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1. INTRODUCTION

We prove a new maximal lemma in time for subadditive sequences with
respect to a nonsingular transformation. This is used to give a new proof
of the corresponding pointwise subadditive ergodic theorem. We aiso study
some recurrence questions and the natural extension for these transforma-
tions.

Let (X, #, 1) denote a o-finite measure space. A transformation is a
(#-)measurable map of X into itself. Let w: X > R be a nonnegative
(#-)measurable function; the transformation T is said to be Markovian
with respect to (w,p) if it satisfies, for all nonnegative measurable
functions f,

(P1) jfodeyzjfdﬂ.

It readily follows that for all measurable functions f,

(P2) f20ae ifand onyif foTw =0 ae.
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In this paper we prove a maximal inequality in time which has so far no
counterpart in the theory of Markov operators. Lemma 2.2a is the key
result in the proof of the subadditive ergodic theorem given in Section 3
(Theorem 3.4). This theorem can be deduced from the corresponding
Akcoglu-Sucheston theorem [ 1, 27]; however, our proof is simple and self-
contained. Sub-Markovian transformations are treated in Section 4 and
some recurrence properties are proved in Section 5. Using the same idea as
in Lemma 2.2, we prove a Kac’s formula (Theorem 5.2) for Markovian
transformations, and give several applications (cf. Corollary 5.4, Theorem 5.5,
Theorem 5.6).

1.1. DerFiNiTION.  (a) If T is Markovian with respect to (w, u) we say
that (w, p) is a Markovian pair for T, and when g is understood from the
contex, that w is a Markovian function for T. Two pairs (o, p) and (o', 1')
are cohomologous if there exists a positive measurable function 4 (called the
transfer function from (w, u) to (@', u')) such that

R /TH hoT
u=hp (1.6.,}%:/1) and w'= P

(b) A Hurewicz cocycle for (w, u) is any sequence of nonnegative
measurable functions {w,},s, such that

we=1,w,=w, and @ =, w, oT" —a.e. forn=0,m=0.
0 1 n+m m“n

1.2. LeMMA. (a) If T is Markovian with respect to (o, u) then T is
Markovian with respect to any cohomologous (o', u').

(b) If moreover {w,}, s is a Hurewicz cocycle for (w, y), then for all
120, 0,=w woT---weT""' u—ae. and T" is Markovian with respect to

(@5 p)-

1.3. ExaMPLES. (a} Suppose u-T is a-finite on #. If T is a positive
nonsingular (ie., (T~ '4)=0 implies u(4)=0) then T is Markovian with
respect to (w* u), where w*=(du/duT')oT is the Radon-Nikodym
derivative of T with respect to p. Conversely, if T is Markovian with
respect to (w, p), then T is positive nonsingular and w*=E, [w |T '#] is
the only 7 '#-measurable Markovian function, where E, denotes the
usual conditional expectation function with respect to p.

(b) 1If T is a C'-diffcomorphism on a smooth manifold M, J is its
Jacobian and A a Lebesgue measure on M, then T is Markovian with
respect to (J, 4).

(c) If (X, A, u) is a Lebesgue probability space and T is a n-to-1 non-
singular endomorphism, then it follows from a theorem of Rohlin that
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there exists a partition of X (mod 0) into » disjoint measurable sets
Ay, .., 4, such that the restriction T of T to each A4, is 1-to-1 from A4, onto
ae. X, and for any measurable set B in A4,, u(B)=0 implies u(7T,;B)=0.
Define J,=duT,;/du on A,. Let (p, .., p,) be any probability vector and
write w=72 p,J;x4; then T is Markovian with respect to (w, u). (In
general, these Markovian functions are different from the Radon—Nikodym
derivative of part (a)).

