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OF T W O - B Y - T W O  M A T R I C E S  

PH. THIEULLEN 

Abstrac t .  We consider a random product of two-by-two matrices of determi- 
nant one over an abstract dynamical system. When the two Lyapunov exponents 
are distinct, Oseledets' theorem asserts that the matrix cocycle is cohomologous 
to a diagonal matrix cocycle. When they are equal, we show that the cocycle is 
conjugate to one of three cases: a rotation matrix cocycle, an upper triangular 
matrix cocycle, or a diagonal matrix cocycle modulo a rotation by 7r/2. 

1 In troduct ion  and  m a i n  results  

Let us consider a smooth dynamical system (X, 4~), where X is a compact 

oriented smooth Riemanniann manifold of  dimension 2 and q~ : X ~ X is a smooth 

orientation preserving diffeomorphism acting on X. We want to understand the 

asymptotic behaviour of typical orbits (q~'~(z))n~z. Since the number of degrees of 

freedom increases exponentially when we iterate, we assume in addition that the 

system admits some constant of motion. We assume precisely that the Lebesgue 

measure m of X, normalized to one, is preserved by 0, ~b. (m) = m. Periodic orbits 

may be seen also as constants of motion but they are not usually typical with respect 

to the Lebesgue measure. We say that an orbit is typical if it returns infinitely often 

in any Borel set of  positive Lebesgue measure with a frequency equal to the mass 

of the set. By invariance of  ra, Birkhoff's ergodic theorem asserts that almost all 

orbits are typical, provided the system is ergodic. 

More modestly, we want to describe the asymptotic behaviour of  infinitesimal 

perturbations of typical orbits. I f  T~b : T X  ~ T X  denotes the tangent map and 

z ~ X is a periodic point of period p _> 1, the asymptotic behaviour is determined 

by the operator T~r p and infinitesimally the motion is either hyperbolic, parabolic 

or elliptic. We shall show that a similar classification exists for typical orbits (with 

respect to the Lebesgue measure). 
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The case of  hyperbolic non-periodic orbits has been studied since Oseledets [ 12]. 

These orbits are characterized by two distinct Lyapunov exponents ),+(x) > 0 > 

A_ (x) and by one expanding direction E+ (z) and one contracting direction E_ (x). 

The two limits 

A+(x) = lim _1 in []Txr and A_(x) = lim _1 In [[Txr 
n - - ~ + ~  n n ~ + c ~  ?2 

exist and satisfy A+(x) + A_(x) = 0 (we have assumed det(T~r = 1). The tangent 

space can be decomposed into the sum of  two invariant and measurable vector 

bundles of  dimension one: 

TxX = E+(x) Eb E_(x) and T=~r177 = E• o r 

Each non-zero vector in E+ (x) (resp. E_ (x)) is expanded (resp. contracted) expo- 

nentially. For all v• E E:~(x), 

lim 1 In l I T h e  n �9 v + l l  = ~ •  
n---,+c~ rb 

In the non-hyperbolic case the two Lyapunov exponents are equal to zero and 

there do not exist any more invariant sub-bundles. We now consider a more formal 

framework, which includes both the case of  smooth dynamical systems and the case 

of  random walk on SL(2, R). We have chosen the group of  orientation preserving 

matrices in order to simplify the notations. We show in Section 2.5 how to extend 

the Main Theorem to the case of  GL(2, ~). From now on (X, m, r is an abstract 

dynamical system where X is a standard Borel space, r : X ~ X is a Borel 

invertible map and m is a r probability measure on the Borel a-algebra 

/3x. We choose a Borel SL(2, R)-valued function M : X --. SL(2, ]~) and define 

the associated random product or cocycle M(n, x) for all n > 0 by 

M(n,x) = Men-,(~) . . .  M~(x)Mx, 

= = . . . M  -1 M ( - n , x )  (M(n,r -1 Mr (~) v - ' (x )  

Notice that M satisfies the cocycle identity, for all m, n E Z: 

M(m + n, x) = M(n, r x). 

Oseledets' theory tells us how to construct explicitly the invariant sub-bundles 

E• (x) in the hyperbolic case. By Kingrnan's ergodic theorem [9], the two Lya- 

punov exponents exist almost everywhere and can also be computed by using the 

polar decomposition, M(n, x) = R(a(n, x))[M(n, z)l, where R(c~) denotes the ma- 

trix rotation of  angle a and [M(n, z)l is the symmetric matrix (M(n, x)* M(n, x)) 1/2 

with eigenvalues x+(n,x) > 1 > x- (n ,x )  and eigenspaces Ei(n ,x )  (when the 

eigenvalues are distinct). Oseledets' theorem may be summarized as follows. 
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T h e o r e m  1.1 (Oseledets [12]). Assume that in IIMII is integrable; then the 
(~, ) converges a.e. to A• A+(x) + X_(x) : 

% 

sequence _ ln x• ,~>o 0 and 

A=(x) = A• o r IfA+(x) is positive, then 

(a) limn__,+~ M(n, r �9 E+(n, r = E+(x), 

(b) l imn-,+~ E_ (n, x) = E_ (x), 

(c) R ~ = E+(x) |  andM~.E•  = E+ o r 

Oseledets' theorem is also true in higher dimensions, but the formulation o f  

the statement is more complicated (see [12], [10], [14], [15], [111, [20] and [161). 

By choosing a measurable basis adapted to this spectral decomposition, Oseledets '  

theorem may be restated as follows. There exist a measurable change o f  coordinates 

K : X --, SL(2, R) and a measurable diagonal matrix Dx = diag(vx, V~ -1) such that 

AIz = Kr I and 
1 n-1 

lim - ~ l n l  v o Ck(x)l = A+(x). 
k=0 

Such a conjugating matrix K is not unique; we shall show that there exists a unique 

"minimal" one up to a rotation modulo ~r/2 which corresponds to the choice o f  a 

basis of  two vectors adapted to E= o f  equal length and area equal to one. 

When we iterate a single matrix M in SL(2, R), the dynamics o f  the projective 

map PM acting on PR 2 is classified by the number o f  fixed points o f  P M  and 

we obtain three cases: hyperbolic, parabolic or elliptic dynamics. The following 

theorem shows that the same classification remains true along most stationary 

orbits. A fourth case occurs when two lines are permuted globally in a non- 

cohomologous manner. We first recall two notions o f  recurrence for cocycles (a 

thorough analysis is given in [17]). 

D e f i n i t i o n  1.2. (i) The cocycle M(n, x) is said to be recurrent i f  for any Borel 

set B o f  positive measure and any e > 0 there exists n _> 1 such that 

m(B N r  N {x E B s.t. IIM(n, x) - Idll < e}) > 0. 

(ii) Infinity is said to be an essential value o f  M(n,  z) i f  for any Borel set B o f  

positive measure and any real R > 0 there exists n > i such that 

m ( B M r  E B s.t. IIM(n,m)II > R}) > 0. 

We first recall an easy dichotomy for general cocycles and then state the Main 

Theorem. 
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L e m m a  1.3. I f  M : X ~ SL(2, R) is a measurable (not necessarily log- 

integrable)function and X t  = {x E X : limn~+oo IIM(n,z)l l  = +oo},  then on the 

complement  set XT = X \ Xt,  M(n ,  x) is a recurrent cocycle. 

The following theorem can be seen as a classification into four distinct types 

of  dynamics. The log-integrability condition is used only to define the Lyapunov 
exponents and to prove various recurrence properties; it is not used in the classifi- 

cation result. 

M a i n  T h e o r e m  1.4. Assume fln]lM~ll dm(x)  < +oo. Then there exist a 

Borel funct ion K : X ---, SL(2, R) and aparti t ion o f  X into f o u r  invariant Borel  sets 

X = X H  U X p  U XE U X W H  such that N~ = Kg(1)M~K~ takes one o f  the fo l lowing  

forms: 

(i) For a,e. x E XH, [o 0] N~ = v~- 1 

f o r  some Borel  v : X H ~ ]~ satisfying limn~+oo -~ in Iv o Cn(x)l = g+(x) > O. 

(ii) For a.e. x E Xp,  

N~c : 0 '021 

1 i n  I~ o r  = ,~+(x) f o r  some Borel v, w : X p  -* R satisfying lim,~+oo 

~0.  

(iii) For a.e. x E XE, 

N ~ = R ( w ~ ) =  [ cosw~ - s i n w ~  ] 
sin w, cos w~ 

f o r  some Borel funct ion w : XE  ~ R not cohomologous to 0 modulo 7r on 

any invariant set. Restricted to XE, M(n ,  x) is recurrent and oo is not an 

essential value (on any invariant seO. In part icular  A+ ( x ) = O. 

(iv) For a.e. x E XWH, 

N z =  R A(X) 0 v21 

f o r  some Borel funct ion v : X W H  --* N and A C X W H  such tha t lA  is not  

cohomologous to 0 modulo 2 on any invariant set. Restr icted to XWH,  

M(n ,  x) is recurrent and oo is an essential value. In part icular  A+ (x) = O. 
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Moreover, we have 

(a) In all  f o u r  cases, I[M~I1-1 < [IK~II/IIKr < IIM~II and IlN~ll <_ IIM~II a.e. 

