= λV +
[∫

1

γV

dμBV

]−1[∫

{1,...,d}N
− log

(
LA(F )(x)

F (x)

)

− logF(x) + logLA(F )
(
σ(x)

)
dμBV

(x)

]

.

Due to the fact that μBV
is an invariant measure for the shift, we finally get

H
(
P

V
μ |Pμ

) + ∫
{1,...,d}N V (x)dμBV ,γV

(x) = λV . �
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5 A Large Deviation Principle for the Empirical Measure

Nice general references on this topic are [11, 19]. We point out that the process we consider
is not reversible differently from [15].

This section is divided on two subsections. The first one deals with the existence and the
uniqueness of equilibrium states and the second one is about large deviation properties.

5.1 Existence and Uniqueness of Equilibrium States

As before, we considered a fixed normalized Lipschitz potential A and the corresponding
infinitesimal generator L = LA − I . In this subsection we will assume that the perturbation
V is a Lipschitz function. As we mentioned before (see Sect. 2.1), for the given potential V ,
one can find an eigenprobability νV . This means that there exists λV = ∫

V dνV such that

∫
(LA − I + V )(f )dνV = λV

∫
f dνV ,

for any f ∈ C . As usual, we denote γV (x) = 1 − V (x) + λV . Notice that
∫

γV (x)dνV (x) =∫
(1 − V (x) + λV )dνV = 1 = ∫

LA(1)dνV .
Remember that LV (f )(x) = γV (x)

∑
σ(y)=x eBV (y)[f (y) − f (x)], where

BV (y) = A(y) + logF(y) − logF
(
σ(y)

) − log
(
1 − V

(
σ(x)

) + λV

)
,

is the infinitesimal generator associated to a semigroup {PV
T , T ≥ 0}.

Moreover, for all u ∈ C it is true that
∫

PV
t (u)dμBV ,γV

=
∫

udμBV ,γV
,

where dμBV ,γV
(x) = 1

γV (x)

dμBV
(x)

∫ 1
γV

dμBV

.

Lemma 16 Suppose F = FV > 0 is the main eigenfunction of the operator LA − I + V

with eigenvalue λV , then dν̃V (x) := 1
F(x)

dμBV ,γV
(x) = 1

F(x)
1

γV (x)

dμBV
(x)

∫ 1
γV

dμBV

satisfies, for all

g ∈ C ,
∫

(LA − I + V )(g)dν̃V = λV

∫
g dν̃V .

Therefore, ν̃V is an eigenprobability for (LA − I +V )∗. Moreover, if we know that the initial
stationary probability for {PV

t = etLV
, t ≥ 0} is unique, then the eigenprobability is unique.

Proof It is known that
∫

LV (f )dμBV ,γV
= 0, ∀f ∈ C .

We can consider an equivalent expression for LV (f ), which is in (11), then for any f ∈ C ,
we have

∫
1

F
(L + V )(Ff )dμBV ,γV

= λ

∫
f dμBV ,γV

.
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Denote by ν̃V the measure 1
F
μBV ,γV

. Given a g ∈ C , take f = g/F , thus,

∫
(L + V )(g)dν̃V = λ

∫
g dν̃V .

This shows the first claim, that is, ν̃V is the eigenprobability. Suppose that the initial sta-
tionary probability, μBV ,γV

, for {etLV
, t ≥ 0} is unique and ν̃V is the eigenprobability. By

hypothesis F = FV is the unique main eigenfunction for L + V . We can reverse the above
argument for the measure FV dν̃V . Notice that each step is an equivalence. Therefore, one
can show that

∫
LV (f )FV dν̃V = 0, ∀f ∈ C .

From the uniqueness we assumed above, we get
dμBV ,γV

dν̃V
= FV . The final conclusion is that

if the initial stationary probability for the continuous time Markov chain associated to V

satisfies μBV ,γV
= FV νV , then ν̃V is unique. �

Lemma 17 If there exists a function F ∈ C + such that (L + V )F = λV F , then the func-
tional acting on P({1, . . . , d}N) given by

I (ν) := − inf
u∈C+

∫
L(u)

u
dν ≥ 0, (20)

satisfies

λV = sup
ν∈P({1,...,d}N)

(∫
V dν − I (ν)

)

.

The supremum value above is achieved on the probability μBV ,γV
. Moreover, if for any Lip-

schitz V all the above is true, then, using the Legendre Transform, we obtain

I (ν) = sup
V ∈C

(∫
V dν − λV

)

= sup
V ∈C

and V is Lipschitz

(∫
V dν − λV

)

,

for all ν probability on {1, . . . , d}N and I (ν) = ∞ in any other case.

Proof We follow the reasoning described in Sect. 4 of [19] adapted to the present case. First,
we show that

λV ≥ sup
ν∈P({1,...,d}N)

(∫
V dν − I (ν)

)

. (21)

Let ν ∈ P({1, . . . , d}N), by definition of the functional I , we get
∫

V dν − I (ν) ≤
∫

V dν +
∫

L(u)

u
dν, ∀u ∈ C +.

We will take u = F , where F is the eigenfunction of the P V
T , then we obtain

∫
V dν − I (ν) ≤

∫
V dν +

∫
L(F)

F
dν.
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Using (7), we can rewrite L(F)

F
as −V + λV , then the inequality follows.

Now, we will show that

λV ≤ sup
ν∈P({1,...,d}N)

(∫
V dν − I (ν)

)

. (22)

Actually, we will prove that

λV ≤
∫

V dμBV ,γV
− I (μBV ,γV

),

and this implies the inequality (22).
In order to show the above, we consider a general u ∈ C +. Recalling the expression of

LV , which is in Proposition 7, we get

LV (u/F )

u/F
= L(u)

u
+ V − λV .

As the infinitesimal generator of PV
t is LV , from Corollary 8, we have for all u ∈ C + and t

small

LV (u/F )

u/F
∼ 1

t
log

(
PV

t (u/F )

u/F

)

.

Using these two last expressions we get for any u ∈ C +

∫ [
L(u)

u
+ V − λV

]

dμBV ,γV
∼ 1

t

∫
log

(
PV

t (u/F )

u/F

)

dμBV ,γV
.