(d) If T is Markovian with respect to (w, i), we will see in Section 5
that the induced map T, (for some set 4) is also Markovian with respect
to (w4, )

1.4. DEFINITION. A subadditive sequence (with respect to (w, u)) is a
sequence {f,}, o of measurable functions satisfying:

(1) fo=0 ae,
(i) fromS<fm+ fuoT"w,, ae. for all m, n=0,

where {w,} is any Hurewicz cocycle for (w, u). The sequence {f,} is called
superadditive if {— f,} is subadditive.

We note that given a subadditive sequence {f,},., there exists a
sequence of measurable functions {f,},., such that

fx)=/ux)  ae,

and
Fus X)L x) + FAT7x) 0,(x)  forall xeX,

where @, =w,-w,>T---w,« T" "L
In fact, let

p—1
= inf T5a, 5.
fn skﬁn{ig,ofk,ﬂk,o k,}

O=kos ki< -

1.5. Remark. 1If {f,},., is subadditive with respect to (w, i), and
(@', u") is cohomologous to (w, u) with transfer function A, then {f,/h},.,
is subadditive with respect to (w’, 4'). This remark allows us, by standard
methods, to reduce the proofs of many of the results below to the case of
finite measure. (We assume finite measure to define the conditional expec-

tation with respect to any sub-g-algebra, in particular, the sub-g-algebra of
invariant sets.)

1.6. DEFINITION. The o-algebra of (7-)invariant sets with respect to
(w, p) is defined to be #={AeB:y, o Tw=y,w u—ae.}. It is easy to see
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that f is #-measurable if and only if f-T"w,= fw, ae. for all n=0.
Furthermore, if f is nonnegative, and y has finite mass,

LAV A= T'w,| f] a.e. forall n=0.

1.7. LEMMA. Assume u is a finite measure.

(a) For any nonnegative function g, €,[g| #1 is a positive function
ae. on the set {xeX: Y7, g(T(x))w;(x)=0c}.

(b) For any superadditive sequence of nonnegative functions {g,},

E, |:su1? l E[g, | j]] = su[l> ;11— E.lg.]
Proof (a) Write A={xeX:E,[g] #]1=0}, then 4 is invariant, and
JAaZiZ0 g(T'(x) wi(x) dp=n[,ELg] #]du=0.
(b) For any integers 1 <g< p<N, and n in the integer part of N/q,
we have 3070 2,0 T Wy, + g nyo T"w,, < gy ae. So E,[sup, <, <, (1/g)
E.Lg, | #I<(N/N—p)sup,., (1/n)E,[g.] 1

2. MAXIMAL LEMMAS AND THE RECURRENT PART

2.1, LeMMA. Let {f,},.o be a subadditive sequence and p>1 an
integer. If there exists a measurable function ©: X — {1,2, .., p} such that
f.<0 ae. then, for all n>= p,

n—1

L)< Y AT ) w(x)  ae

i=n-p

Proof. We define an increasing sequence of times by induction:
176=0, 7,,, 1(x) =1(T™(x)) + 1,,(x). By subadditivity, for every n> 1, for
a.c. xe X, and for m>1 such that 7(x)<n<r1,,(x),

m—1

L)< Y S oTHX)) 0, (x) + fu - (T™(x)) @, (x).
i=0

Since /. <0 a.e. we have,

Sermo(T™(x)) ,,(x) <0 ae.

forall m>=. So

n-1

S S [T 00 ()< ), filT(x))wi(x)  ae |

i=1y,
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2.2. MaxiMAL LemMMAS FOR TIME. Let {f,},.o be a subadditive
sequence, p = 1 an integer. Define

A={xeX: fi{x)=0  forall 1<k<p},

and
B={xeX: fi(x)>0  for some 1<k<p}.

Then for all integers n= p and for ae. xe X,

n 1 n-—-1
(a) S Z fioTyaeTo + Z I fioT'| w,,
i=0 f=n-p
n—1 n-1 )
(b) Z Jie TXBOT(D + z |fieT'| o,
= i=n—p

Proof. (a) Define a function  as follows:
1(x)=1if xe 4, and 1(x)=min{ke {1,2, ., p}: fi(x) <0}

if x¢ A. We claim that

x)—
T(t) < Z XA(T( x)) w;(x) a.e.