More precisely, there exist Borel maps 7, u : X --, l~ such that 

7r u~ 0 R - ~- . 
IIK,(~)K~-~[[ < [[Mx[I and Kx = R 7~ + ~ 0 u ;  a 

(b) I f  I?f : X --* SL(2,~) is a Borel function such that fig = [(r takes ) 

the same form as N~ on each set XH, Xp ,  XE  and XWH, then IIK~II _< II/?~lt 
a.e. More precisely, there exist A C X ~  U XWH, A n XH invariant and D : 

XH U XWH ~ SL(2, R) a diagonal matrix such that [(~ = K~R(IA(X)~)D~ 

a.e. on XH 0 XWH and [Ikll = IIKI[ i f  and only l fD~ = +Id. There exists 

c~ : XE  ---* ~ such that f(~ = K~R(a~) a.e. on XE. In all f o u r  cases 

[I/;;ll = IIKI[ i f  and only i f  K ~ l  f fz  is a rotation a.e. 

We say that a Borel  function f : X --* R is a coboundary modulo a i f  there 

exists g : X ~ K Borel, such that f - g o r + 9 6 aZ. On the weakly hyperbolic set 

Xw H,  the two lines E+(x) = K~(I~ x {0}) and E_(x )  = K~({0} x IR) are globally 

M-invariant and are permuted in a non-cohomologous way. Conversely: 

Proposition 1.5. I f l B  & not a coboundary modulo 2 on any invariant set, 

v : X --+ I~* is log-integrable and M~ = R(IB(x)~)  diag(vx, v~l),  then 

(i) M (n, x) is recurrent (in particular, the Lyapunov exponents are zero). 

(ii) I f  Xr denotes an invariant set o f  maximal measure on which c~ is an essential 

value, then on X \ X ~ ,  M ,  is cohomologous to a rotation R(w,  ), where w~ = 0 

modulo ~- 
2"  

The next proposition gives a sufficient condition for a cocycle to possess an 

invariant line. 

Proposition 1.6. Let  M : X ~ SL(2, R) be a log-integrable cocycle such that 

the norm o f  M(n ,  x) converges to ~ a.e. Then 

(i) There exists a measurable M-invariant  line ~ : X ~ P R  2, that is a line ~ o f  

~2 satisfying M ~ ( ~ )  = ~r a.e. on X .  

(ii) I f  there exist two measurable globally M-invariant  lines ~, rl : X --, p~2,  

M~{G, ~ }  = {~r %(~)}, then each line ~ and ~ is actually invariant with 

respect to M andlim,~__,+~ ~ In [Im(n, x)l [ > 0 a.e. on X .  
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Oseledets' theorem in the case of  distinct Lyapunov exponents already shows 

that a log-integrable cocycle M is cohomologous to a diagonal cocycle D~ = 

K -1  M~K~. The Main Theorem shows that D and K can be chosen so that r 
D and lift o ~tl/llKII are log-integrable and ( K ' K )  1/2 is diagonal in the basis 

1 1 1 1 { ~ ( -  , 1); independently ~ (  ,1)} of  x. Geometrically, Ks sends the canonical 

basis of  ll~ 2 to a basis of two vectors of  length (sin/9~) -1/2, where ~9~ E]0, Tr[ is 

the angle between these two vectors and tan(�89 = IIK~]1-2. In the category of  

log-integrable cocycles, the following proposition shows there cannot exist other 

general constraints. 

Proposition 1.7. I f  K~ = R(7~ + - } ) d i a g ( u ~ , u ~ l ) R ( - 4 )  f o r  some Borel  

funct ions  7, u : X ~ R such that lnlu o r or ln l IKr is integrable, 

then there exists a log-integrable cocycle N : X --* SL(2, IR) such that Mx = 

Kv(~)N~K~ 1 becomes log-integrable and has posi t ive Lyapunov exponent. 

Similarly, we can reconstruct an elliptic cocycle from any such conjugating 

matrix K. 

Proposition 1.8. For any K~ = R(7~ + ~ ) d i a g ( u z , u ~ l ) R ( - ~ )  such that 

IIKr is log-integrable, there exists co : X ~ R not a coboundary mod- 

ulo 7r on any invariant set  such that M~ = Kr  1 is log-integrable. 

We now give two simple applications of  the Main Theorem: one for random 

products of  independent matrices and another one for random products of  matrices 

with non-negative entries. We first recall the notion of independence: 

Definition 1.9. Let (X, m, r be an ergodic invertible dynamical system, M 

a SL(2, ]~)-valued measurable cocycle and U0 c / 3 x  a sub-a-algebra. We say that 

M is independent with respect to ~'0 if M~ = M(0, z) is ~-0-measurable and the 

sequence of  a-algebras (Un = Cn (~-0))n~7 " are independent. 

Applied to the independent case, the Main Theorem gives 

Proposition 1.10. Let  (X, m, ~b) be an ergodic invertible dynamical  system, 

M : X ~ SL(2, I~) a measurable funct ion which is log-integrable and independent  

with respect to some a-algebra Yro. Then lim,~__,+~ ~ In IlM(n,z)ll  = A+ exists and 

is constant a.e. 

(i) I f  A+ > 0 then there exist K : X --* SL(2,1~), v : X ~ •* measur-  

able such that M~ = K r  1, f l n l v ( x ) l  din(x) = )~+ and 

max(lv~l, ['uz[ -1) __~ tlM~[[ a.e. 



ERGODIC REDUCTION 25 

(ii) I f  A+ = 0 then there exist K E SL(2, R) (constan O, Uo-measurabIe functions 

v , w , w  : X --~ N such that max(Ivx I, [v~] -a, twx]) < IIM~II and a non-trivial 

set A E .To such that Nx = K - 1 M x K  is almost everywhere equal to either: 

[ v ~  w~ ] w h e r e f l n l v ( x ) l d r n ( x ) = O ,  (a) N~ = 0 v ;  1 

(b) N~ = R(wz) a.e. on X,  

, ~ ) where f In Iv(x)l din(x) E N. (c) Nx = R(lA(X)~)diag(vx v -1 

The second application is a geometric proof of Wojtkowski's estimate. 

Proposi t ion 1.11 ([21]). Let  (X,, m, r be an abstract dynamical system and 

M: X---, SL(2, IR)alog-integrablefunction. I f M  = [ a b ] whereal l  the entries 
c d 

are non-negative, then f o r  a.e. x E X 

1 [ ] 
lim - I n  I IM(n,x)ll _> E ln(v/-~ + v/~c) I Zr , 

n ~ + c ~  n 

where :re denotes the Borel a-algebra o f  r sets. 

We mention for completeness that Wojtkowski has extended this lower bound 

to general symplectic matrices (see [22]). 
We have added for the convenience of the reader three appendices. In Appendix 

A, we give a different and new proof of the main tool, Douady-Earle's theorem 

about the existence of  a conformal barycenter. We use the Busemann function in- 

stead of an argument in degree theory. This method is borrowed from [3] and can 
be extended to higher dimensions. In Appendix B, we reprove the Dundford-Pettis 

theorem (see [4]). The fact that we have chosen r : X ~ X merely measurable 

introduces certain complications which are rarely explained. We introduce differ- 

ent topologies and prove that bounded sets in certain functional spaces are weakly 

compact. In Appendix C, we gather several results on recurrence of  additive cocy- 

cles for finite or a-finite abstract dynamical systems. Deeper results can be found 

in [17]. Finally, related works on the classification of  GL(2, R)-valued cocycles 

can be found in [5], [13]. 

2 P r o o f  o f  the  M a i n  T h e o r e m  

Throughout the rest of  this section, we choose an invertible abstract dynamical 

system (X, m, r and a log-integrable cocycle M : X ~ SL(2, R). We denote 

by D the open unit disk of the complex plane C and by .Mob+(D) the group of  
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M6bius transformations which preserve D. Using a standard isomorphism between 

SL(2, R) /{+Id}  and A t o b + ( D ) ,  we first reduce the cocycle M to a cocycle M (we 

will use the same notation) taking values in Atob+(D) .  

2.1 A quasi-conformal approach of SL(2,IK) 
from the beginning o f  [1]. Consider a two-by-two matrix 

M=[ a 
c d 

The following is taken 

o f  determinant one. When IR ~ is identified with C, M becomes a linear operator 

in C which can be written in the form M . z  = (OzM)z  + (OeM)2,  where O z M  and 

OeM are two  complex numbers. A simple computation gives 

OzM 1 i(c and 1 = ~ [ ( a  - + b) ] .  7 [(a + d) + - b)] OzM = d) + i(c 

The Beltrami coefficient # = O s M / O z M  measures the degree o fnon-conformal i ty  

or distortion o f  M. I f  J denotes the determinant o f  M and X• the eigenvalues o f  

Mv'-M-Z-M, then 

J = ad - bc = IOzMI ~ - ] O z M I  2 = 1 and X• = IOzMI + IOzMI �9 

In particular, tL e D and 

In tIMII = ~ In ~-_ = ~ in ka - - - 2 ~ )  = d~(0, ~), 

where d•(., .) is the Poincar~ metric o f  the unit disk (cf. Appendix A). Conversely, 

( M ' M )  1/2 can be rebuilt from p as shown in the following lemma. 

