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Abstract. We propose a definition of topological stability for set-valued map-
s. We prove that a single-valued map which is topologically stable in the set-

valued sense is topologically stable in the classical sense [14]. Next, we prove
that every upper semicontinuous closed-valued map which is positively expan-

sive [15] and satisfies the positive pseudo-orbit tracing property [9] is topolog-

ically stable. Finally, we prove that every topologically stable set-valued map
of a compact metric space has the positive pseudo-orbit tracing property and

the periodic points are dense in the nonwandering set. These results extend

the classical single-valued ones in [1] and [14].

1. Introduction. The topological dynamics of set-valued maps has been studied
recently in the literature. For instance, [4], [5] and [8] introduced the metric and
topological entropies for set-valued maps. In [11] it is defined the specification
and topologically mixing properties for set-valued maps. In [6] it is considered the
continuum-wise expansivity for set-valued maps.

In this paper we will propose a definition of topological stability for set-valued
maps. We prove that a single-valued map which is topologically stable in the set-
valued sense is topologically stable in the classical sense [14]. Next, we prove that
every upper semicontinuous closed-valued map which is positively expansive [15]
and satisfies the positive pseudo-orbit tracing property [9] is topologically stable.
Finally, we prove that every topologically stable set-valued map of a compact metric
space has the positive pseudo-orbit tracing property and the periodic points are
dense in the nonwandering set. These results extend the classical single-valued ones
in [1] and [14].
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2. Definitions and results. We start this section by introducing the concept of
topologically stable set-valued map. This will require some basic notions of set-
valued analysis [2]. Afterwards, we state our results.

Let X denote a metric space. Denote by 2X the set formed by the subsets of
X. By a set-valued map of X we mean a map f : X → 2X . We say that f is
single-valued if card(f(x)) = 1 for every x ∈ X, where card(·) denotes cardinality.
There is an obvious correspondence between single-valued maps f : X → 2X and
maps f : X → X. In what follows all set-valued maps will be assumed to be strict,
i.e., f(x) 6= ∅ for every x ∈ X. A set-valued map f is closed-valued if f(x) is
closed for every x ∈ X. We say that f is upper semicontinuous if for every x ∈ X
and every neighborhood U of f(x) there is η > 0 such that f(x′) ⊂ U for every
x′ ∈ X satisfying d(x, x′) < η. This definition reduces to the usual continuity in
the single-valued case.

The distance between single-valued maps f and g of X is defined by

d(f, g) = sup
x∈X

d(f(x), g(x)).

Next we present the classical definition of topologically stable single-valued map by
Walters [14].

Definition 2.1. A continuous single-valued map f : X → X is topologically stable,
in the class of continuous maps (or topologically stable for short), if for every ε > 0
there is δ > 0 such that for every continuous map g : X → X with d(f, g) < δ there
is a continuous map

ĥ : X → X

such that

d(ĥ, IdX) < ε and f ◦ ĥ = ĥ ◦ g,
where IdX : X → X is the identity.

To extend this definition to the set-valued context we require further notations.
Given A,B ⊂ X we define the distance

d(A,B) = inf{d(a, b) : (a, b) ∈ A×B},
and the Hausdorff distance

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈C

d(b, A)

}
.

The distance between the set-valued maps f and g of X is defined by

dH(f, g) = sup
x∈X

dH(f(x), g(x)).

Notice that dH(f, g) reduces to the distance d(f, g) when the involved set-valued
maps f and g are single-valued.

In what follows N will denote the set of nonnegative integers, i.e., N = {0, 1, 2,
· · · }.

Denote by

XN =
∏
n∈N

X

the infinite product of copies of X, equipped with the distance

d∗((xn)n∈N, (yn)n∈N) =
∑
n∈N

2−n−1d(xn, yn). (1)
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Another distance to be considered in XN is

D((x)n∈N, (yn)n∈N) = sup
n∈N

d(xn, yn). (2)

We say that (xn)n∈N ∈ XN is an orbit of a set-valued map f (or an f -orbit for
short) if

xn+1 ∈ f(xn), ∀n ∈ N.
The set lim

←
f formed by the f -orbits is often called the inverse limit space induced

by f (cf. [8]). The name inverse limit system is also used (cf. [1]). Precisely,

lim
←
f = {(xn)n∈N ∈ XN : xn+1 ∈ f(xn),∀n ∈ N}.