By Jensen’s inequality for any u ∈ C + and small t > 0, we have the right-hand side in the
last expression is bounded from below by

1

t

∫
[
PV

t

(
log(u/F )

) − log(u/F )
]

dμBV ,γV
= 0.

The last equality is due to fact that μBV ,γV
is the invariant measure. Therefore, we take the

infimum among all u ∈ C + in the above expression, and we get

inf
u∈C+

∫ [
L(u)

u
+ V

]

dμBV ,γV
≥ λV .

Thus, we finish the proof of the inequality (22). Consequently, using (21) and (22) one can
conclude the statement of the lemma. The last claim follows from a standard procedure via
the classical Legendre transform. �

We point out that indeed is true that for any Lipschitz V there exist F and λ as above.
Therefore, the conclusion of last result is true in our case (for the corresponding I ).

In the future we will need the property that for each Lipschitz V the probability which
attains the maximal value supν∈P({1,...,d}N)(

∫
V dν − I (ν)) is unique. In this direction we

consider first the following lemma.
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Lemma 18 For a fixed Lipschitz V , if ρ realizes

λV =
∫

V dρ − I (ρ),

then (PV
t )∗(ρ) = ρ, for all t ≥ 0.

Proof By hypothesis, we get

inf
u∈C+

∫
(L + V − λV )(u)

u
dρ = 0.

We have to show that for any f ∈ C it is true
∫

LV (f )dρ = 0. The inspiration for the main
idea of this proof comes from the reasoning of Sects. 2 and 3 in [10] (a little bit different
from the last paragraph of the proof of Proposition 3.1 in [20]).

Recalling the definition of the operator LV given in Proposition 7, and using the Corol-
lary 6, we obtain the next equality

LV (f )(x) = 1

F(x)

∑

σ(y)=x

eA(y)F (y)
[
f (y)−f (x)

] = LA(Ff )(x)

F (x)
−LA(F )(x)

f (x)

F (x)
. (23)

We point out that as F ∈ C + is the main eigenfunction of L + V with eigenvalue λV ,
then, F realizes the infimum

inf
u∈C+

∫
(L + V − λV )(u)

u
dρ = 0.

Given any f ∈ C , take ε > 0 such that ε < 1
c
, where ‖f ‖∞ ≤ c. For this choice of ε,

observe that F(1 + εf ) ∈ C +. Denoting

G(ε) :=
∫

(L + V − λV )(F (1 + εf ))

F (1 + εf )
dρ ≥ 0,

we note that G(ε) takes its minimal value at ε = 0. Now, taking derivative of G with respect
to ε and applying to the value ε = 0, we get from (23)

0 = G′(0) =
∫

(L + V − λV )(Ff )F

F 2
− (Ff )(L + V − λV )(F )

F 2
dρ

=
∫

((LA − I ) + V − λV )(Ff )

F
− f ((LA − I ) + V − λV )(F )

F
dρ

=
∫ [

LA(Ff )

F
− f LA(F )

F

]

dρ =
∫

LV (f )dρ. �

Uniqueness will follow from the next result.

Proposition 19 When V is Lipschitz function, there is only one ρ which is the initial sta-
tionary probability for the stochastic semigroup {PV

t , t ≥ 0} generated by LV .
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Proof Suppose ρ is such that for all t ≥ 0, we have (PV
t )∗(ρ) = ρ. This means that for any

f ∈ C , we have

∫
PV

t (f )dρ =
∫

f dρ.

This implies that
∫

LV (f )dρ = 0, for any f ∈ C . Using the expression (11) for LV , the last
integral becomes

∫ [
1

F
(LA − I + V )(Ff ) − λV f

]

dρ = 0,

for any f ∈ C , which is equivalent to

∫
f (1 − V + λV )dρ =

∫
LA(Ff )

F
dρ =

∫
LA(Ff )

F

1

1 − V + λV

(1 − V + λV )dρ.

We point out that it is known that 1 − V + λV is strictly positive. Consider BV (y) = A(y) −
log[1 −V (σ(y))+λ]+ logF(y)− logF(σ(y)) and consider the following Ruelle operator

f → LBV
(f )(x) =

∑

σ(y)=x

eBV (y)f (y),

which satisfies LBV
(1) = 1. From classical results in thermodynamic formalism there is

a unique μ̃ such that L ∗
BV

(μ̃) = μ̃. We will show that dμ̃ = (1 − V + λV )dρ. Indeed,
L ∗

BV
(μ̃) = μ̃ means that for any f , we have

∫
f dμ̃ =

∫ ∑

σ(y)=x

eA(y)−log[1−V (σ(y))+λ]+logF(y)−logF(σ(y))f (y)dμ̃(x)

=
∫

LA(Ff )

F

1

1 − V + λV

dμ̃,

for all f ∈ C . Since μ̃ is unique, we get that ρ is unique. �

The next theorem follows easily from the last two results.

Theorem 20 For a fixed Lipschitz function V , there is a unique ρ which realizes

λV =
∫

V dρ − I (ρ).

Moreover, ρ = μBV ,γV
, which is the initial stationary probability for LV , and the measure

P
V
μBV ,γV

is invariant for the continuous time semiflow {Θt, t ≥ 0} on the Skorohod space.

We consider now some general statements that will be necessary in the next section.
In the case that there exists the eigenfunction F , it is possible to show that

lim
T →∞

1

T
log

∫

D

e
∫ T

0 V (ωr )dr dPx(ω) = λV ,
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for all x ∈ {1, . . . , d}N. Indeed, log
∫

D
e

∫ T
0 V (ωr )dr dPx(ω) can be written as λV T +

log(F (x)
PV

T
(1)(x)

PV
T

(F )(x)
). Since the eigenfunction F is strictly positive on a compact set, the sec-

ond term in the last sum is bounded above and below by constants that depend only on F .
This proves the desired limit.

In a similar way as above, we obtain

lim
T →∞

1

T
log

∫

D

e
∫ T

0 V (ωr )dr dPμA
(ω) = λV . (24)

Remember that the value λV was obtained from V as the one such that (LA − I +
V )∗νV = λV νV , with λV = ∫

V dνV , see Sect. 2.1.
We consider below a general continuous potential V .