To show the claim first assume x €A, then t(x)=1 and f,(x
J1(x) x 4(x) wo(x); if x ¢ A, then f,,(x) <0 and it suffices to show that each
term in the above sum is nonnegative. This is clear if T/(x)¢ A;if T'(x)e A4
we have in particular that f,(7T7(x)) > 0.

An application of Lemma 2.1 now completes the proof.

(b) Define a function t by
t(x)=11if x¢ B, and t(x) =min{k e {1, P} fi(x)>0}

if x e B. Once more it is enough to show

‘r(vc)——l

dolx Z fUT'x) 1s(TH(x)) wAx)  ae

i=

Since {f,} is also a subadditive sequence. Now if xe B then 0< f, <
rfl

Za fioT'w,, and the proof is complete if we show T/(x)e B for each
0<z<r~1 In fact, /., < f,+ f. ;o T'w,; and f;(x)<0,s0 f, _,(T'x)>0. |

2.3. Remark. (a) A version of Lemma 2.2 for finite measure preserving
transformations is contained in the proof of the Birkhoff ergodic theorem
given in [7, 6].
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(b) Ttis clear from the proof that if the subadditive sequence and the
Hurewicz cocycle satisfy the properties of their definition for all xe X (not
just a.e.) then Lemma 2.2 also holds for all xe X.

(c) The only property of {w,} used in the proof is that it is a cocycle.

24. INTEGRATED MAXIMAL LEMMAS. Let {f,}.»o be a subadditive

sequence, p= 1 an integer, and A, B as defined in Lemma 2.2. Then

(a) inf,., (1/n) | f,du="lim,_ . (1/n) | f, du<{,fidy,

(b) O<lim,_ . (1/n) [f) du<{,fidu
Furthermore, if he L7(X, n) then {hf,}, is a subadditive sequence of
integrable functions, and if u is a finite measure,

(¢) lim,,  (I/m)E, L1l FI<ELSfixal F]

(d) lim,_ . (I/m)ELf | FI<ELfixs] £

Proof. Apply Lemma 2.2. |}

We note that if {f,} is a subadditive sequence of integrable functions
then {E[f,|.#]} is a subadditive sequence of real numbers and so

lim, , , (1/n) ELf, | £]1=inf, ., (I/n) E[f,| 7] ae.
2.5. Notation. Write

Afio)={xex: T AT 0,00 =

and

T, w)={xeX: i f(Ti(x))w,-(x)<oo}.

It follows that for any positive function h, Z(f, w) = R(f/h, (ho T/h)w).

2.6. PROPOSITION. Let f, g be two nonnegative integrable functions. Then
almost everywhere on the set R(f, w), ¥° , g(T'(x)) ;(x) takes only the
values 0 and oo.

Proof. Write C=%(f,w) and D=7 (g, w). Then C and D are
invariant sets. For all integers p>1 and real numbers r >0 define B; =
{xeX: fi(x)—rg.(x)>0 for some | <k < p}.

Then by Lemma 2.4b, j‘CnDﬁB (f—rg)du = 0. Since Cn D c
Ups1 1B fcnn ga’u<(1/r)jfdy for all r >0. Thus, fenngeT'w,du=0
foriz1and [, ,3%, g(T(x))w(x)du=0. |
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Proposition 2.6. remains true when g is only a nonnegative function (by
a standard approximation argument), and allows us to define the recurrent
part of T with respect to (o, ), #(w), by Z(w)=ZA(f, w) for any positive
integrable function f. (#(w) is defined y—a.e.)

2.7. COROLLARY. Let g be a nonnegative integrable function, and h be a
measurable function. Then hoT>=h a.e. on #(g, ©) if and only if hoT=h
ae. on R(g, w).

Proof. Write F={xeX:h(x)<r}, where r is any real number.