It turns out that f induces a map, to be called left shift

σf : lim
←
f → lim

←
f,

defined by
σf ((xn)n∈N) = (xn+1)n∈N.

Let π : XN → X the projection in the first variable, i.e., π((xn)n∈N) = x0. Define
the map πf : lim

←
f → X as the restriction of π to lim

←
f .

Now we present our definition of topologically stable set-valued map.

Definition 2.2. An upper semicontinuous closed-valued map f of X is topological-
ly stable, in the class of upper semicontinuous closed-valued maps (or topologically
stable for short), if for every ε > 0 there is δ > 0 such that for every upper semi-
continuous closed-valued map g with dH(f, g) < δ there is a continuous map

h : (lim
←
g, d∗)→ (lim

←
f, d∗)

such that
D(h, IdX) < ε and σf ◦ h = h ◦ σg,

where
D(h, IdX) = sup{D(h(x),x) : x ∈ lim

←
g}.

The following remark holds.

Remark 2.1. An important difference between definitions 2.1 and 2.2 is that the
domain of the semiconjugacy h in the latter definition depends on the perturbation
g.

Since every continuous single-valued map is upper semicontinuous and closed
valued as a set-valued map, it is natural to compare the definitions 2.1 and 2.2 in
the single-valued context. This motivates the following result.

Theorem 2.1. Every continuous single-valued map of a metric space which is topo-
logically stable as a set-valued map (Definition 2.2) is topologically stable in the
classical sense (Definition 2.1).

Unfortunately we do not know if the converse of Theorem 2.1 holds, namely, if
a single-valued map which is topologically stable in the classical sense (Definition
2.1) is also topologically stable when regarded as a set-valued map (Definition 2.2).
The next theorem (and Example 2.1 below) give some light to this question.

Theorem 2.2. Every topologically stable single-valued map f of a compact metric
space X satisfies the following property:
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• For every ε > 0 there is δ > 0 such that for every continuous single-valued
map g : X → X with dH(f, g) < δ there is a continuous map

h : (lim
←
g, d∗)→ (lim

←
f, d∗)

such that

D(h, IdX) < ε and σf ◦ h = h ◦ σg,

In [13] Walters proved that every positively expansive map with the positive
pseudo-orbit tracing property of a compact metric space is topologically stable. Now
we extend this result to the set-valued context. Previously we recall the concepts
of positive expansivity and pseudo-orbit tracing property in the set-valued context.

Definition 2.3 ([15]). A set-valued map f of a metric space X is positively expan-
sive if there is ε > 0 (called positive expansivity constant) such that x = y whenever
x, y ∈ X satisfy that there there are f -orbits (xn)n∈N and (yn)n∈N such that x0 = x,
y0 = y and d(xn, yn) ≤ ε for every n ∈ N. Sometimes we will say that f is positively
expansive with respect to d to emphasize the metric d of X.

Definition 2.4 ([9]). We say that a set-valued map f of a metric space X has the
positive pseudo-orbit tracing property (abbrev. POTP+) if for every ε > 0 there is
δ > 0 such that for each sequence (pn)n∈N in X satisfying

d(pn+1, f(pn)) ≤ δ, ∀n ∈ N,

there is an f -orbit (qn)n∈N satisfying

d(pn, qn) ≤ ε, ∀n ∈ N.

These definitions extend the classical single-valued ones by Utz [12], Eisenberg
[7] and Bowen [3]. Using them we obtain the following set-valued version of Walters
stability theorem [13].

Theorem 2.3. Every upper semicontinuous positively expansive closed-valued map
with the POTP+ of a compact metric space is topologically stable.

Let us present two examples where Theorem 2.3 applies.