Lemma 21 For all continuous function V : {1, . . . , d}N →R, there exists the limit

lim
T →∞

1

T
log sup

x∈{1,...,d}N

∫

D

e
∫ T

0 V (ωr )dr dPx(ω) = lim
T →∞

1

T
log sup

x∈{1,...,d}N
P V

T (1)(x).

We will denote this limit by Q(V ).

Proof Notice that, for all x ∈ {1, . . . , d}N and T ,S ≥ 0, it is true that

P V
T +S(1)(x) = P V

T

(
P V

S (1)
)
(x) = Ex

[
e

∫ T
0 V (Xr )drP V

S (1)(XT )
]

≤ sup
x∈{1,...,d}N

P V
S (1)(x)Ex

[
e

∫ T
0 V (Xr )dr

]

≤ sup
x∈{1,...,d}N

P V
S (1)(x) sup

x∈{1,...,d}N
P V

T (1)(x).

Then the limit in the statement of this lemma follows by subadditivity. �

The above result is related to questions raised in (4.3) in [19] and (4.2.21) in [11].
From the above we get the next lemma.

Lemma 22 For any Lipschitz function V , we have Q(V ) = λV .

We will show several properties of Q(V ) in Appendix E. More precisely, we show that
in our setting the expressions (2.1) and (2.2) in [19] are true.

5.2 Large Deviations

In this subsection we will apply to our setting the general results stated in [19]. The purpose
of this subsection is to show that the large deviation principle at the level two (see (1.1) and
(1.2) in [19]) is true for the a priori process. We will have to show that the hypothesis of
Theorem 2.1 in [19] is true in our setting. General references for large deviations are [9, 11,
12, 16, 18, 23].

First, we will present the sequence of definitions and statements of [19] in the particular
case of our setting. Recalling that {Xt, t ≥ 0} denotes the a priori continuous time stochastic
process with infinitesimal generator L = LA − I and initial probability μA. We denote by
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PμA
the probability on the Skorohod space D associated to such stationary process. We will

begin with the occupational time for {Xt, t ≥ 0}. Define, for all t ≥ 0, ω ∈ D and for any
Borel subset Γ of the {1, . . . , d}N,

Lω
t (Γ ) = 1

t

∫ t

0
1Γ

(
Xs(ω)

)
ds.

Observe that for t and ω fixed we have Lω
t is a measure on {1, . . . , d}N and it is called em-

pirical measure. Moreover, if we consider the canonical version of the process {Xt, t ≥ 0},
we can rewrite the expression above as

∫

{1,...,d}N
1Γ (y)Lω

t (dy) = 1

t

∫ t

0
1Γ (ωs)ds.

Fixing t ≥ 0 and ω ∈ D , using the fact that Lω
t is a measure on {1, . . . , d}N, moreover,

using the expression above and usual arguments for approximating bounded (or positive)
functions, we have

∫

{1,...,d}N
f (y)Lω

t (dy) = 1

t

∫ t

0
f (ωs)ds, (25)

for all f : {1, . . . , d}N →R bounded (or positive) mensurable function.
Finally, by the Ergodic Theorem, for any f ∈ C +, we have

lim
t→∞

∫

{1,...,d}N
f (y)Lω

t (dy) =
∫

{1,...,d}N
f (y)μA(dy), PμA

—almost surely in ω,

in other words, limt→∞ Lω
t = μA, PμA

-almost surely in ω, in the sense of weak convergence
of measures. Since the measure Lω

t is random, there is some deviation to this convergence.
We will study now the rate of convergence. In order to do it, we will prove the large devi-
ation principle at level two for the a priori process {Xt, t ≥ 0}. We say there exists a large
deviation principle at level two, if there exists a lower semicontinuous functional I , defined
on M ({1, . . . , d}N), such that:

(i) for any closed set K ⊂ M ({1, . . . , d}N)

lim sup
t→∞

1

t
logPμA

[
Lt ∈ K

] ≤ − inf
ν∈K

I (ν),

(ii) for any open set G ⊂ M ({1, . . . , d}N)

lim inf
t→∞

1

t
logPμA

[
Lt ∈ G

] ≥ − inf
ν∈G

I (ν).

We call I the deviation function, or the rate function.
In order to prove the result above, we observe that by the equality (25), we get

e
t
∫
{1,...,d}N f (y)Lω

t (dy) = e
∫ t

0 f (ωs )ds ,

for all t ≥ 0, ω ∈ D and f : {1, . . . , d}N → R bounded (or positive) mensurable function.
Then, we integrate both sides of the equality above concerning Px , and we obtain

∫

D

e
t
∫
{1,...,d}N f (y)Lω

t (dy) dPx(ω) =
∫

D

e
∫ t

0 f (ωs )ds dPx(ω),
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for all t ≥ 0 and f : {1, . . . , d}N → R bounded (or positive) mensurable function. We recall
that Px is a probability on D induced by the initial measure δx and the Markov process
{Xt ; t ≥ 0}.

Using Lemma 22, and (24) in the previous section, and the last fact, we have

Q(V ) = λV = lim
T →∞

1

T
log

∫

D

e
∫ T

0 V (ωr )dr dPμA
(ω)

= lim
T →∞

1

T
log

∫

D

e
T

∫
{1,...,d}N V (y)Lω

T
(dy) dPμA

(ω).

This shows that Q(V ) is the same one given in (1.3) of [19], then this will allow us to find
the functional rate I . From the general setting of [19] (there is no mention of eigenvalue in
the below expression), we get

0 ≤ I (ν) = sup
V ∈C

(∫
V dν − Q(V )

)

= sup
V ∈C

and V is Lipschitz

(∫
V dν − Q(V )

)

,

for any ν on P({1, . . . , d}N) and I (μ) = ∞ for all other μ ∈ M ({1, . . . , d}N). We point out
that the above expression for I is in agreement with the one in Lemma 17 by Lemma 22.
Since the dual space of C is the space M ({1, . . . , d}N), we have

Q(V ) = sup
μ∈P({1,...,d}N)

(∫
V dμ − I (μ)

)

.