L e m m a  2.1. I f  M 6 SL(2,R), e i~ = OzM/IO~M[, pe w = O s M / O z M  a n d  

A = diag(1, -1) ,  then M = (1 - p 2 ) - l / 2 R ( a ) [ I d  + P R ( � 8 9 1 8 9  

Proof. R ( a ) . z  = e ~ z ,  A.z = 2 and IO~MI = (1 - p2)-1/2.  [] 

I f  #A, #B are the distortion coefficients o f  A, B 6 SL(2, R), then the distortion 

coefficient #AB of  the product A B  is equal to TBI(I~A) = T ~  1 o TAI(0) where for 

each M 6 SL(2, R), TM 6 M o b + ( D )  is the M6bius transformation o f  D defined by  

t O~M - O~M 
TM(t )  -- - -  

O~M - t OeM" 

This suggests associating to each linear operator M 6 SL(2, l~) a M6bius transfor- 

mation which we denote by the same letter M. More  precisely, 
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Proposition 2.2. For each M E SL(2,/R), exp(io~M) = OzM/lOzM [ and #M = 

OzM/O~M, we associate a Mdbius  transformation 

.. . t + I z M  
M( t )  = exp(~2aM ) i  ~_ t~M " 

This defines a surjective group endomorphism whose kernel is {+Id}. 

Proof. Oz(AB) = OzAOzB + O~AO~B and O~(AB) = OzAOeB + O~AOzB. [] 

The foregoing isomorphism between PSL(2,ll~) and AAob+(D) has another 

geometric interpretation. If  M E SL(2, ~), then M acts on the set of  half lines 

identified with OD and acts also on 01D when considered as a MSbius transformation. 

These two actions are conjugated by p as shown in 

L e m m a 2 . 3 .  Let p : t E OD ~ t z E OD. Then M o p = p o M. 

M( t )  acts on OD by M( t )  = (tO~M + { O e M ) / l t O z M  + tOeM[. Proof. [] 

2.2 Proofo fOse ledet s '  theorem when A+ > 0 > A_ Aswe  have seenin 

the previous section, we may assume that the cocycle M takes values in M o b  + (D).  

As usual M ( n , x )  = Mr o .-. o M~ and M ( - n , x )  = M ( n , r  -1. The 

log-integrability condition is equivalent to the integrability of  da (0, Mz (0)) and the 

existence of  Lyapunov exponents is given by 

L e m m a  2.4. Let M : X --* A~ob+(D) be a log-integrable cocycle. Then the 

(�88 ) converges a.e. to anon-negat ive  A+(x). sequence d(0, M(n,x) (O))  n>x 

Proof .  The sequence of  functions 6,~(x) = dD(O,M(n,x)(O)) is subadditive 

(~rtz+n ~ ~m .qt._ (~n O ~m); 61 is integrable; and by Kingman's ergodic theorem 

[9] (or [8]), (~6,~)n>__1 converges a.e. If  X~:(n,x) denote the eigenvalues of  
(M(n, x)*M(n ,  x))  1/2, then alp(0, M(n ,  x)(0)) = �89 ln[x+(n, x ) / X -  (n, x)]; and by 

Oseledets' theorem, (~ In x+(n ,x ) )~>o)converges  a.e. to )~+(x). [] 

The main difficulty in Oseledets' theorem is to show the existence of  two 

measurable invariant bundles E• of  dimension one. In the context of  a cocycle 

M, this is equivalent to finding two measurable functions ~: : X ~ OD which are 

M-invariant in the following sense: Mx(~• = ~• o r The proof of  part (i) 

of the Main Theorem is a consequence of  the following proposition. 

Proposition 2.5. Let  M : X --. M o b  + (D) be a measurable cocycle satis- 

fy ing  f dD(O,M~(O))dm(x) < +ce. Then, on the set {,~+ > 0}, the sequences 

(M(n , r  0 and ( M ( - n , r  0 convergea.e, exponentially to 

two distinct M-invariant  measurable functions ~ + ( x ) and ~_ ( x ). 
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Proof .  The proof is divided into two parts: in part one we prove the con- 
vergence of ~n(x) = M(n ,  4~-n(x))(0) exponentially fast to the boundary of  D. In 
the second part, by choosing a conjugacy sending (+(a:) to ~ ,  M(n ,  x) becomes a 
M6bius transformation of the upper half plane; and we show that M ( - n ,  4~(x))(0) 
converges to a real (and finite) point ~_ (x). 

Part one. The log-integrability condition implies that (ldD(0,~,~)),~_>l con- 
verges to A+ > 0. In particular, d~(0,~n) converges to +c~, which shows that ~,~ 
converges to the boundary of D. If we establish that ]~n - ~n+l[ converges to 0 
exponentially fast, then (~,0n>_l is a Cauchy sequence which converges to a point 
(+(x) e OD. Let us prove the assertion. By invariance of the Poincar6 metric, 

a~ (~, ~.+:) = d~ (o, M~-.-, <.)(0)). 

Thanks to the integrability of  M, given e : X ~ R + satisfying A+ > 2e, we have for 
sufficiently large n, d~(~,~,~,~+l) < ne and d~(~n, 0) > n(A+-e) .  LetTn : [0, 1] ~ D 
be a geodesic joining ~n and (n+:; then 

f ,::.(t),- _>inf( 1 ) 
aD(:~,:~+:)= l_l.~,,(t)l~at :o,:i :-17~I 2 I:.-:~+:I. 

We now estimate the euclidean distance of-~,, to the boundary of D: 

aD(o, n~(t))  > alp(0, ~.~) - dD(r _> n ( ~ +  - 2~), 

d~(0, 7,~(t))= �89 ((1 + 17~1)/(1- I'Y,~I)) -< -�89 In � 8 8  t~,~(t)]2). 

We thus obtain inf[0,:](1 - lTnl2) -1 _> 4exp2n(A+ - 2e) and that (~,~ - ~ n + l ) n _ o  

converges to 0 exponentially. A similar proof shows that M ( - n ,  r (0)) converges 

to a point ~_ 6 0D. 
Before proving the second part (~+(x) r ~_(x) a.e.), we need the following 

technical lemma. We recall (see Lemma A.2) that Ge denotes the unique M6bius 
transformation sending 0D to ON, the boundary of  the Poincar6 upper half  space, 

6 0D to c~ and 0 to i. 

L e m m a  2.6. Let  M : X --* Mob+(D)  a log-integrable cocycle, ~ : X ~ OD 

a measurable M-invariant funct ion and Tx = G~or the cohomologous 

Mdbius transformation on the Poincar~ upper ha l f  space. Then T , (  z ) = a( x ) z - b (  x ) 

f o r  some measurable a, b : X ~ ~ where a > 0 a.e., In(a) and ln + Ibl are integrable. 

I f T ( n , x ) ( z )  = a,~(x)z - b,~(x), then 

�9 1 

~ ' o ~  E I L ~ ( ~ ) I  = ~-.+o~lim !d~(0, M ( n , x ) ( 0 ) ) n  = ~+(x) a.e. 
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Proof. From Lemma A.5 we get 

In [max(an, 1 ) +  b~ l J 2dD(O,M(n,x)(O) ) < ln [ l + m a x  (an, 1 ) +  /)2], an J 

which already implies that in a and In + Ibl are integrable. Moreover, 

n - - 1  n - - 1  

an(z) = H a o Ck(z) and bn = ~ a,~-~-i o r c Ck(x) 
k=O k = O  

and by Birkhoff's ergodic theorem (~ ~ n ~ ( ~ ) ) n  converges to 7 a.e. The left 
inequality shows that �89 in an(x)l is bounded by dD (0, M(n, x)(O)) and thus 171 -< A+ 

a.e. To prove the other inequality, for every e > 0 one can find a measurable function 

c~ : X ~ R + such that 

c~(x) -1 exp(-ne - Ikl~) _< an o Ok(x) exp[-nT(x)] ~ ce(x) exp(ne + [kle), 

Ib o Ck(x)] < c~(x) exp(lkle), 

for all n _> 0, k E Z and a.e. x E X. Then 

n - - 1  

fbn(x)l _< c(x) 2 ~ exp [k~ + (,~ - k - 1)(7 + ~) + (k + 1)~] 
k = 0  

The bound from above of  b~/a,~ is different depending on whether 7 >_ 0 or 7 < 0. 

If7 _> 0 we get [bn(x)[ _< en('Y+S~)c(x)2/(e ~+~ - 1). I f 7  < 0 we choose e > 0 such 

that 7 + e < 0 and ]b,~(x)[ <_ e2~%(x)2/(1 - e~+~). In both cases 

an(x------Y < P(x)expn(7  + 7e) and limsup l bn(x)2 
- ~-.+oo ~ < 7 .  [] 

Proof of  Proposition 2.5. Part two. We have already proved the exis- 

tence of~+(x) and ~_(x) a.e.; we show here that ~+(x) ~ ~_(x) a.e. As in the 

previous lemma, we rewrite the cocycle M in a new system of  coordinates T~ = 

the sequence G -1 Then T(n,x)(z)  = a,~(x)z - bn(x), G~+or o Mx o ~+(~). 