Example 2.1. Let f : X → X a continuous positively expansive single-valued map
with the POTP+ of a compact metric space. Then, f is an upper semicontinuous
positively expansive closed-valued map with the POTP+. Hence, by Theorem 2.3,
f is topologically stable not only as a single but also as a set-valued map.

A genuine (i.e. not single-valued) example where the theorem applies is as follows.

Example 2.2. Endow the unit interval [0, 1] with the Euclidean metric. Define the
set-valued map f of [0, 1] by

f(x) =

 {2x}, if 0 ≤ x < 1
2

{0, 1}, if x = 1
2

{2x− 1}, if 1
2 < x ≤ 1.

It follows that f is an upper semicontinuous positively expansive closed-valued map
with the POTP+ of [0, 1]. Therefore, by Theorem 2.3, f is a topologically stable
set-valued map of [0, 1].
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Next we present a property of the topologically stable set-valued maps.
Given a set-valued map f of X, we say that x ∈ X is a periodic point if there are

an f -orbit (xn)n∈N and m ∈ N+ such that x0 = x and xn+m = xn for every n ∈ N.
The set of periodic points is denoted by Per(f). The nonwandering set of f is the
set Ω(f) of those points x ∈ X such that for every neighborhood U of x there is
m ∈ N+ satisfying U ∩ fm(U) 6= ∅. With these definitions we obtain the following
result.

Theorem 2.4. Every topologically stable upper semicontinuous closed-valued map
of a compact metric space has the POTP+. Moreover, Per(f) is dense in Ω(f).

A short application of this theorem in the single-valued context is as follows.
Recall that, on every compact manifold, every single-valued map f which is topo-
logically stable in the classical sense has the POTP+ and Per(f) is dense in Ω(f).
See for instance Theorem 2.4.8 in [1] or [13].

In the following corollary of Theorem 2.4 and Theorem 2.1 we obtain that, on
every metric space, every single-valued map f which is topologically stable as a
set-valued map (Definition 1.4) has the POTP+ and Per(f) is dense in Ω(f). In
other words we have the following result.

Corollary 2.5. Every continuous single-valued map f of a metric space which is
topologically stable as a set-valued map (Definition 2.2) has the POTP+. Moreover,
Per(f) is dense in Ω(f).

3. Proof of the theorems. In this section we will prove the theorems stated in the
previous section. We start with a lemma about the left shift map for single-valued
maps.

Lemma 3.1. If f is a continuous single-valued map of a compact metric space X,
then the left shift πf : (lim

←
f, d∗)→ (X, d) is a homeomorphism.

Proof. Since f is single-valued, one has πf ((x)n)n∈N) = x if and only if xn = fn(x)

for every n ∈ N. Then, πf is bijective with inverse π−1f (x) = (fn(x))n∈N. Also, for

fixed γ > 0, if d∗((xn)n∈N, (yn)n∈N) < γ
2 , then

d(πf ((xn)n∈N, πf ((yn)n∈N) = d(x0, y0) ≤ 2d∗((xn)n∈N, (yn)n∈N) < γ

proving that πf is continuous.
On the other hand, for fixed γ > 0 we let diam(X) denote the diameter of X

and we let n0 ∈ N be such that∑
n≥n0

2−n−1diam(X) <
γ

2
.

Since f is continuous, there is ρ > 0 such that

n0−1∑
n=0

2−n−1d(fn(x), fn(y)) <
γ

2
whenever d(x, y) < ρ.

Then,

d∗(π∗f (x), π∗f (y)) = d∗((fn(x))n∈N, (f
n(y))n∈N)

=
∑
n∈N

2−n−1d(fn(x), fn(y))
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≤
n0−1∑
n=0

2−n−1d(fn(x), fn(y)) +
∑
n≥n0

2−n−1diam(X)

<
γ

2
+
γ

2
= γ

proving that π−1f is continuous. Then, πf : (lim
←
f, d∗)→ (X, d) is a homeomorphism

and the proof follows.