Following [19] we say that μV ∈ P({1, . . . , d}N) is an equilibrium state for V , if

Q(V ) =
∫

V dμV − I (μV ).

A major result in the theory is Theorem 2.1 in [19]. We will state a particular version of
this result in Theorem 23.

Theorem 23 If for each Lipschitz function V : {1, . . . , d}N →R the equilibrium state μV is
unique, then, the large deviation principle at level two is true with the deviation function

I (ν) = sup
V ∈C

(∫
V dν − Q(V )

)

.

From (24) we get the upper bound estimate for I and from Theorem 20 (uniqueness) we
get the lower bound estimate. Then, we can state one of our main results (Theorem A in the
Introduction):

Theorem 24 Let {Xt, t ≥ 0} be the a priori process, then the large deviation principle at
level two is true for our setting with the deviation function I given by

I (ν) = sup
V ∈C

(∫
V dν − Q(V )

)

,

for any probability ν on {1, . . . , d}N and I (ν) = ∞ in any other case.
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We point out that Lemma 17 characterizes the equilibrium state in our setting. We can
state a major result due to Y. Kifer which follows by the reasoning of Sect. 4 in [19]. This
was adapted from the original claim.

Theorem 25 If for each Lipschitz function V : {1, . . . , d}N → R there exists a positive
eigenfunction for the associated continuous time Ruelle operator, then, the deviation func-
tion I is also given by

I (ν) = − inf
u∈C+

∫
L(u)

u
dν.

It follows from last subsection (see Lemma 17) that the above expression is true in our
setting. In this way our description of the Large Deviation Principle at level two is com-
pleted. We refer the reader to Lemma 17 for explicit expressions related to the above result.

We point out that the above Theorem 25 in [19] (see also [20]) is presented in a different
setting: the state space is a Riemannian manifold and it is considered a certain class of
differential operators as infinitesimal generators. We do not consider such differentiable
structure. However, from last section we were able to adapt such reasoning to our setting.

Appendix A: The Spectrum of LA − I + V on L
2(μA) and Dirichlet Form

For any f ∈ L
2(μA) the Dirichlet form of f is

EA(f,f ) := 〈
(I − LA)(f ), f

〉
μA

.

Notice that

EA(f,f ) = 1

2

∫ ∑

σ(y)=x

eA(y)
[
f (x) − f (y)

]2
dμA(x) ≥ 0. (26)

Indeed,

〈
(I − LA)(f ), f

〉
μA

=
∫ ∑

σ(y)=x

eA(y)
[
f (x) − f (y)

]
f (x)dμA(x).

By the other hand,

〈
(I − LA)(f ), f

〉
μA

= 〈f,f 〉μA
− 〈

LA(f ), f
〉
μA

=
∫

[
LA

(
f 2

) − LA(f )f
]

dμA

=
∫ { ∑

σ(y)=x

eA(y)
[
f (y) − f (x)

]
f (y)

}

dμA(x).

These two equalities imply that

〈
(I − LA)(f ), f

〉
μA

= 1

2

∫ ∑

σ(y)=x

eA(y)
[
f (x) − f (y)

]2
dμA(x).

From expression (26) we have that EA(f,f ) = 0 implies f = 0.
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We point out that we will consider bellow eigenvalues in L
2(μA) which are not necessar-

ily Lipschitz.
Dirichlet forms are quite important (see [21]), among other reasons, because they are

particularly useful when there is an spectral gap. However, this will not be the case here.

Proposition 26 Let a Lipschitz function V : {1, . . . , d} → R such that supV − infV < 2.
There are eigenvalues c for LA − I + V in L

2(μA) such that [(supV − 2) ∨ 0] < c < infV .
Each eigenvalue has infinite multiplicity. Therefore, in this case, there is no spectral gap.

Proof The existence of positive eigenvalues c for the operator LA − I + V satisfying
[(supV − 2) ∨ 0] < c < infV will obtained from solving the twisted cohomological equa-
tion. In order to simplify the reasoning we will present the proof for the case E = {0,1}N.
From Sect. 2.2 in [5], we know that given functions z : E → R and C : E → R one can
solve in α the twisted cohomological equation

z(y)

C(y)
= 1

C(y)
α(y) − α

(
σ(y)

)
, (27)

in the case that |C| < 1. Indeed, just take

α(y) =
∞∑

j=0

z(σ j (y))

C(σ j (y))

(C(y)C(σ(y)) . . .C(σ j (y)))−1
.

Note that this function α is measurable and bounded but not Lipschitz.
Take z(y) = (−1)y0e−A(y), when y = (y0, y1, y2, . . . ). Now, for c ∈ ([(supV − 2) ∨ 0],

infV ) fixed, consider C(y) = 1 − V (σ(y)) + c. Notice that |C| < 1. Then, (27) becomes

(−1)y0 = eA(y)
{
α(y) − α

(
σ(y)

)(
1 − V

(
σ(y)

) + c
)}

.

Let x ∈ {1, . . . , d}N. Adding the equations above when y = 0x and when y = 1x, we get

(LA − I + V )(α)(x) = cα(x),

because σ(0x) = x = σ(1x), and the potential A is normalized.
It is also easy to show that changing a little bit the argument one can get an infinite

dimensional set of possible α associated to the same eigenvalue. �

Appendix B: Basic Tools for Continuous Time Markov Chains

In this section we present the proofs of Lemma 3 and Lemma 5. In order to do that, we will
present another way to analyze the properties of a continuous time Markov chain.

Suppose the process {Xt, t ≥ 0} is a continuous time Markov chain. In an alternative way
we can described it by considering its skeleton chain (see [24, 31]). Let {ξn}n∈N be a discrete
time Markov chain with transition probability given by p(x, y) = 1[σ(y)=x]eA(y). Consider
a sequence of random variables {τn}n∈N, which are independent and identically distributed
according to an exponential law of parameter 1. For n ≥ 0, define

T0 = 0, Tn+1 = Tn + τn = τ0 + τ1 + · · · + τn.