Suppose that Ao T>h a.e. on #(g, ), then y.oT<y, ae on #(g w).
Define G= {xe X: yp— xro T>c}, for some ¢ >0. Proposition 2.6 implies

i 16(T(x)) w,(x)e {0, c}  ae on #(g, w),

SO

s

XG(T €{0,0}  ae on &(g, w).

i=0

Since yg<(1/¢) (xp—xroT) and X7, (xp—xpoT)o T'<2 everywhere,
wWGnA(g w))=0. 1

3. THE SuBADDITIVE ERGODIC THEOREM
The following lemma is the main step in the proof of the subadditive
theorem. The Hurewicz ergodic theorem is a particular case of this lemma.

This theorem is used to prove a corollary that yields the invariance of some
functions.

3.1. LEMMA. Assume that u is a finite measure. Let {f,} be a subadditive

sequence of integrable functions, and g a nonnegative integrable function.
Define

o1
F= lim ;[Eu[fnlf], G=t,[glf])
Then ae. on #(g, w),

<11m1nle—f"———~
oo Zl ] go
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Proof. Write g,=3"") g-T'w,;, and h=liminf, ,  f,/g,. Using the
formula

fovi f1+f Tw
Eni1 g1+gn oTw

it is easy to see that he T2 h on #(g, ) a.e. and hence by Corollary 2.7,
hoT=h ae. on #(g, w). So C,= {xe (g, w):h<r} is invariant for any
r. Define

F;:f;l_rgn
and
A,={xeX:Fi(x)=0 forall 1<n<p}.

Since {F7},., is a subadditive sequence, by Lemma 2.4(a),

lim -[E[F’If]<ﬂ5[F1XA,,|f]~

H— 00

Since (\,504,nC,=, lim, ,  (1/n)E[F,| #1<0 ae. on C, and so
F—rG<g0Oae on C,. |

3.2. Hurewicz ErGopic THEOREM [3]. Let f and g be integrable
functions, g assumed to be nonnegative. Then a.e. on the set R(g, ),

lim Yiso foT'w, _EnLfh] F]
naoozl OgOTOJ [Ehu[g/hlf]’

for any positive u-integrable function h.

Proof. Let y'=hy and o' = ((h> T)/h)w. Then

YisoSeTw, i) (flh): T'w;
i g Tw, S_d(g/h) T,

a.c.

Apply Lemma 3.1 (with respect to (w', ') to £, =374 (fh)e T'w, and
g=21g (g/h)-T'o;. |

3.3. COROLLARY. Let f and g be integrable functions, g assumed to be
nonnegative. Then a.e. on the set #(g, w),
T
lim SoTw, =0,

e 3720 8(TH(x)) 0(x)
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Proof. We may assume that u is a finite measure. Let h=fo Tw — f.
Then ho T'w,=fo T 'w,;, ,— foT'w,;, so (fT"w,— f)/g,=h,/g, where
g.,=X7"_g hoT'w,. Using Theorem 3.2 we obtain lim,_ , h,/g, =
lim,_ , (foT"w,)/g,=E,[h]| #YE,[g] F1=0ac |

3.4. THEOREM. Let (X, B,p) be a o-finite measure space and T a
Markovian transformation with respect to (w, ). Let {f,} be a subadditive
sequence of integrable functions, and {g,} a superadditive sequence of non-
negative integrable functions. Then a.e. on #(g,, w),

fn _limnﬂa) (l/n) [Ehu[fn/h | /]
neo g, lim, o (1n) &y, (g, /0] £T

for any positive u-integrable function h.

Proof. Using Remark 1.5 and arguing as in Theorem 3.2 we may
assume that y is finite. In addition, it suffices to show the theorem when
{g,} is an additive sequence.

Define

F= llm%IE“[f,J/] and GZ[E;[[gl|j]

n— oo

Because of Lemma 3.1 it suffices to show lim sup, _, .. (f,/g.) < F/G. Let
C,={xe®(g,, w):limsup, . ., f,/g,>r}. As in the proof of Lemma 3.1,
C, is an invariant set. We claim that for any integer N> 1,

lim sup In =lim sup Jun

n— oc gn n— xc gnN

aec.on#(g,, w).