( ~  lnan(X))n> 0 converges to some 7 and 17[ = A+. I f 7  < O, then 

lim T(n, r = E ak o r o r  
n--*--F-o<) 

k_>O 

( )o 0 to exists a.e. and contradicts the convergence of  M(n, r 
rl,--I 

Therefore 7 > O, T(-n,r = z/an(x) + Y~k=o b o Ck(x)/ak+l(x) and 
lim,~--.+oo T(-n,r  = ~]k>ob o Ck(x)/ak+l(X) exists a.e. on {A+ > 0}. 

[] 
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The log-integrability o f  KO(x)K~ 1 and the minimality o f  IIKII among all 

conjugating matrices will follow from the next two lemmas. 

L e m m a 2 . 7 .  I f  ( K , L , N )  �9 AAob+(D), K-I(O) and L-l(0) a r e  pure 

imaginary, N fixes +1 and M = L N K  -1, then d~(0, N(0)) < d~(0, M(0)) and 

dD(O, LK-I(O)  ) < dD(0, M(0)). Moreover, dD(0,N(0)) = dD(0, M(0)) i f  and only iJ 

either N = Id and LK-I(O)  = 0 or K(O) = L(O) = O. 

P r o o f i  The assumptions on K,  L, N imply 

K ( z )  = e 2 i ~  z + i k  L(z )  = e 2 i ~  z + i l  N ( z )  - z + n 
1 - z ik '  1 - zil '  1 + zn '  

where k, l, n belong to ] -  1, 1[. Then 

dD(O, M(O)) = dD(L-a(O), NK-I (O) )  = d~(- i l ,  (n - i k ) / ( 1  - nik)). 

I f w e  define m by d,(0, M ( 0 ) ) =  �89 ((1 + m ) / ( l -  m)) ,  we obtain 

m2 = n2(l + kl) 2 + ( l - k )  2 
n2(k +/)2 + (1 - kl) 2" 

We first get m 2 > n 2, which is equivalent to d~(0, M(0)) > alp(0, N(0)). We also 

obtain m 2 > (l - k)2/(1 - kl) 2 since the righthand side is increasing with respect to 

n, which is equivalent to d~(0, M(0)) _> dD(L -1 (0), K- l (0 ) ) .  Moreover, m 2 = n 2 

i f  and only i f  (k +/)2n2 + (k - l) 2 = 0 i f  and only i f n  = 0 and k = I or k = l = 0. [] 

L e m m a  2.8. Let ~+, ~_ be two distinct points o f  D. There exists a unique 

K E A/lob+(D) such that K(1) = ~+, K ( - 1 )  = ~_ and K - l ( 0 )  E i~. I f K  

is another M6bius transformation satisfying K(1) = ~+ a n d / ( ( - 1 )  = ~_ then 

d~(0,/s _> alp(0, K(0)) with equality i f  and only i f  K = K. 

Proof .  (i) Existence o f  K. By hypothesis, K(z )  = eVY(z + ik ) / ( z  - ik).  I f  we 

denote by ~+ = e i~+ , ~_ = e ia- the existence of  K is equivalent to 

(a+ - "7) + (a_ - "7) = 7r and a+ - "7 E] - 7r/2, 7r/2[ (mod 27r). 

The solutions are given by a+ - '7 = (a+ - a_) /2  4- 7r/2. Since ~+ # ~_, we have 

a+ - '7 # 4-~r/2 modulo 27r. Only one o f  these solutions belongs to ] -  ~r/2, lr/2[, 

and we determine k by the equation e i(~+-'r) = (1 + ik) /(1 - ik). 

(ii) Extremality o f  K. I f / s  sends 1 to ~+ and - 1  to ~_, we show that/Tf(0) 

belongs to the geodesic F joining ~+ and ~_ and that K(0) realizes the minimum 
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ofd~(0,F). Indeed, F = K( [ - I ,  l ]) , / ((0)  = K(K -~ o/i'(0)) and K -~ o R fixes 1 
and -1. Therefore, K -~ o/i '([-1, 1]) = [-1, 1] and K(0) 6 F. Moreover 

( t + i k ]  1 / l + d ' ~  d2 = t2+k  2 
d~(O,K(t)) =d~  0, ]---S-~] = ~ l n k l _ d  ] with 1 + t2k-------- ~ .  

The minimum ofd~(0, K(t)) is achieved if and only i f t  = 0. [] 

P roof  o f  the  M a i n  T h e o r e m  ( p a r t  i). Since PSL(2,1R) is isomorphic to 

Mob+(D), we may assume that M is a cocycle taking values in A4ob+(D). By 
hypothesis, A+ (x) > 0 on an invariant set of  positive measure and Proposition 2.5 

implies the existence of two M-invariant functions (+, (_: 

(+(x)= lira M(n,r and ( _ ( x ) =  lira M(-n,r 
n---~ + c~ n----}+ ~ 

which satisfy M~(~=~) = ~= o r and ~+(x) r ~_(x) a.e. By Lemma 2.8, there 

exists K~ ~ )vIob+(D) (depending measurably in x) such that K~(1) = ~+(x), 
K~(-1) = ~__(x) and K~-~(0) e iS:. Then N~ = K-~I M~:Kz fixes • each. As a ( )  
matrix N~ = diag(ux, u~-~), In IIN~:II = I ln lu~ll = d~(0, N~=(0)) and by Lemma 2.7 

d~(O,N~(O)) < d~(O,M.(O)), 

Ida(O, K~(0)) - d~>(0, K,(x)(0))l _< d~(0, M.(0)). 

If f(  : X ~ .Mob+(D) is another conjugating matrix and /q~ = /~(1)M~/q~ 

leaves 1 and -1  invariant, then ~+(x) = k~(1) and ~_(x) = / ( , ( - 1 )  are invariant 
with respect to M and {(+(x),(_(x)} = {~§ (this statement will be 
proved at the end). Let A = {x ~ XH : /-(,(1) r K~(1)} and R the rotation 
Rx(z) = eiiA(~)z. Then/ (~R,  and K~ send both • to the same points. There 

thus exists D~ ~ Mob+(D) fixing +1 such that/(~ = K~R,D~. By Lemma 2.8, 

da)(0,/f~R~(0)) _> d~(0, K,(0)) with equality if and only if K= = K~R~. Since 

N~ = Rr 1, necessarily R~ = Rr and A is invariant. 

To prove the claim we show that any M-invariant ( : X ~ 0D satisfies 

((x) E {~(x), (+(x)}. Suppose that ((x) r ~+(x) on an invariant set of  positive 

measure. After conjugation by G~+(~), M~ becomes cohomologous to the 

cocycle T~ = G~+or where T~(z) = a(x)z - b(x) and the sequence 

_(1 Ek=o'~-I lna o Ck(x)-) n>o converges to A+(x). Let ((x) = G~(r and (_(x) = 

G~(~_ (x)). From the equality 

T(-n ,  r - T(-n,  r = z/a(n, x), 

where a(n, x) "-~ ( ) converges = YL=0 a o Ck(x), we obtain that r o r x) ,>0 

a.e. to ~(x) - if_ (x). Since the convergence also holds in measure and (a(n, x)),~>0 
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converges to +o0, we obtain finally ((x) = (_ (x) a.e. and therefore ((x) = (_ (x) 

a.e. [ ]  

We end this section by proving that we cannot hope to obtain in the class o f  

log-integrable cocycles additional properties on the conjugating matrix K.  

P r o o f  o f  P r o p o s i t i o n  1.7. Let K be the corresponding M6bius trans- 

formation. By hypothesis, K~-I(0) is pure imaginary and d~(Kc(lx)(O),K~l(O)) 
is integrable. We show that there exists a Borel function n : X ---*]0, 1[ such 

that, if  Nx(z) = (z + n~)/(1 + zn~) and Mx = KO(x)NxKf 1, then dD(0, M~(0)) 

and d~(0, N~(0)) are integrable. (We recall that the matrix cocycle is given by 

N~ = diag(u~,u~ -1) where u~: = ((1 + n~) / (1  Ttx)) 1/2 and the correspond- 
1 n--1 

ing top Lyapunov exponent is given by the limit o f  Z ~k=o In u o Ck, which 

is positive a.e.) As in the proof o f  Lemma 2.7, we introduce the notation 

K~(z )  = ~ ( z  + ik~) / (1  - z ik~) ,  

dD(O,M~(O)) = ~ ln  l + m ~  and d~(O, Kc,(~:)Kfl(O)) = 
1__+ rh~. 