Thus, Xt can be rewritten as
∑+∞

n=0 ξn1[Tn≤t<Tn+1], for all t ≥ 0.
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Proof of Lemma 3 Using the above, we are able to describe expression (1) in a different
way:

P V
T (f )(x) = Ex

[
e

∫ T
0 V (Xr )drf (XT )

] =
+∞∑

n=0

Ex

[
e

∫ T
0 V (Xr )drf (XT )1[Tn≤T <Tn+1]

]

=
+∞∑

n=0

Ex

[
eT1V (ξ0)+(T2−T1)V (ξ1)+···+(Tn−Tn−1)V (ξn−1)+(T −Tn)V (ξn)f (ξn)1[Tn≤T <Tn+1]

]

=
+∞∑

n=0

Ex

[
eτ0V (ξ0)+τ1V (ξ1)+···+τn−1V (ξn−1)+(T −∑n−1

i=0 τi )V (ξn)f (ξn)1[∑n−1
i=0 τi≤T <

∑n
i=0 τi ]

]

= Ex

[
eT V (ξ0)f (ξ0)1[T <τ0]

] +
+∞∑

n=1

d∑

a1=1

· · ·
d∑

an=1

Ex

[
eτ0V (ξ0)+···+(T −∑n−1

i=0 τi )V (ξn)

× f (ξn)1[∑n−1
i=0 τi≤T <

∑n
i=0 τi ]1[ξ1=a1x,...,ξn=an...a1x]

]
,

where σn(an . . . a1x) = x. The first term above is equal to eT V (x)f (x)e−T . The summand in
the second one is equal to

Ex

[
eτ0V (ξ0)+···+(T −∑n−1

i=0 τi )V (ξn)f (ξn)1[∑n−1
i=0 τi≤T <

∑n
i=0 τi ]|ξ1 = a1x, . . . , ξn = an . . . a1x

]

×Px[ξ1 = a1x, . . . , ξn = an . . . a1x].

Using the transition probability of the Markov chain {ξn}n, we get

Px[ξ1 = a1x, . . . , ξn = an . . . a1x] = eA(a1x) . . . eA(an...a1x).

Recalling that the random variables {τi} are independent and identically distributed accord-
ing to an exponential law of parameter 1, we have

Ex

[
eτ0V (ξ0)+···+(T −∑n−1

i=0 τi )V (ξn)f (ξn)1[∑n−1
i=0 τi≤T <

∑n
i=0 τi ]|ξ1 = a1x, . . . , ξn = an . . . a1x

]

= Ex

[
eτ0V (x)+···+(T −∑n−1

i=0 τi )V (an...a1x)f (an . . . a1x)1[∑n−1
i=0 τi≤T <

∑n
i=0 τi ]

]

= f (an . . . a1x)

∫ ∞

0
dtn . . .

∫ ∞

0
dt0e

t0V (x)+···+(T −∑n−1
i=0 ti )V (an...a1x)

× 1[∑n−1
i=0 ti≤T <

∑n
i=0 ti ]e

−t0 . . . e−tn .

Therefore,

P V
T (f )(x) = Ex

[
e

∫ T
0 V (Xr )drf (XT )

] = eT V (x)f (x)e−T

+
+∞∑

n=1

d∑

a1=1

· · ·
d∑

an=1

eA(a1x) . . . eA(an...a1x)f (an . . . a1x)

×
∫ ∞

0
dtn . . .

∫ ∞

0
dt0e

t0V (x)+···+(T −∑n−1
i=0 ti )V (an...a1x)1[∑n−1

i=0 ti≤T <
∑n

i=0 ti ]e
−t0 . . . e−tn . �
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Proof of Lemma 5 We begin analyzing

I T
V (an . . . a1x)

=
∫ ∞

0
dtn . . .

∫ ∞

0
dt0e

t0V (x)+···+(T −∑n−1
i=0 ti )V (an...a1x)1[∑n−1

i=0 ti≤T <
∑n

i=0 ti ]e
−t0 . . . e−tn

≤ eT CV d(x,y)+T CV d(a1x,a1y)+···+T CV d(an...a1x,an...a1y)

×
∫ ∞

0
dtn . . .

∫ ∞

0
dt0e

t0V (y)+···+(T −∑n−1
i=0 ti )V (an...a1y)1[∑n−1

i=0 ti≤T <
∑n

i=0 ti ]e
−t0 . . . e−tn

≤ eT CV (1+θ+···+θn)d(x,y)

×
∫ ∞

0
dtn . . .

∫ ∞

0
dt0e

t0V (y)+···+(T −∑n−1
i=0 ti )V (an...a1y)1[∑n−1

i=0 ti≤T <
∑n

i=0 ti ]e
−t0 . . . e−tn

≤ eT CV (1−θ)−1d(x,y)I T
V (an . . . a1y) (28)

and eT V (x)e−T ≤ eT CV d(x,y)eT V (y)e−T . Since the potential A is also Lipschitz, we get

eA(a1x) . . . eA(an...a1x) ≤ eCA(θ+···+θn)d(x,y)eA(a1y) . . . eA(an...a1y)

≤ eCAθ(1−θ)−1d(x,y)eA(a1y) . . . eA(an...a1y). (29)

By the hypothesis we assume for f , we get

f (an . . . a1x) ≤ eCf θnd(x,y)f (an . . . a1y) ≤ eCf θd(x,y)f (an . . . a1y).