In fact, if n is given and k the integer part of n/N then f, —rg, =0 implies
Sfin—r8n 2 Ho T w0y,  where  H=miny .y, (rge—fi). Using
Corollary 3.3 we have lim, _, ., (|H|>T*"w,y)/g:y =0, which completes
the proof of the claim.

Now T" is Markovian with respect to (wy,p), and FY=
Yiso(fn—rgn)e Ty is  an  additive sequence. Write BY=
{xeX:FY(x)>0 for some 1<k<p} Then by Lemma 24b
ELxsyFU 1 #1120 ae, where #V is the g-algebra of T"-invariant sets
with respect to (wy, #). By Definition 1.6 we have #'c< #". Then
B Lxsy(fn—rgn) | #1120 ae. Since f,y—rg,n<F), using the claim we
obtain C,= ), B} Therefore E,[fy—rgy)| #1120 ae. on C, for every
N, and so limy ., . (1/N){E,[fy| F1—rE,[gn| #1}=0ae. on C,. |
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4. SUB-MARKOVIAN TRANSFORMATIONS

In this section we prove the subadditive theorem for sub-Markovian
transformations; in fact, we define the recurrent part of 7 and on this set
T is shown to be Markovian. The general theorem then is obtained as a
consequence of Theorem 3.4.

4.1. DeFINITION. The transformation T is said to be sub-Markovian with
respect to (w, u) if for any measurable function f,

(P1") f>0 ae. implies | fo Tw du<| fdp, and
(P2') f=0 ae. implies fo Tw >0 ae.

4.2. INTEGRATED MAXIMAL LEMMA. Let {f,}.-0 be a subadditive
sequence, p = 1 an integer, and B as defined in Lemma 2.2. Then

jBfl du >0,

Proof. We note first that for any integrable function f, the sequence
[ foT"w, du converges. Define

n-—1 n—1
F,=5% fieThgeT0,+ Y, |fioT'lw, forall n>p.
i=0

i= i=n—p
Then by Lemma 2.2(b) F, is a nonnegative function. Since
xefi=F,—F,oTo+(xs/1} T"0,
_lflOTn7p| wn7p+ |f10T"| Dy,

then

Lfl du> lirrgo Jfl oT"ygo T"w, du

n-—1

1 . )
> lim —= ) fioT'poT'w,
=0

n—soo M

1
> lim —jF,,zo. i

n—soo R

We remark that Proposition 2.6 is also true for sub-Markovian transfor-
mations (the main part is Lemma 2.4(b), which shows that also in this case
the recurrent part of T, #(w)= #(w, f), does not depend p—a.e. on the
positive integrable function f.
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4.3. THEOREM. [If T is sub-Markovian with respect to (w, u) then T is
Markovian with respect 10 (w, X 4., 1)-

Proof. [A4 eé?—»jr,l ,swdu] defines a o-finite measure on %,
absolutely continuous with respect to . Thus there exists a measurable
function # such that 0<h<1 and |fcTwdu=|fhdp, for any non-
negative f. Thus

0<|

A(w, f)

n-—1
(l=h) Y feT'odu<|  fdu
i=0 Alw. f)

which implies =1 a.e. on Z(w). |

This theorem shows that the subadditive theorem also holds for
sub-Markovian transformations.

5. RECURRENCE AND NATURAL EXTENSION

If Z(w)=2X we say that T is (w, u)-recurrent. If T is a nonsingular
endomorphism, then its Radon-Nikodym derivative w* is a Markovian
function for u, and as in [9], (in the case that yu is o-finite on T~ '#) T is
called p-recurrent if T is (w*, u)-recurrent. If 7 is invertible, u-recurrence
of T is equivalent to conservativity of 7' (with respect to u) (cf. 54).
However, a conservative ergodic endomorphism may have Markovian
pairs (w, 1) with T not (w, p)-recurrent [4].