1 mz 2 1 rhz 

Since d~(0, M~(0)) _< ln2 - -} ln(1 - m2), it is enough to show that - ln(1 - rn~) is 

integrable. One can show that - ln(1 - m~) is equal to F(x, nx), where 

+ + (1 - 

F(x,n) = In ~ ~-i--___--n2-~_--k-)-~-l-2] ~ - �9 

When n~ = 0, M~ = Kr -t and F(x,O) = - l n ( 1 -  rh~) is integrable by 

assumption. We choose therefore any Borel function n : X 410,1[  such that 

F(x, n~) and - l n ( 1  - n 2) are integrable. [] 

2 . 3  P r o o f  o f  t h e  M a i n  T h e o r e m  w h e n  ),+ = 0 = )~_ In the case o f  

positive Lyapunov exponents, the reduction of  a log-integrable cocycle M : X 

Mob+(D) to a hyperbolic cocycle N is a consequence of  the existence of  two 

M-invariant functions ~• : X ~ 0II). In the same manner, the reduction o f  M to 

an elliptic cocycle is equivalent to finding an M-invariant function ( : X ---, D; and 

the reduction of  M to an upper triangular matrix will follow from the existence o f  

just one M-invariant ~ : X ~ 0D. 
In the case of  null Lyapunov exponents, these M-invariant functions cannot be 

obtained as limits. We first solve a weak equation (M~).(v~) = vr where the 

unknown v : X ~ AAl(0D) is a measurable function taking values in the space o f  

probability measures on 0D and M.  (~,) denotes the forward image by M : 0D --, 0D 

of  a probability measure t,. This first step is standard, the main technical part is the 

Dunford-Pett is  theorem. We define precisely in Appendix B the weak topologies 
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used in this theorem and give a condensed proof. The second step is new and 

is a substitute for Furstenberg's martingale argument. We use the Douady-Earle 

theorem [6], which associates a conformal barycenter bar(v) E D to any probability 

measure u E .M1 (0D) whose support does not contain masses greater than or equal 

to �89 The main property satisfied by the conformal barycenter is that it is preserved 

by M6bius transformations of  D: if M E .Mob + (D) then M(bar(u)) = bar(M, u). 

In Appendix A, we give a different proof of this theorem not using degree theory 

but rather using the convexity of the Busemann function. A more general statement 

which extends the Douady-Earle theorem can be found in [3]. 

We start by proving the existence of a weak solution u : X ---, .~41(0D) of  

the equation (Mx),(u~) = v6(~). We identify .MI(0D) and the set of positive 

linear forms v on E = Co(0D, I~) satisfying u(l) = 1. We use the notations of 

Appendix B. 

Proposi t ion 2.9. Let (X, m, r be an abstract dynamical system. For any 

measurabtecocycIe M : X --, Mob+(D), there exists u : X ~ .M1 (0D) measurable 

such that (M~),(v~) = v~(~) a.e. 

Proof. We first choose a reference measure, the Lebesgue measure Leb and 

define a sequence of probability measures u n : X ~ .MI(0D) by 

n-- i  

,~ = _1 Z M(k'r  Ux 
k=0 

By Corollary B.5, the unit ball B ~  is compact metrizable. One can find u : X ---, 

M1 (0D) measurable and a subsequence (n~)k>o such that 

f ~ ( x )u , k ( r  k-~+y f 
for all ~ E L~, r E E. By Lemma B.7, the weak convergence extends to essentially 

bounded measurable r : X ~ E and in particular to r = r o M~, 

f io(x)u~;~ (r o M=)dm(x) k-+y / ip(x)u~(r o M=)dm(x). 

By construction 

n + 1 
n "' ur + ,.  [M(n, r  - Leb] 

and we get finally f ~(x)uz(~l, o Mx) dm(x) = f ~(x)ur162 din(x) for all ~ E L~ 

and r E E, which is equivalent to (M~).(u~) = u~(x). [] 
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Before giving the proof  of  the Main Theorem (parts ii-iv), we  collect two 

lemmas about the conjugating matrix K in the elliptic case: 

L e m m a  2.10.  I f  K ,  L, N E 34ob + (D),  K -  1 (0) and  L -  a (0) are non-pos i t ive  

p u r e  imaginary, N is a rotation and  M = L N K  -1, then the con jugat ing  M d b i u s  

t ranformat ions  satisfy dD(L -1 (0), K -1 (0)) < d~(0, M(0)). 

P r o o f .  By hypothesis, we can write 

K ( z )  = e 2~'~ z + ik  L ( z )  = e 2~ z + il 
1 - z i k '  1 - z i l '  

N ( z )  = e2i'~z 

where k, l E [0, 1[. Moreover, dD(0, M(0)) = d~(0, L N K - I ( o ) )  = dD(il, e2i~ and 

i f m  is defined by alp(0, M ( 0 ) ) =  �89 ((1 + m ) / ( 1 -  m)) ,  we obtain the following 

relation between k, l, m and ~o: 

rn 2 = (k - / ) 2  + 4kIsin 2 w 
( 1  - kl) 2 + 4kl sin 2 w" 

Since the above function is increasing with respect to sin 2 w, we obtain 

- ( 1  - kl) 2 

1 ( l q - ~  
where ~ in \1  - r h /  = alp(0, L K - I ( O ) ) .  

We have just  proved that d~(L-l(0) ,  K-1  (0)) _< dD(O, M(0)).  [] 

Contrary to the hyperbolic case, the conjugating matrix K is not unique in 

the elliptic case but they all differ from each other by  an arbitrary rotation as the 

following lemma shows. 

L e m m a 2 . 1 1 .  I f  a cocycle  M : X ~ SL(2, R) admi ts  two decompos i t ions  

M~ = Kr  and  M~ = R r  ~, where  N~ and  N~ are rotations o f  

angle  a3~ and  &~, and  i f  w~ is not  a coboundary  modulo  7r on any  invariant  set, then 

K ~ l  K, x is a rotation and  ~o~ is cohomologous  to Co~ modulo  rr. 

P r o o f .  The cocycles N and 2) are related by N~ = K-ix/~r r ) 
In conformal notation, ~(x) = K - 1 / ~ ( 0 )  is N-invariant. In polar coordinates, 

~(x) = pze i2"r and its norm is constant along the trajectories. On the set {p > 0}, 

w = ~ o r - 7 modulo 7r, where N z ( z )  = ei2~ z. On the set {p = 0}, K~-Z/(z(0) = 0, 

there exists a : X ~ R such that K ~ l  k ~ ( z )  = ei2~xz and w = & + a o r - a .  B y  

hypothesis, a; camaot be cohomologous to 0 modulo a- on any invariant set, and 

p = 0 a . e .  [] 

We also use in the main proof  the following lemma on real coboundaries. 
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L e m m a  2.12.  I f  c : X --+ ~ is a measurable function such that c o r - c is 

an integer a.e., then there exists a r function c* : X --* R such that 

c(x) - c*(x) E Z a.e. 

Proof .  For each x E X,  we denote by  c*(x) the unique real in [0, 1[ such that 

c(z) - c* (x) E Z. Then c o r - c E Z a.e. i f  and only i f  c* o r = c* a.e. [] 

P r o o f  o f  t h e  M a i n  T h e o r e m  ( p a r t s  i i -qv).  We do not assume in this 

section that M is log-integrable. Let  X p  be an invariant set o f  maximal  measure  

on which there exists an M-invariant  function ~ : X p  ~ OD. I f  ~(x) = e i2"y" and 

if we choose Kx(z)  = ei2"r'z then N~ = K~(1)M~K~ leaves 1 invariant. In matr ix  

notation, 

N x =  [ v~O 

IIGJI -- [[M~]I a n d  [[K~[[ = 1. 

wx I K~=R(,y~), V~I 

Let XE C X \ Xp be an invariant set o f  maximal  measure  on which there 

exists an M-invariant  function ~ : XE ~ D. For each x, we choose the unique 

Kx E Mob + (D) which satisfies Kx(0) = ~(x) and K~ -1 (0) E iI~-.  After  conjugation 

by K, N~ = K~I )M~K~ becomes  a rotation (N~(0) = 0); and by  L e m m a  2.10, 

[IKr _< I[M~[[, ]IN, l[ = 1 _< [[M~[[. In matrix notation, 

7r us 0 R 
N~ = R(wx) g~: = R "[z + ~ 0 u ;  1 - 

for some w �9 XE ~ ~ u : XE ~ I~ + measurable.  I f  the angle w is a coboundary  on 

an invariant set o f  positive measure,  all points in II) would be M-invar iant  on that 

set, which would contradict  the definition o f  X p .  

On XWH = X \ (Xp  U XE),  Proposit ion 2.9 enables us to solve the equation 

(M~).(v~:) = vr where v : XWH ~ A41(OII)) is the unknown. Three cases m a y  

occur, depending on the cardinality o f  a toms o f  v~ o f  mass not smaller  than �89 Let  

c~(x) = card{t E OD: v(t) > 1/2}. 

Since c, is an invariant function, X W H  m a y  be parti t ioned into three invariant sets 

{c~ = i} f o r / =  0, 1,2. 

On the set {c~ = 0}, the Douady-Ear l e  Theorem A.11 implies that each vx 

admits a unique conformal  barycenter  ~(x) = bar(vx) E D measurable  with respect  

to x (Proposition A. 12). By  conformal i ty  M~(~(x)) = ~ o r on {c~ = 0}. By  the 

maximality Of XE,  the set {c, = 0} necessari ly has measure  0. 
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On the set {c~ = 1}, each u~ admits a unique atom ~(x) o f  mass not smaller 

which is measurable with respect to x (Lemma A. 14). The weak equation than 

implies M:~(~(x)) --- ~ o r a.e. on {c~ = 1}. By the maximality of Xp, the set 

{c, = 1} also has measure 0. 