With this lemma we can prove Theorem 2.1.

Proof of Theorem 2.1. Let f be a continuous map of a metric space X which is
topologically stable as a set-valued map (Definition 2.2).

Fix ε > 0 and let δ be given by that property. Take g : X → X continuous
such that d(f, g) < δ. Since f and g are single-valued, dH(f, g) = d(f, g) and
so dH(f, g) < δ. Then, there is h : (lim

←
g, d∗) → (lim

←
f, d∗) continuous such that

D(h, IdX) ≤ ε and σf ◦ h = h ◦ σg.
By Lemma 3.1, since both f and g are single-valued, we have that the maps

πf : (lim
←
f, d∗) → (X, d) and πg : (lim

←
g, d∗) → (X, d) are homeomorphisms. Then,

the composition ĥ = πf ◦ h ◦ π−1g defines a continuous map ĥ : X → X. Since

d(ĥ(x), x) = d(πf (h(π−1g (x))), x) = d(πf (h((gn(x)n∈N)), x) ≤ D(h, IdX) ≤ ε

for every x ∈ X, one has d(ĥ, IdX) ≤ ε.
In addition, since f ◦ πf = πf ◦ σf , one has

(f ◦ ĥ)(x) = f(ĥ(x)) = f(πf (h(π−1g (x))))

= f(πf (h((gn(x))n∈N)))

= πf (σf (h((gn(x))n∈N)))

= πf (h(σg((g
n(x))n∈N)))

= πf (h((gn+1(x))n∈N))

= (πf ◦ h ◦ π−1g )(g(x)) = (ĥ ◦ g)(x)

i.e., f ◦ ĥ = ĥ ◦ g. Then, f is topologically stable according to Definition 2.1.

Next we prove Theorem 2.2.

Proof of Theorem 2.2. Fix ε > 0 and let δ be given by the topological stability of
f . Take g : X → X continuous such that dH(f, g) < δ. Then, d(f, g) < δ and so

there is ĥ : X → X continuous such that d(ĥ, IdX) ≤ ε and f ◦ ĥ = ĥ ◦ g.
On the other hand, by Lemma 3.1 we have that πf : (lim

←
, d∗) → (X, d) and

πg : (lim
←
g, d∗) → (X, d) are homeomorphisms. Then, since ĥ is continuous, the

composition h = π−1f ◦ ĥ ◦ πg defines a continuous map h : (lim
←
g, d∗)→ (lim

←
f, d∗).

Since g is single-valued, xn = gn(x0) for all (xn)n∈N ∈ lim
←
g and n ∈ N. Then,

D(h((xn)n∈N), (xn)n∈N) = sup
n∈N

d(ĥ(gn(x0)), gn(x0)) ≤ ε

for all (xn)n∈N ∈ lim
←
g proving D(h, IdX) ≤ ε.
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Moreover,

(σf ◦ h)((xn)n∈N) = σf (h((xn)n∈N)))

= σf (π−1f (ĥ(πg((xn)n∈N)))

= π−1f (f(ĥx0)))

= π−1f (ĥ(g(x0)))

= (π−1f ◦ ĥ ◦ πg)(σg((xn)n∈N))

= (h ◦ σg)((xn)n∈N)

proving σf ◦ h = h ◦ σg. Since ε is arbitrary, f satisfies the required property and
the proof follows.

To prove the remainder theorems we need some short preliminars. The first one
is a basic property of the upper semicontinuous closed valued maps (see Proposition
1.4.8 in [2]).

Lemma 3.2. Let f be an upper semicontinuous closed-valued map of a compact
metric space X. If (ak)k∈N and (bk)k∈N are sequences such that ak → a, bk → b
and ak ∈ f(bk) for all k ∈ N, then a ∈ f(b).

Since lim
←
f = π−1f (X) we obtain the following lemma.

Lemma 3.3. The limit inverse space (lim
←
f, d∗) of an upper semicontinuous closed-

valued map f of a compact metric space X is a compact subset of (XN, d∗).

For the next lemma we will use an auxiliary definition.