5.1. DErINITION.  For any set 4 write A*=1{J;,, T '4. If A< A* then
we can define the return time to A4 by 7 (x)=inflk>1:T*(x)e 4} if
xeAd* and t,=11f x¢ A*.

Then put T ,(x)=T4x) for xe X. The restriction of T, to A4 is called
the induced map on A. The following theorem generalizes the well-known
Kac’s formula to the context of Markovian transformations.

5.2. THEOREM. Let T be Markovian with respect to (w, p) and define
W =, fha=Yathfq=2:20" foT w,;, for any nonnegative function f and
any set A such that Ac A*. Then T, is sub-Markovian with respect to
(®4, py) and

@) [ufadu<| e fdu,
(b) Rw,)=A4nR(w),

(c) IAm@(m)fAdﬂ=jA'n9?(w)fdﬂ'
Procf. Let p>0 be an integer and 1: X - N be defined by 1(x)=

409/154/1-7
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min(t4(x), p)if xe A and t(x)=1if x¢ 4. If g=37"3 fo Tw,, then for all
xeX,

t—1 -1
Y (148 T'w, <Y (gunf)e T,
i=0 . i=0

and so jA gd,usfpfdy (Lemma 2.1), which proves (a), if we let p go
to oo.

If we apply (a) to (3, f)° Tw instead of f we obtain that T, is sub-
Markovian with respect to (w4, pt,). Moreover, if f is integrable then £, is
integrable and so A N #(w, /)= A(w,, f4). To prove (c) we may assume
T is (o, p)-recurrent. Then a.e. in AU (X — 4%),

T4—1 14— 1

2 (14 To=3 (tuf)To.

i=0 i=0

Since T, (x)e Au (X — A4*), for ae. xeX,

TgoTqg+T1g~1 ] 4o Ta+14—1 .
Yo (ag)eTw= Y (quef)e T,
=1y i=1y

If we define an increasing sequence of times by

74— 1

— i
1,= Y 1,°T",
=0

then for any p> 1,

Tpr1— 1 . Tt 1
z (x48)eT'w,= z Xaxf)e T'w;,
T T,
and
Tpe1— 1 . pr1—1 .
Z (X48)eTw,= Z (x4+ f)e T'w; a.c.

T| Tl

Part (c) follows from the last equality using the Hurewicz theorem. |

5.3. COROLLARY. The induced map of any o-finite measure preserving
transformation on a set A which has finite measure and satisfies A < A* is
also measure preserving.

Proof. The induced map is sub-Markovian with respect to (1, u,) and
its recurrent part is equal to 4 (since y, is integrable). Using Theorem 4.3
we obtain that T, is Markovian with respect to (1, u,). |
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5.4. CoroLLARY (Halmos). If T is a nonsingular automorphism on
(X, ) then it is conservative if and only if T is p-recurrent.

Proof. Suppose T is conservative. Write w=w*. Let f be a positive
integrable function. Since {xe X: ¥ * , f(T/(x)) w,(x) < oo} is invariant, if
it has positive measure we may assume it is all of X. Define F=

* o foT'w; Then F=FoTw+ fand T~' is Markovian with respect to

/[ E, T 1 \
4

e )=

Since T~ is conservative and w’ > 1, T~ ! is p-recurrent. Then, using Kac’s
formula, for any positive set 4 we have, |, ' du=pu'(4), and so w'=1
a.e. on A, which contradicts o’ > 1. |

The following theorem was shown in [9, 5] for the case when o is the
Radon-Nikodym derivative (cf. [9] for references to the original results in
the invertible case). We obtain one implication as a consequence of
Theorem 5.2, the others are as in [9, 5].

5.5. THEOREM. Let T be Markovian with respect to (o, u) and assume
w >0 ae. The following are equivalent.

(a) T is (w, p)-recurrent.
{b) The skew product T, is conservative.
(c) 1 belongs to the ratio set of T with respect to (w, p).