On the set {c, = 2}, us consists of  two Dirac measures of  mass �89 each us = 

~6  ~(r + 6~(~)), where ~(x) and ~?(x) depend measurably on x. Since u is M- 

invariant, {~(x), ,?(x)} is globally preserved: 

M s { f ( x ) , ~ ( x ) }  = {( o r  r 

By Lemma 2.8, there exists a unique K~ E .Mob+(D) such that K~(1) = ((x),  

K s ( - 1 )  = r](x) and K~-I(0) E iN. The cocycle N~ = K~(ls)M~Ks preserves or 

permutes the points {+l}  and in matrix notation 

7r us 0 R ~- 
N~ = R B ( X )  V x 0 K x =  R "Y:r'J--~ 0 U:r, 1 - -  ' 

0 v~ 1 ' 

where B = {x e {c, = 2} : M s ( f ( x ) )  = r] o r The estimates of  Lemma 2.7 

give [IN~[[ <_ [[m~l[ and I[Kr < HMs[I. Let us show that I s  cannot be 

cohomologous to 0 on an invariant set of  positive measure. Otherwise, there would 

exist a : {c, = 2} --* ]~ satisfyinglB = a o r -- a modulo 2, which could be chosen 

by Lemma 2.12 such that a(x)  6 Z a.e. Then 

where ~(x) = v(x) i f  and only i f a (x )  E 2Z and ~(x) = v(x) -1 otherwise. In matrix 

notation, M~ = / ~ r  

7r 7r ~2x 0 R 
~ = ~,~ o R~  = R -r~ +c ,~-~ + -  i o us 1 - ' 0 ~i ' - -  

where ~2(x) = u(x) i f  and only i f  a(z)  E 2Z and ~2(x) = u(z)  -1 otherwise. The 

cocycle M would then admit two invariant lines, which contradicts the maximali ty 

o f  X p .  

Let us now prove the minimality of  the norm of  the conjugating matrix K.  I f  

the cocycle M admits on XE another decomposition M.  = kr163 -1, where 

N .  is a rotation o f  angle ~ not cohomologous to 0 modulo ~-, then K~-IKs is a 

rotation by Lemma 2.11 and satisfies [[k~ I[ = IlK. [[ a.e. In the same manner, i f  the 

cocycle admits on XWH a decomposition of  the form Ms = k v ( . ) N s k ~  -1, where 

N:~ = R ~ h ( x ) ~  ) diag(~2~, ~;1),  then ~(x) = / s  and 9(x) = k ~ ( - 1 )  are globally 
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M-invariant and necessari ly {~(x), 5(x)} coincides with {((x), V(x)}. (Otherwise, 

M would admit  3 or  4 global ly  invariant points on OD; and putting equal masses  on 

these points, we would obtain by  the Douady-Ear l e  theorem another M-invariant  

point in D, which would contradict the maximal i ty  o f  XE.)  Let  

B = { x  e x w .  : ~x = ,~}; 

then/t'x = / s  (x) ~) satisfies/~'~ (1) = r  ( -  1) = r/(z) and by  L e m m a  2.8, 

][/~'~[1 = ][//;~[I > IlK, I[. As in the p roof  in Oseledets '  case, there exists D : X ---, 

SL(2, I~) diagonal such t h a t / s  = K~R~I~(x)2)D~.  [] 

We have actually given a partial p roof  o f  the Main Theorem: we have shown 

how to conjugate a general cocycle to a cocycle which is either parabolic,  elliptic 

or weak-hyperbolic.  We have not yet proved the propert ies o f  recurrence o f  these 

basic cocycles,  and we postpone the complete  p roof  o f  the Main Theorem to 

Section 3. 

We prefer  to close this section by  giving the p roo f  o f  Proposit ion 1.8. We first 

establish an abstract l emma  for additive real cocycles. 

L e m m a  2.13.  Let  ( X , m, r be an ergodic (not necessarily invertible) dynam- 

ical system and 6 : X -~ R + a non-negative function such that f 6 dm > O. Then 

any integrable w : X --* ~ satisfying 0 < f w dm < f 6 dm is eohomologous to 

some integrable (c : X ~ IR satisfying 0 <_ ~(z)  <_ 6(z) a.e. 

P r o o f .  Part one. We first find a conjugating function cl : X ~ II~ such that 
k--1 

~; + ca o r - cl > 0 a.e. Let  cl = infk>_0 Skw (where Skw = ~ = 0  ~o o r Since 

(~S~)k>0  converges to f oJ dm > O, cl is non-positive and finite a.e. Moreover,  

Sk+l~O = Skw o O + w for all k _> 0 so b y  taking the infimum on both sides, we 

obtain Cl < cl o r + w a.e. 

Part two. Let ~1 = w + Cl o r - Cl. Since (Cl - cl o r  is integrable, cl - cl o r 

is integrable too. We now find cz : X ~ II~ such that ~ = w~ + e2 o r - c~ is 

the desired cocycle. Let  c2 = sup~>o Sk(wl - 6). As before,  c2 is finite since 

f (wl - 6)dm = f (~o - 6)dm < 0, non-negative and 

c ~ > s u p S k ( w l - 6 ) = e 2 o C + w l - 6  a.e. 

We first observe that ~ <_ 6. Either for all k _> 1, Sk(wa -- 6) < 0, in which case 

c~ = 0 and ~b = wl + e2 o O > Wl _> 0, or there exists k _> 1 such that Sk(wl - 6) >_ O, 

in which case c2 = c2 o r + wx - 6 and o3 = 6 > 0. In both cases ~b _> 0 a.e. [] 

P r o o f  o f  P r o p o s i t i o n  1.8. In conformal  notation, the conjugating matr ix  

K~(z) = ei2*'(z + i k ~ ) / ( 1 - z i k ~ )  and k~ > 0 i f  and only i f  [u~[ > 1. We m a y  



38 PH. THIEULLEN 

assume that kx > 0 a.e. by choosing a : X ~ {0, ~r/2} so that the new conjugating 

matrix/~x = R(ar satisfies 

R (z) = + i l k x l ) / ( 1  - zilS  l). 

We choose a(x) = 0 if  and only i f  k~ _> 0 and a(x) = 7r/2 otherwise. By 

Lemma 2.10, for any & : X ~ R the cocycle/17/~ =/fr -1 satisfies 

In  IIM=,II = = 

m2(x,w ) = ([k~[ - [kr 2 + 4[k~kr sin 2 ~z 
(1 - [k~k,(x)[) 2 + 4[k~k,(~)[ sin2w" 

Set w = 0; then F(x, 0) = In [[/~r [[ = [ln [u o r  [ln [u(x)[[ is integrable 

by hypothesis. Since F(x, ~) is increasing with respect to ,~ E [0, ~r/2] for x fixed, 

we construct 5 : X 4]0,  ~-/2[ such that F(x, 5(x)) is integrable too. From the theory 

of  weak orbit equivalence (see [17]), one can find a cocycle ~0 : X ~ [0, ~r[ not 

cohomologous to 0 modulo 7r. For any integer N _> 1, ~ is not cohomologous to 

0 modulo ~r; and we may therefore assume that ~0 satisfies in addition 0 < f ~ dm < 
f 5 din. By the previous lemma, ~ is cohomologous (in •) to some & satisfying 

~(x) E]0,5(x)[ a.e. Finally, let ~ = & + a o r - a; then M~ = R(-ar 
is log-integrable and w is not cohomologous to 0 modulo 7r. [] 

2.4 A n  appfication to Wojtkowski's cone theory In this section we 

give a geometric proof  of  Wojtkowski's estimate (Proposition 1.11) on random 

products o f  two-by-two matrices with non-negative entries. For such products 

M(n, x), the top Lyapunov exponent is positive, and Wojtkowski's estimate [21] 

gives a lower bound of  that exponent by a computable formula taking into account 

only M~ itself and not its iterates. Technically, Wojtkowski exhibits a superadditive 

cocycle and can apply Birkhoff 's  ergodic theorem. For any M E SL(2, R) with 

non-negative entries we define a real number p(M) as follows: 

i f  M= [ ac db] then p ( M ) = l n ( v F ~ + v ~ c ) .  

Lemma 2.14. For any M, N E SL(2, R), p(M) is a positive real number, 
In NM[[ _> p(M) and p(Mg) >_ p(M) + p(Y). 

Using Birkhoff 's  ergodic lemma, the proof of  Proposition 1.11 is a direct 

consequence of  Lemma 2.14. Our purpose in this section is to give a geometric 
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proof of  that 1emma. Let us first recall the definition of  the cross ratio of  four 

points (z l , . . . ,  z4) o f  the plane: 

[ Z I , Z 2 , Z 3 , Z 4  ] - -  Z 3  - -  Z 1 Z 2  - -  Z 4 

Z 2  - -  Z l  Z 3  - -  Z 4  

We need the following estimate on cross-ratios: 

L e m m a  2.15.  For all c~,/3 E [0, 7r/4], [1, ei2% e ~('~- 2#)), _ 1] = (tan o~ tan ~ ) -  1. 