Definition 3.1. We say that a set-valued map f of a metric space X has the finite
shadowing property if for every ε > 0 there is δ > 0 such that for every finite set
{p0, · · · , pm} satisfying d(pn+1, f(pn)) < δ for every 0 ≤ n ≤ m− 1 there is a finite
set {q0, · · · , qm} such that qn+1 ∈ f(qn) and d(pn, qn) < ε for every 0 ≤ n ≤ m− 1.

With this definition we obtain the following result.

Lemma 3.4. An upper-semicontinuous closed-valued map of a compact metric s-
pace has the POTP+ if and only if if has the finite shadowing property.

Proof. We only need to prove the sufficiency. Let f be an upper semicontinuous
closed-valued map with the finite shadowing property of a compact metric space
X. Let ε > 0 be given. Find a corresponding δ > 0 given by the finite shadowing
property. Let (pn)n∈N be a sequence satisfying d(pn+1, f(pn)) ≤ δ for every n ∈ N.
Then, by finite shadowing, for every m ∈ N there is a sequence {qm0 , · · · , qmm} such
that qmn+1 ∈ f(qmn ) and d(pn, q

m
n ) ≤ ε for every 0 ≤ n ≤ m. Since X is compact, we

can assume by passing to subsequences if necessary that there is a sequence (qn)n∈N
such that qmn → qn as m→∞ for every n ∈ N. Since f is upper semicountinuous,
closed-valed and X is compact, Lemma 3.2 implies (qn)n∈N ∈ lim

←
f . By fixing n in

d(pn, q
m
n ) ≤ ε and letting m → ∞ we obtain d(pn, qm) ≤ ε for every n ∈ N. Then,

f has the POTP+ proving the result.

The next lemma is about the expansivity of the shift map for positively expansive
set-valued maps.
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Lemma 3.5. If f is a positively expansive set-valued map of a metric space X, then
the left shift σf : lim

←
f → lim

←
f is positively expansive with respect to the metric d∗

in (1).

Proof. Let ε be a positive expansivity constant of f . Take (xn)n∈N, (x
′
n)n∈N ∈ lim

←
f

such that
d∗(σkf ((xn)n∈N), σkf ((x′n)n∈N)) ≤ 2−1ε, ∀k ∈ N.

It follows that ∑
n∈N

2−n−1d(xn+k, x
′
n+k) ≤ 2−1ε, ∀k ∈ N.

Since
2−1d(xk, x

′
k) ≤

∑
n∈N

2−n−1d(xn+k, x
′
n+k)

we obtain
d(xk, x

′
k) ≤ ε, ∀k ∈ N.

Since ε is a positive expansivity constant of f , (xk)k∈N = (x′k)k∈N so σf is positively
expansive.

The following result is the positively expansive version of Lemma 2 in [13] (with
similar proof).

Lemma 3.6. Let r : Y → Y be a positively expansive continuous map of a compact
metric space Y . Then, for every positive expansivity constant ê and every ∆ > 0
there is N ≥ 1 such that d(x, y) ≤ ∆ whenever x, y ∈ Y satisfy d(rk(x), rk(y)) ≤ ê
for every 0 ≤ k ≤ N .

Next we prove the continuity of the left shift.

Lemma 3.7. For every set-valued map g of a metric space X, the left shift σg :
(lim
←
g, d∗)→ (lim

←
g, d∗) is continuous.

Proof. If (xn)n∈N, (x
′
n)n∈N ∈ lim

←
g, then

d∗(σg((xn)n∈N)σg((x
′
n)n∈N) = d∗((xn+1)n∈N, (x

′
n+1)n∈N)

=
∑
n∈N

2−n−1d(xn+1, x
′
n+1)

=
∑
n≥1

2−nd(xn, x
′
n)

≤ 2
∑
n∈N

2−n−1d(xn, x
′
n)

= 2d∗((xn)n∈N, (x
′
n)n∈N)

proving

d∗(σg((xn)n∈N), σg((x
′
n)n∈N) ≤ 2d∗((xn)n∈N, (x

′
n)n∈N), ∀(xn)n∈N, (x′n)n∈N ∈ lim

←
g.