Thus,

P V
T (f )(x) = eT V (x)e−T +

+∞∑

n=1

d∑

a1=1

· · ·
d∑

an=1

eA(a1x) . . . eA(an...a1x)f (an . . . a1x)I T
V (an . . . a1x)

≤ eT CV d(x,y)eT V (y)e−T + e[(CAθ+T CV )(1−θ)−1+Cf θ]d(x,y)

×
+∞∑

n=1

d∑

a1=1

· · ·
d∑

an=1

eA(a1y). . . eA(an...a1y)f (an . . . a1y)I T
V (an . . . a1y)

≤ e[(CAθ+T CV )(1−θ)−1+Cf θ]d(x,y)

[

eT V (y)e−T

+
+∞∑

n=1

d∑

a1=1

· · ·
d∑

an=1

eA(a1y). . . eA(an...a1y)f (an . . . a1y)I T
V (an . . . a1y)

]

≤ e[(CAθ+T CV )(1−θ)−1+Cf θ]d(x,y)P V
T (f )(y). �

Appendix C: Radon-Nikodym Derivative

Let {FT , T ≥ 0} be the natural filtration.
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Proposition 27 The Radon-Nikodym derivative of the measure Pμ (associated to the a priori
process) concerning the admissible measure P̃μ (see Definition 10) restricted to FT is

dPμ

dP̃μ

∣
∣
∣
∣
FT

= exp

{∫ T

0

(
γ̃ (Xs) − 1

)
ds +

∑

s≤T

1[σ(Xs )=Xs− ]
(
A(Xs) − Ã(Xs)

− log
(
γ̃
(
σ(Xs)

)))
}

.

Proof The probabilities P̃μ and Pμ on D are equivalent, because the initial measure and
the allowed jumps are the same. Thus, the expectation under Eμ of all bounded function
ψ : D →R, FT -measurable, is

Ẽμ

[

ψ
dPμ

dP̃μ

∣
∣
∣
∣
FT

]

.

The goal here is to obtain a formula for the Radon-Nikodym derivative dPμ

dP̃μ
. Since ev-

ery bounded FT -measurable function can be approximated by functions depending only
on a finite number of coordinates, then, it is enough to work with these functions. For
k ≥ 1, consider a sequence of times 0 ≤ t1 < · · · < tk ≤ T and a bounded function F :
({1, . . . , d}N)k →R. Using the skeleton chain, presented in the proof of Lemma 3, we get

Eμ

[
F(Xt1 , . . . ,Xtk )

] =
∑

n≥0

Eμ

[
F(Xt1 , . . . ,Xtk )1[Tn≤T <Tn+1]

]
.

Since F(Xt1 , . . . ,Xtk ) restricted to the set [Tn ≤ T < Tn+1] depends only on ξ1, T1, . . . ,

ξn, Tn, there exist functions F̄n such that

Eμ

[
F(Xt1 , . . . ,Xtk )

] =
∑

n≥0

Eμ

[
F̄n(ξ1, T1, . . . , ξn, Tn)1[Tn≤T <Tn+1]

]
.

Through some calculations that are similar to the one used on the Corollary 2.2 in Ap-
pendix 1 of the [21], the last probability is equal to

∑

n≥0

Eμ

[
F̄n(ξ1, T1, . . . , ξn, Tn)1[Tn≤T ]e−λ(ξn)(T −Tn)

]
. (30)

Then, we need to estimate for each n ∈ N and, moreover, for all bounded measurable
function G : ({1, . . . , d}N × (0,∞))n → R the expectation

Eμ

[
G(ξ1, T1, . . . , ξn, Tn)

] =
∫

{1,...,d}N
Ex

[
G(ξ1, T1, . . . , ξn, Tn)

]
dμ(x).

Notice that, for all x ∈ {1, . . . , d}N,

Ex

[
G(ξ1, T1, . . . , ξn, Tn)

] =
d∑

a1=1

· · ·
d∑

an=1

eA(a1x) . . . eA(an...a1x)

×
{∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt0e

−t0 . . . e−tn−1G(a1x, t0, . . . , an . . . a1x, tn−1 + · · · + t0)

}
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=
d∑

a1=1

· · ·
d∑

an=1

eÃ(a1x) . . . eÃ(an...a1x)

{∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt0γ̃ (x)e−γ̃ (x)t0 . . .

× γ̃ (an−1 . . . a1x)e−γ̃ (an−1...a1x)tn−1eA(a1x)−Ã(a1x) . . . eA(an...a1x)−Ã(an...a1x) e
(γ̃ (x)−1)t0

γ̃ (x)
. . .

× e(γ̃ (an−1...a1x)−1)tn−1

γ̃ (an−1 . . . a1x)
G(a1x, t0, . . . , an . . . a1x, tn−1 + · · · + t0)

}

= Ẽx

[

G(ξ1, T1, . . . , ξn, Tn) exp

{
n−1∑

i=0

(
γ̃ (ξi) − 1

)
τi

}
n−1∏

i=0

eA(ξi+1)−Ã(ξi+1) 1

γ̃ (ξi)

]

.

We can write
∑n−1

i=0 (γ̃ (ξi) − 1)τi as

n−1∑

i=0

(
γ̃ (ξi) − 1

)
∫ Tn

0
1[Ti≤s<Ti+1] ds =

∫ Tn

0

∞∑

i=0

(
γ̃ (ξi) − 1

)
1[Ti≤s<Ti+1] ds

=
∫ Tn

0

(
γ̃ (Xs) − 1

)
ds,

and, we can write eA(ξi+1)−Ã(ξi+1) 1
γ̃ (ξi )

as

exp

{
n−1∑

i=0

(
A(ξi+1) − Ã(ξi+1) − log γ̃ (ξi)

)
}

= exp

{
n−1∑

i=0

1[σ(ξi+1)=ξi ]
(
A(ξi+1) − Ã(ξi+1) − log γ̃

(
σ(ξi+1)

))
}

= exp

{∑

s≤Tn

1[σ(Xs )=Xs− ]
(
A(Xs) − Ã(Xs) − log

(
γ̃
(
σ(Xs)

)))
}

.

The expectation under Px of G(ξ1, T1, . . . , ξn, Tn) becomes

Ẽx

[

G(ξ1, T1, . . . , ξn, Tn) exp

{∫ Tn

0

(
γ̃ (Xs) − 1

)
ds

+
∑

s≤Tn

1[σ(Xs )=Xs− ]
(
A(Xs) − Ã(Xs) − log

(
γ̃
(
σ(Xs)

)))
}]

.