A matrix preserves the cone C = {(x,y) E R 2 : x _> 0,y > 0} if  it has non- 

negative entries. Such a matrix acts on half  lines of  C identified to the first 

quadrant o f  OD. I f  we conjugate by t E OD ~ t 2 E 0II), the corresponding MSbius 

transformation of  the disk sends the upper half-space ]HI into itself. 

L e m m a  2.16.  IfM = [ a b ] E SL(2, R) has non-negative entries then 
c d 

dD(~,M(IR)) = �89 ((V/~ + 1 ) / ( v / ~  - 1)) = p(M), 

where ( = [1, M(1),  M ( - 1 ) ,  -1] and dD ( ~,, M ( ~ ) ) denotes the hyperbolic distance 

between the two geodesics IR and M(R). 

Proof .  (i) Thefirst equality. Since the cross-ratio and the hyperbolic distance 

are invariant with respect to a M6bius tranformation, we may assume that M(1)  
and M ( - 1 )  are symmetric with respect to the imaginary axis. Let M(1) = e i2~ 

M ( -  1) = e i(~-2~ . The cross-ratio is then given according to the previous lemma by  

[1, M(1), M ( - 1 ) ,  -1]  = (tan 0) -~. On the other hand, the geodesic passing through 

M(1) and M ( - 1 )  intersects the imaginary axis at /z  = itanO. The hyperbolic 

distance between ~ and M(R) is then given by 

dD(~,M(IR)) = �89 ((1 + [ # l ) / ( 1 -  I#1)) = �89 ( (v/~ + 1)/(V/'~ - 1)). 

(ii) The second equality. If  we consider M as an element o f  SL(2, ~) and denote 

by c~ (resp./3) the angle of  the horizontal axis (resp. the vertical axis) with its image, 

we have ~ = c/a and fl = b/d. I f  M is considered as a M6bius transformation, 

because o f  the conjugacy t E 0D ~ t 2 E 0]~, we have on the other hand M(1)  = e i2~ 

and M ( - 1 )  = e i(~-2#). The first part shows 

1 1 -F ~/tan c~ tan # = in(x/-d-d + v/-~c ). 
d~(~, M(R))  = ~ In 1 - x/tano~tanfl [] 

P r o o f  o f  L e m m a  2.14.  Using conformal notation, by the definition o f  

the distance between two lines, we have alp(0, M(0)) > dD(l~, M(IR)). If  N is 
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another M6bius transformation sending the upper half space into itself, the geodesic 

realizing the minimum of the distance between R and MN(R) intersects M(R) and 

we thus obtain 

d•(R, MN(N)) > d~(N, M(N)) + dD(M(R), MN(IR)) 

= dD(IR, M(IR)) + alp(R, N(N)). [] 

2.5 Extension of  the Main Theorem to GL(2,R) .  We denote by 

3,tob(D) the group of isometries of  the hyperbolic disk 2. Then .Mob(2) is equal 

to the disjoint union of.Mob+(D), the set of  isometries preserving orientation and 

.Mob-(2)  those which reverse orientation. Any map in .Mob-(D) can be written 

in a unique way as MI,  where M E .Mob+(D) and I(z)  = 2. In the same way 

PSL(2, R) is isomorphic to .Mob + ( D). We have 

Proposi t ion 2.17. PGL(2, N) is isomorphic to A4ob( D). 

Proof.  For every M E GL(2, IR), M(z)  = az + b2, we associate a matrix 

[ a b ] and its projective action on (;, M(z)  = (az + b)/(bz + ~). This defines 

a group homomorphism onto the group of  complex M6bius tranformations pre- 

serving S 1. We denote by J(z) = 1/2 the inversion about S~; then J M  = M J  

for all M E GL(2,IR). I f d e t M  = la] 2 - [b[ 2 > 0, h : /=  M belongs to AAob+(D); 

if det M < 0, 2 ( /=  J M  belongs to Mob-  (D). We thus obtain a surjective group 

homomorphism M E GL(2,R) ~ ~/ E Mob(D) whose kernel is {Aid : A E R*}. 
[] 

The fact that Douady-Earle's barycenter is preserved by the whole group 

.Mob(D) enables us to extend the Main Theorem to GL(2,I~). In order to avoid 

repeating the same notation, we stress the points of  difference. 

Main Theorem (revis i ted)2.18.  Let M(n,x) be a GL(2,gC)-valued log- 

integrable cocycle. Then one can construct a measurable conjugating matrix 

K x = R  % + ~  0 u ;  1 R - ~  ESL(2,R) 

such that Nx = K~(lx)MzKx takes one o f  the four  following forms." 

(i) N =dotM [ 0 ] 0 e~:v21 , A+(x) = E[lnlvl IZ~] > 0, 

(ii) N =detMx[ wx ] 
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cosaJx -exsincox ] 
(iii) N~ = det M~ sin a3z ez cos aJz ' 

(iv) Nz = d e t M ~  R(IA(x)-})[ vz 0 I IAisnotacoboundarymodulo2,  
0 exV'z 1 ' 

where e~ = sgn(det Mx). In all four cases 

1 
IINxll ~ IIMxll and I[Kr 0 

In particular (IIK~II/IIK~(~III) +1 ~ IIM,~II. 

o ]gzlll <~ IIMxll. 
6z 

3 R e c u r r e n c e  propert i e s  

We study in this section the recurrence properties of  a cocycle M(n, x) in each 

case (hyperbolic, parabolic, elliptic and weak hyperbolic) and finish the proof o f  

the Main Theorem. We begin with general definitions and properties. 

3.1 C o c y c l e s  a n d  c o b o u n d a r i e s  We denote as usual by (X, m, r an 

abstract finite or ~r-finite dynamical system, not necessarily ergodic or invertible, 

and by G a locally compact second countable (in particular Polish) group. A 

G-valued cocycle is a measurable function a : IN • G ~ G satisfying the cocycle 

property 

a(m + n, x) = a(n, r a(m, x) a.e. 

For such IN-actions, a cocycle is actually given by a unique fi : X ---. G and the 

associated cocycle is given by 

a(n, x) = &r . . .  ~ir 

In the sequel, we identify the two notations. A cocycle a(n, x) is called a 

coboundary i f  there exists c : X ~ G measurable such that 

a(n, x) = cr c~ -1, 

and two cocycles a, b : X ~ G are said to be cohomologous if  there exists c : X ~ G 

measurable (called the conjugating function) such that 

a(n, x) = c+~ b(n, x) c ;  1 
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I f B  is a Borel set o f  positive measure and rB denotes the first return time to B, we 

define the induced cocycle an: for a.e. x 6 B 

rB(x) = inf{k >_ 1: ek(x) E B} and aB(x) = a(rs(x),x).  

In order to classify cohomologous cocycles, it is standard to introduce two 

important notions, recurrence and essential value. 

D e f i n i t i o n  3.1.  (i) A cocycle a(n, x) is said to be recurrent if  for every Borel  

set B o f  positive measure and every neighborhood V o f  the neutral element o f  G 

there exists n > 1 such that 

(B n n {x e a I e v ) )  > 0. 

(ii) Infinity is said to be an essential value i f  for every Borel  set B o f  positive 

measure and every compact KS of  G there exists n > 1 such that 

m ( S N r  E a l a(n,x) f[ KS}) > 0 .  

L e m m a  3.2.  Let (X, m, r be a a-finite conservative dynamical system, G a 

locally compact second countable group and a(n, x) : JN x X :---~ G a G-valued 
cocycle. Let (X, rh, r be the group extension f( = X x G, where rh = m | 
(my is the Haar measure) and r 9) = (r a(x)g). Then a(n, x) is a recurrent 

cocycle i f  and only i f (X ,  On, r ) is conservative. 

P r o o f .  (i)=~(ii). Let  0 : X ~ ~+ be integrable and r : G ---, R + continuous 

and integrable. For every 9 E G and a.e. x E X 

r  o 9) = a.e. 
n_>0 

Indeed, choose e > 0 such that Ae = {O > e} has positive measure and Be = {r > e} 

is nonempty. Since Be is an open set it has positive measure and, for  every 

g E Be, B,g -~ is a neighborhood o f  the neutral element e E G. By  hypothesis,  

for a.e. x E A,, there exists an infinite number o f  n 's  such that r E Ae and 

a(n,x) E Beg -1, that is O o r > e and r > e. Using Lemma C.5, we 

see that r is conservative. 

(ii)=~(i). I f V  is a neighborhood o r e  E G, me(V)  > 0; and i f B  is a Borel  set 

o f  positive measure, then for a.e. x E B and g E V, there exists n > 1 such that 

r E B and a(n, x)g E V. In particular, a(n, x) E V V  -1. [] 

C o r o l l a r y  3.3.  I f  G is a compact second-countable group and (X, m, r is 

a conservative a-finite dynamical system, then any G-valued cocycle a(n, x) is 

recurrent. 
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Proof. It is enough to show that the group extension (2 ,  rh, ~) introduced in 

Lemma 3.2 is conservative. Let 0 : X ~/I~ + be a positive and integrable function; 

then considered as a function of  (x, g), 0 is again integrable (since mG has finite 

measure) and satisfies 

0 o (~'~(x,g) = Z 0 o (hn(x) = +oo a.e. on 2 .  
n_>0 n>_0 

By Lemma C.5, ~ is conservative. [] 

Coro l l a ry  3.4. Let G be a locally compact second-countable group, H a 

normal and compact subgroup o f  G and a(n, x) a G-valued cocycle. Let G = G / H  

and ~(n, x) be the G-valued corresponding cocycle. Then (i) a(n, x) is recurrent i f  

and only if(ii) c2(n, x) is recurrent. 