This completes the proof.

Proof of Theorem 2.3. Let f be an upper semicontinuous positively expansive
closed-valued map with the POTP+ of a compact metric space X. It follows from
Lemma 3.5 that the left shift σf : lim

←
f → lim

←
f is positively expansive with respect

to the metric d∗ in (1). Let ê be the corresponding positive expansivity constant.
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Fix ε > 0 and let δ be given from POTP+ for the constant ε0 = min{ε,e,ê}
8 , where

e is the positive expansivity constant of the set-valued map f . Fix a set-valued map
g such that dH(f, g) ≤ δ

8 .

Let (xn)n∈N be a g-orbit. Since dH(g(x0), f(x0)) ≤ δ
8 (by hypothesis) and x1 ∈

g(x0), we have

d(x1, f(x0)) < δ.

Similarly, since dH(g(x1), f(x1)) ≤ δ
8 and x2 ∈ g(x1), we have

d(x2, f(x1)) < δ.

Repeating this argument we conclude that

d(xn+1, f(xn)) < δ, ∀n ∈ N.

Then, by the POTP+ and the choice of δ, there is an f -orbit (yn)n∈N such that

d(xn, yn) ≤ ε0, ∀n ∈ N. (3)

It turns out that this f -orbit is unique. Indeed, any other f -orbit (y′n)n∈N satis-
fying

d(xn, y
′
n) ≤ ε0, ∀n ∈ N,

must satisfy

d(yn, y
′
n) ≤ 2ε0 =

min{ε, e, ê}
4

< e, ∀n ∈ N,

and so (yn)n∈N = (y′n)n∈N because e is a positive expansivity constant of f .
From this uniqueness, we obtain a map h : lim

←
g → lim

←
f given by h((xn)n∈N) =

(yn)n∈N. It follows from (3) that

D(h, IdX) ≤ ε.

On the other hand, replacing n by n+ 1 in (3) we get d(xn+1, yn+1) ≤ ε0 for every
n ∈ N. Then, (yn+1)n∈N = h((xn+1)n∈N) and so

σf (h((xn)n∈N)) = (yn+1)n∈N = h((xn+1)n∈N) = h(σg((xn)n∈N)), ∀(xn)n∈N ∈ lim
←
g.

This proves

σf ◦ h = h ◦ σg.

It remains to prove that h is continuous.
Fix ∆ > 0.
By lemmas 3.3 and 3.5 the map σf : lim

←
f → lim

←
f is a positively expansive

map of the compact metric space Y = (lim
←
f, d∗). But σf : (lim

←
f, d∗)→ (lim

←
f, d∗)

is also continuous by Lemma 3.7. Then, we can apply Lemma 3.6 to obtain an
integer N ≥ 1 for the given ∆. Since σg : (lim

←
g, d∗)→ (lim

←
g, d∗) is continuous and

(lim
←
g, d∗) compact by lemmas 3.7 and 3.3 respectively, there is γ > 0 such that

d∗(σkg ((xn)n∈N), σkg ((x′n)n∈N)) <
ê

4
, ∀0 ≤ k ≤ N,

whenever (xn)n∈N, (x
′
n)n∈N ∈ lim

←
g satisfy d∗((xn)n∈N, (x

′
n)n∈N) < γ.
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Then, whenever (xn)n∈N, (x
′
n)n∈N ∈ lim

←
g satisfy d∗((xn)n∈N, (x

′
n)n∈N) < γ, one

has for (yn)n∈N = h((xn)n∈N) and (y′n)n∈N = h((x′n)n∈N) that

d∗(σkf ((yn)n∈N), σkf ((y′n)n∈N)) = d∗(h(σkg ((xn)n∈N), h(σkg ((x′n)n∈N))

≤ d∗(h(σkg ((xn)n∈N), σkg ((xn)n∈N)) +

d∗(σkg ((xn)n∈N), σkg ((x′n)n∈N)) +

d∗(h(σkg ((x′n)n∈N), σkg ((x′n)n∈N))

≤ ê

4
+
ê

4
+
ê

4

=
3ê

4
< ê, ∀0 ≤ k ≤ N.