Using the formula above in (30), the expectation under Eμ of F(Xt1 , . . . ,Xtk ) is equal to

∑

n≥0

Ẽμ

[

F̄n(ξ1, T1, . . . , ξn, Tn)1[Tn≤T ]e−λ(ξn)(T −Tn)

× exp

{∫ Tn

0

(
γ̃ (Xs) − 1

)
ds +

∑

s≤Tn

1[σ(Xs )=Xs− ]
(
A(Xs) − Ã(Xs) − log

(
γ̃
(
σ(Xs)

)))
}]

.
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Once again, we use some calculations similarly to the Corollary 2.2 in Appendix 1 of the
[21] and we rewrite the expression above as

∑

n≥0

Ẽμ

[

F̄n(ξ1, T1, . . . , ξn, Tn)1[Tn≤T <Tn+1]

× exp

{∫ T

0

(
γ̃ (Xs) − 1

)
ds +

∑

s≤T

1[σ(Xs )=Xs− ]
(
A(Xs) − Ã(Xs) − log

(
γ̃
(
σ(Xs)

)))
}]

,

and, this sum is equal to

Ẽμ

[

F(Xt1 , . . . ,Xtk ) exp

{∫ T

0

(
γ̃ (Xs) − 1

)
ds

+
∑

s≤T

1[σ(Xs )=Xs− ]
(
A(Xs) − Ã(Xs) − log

(
γ̃
(
σ(Xs)

)))
}]

.

This finish the proof. �

Appendix D: Proof of Lemma 11

Proof of Lemma 11 We claim that

MG
T (ω) =

∑

s≤T

1{σ(ωs )=ωs− }G(ωs) −
∫ T

0
γ̃ (ωs)G(ωs)ds

is a P̃μ—martingale. Then, this lemma will follow from Ẽμ[MG
T ] = Ẽμ[MG

0 ] = 0. In order
to prove this claim it is enough to prove that

MT (ω) =
∑

s≤T

1{σ(ωs )=ωs− } −
∫ T

0
γ̃ (ωs)ds (31)

is a P̃μ—martingale, because MG
T = ∫

GdMT will be a P̃μ—martingale (see [33]).
Now, we prove (31). Let {FT , T ≥ 0} be the natural filtration. For all S < T , we prove

that Ẽμ[MT − MS |FS] = 0. By Markov property, we only need to show that Ẽx[Mt ] = 0.
Denote by Dx the space of all trajectories ω in D such that ω0 = x. Observe that, for all

ω in Dx ,

∫ t

0
γ̃ (ωs)ds =

∑

k≥1

d∑

i1=1

· · ·
d∑

ik=1

γ̃ (ik . . . i1x)

∫ t

0
1[ωs=ik ...i1x] ds. (32)

For all s ≥ 0 and y ∈ {1, . . . , d}N, Ns(y) denotes the number of times that the exponential
clock rang at site y. Thus, the first term on the right side of (31) can be rewritten as

∑

s≤t

1{σ(ωs )=ωs− } =
∑

k≥1

d∑

i1=1

· · ·
d∑

ik=1

Nt(ik . . . i1x), (33)

for all ω in Dx .
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Since (32) and (33) are true, in order to conclude this prove, it is sufficient to show that

Ẽx

[

Nt(y) − γ̃ (y)

∫ t

0
1[Xs=y] ds

]

= 0, (34)

for all y ∈ {1, . . . , d}N.
Let 0 = t0 < t1 < · · · < tn = t be a partition of the interval [0, t]. The expression (34) can

be rewritten as

n−1∑

i=0

Ẽx

[

Nti+1(y) − Nti (y) + γ̃ (y)

∫ ti+1

ti

1[Xs=y] ds

]

.

Observe that

Ẽx

[∫ ti+1

ti

1[Xs=y] ds

]

= Ẽy

[∫ ti+1−ti

0
1[Xs=y] ds

]

= Ẽy

[∫ ti+1−ti

0
1[Xs=y] ds1[Nti+1−ti

(y)=0]
]

+ Ẽy

[∫ ti+1−ti

0
1[Xs=y] ds1[Nti+1−ti

(y)>0]
]

= (ti+1 − ti ) + Oγ̃

(
(ti+1 − ti )

2
)
,

where the function Oγ̃ satisfies Oγ̃ (h) ≤ Cγ̃ h. Then, we only need to prove that

Ẽx

[
Nti+1(y) − Nti (y)

] = γ̃ (y)(ti+1 − ti ).

By the Markov Property, it is enough to see that Ẽx[Nh(y)] = γ̃ (y)h. This is a consequence
of the γ̃ (y) being the parameter of the exponential clock at the site y. �

Appendix E: Basic Properties of Q(V )

Lemma 28 |Q(V ) − Q(U)| ≤ ‖V − U‖∞.

Proof Since

P V
T (1)(x) = Ex

[
e

∫ T
0 V (Xr )dr

] ≤ Ex

[
eT ‖V −U‖∞e

∫ T
0 U(Xr )dr

] = eT ‖V −U‖∞P U
T (1)(x),

then,

∣
∣Q(V ) − Q(U)

∣
∣ = lim

T →∞
1

T
log

supx∈{1,...,d}N P V
T (1)(x)

supx∈{1,...,d}N P U
T (1)(x)

≤ lim
T →∞

1

T
log

supx∈{1,...,d}N eT ‖V −U‖∞(P U
T 1)(x)

supx∈{1,...,d}N P U
T (1)(x)

= ‖V − U‖∞. �
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Lemma 29 The functional V → Q(V ) is convex, i.e., for all α ∈ (0,1), we have

Q
(
αV + (1 − α)U

) ≤ αQ(V ) + (1 − α)Q(U).

Proof Using the Holder’s inequality, we have

P
αV +(1−α)U
T (1)(x) = Ex

[
e

∫ T
0 αV (Xr )dre

∫ T
0 (1−α)U(Xr )dr

]

≤ (
Ex

[
e

∫ T
0 V (Xr )dr

])α(
Ex

[
e

∫ T
0 U(Xr )dr

])(1−α)
.

Thus,

Q
(
αV + (1 − α)U

) = lim
T →∞

1

T
log sup

x∈{1,...,d}N
P

αV +(1−α)U
T (1)(x)

≤ lim
T →∞

1

T
log

(
sup

x∈{1,...,d}N
Ex

[
e

∫ T
0 V (Xr )dr

])α

×
(

sup
x∈{1,...,d}N

Ex

[
e

∫ T
0 U(Xr )dr

])(1−α)

= α lim
T →∞

1

T
log sup

x∈{1,...,d}N
Ex

[
e

∫ T
0 V (Xr )dr

]

+ (1 − α) lim
T →∞

1

T
log sup

x∈{1,...,d}N
Ex

[
e

∫ T
0 U(Xr )dr

]
.