Proof. (a)=>(b) We first show limsup, _, , w,>1 ae. Let «>0 and
N=>1 be an integer such that 4 = (sup, y @, <a) has positive measure.
Since T is recurrent, A = A* and if w,(n, x)=[1"24 w4 T’ (x) then

au(A) > [A (N, x) du(x) = p(A),

and thus a>1.

Now let f be a nonnegative integrable function, write f*(x, y)=
f(x)e ™, and let Be # be such that infz £ >0 and has positive measure.
Since the induced map T is recurrent, then lim sup, _, ,, wg(n, x)=>1 ae.
on B, and so

f*eT(x,»)
=0

!

[o.0]
=Y foT4x)e P =0 ae.on BxR*. |
i=0
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5.6. THEOREM. Let T be a nonsingular endomorphism with Markovian
pair (o, p). If (w, u) is recurrent, then T admits a o-finite invariant measure
equivalent to p if and only if w is a coboundary.

Proof. First assume that the invariant measure v is finite; so (1,v) is a
Markovian pair for 7. We may assume v(X)=1, and by changing to a
cohomologous pair that u=v. For ¢>0 define v°=sup{w, ¢}. Birkhoff’s
ergodic theorem applied to the integrable function log(w®) gives

n—1

1 .
lim - Y log(w®oT'x)=E,[logw’| #] p—a.e.
n—w i=0

Since w is recurrent, 1 belongs to the ratio set of T with respect to (w, u)
and so

n—1

1 .
lim —log [] w®e T (x)

n—soc R i—0

1
=lim sup —log w, >0 u-ae.
n

Using the concavity of log and Jensen’s inequality we obtain
O<E,[logw| #F1<logE, [0"] #]
Taking limits as ¢ — 0 gives
O<E,[logw| #I<logk,[w]| #]<0.

The strict concavity of log forces o =E, [w | #]=1.

If T admits an infinite invariant measures v, we may again assume u = v,
and (1, v) is Markovian for T. Let A be a set of positive finite measure.
Since w is recurrent, the induced map T, is recurrent with respect to
(wy, 1) and preserves the measure u,. By the first part, w,=1 p—ae,
and since this is for any finite set 4 then w =1 p—ae. |

5.7. DEFINITION. Let X =(X, %@, T,w, p)and 2" =(X'", %', T', ', 1') be
two dynamical systems. We say that &' is a (Markovian) extension of & if
there is a measurable map P: X’ —» X and a positive measurable function
n: X' >R such that:

(iy PoT'=T-Pae,
(i) f=0 ae. implies | foPrdu = fdp,
(ili) nmoT’'w =wo P a.e.

P is called a conjugate projection and Markovian with respect to

(1, m, p).
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5.8. DerINITION.  Let (X, #) be a standard Borel space, and T a
#-measurable map. Define X' = {(x,);5¢: Tx;, =x;,i20} and T": X' >
X' by T'(x;)=(Txg, Xg, X1, -.). Given 4 % define cylinder sets in X' by
A% ={(x)eX :x,eA)}. Let &% consist of all sets of the form 4 for
Ae®B and k>0, and &' be the Borel o-algebra generated by \/, _, ¥
If X' is nonempty, (X', #’) is a standard Borel space, 7" is bijective, 7" and
T' ! are #-measurable. The first projection P: X' — X is called the natural
projection. (X', #', T’) is the inverse limit of (X, %, T').

The foliowing theorem constructs an invertible extension for Markovian
transformations. Maharam [8] has obtained before the authors a different
construction of an invertible extension {(cf. [9]). When T is onto
everywhere and w >0 a.e. is the Radon—Nikodym derivative a proof of the
following theorem is given in [9].

5.9. THEOREM. Let (X, %) be a standard Borel space, T be a
B-measurable function, and (X', #', T') be the inverse limit of (X, B, T). If
T is Markovian with respect to (w, u) then X' is nonempty and there exists
a unique o-finite measure u' on #' such that

(i) u=p-P,
(i) T’ is Markovian with respect to (w', u'), where ' =w - P, where
P: X' —> X is the natural projection.