Therefore, by Lemma 3.6,

d∗(h((xn)n∈N, h((x′n)n∈N) < ∆,

whenever (xn)n∈N, (x
′
n)n∈N ∈ lim

←
g satisfy d∗((xn)n∈N, (x

′
n)n∈N) < γ. This proves

the continuity of h and completes the proof of the theorem.

Proof of Theorem 2.4. Let f : X → X be a topologically stable upper semicontin-
uous closed-valued map of a compact metric space X.

First we prove that f has the finite shadowing property. Fix ε > 0 and let δ > 0
be given by the topological stability of f . Let {p0, · · · , pm} be a finite set satisfying

d(pn+1, f(pn)) ≤ δ

8
, ∀0 ≤ n ≤ m− 1.

Define the set-valued map

g(x) =

{
f(x), if x /∈ {p0, p1, · · · , pm}

B[f(pn), δ4 ], if x = pn for some n ∈ {0, · · · ,m}.

Clearly dH(f, g) ≤ δ. Moreover, since f is closed-valued, g also is. Furthermore,
since {p0, · · · , pm} is a finite set and f is upper semicontinuous, we have that g
is upper semicontinuous. Then, by the choice of δ, there exists h : (lim

←
g, d∗) →

(lim
←
f, d∗) continuous such that D(h, IdX) ≤ ε and σf ◦ h = h ◦ σg. On the other

hand, it follows from the definition that pn+1 ∈ g(pn) for every 0 ≤ n ≤ m − 1.
Then, since f (and so g) are strict, we can complete {p0, · · · , pm} to a g-orbit
(pn)n∈N and so (qn)n∈N = h((pn)n∈N) is a well-defined f -orbit. Since D(h, IdX) ≤ ε
we have d(pn, qn) ≤ ε for every n ∈ N. In particular, qn+1 ∈ f(qn) and d(pn, qn) < ε
for every 0 ≤ n ≤ m − 1 proving the finite shadowing property. Then, f has the
POTP+ by Lemma 3.4.

Next we prove that Per(f) is dense in Ω(f). Fix ε > 0 and x ∈ Ω(f). For this
ε we let δ > 0 be given by topological stability. Since x ∈ Ω(f), there are m ∈ N+

and a finite sequence {z0, z1, · · · , zm} such that z0, zm ∈ B(x, δ4 ) and zn+1 ∈ f(zn)
for every 0 ≤ n ≤ m− 1. Define the set-valued map

g(x) =

{
f(x), if x /∈ {z0, z1, · · · , zm}

B[f(zn), δ2 ], if x = zn for some n ∈ {0, · · · ,m}.

As before we have that g is upper semicontinuous, closed-valued and dH(f, g) ≤ δ.
Then, by the choice of δ, there is h : (lim

←
g, d∗) → (lim

←
f, d∗) continuous such
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that D(h, IdX) ≤ ε and σf ◦ h = h ◦ σg. Now define the sequence (xn)n∈N by
xlm+r = zr whenever l ∈ N and 0 ≤ r ≤ m − 1. It follows that (xn)n∈N ∈ lim

←
g.

Moreover, since for all n ∈ N there are l ∈ N and 0 ≤ r ≤ m − 1 such that
n = lm + r, one has xn+m = x(l+1)m+r = zr = xlm+r = xn+m. It follows that
σmg ((xn)n∈N) = (xn)n∈N. Therefore, the f -orbit (yn)n∈N = h((xn)n∈N) is well
defined. Since σmg ((xn)n∈N) = (xn)n∈N, one has σmf ((yn)n∈N) = (yn)n∈N and so

y0 ∈ Per(f). Moreover, since D(h, IdX) ≤ ε, we have d(y0, x) ≤ ε proving the
result.
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