�

Appendix F: The Associated Symmetric Process and the Metropolis Algorithm

We can consider in our setting an extra parameter β ∈ R which plays the role of the in-
verse of temperature. For a given fixed potential V we can consider the new potential βV ,
β ∈ R, and applying what we did before, we get continuous time equilibrium states de-
scribed by γβ := γβV and Bβ := BβV , in the previous notation. In other words, we con-
sider the infinitesimal generator (LA − I ) + βV , β > 0, and the associated main eigen-
value λβ := λβV . We denote by LV,β the infinitesimal generator of the process that is
the continuous time Gibbs state for the potential βV , then LV,β acts on functions f as
LV,β(f )(x) = γβ(x)

∑
σ(y)=x eBβ(y)[f (y) − f (x)]. We are interested in the stationary prob-

ability μβ := μBβV ,γβV
for the semigroup {etLV,β

, t ≥ 0}, and its weak limit as β → ∞. This
limit would correspond to the continuous time Gibbs state for temperature zero (see [7, 25,
28] for related results).

The dual of LV,β on the Hilbert space L
2(μβ) is LV,β∗ = γβ(K − I ), where K is the

Koopman operator. Notice that the probability μβ is also stationary for the continuous time
process with symmetric infinitesimal generator LV,β

sym := 1
2 (LV,β + LV,β∗

). In this new pro-
cess the particle at x can jump to a σ−preimage y with probability 1

2eBβ(y), or with prob-
ability 1

2 , to the forward image σ(x), but, in both ways, according to a exponential time of
parameter γβ(x).

The eigenfunction of the continuous time Markov chain with infinitesimal generator LV,β
sym

can be different from the one with generator LV,β . Given V and β , we denote λ(β)sym the
main eigenvalue that we obtained from βV and the generator LV,β

sym. The eigenvalues of LV,β
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and LV,β∗ are the same as before. Now, we will look briefly at how to obtain λ(β)sym. From
the symmetric assumption, [11], we get, for a fixed β ,

λ(β)sym = sup
φ∈L2(μβ ),

‖φ‖2=1

∫
φ1/2

[
γβ

2

([Lβ + K ] − 2I
) + βV

]
(
φ1/2

)
dμβ

= sup
φ∈L2(μβ ),

‖φ‖2=1

∫
φ1/2

[
1

2

([Lβ + K ] − 2I
) + 1

γβ

βV

]
(
φ1/2

) dμBβ∫
1
γβ

dμBβ

= sup
φ∈L2(μβ ),

‖φ‖2=1

∫ {

φ1/2Lβ

(
φ1/2

) − 1 + 1

γβ

βV |φ|
}

dμBβ∫
1
γβ

dμBβ

.

The second equality is due to the Definition (12), and the last one is by the dual, L ∗
β , on

L
2(μβ) is K .

Suppose one changes β in such way that β increases converging to ∞, then one can ask
about the asymptotic behavior of the stationary Gibbs probability μβ . One should analyze
first what that happens with the optimal φ (or almost optimal) in the maximization problem
above. In order to answer this last question, we use, in L

2(μβ), the Schwartz inequality, and
we obtain

∣
∣〈φ1/2,Lβ

(
φ1/2

)〉
μβ

∣
∣ ≤ ‖φ‖2

∥
∥Lβ

(
φ1/2

)∥∥
2
≤ d‖φ‖2 = d.

Note that, for a fixed large β , the positive value γβ(x) = 1 − βV (x) + λβV became smaller
close by the supremum of V . Which means that 1

γβ (x)
became large close by the supremum

of V . Moreover, for fixed β , the part
∫

βV |φ| 1
γβ

dμBβ∫ 1
γβ

dμBβ

of the above expression increase if

we consider |φ| such that the big part of its mass is more and more close by to the supremum

of βV . Note that, for fixed β , the part
∫ {φ1/2Lβ(φ1/2)−1} dμBβ∫ 1

γβ
dμBβ

of the above expression

is bounded and just depends on φ. The supremum of
∫

βV |φ| 1
γβ

dμBβ∫ 1
γβ

dμBβ

grows with β at

least of order β .
Therefore, for large β , the maximization above should be obtained by taking φ = φβ in

L
2(μβ) such that is more and more concentrated close by the supremum of βV . In this way,

when β → ∞ the “almost” optimal φ has a tendency to localize the points where the supre-
mum of V is attained. If there is a unique point z0 where V is optimal, then λβ ∼ βV (z0).
The probability μβ will converge to the delta Dirac on the point z0. This procedure is quite
similar with the process of determining ground states for a given potential via an approxi-
mation by Gibbs states which have a very small value of temperature (see for instance [1]).

The Metropolis algorithm has several distinct applications. In one of them, it can be used
to maximize a function on a quite large space (see [14, 22]). Suppose V has a unique point
of maximal value. The basic idea is to produce a random algorithm that can explore the state
space and localize the point of maximum, this problem may happen with a deterministic
algorithm. The use of continuous time paths resulted in some advantages in the method. The
randomness assures that the algorithm does note stuck on a point of local maximum of some
function V . The setting we consider here has several similarities with the usual procedure.
When we take β large, then the probability μβ will be very close to the delta Dirac on the
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point of maximum for V as we just saw. This is so because the parameter 1
γβ (x)

of the expo-
nential distribution became large close by the supremum of V . In the classical Metropolis
algorithm there is link on β and t which is necessary for the convergence (cooling schedule
in [35]). In a forthcoming paper, using our large deviation results, we will investigate the
question: given small ε and δ, with probability bigger than 1 − δ, the empirical path on the
one-dimensional spin lattice will stay, up to a distance smaller the ε of the maximal value, a
proportion 1 − δ of the time t , if t and β are chosen in a certain way (to be understood). In
order to do that we have to use the large deviation results we get before.
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