Proof. Now we first prove that P is onto a.e. For any measurable set
A of finite mass «, 0 <a <1, we construct a sequence of compact sets
{K,},>0 such that:

(i) the restriction of T' to K, is continuous for all 0<i<n,
(11) T(Kn+l)CKn’KOCA’
(i) 1{Nymo T"(K,)} = ou(A).

In fact, by induction, using Egoroff’s and Lusin’s theorems, construct
compact sets {K,},-, satisfying (i), (ii), and

(iv) u(Ko)2 /o pu(A) and

1/2n+2
f W, duza J , du.
Kni1 Kn

If K, has been constructed, choose L, such that the restriction of T to L,
is continuous, L, is compact, and

n+2
j w,, du=a'’? J w,, du.
Lnr T7H(Ky) Ka
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Then K, ,,=L,n T~ '(K,) satisfies (i), (ii), (iv), and
T Ky )= [ rresigyne T 0, dit

>f wn+1du
Knt1

Zexp[(12+1/4+ --- +1/2""2) Ina] u(A4)
> op(4).
Now if xe(,., T"(K,), then there exists x, € K, such that T"(x,)=x.

Using a diagonal procedure for each sequence {7 ‘(x,)},; belonging to
K, one constructs a sequence of limit points y;€ K, such that y,=x and
T(yiv )=y

(We note that the construction in [9] of the extension u’ on #’ of the
measure u satisfies (by the same calculation as in [9, Lemma 9])

A = o, du
A
Now define measures uj on o7 ‘© by
u}((A(’")=f wydy  for A% e g®,
A

It is readily checked that { u;} is a consistent family of measures, and thus
by the Kolmogoroff consistency theorem it extends to a unique o-finite
measure ' on %’. Furthermore, for any .of*)-measurable function
f'=foP,, where P,=PoT* k=1, if o =woP,

ff'or'w'du'{foPkﬂodeu

=JAfoPk“1d‘u=J‘foPkd/J.,.

Finally, if T’ is Markovian with respect to (w’, v), where vo P7! =y,
then

W4®) =

Pl(4)

) dv=fA wp du=p'(A%9). |

5.10. Remark. (a) The properties of Theorem 5.5, and the natural
extension described in Theorem 5.8 depend only on the cohomology class
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of (w, p). If (w, ) and (@, 1) are two cohomologous pairs, their respective
natural extensions are isomorphic. The natural extension of (X, 4, T') with
respect to (w, u) is conservative if and only of T is (w, u)-recurrent. If T is
not (w, p)-recurrent, then the natural extension with respect to (w, u) is not
conservative.

(b) The natural extension described in Theorem 5.8 is canonical in
the following sense. Any Y extension of X is also an extension of X'. If
Q: Y- X is a conjugate projection, Markovian with respect to =, then
there exists a unique Q': Y — X’ conjugate projection Markovian with
respect to 7 and satisfying Po Q' = Q.

5.11. ExampLE. Consider the modified Boole transformation Tx =
1/2(x — 1/x) defined on the real line. Let A denote Lebesque measure and
u denote Cauchy distribution. These measures are equivalent and T is a
conservative nonsingular endomorphism with respect to them. (In fact, one
can show that (R, 7, u) is isomorphic to x —»2x (mod 1) on the unit
interval.) One can calculate that * =1} and w*=1 a.e. It follows that T is
(w*, u)-recurrent and is not (w*, 1)-recurrent. 4 is an infinite measure but
if £ is any positive function of integral 1, then if we define v=~h4 and
6= ((h-T)/h) w* then v is a probability measure, (w*, 1) is cohomologous
to (6, v), (6, v) is a Markovian pair for T, and T is not (8, v)-recurrent. The
natural extension of T with respect to (w*, ) is conservative ergodic [9],
while the natural extension of 7 with respect to (0, v) is dissipative.
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