Proof.  We only prove (ii)~(i).  Denote by (2 ,  rh, ~) the G-group extension 

associated to a(n, x) as defined in Lemma 3.2. The transformation ~ is conservative 

since 6(n, x) is recurrent. We now consider a(n, z) as a cocycle over 2 and show 

that it is cohomologous to a H-cocycle. Let ~r : G ~ G be a measurable section. 

Then tbr every x E X ,  O E G, a(x)a(O) = ~(x)9. There exists a unique b(x, 9) E H 

such that a(x)cr(9 ) = cr(~(x)O)b(x, 0). Considered as a function over X,  the cocycle 

a satisfies 

a(x) = o" o (p(x)b(x)(r(x) -1, x E X.  

By the previous corollary, b(n, x) and, in particular, a(n, x) are recurrent over )? 

and therefore over X. [] 

C o r o l l a r y  3.5. Le t (X ,  m, fb ) be a finite dynamical system, G a locally compact 

second-countable group, a(n, z) a G-cocyele and Xt  the transient part  Xt  = 

{x E X : l imn~+~ a(n, x) = cx)}. Then a(n, x) is a recurrent cocycle on X \ Xt. 

Proof.  Let (Ei)i___0 be compact subsets o f  G such that Ei C int(/(:i+l). To 

show that a(n, x) ~ ~ ,  it is enough to show that 

Vi > O 3no Vn > no, a(n,x)  f~ K.i a.e. 

We introduce the complementary set X~ of  points x such that, for some Ei, a(n, x) 

returns to Ei infinitely often. The set X~ is invariant (r = X~), and we can 

introduce the group extension (2~, rh,., q;~) as in Lemma 3.2. Let ~ : G --, 11r + be a 

continuous, positive and integrable function. Considered as an integrable function 

over X, since ~ is uniformly bounded from below on each Ei by a positive constant 

~--~ ~ o ~n(x, 9) = +oo a.e. x E X , , , g E G .  
n>_O 
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We use the fact that every E~g- 1 is included in some int(/Cj ). Thanks to Lem m a  C. 5, 

is conservative and a(n, x) is recurrent. [] 

The previous corollary is an abstract form of  Lemma 1.3. 

3.2 T h e  w e a k  h y p e r b o l i c  case The main purpose o f  this section is to 

prove a converse o f  part (iv) o f  the Main Theorem. To prove Proposition 1.5, we 

introduce a subgroup G o f  affine transformations o f  R, a(t) = a(t +/3), t C R 
where a E {+1} and I3 E R are constants and we shall consider G-valued cocycles 

ax(t) = ~x(t +/3~), where a : X --* {+1} and/3 : X ~ R are measurable functions. 

We first notice that a(n, x) can be written as 

a(n, x)(t) = o~(n, x)(t +/3(n, x)), 

where a(n,  x) = a o r  �9 �9 - ~ o r and/3(n, x) is an a -cocycle  defined by  

n - -  1 

O(n,x) = Z a ( k , x ) ~  oCk(x). 
k=O 

To study double recurrence o f  a(n, x) and 3(n, x), we introduce a two point 
1 extension (X , rh , r  where 2 = X x {+1}, rh = m | 3(6+1 + 6-1) and r  = 

(4)(x), a(x)e). Let ~(x, e) = e/3(x); then an easy computation shows that [~(n, x, e) = 
e/3(n, x) and Cn(x, e) -- (r c~(n, x)e). 

L e m m a  3.6. I f  ~ is not equal to a (multiplicative) coboundary on any 4- 
invariant set, then any r set B is of  the form/3 = B x {+1}, where B is 
r 

P r o o f .  We first prove that - 1  is an essential value for a(n, x): that is, for any 

B o f  positive measure there exists n > 1 such that 

m (B n r n {z e B: ~ ( n , z )  = -1}) > o. 

By contradiction, there exists B o f  positive measure such that for every n > 1 

and a.e. x E B, aB (n, x) = 1 where aB denotes the induced cocycle on B. On 

/3 = U,,>o C-n(B)  we can extend TB and aB by the same formula: 

"r~(:O--1 

~B(x)=in f{k>_l :  Cn(x) e B }  and c~B(x)= IX a ~ 1 6 2  
k=O 

An easy computation shows that a = aB/CtB o r on the O-invariant se t / ) ,  which is 

the desired contradiction. 
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Now l e t / )  be a r s e t / )  = B+ x {+1} U B_ • {-1} .  We prove by 

contradiction that B+ C B_ a.e. Otherwise, B = B+ \ B_ would have positive 

measure and for a.e. x E B there would exist n >_ 1 such that r E B and 

a(n,x) = -1 .  In other words, B x {+1} C Un_>l r  x { -1}  and B x {+1} C 

Un>l  o-n(x \ B) : B, which is a contradiction. [] 

Proposition 3.7.  Let a(n ,x)  be a G-valued cocyele, a(x)(t)  =- ax(t  + 13~) 

where a : X --~ { i l }  is not a coboundary on any invariant set and/3 is integrable. 

Then a(n, x) is a recurrent cocycle. I f  Xor denotes a r set o f  maximal 

measure on which +oo is an essential value with respect to a(n, x), then on the 

complement there exists 0 : X \ Xoo ~ gr measurable such that a(x)(O~) = 0r 

a.e. on X \ X ~ .  

Proofi  a(n, x) is recurrent. Let B be a Borel set o f  positive measure, e a 

positive number and /3  = B x {+1}. For any r set C, C = C • {4-1} 

for some C and f5  ~ d~h = 0. By Atkinson's Theorem C.2, ~(n, x, e) is a recurrent 

cocycle: there exists n _> 1 such that 

or, in other words, there exists n > 1 such that 

m (B • r  M {x E B :  a (n , x )  ----- 1 and I/3(n,x)l < e}) > 0. 

Since v~ = {a E G : (a(t) = t +/3 Vt E IR) : ]/31 < e} defines a neighborhood basis 

of Id, we have proved that a(n, x) is a recurrent cocycle. 

Existence o f  O. It is enough to show, for any r set X '  c X \ Xo~ 

of positive measure, that there exist C C X ~ r o f  positive measure and 

0 : C ~ R such that a(x)(O~) = 0r a.e. on C. By the definition o f  X ~ ,  there 

exist B C X '  o f  positive measure and R > 0 such that I/3s(n,x)] <_ R for a.e. in B 

and every n _> 0, where 

n - 1  r B ( x ) - i  

1 3 B ( n , x ) = E a . ( k , x ) / 3 .  o r  ) and /3B(X)= Z a ( k ' x ) / 3 ~ 1 6 2  
k=0 k=0 

k--1 "r/~ (x)--I 

and II 
i=0 i=0 

Let /) = B x {+1}; then ~B(n ,x ,e )  = s and [~B(n,x,e)[ <_ R. By 

Lemma C.1, ~ is equal to a coboundary -~ on an invariant set 6' (in fact, 6" = 
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Un>0 ~-n( / ) ) ) ;  and by the previous lemma, C = C .x {+1} for some r C: 

e~3(z) = ,~ o r e) - ~(x, e) for a.e. z E C and every e = +1. By  taking e = 1 and 

e = - 1 ,  we obtain 

~(x, 1) + ~ ( x , - 1 )  = ~ o r + ~  o r  

-- -~(r 1) + ~/(r -1 ) .  

Without changing 8, we modify  ~/ by "~(x,e) = "~(x,e) - �89 1) + - ~ ( x , - 1 ) )  

so that ~ satisfies "~(x, 1) + "~(x, - 1 )  = 0 a.e. x E C. In particular, we obtain 

"~(r a(x)) = a(x)Z~(r 1) for a.e. x on C. IfO(x) = -)(x, 1), then 

a(x)O o r = "~ o r 1) = t3(x) + O(x). 

This shows the existence o f  0 : C ~ R satisfying a(x)(O~:) = 0r a.e. on C. [] 

P r o o f  o f  P r o p o s i t i o n  1.5. We first notice that, according to Lemma 3.4, 

M(n,  x) is a recurrent cocycle if  and only if  the corresponding projective cocycle 

is. Moreover,  Mx is cohomologous to a rotation R ( ~ ) ,  where ~o~ = 0 modulo 

7r/2, i f  and only if  the projective cocycle is cohomologous to a rotation R(~x),  

where ~x -- 0 modulo 7r. We can therefore choose the conformal notation. On the 

Poincar6 disk, 

Z "I- #x ( 1  -[- #x'~ 1/2 
M~(z) = exp( i~B(x) )~_~--~  x where \l_---L-~ ] = [v~[. 

After conjugation by  Gl(z) = i(1 + z)/(1 - z) or Gxl(Z) = (iz + 1)/(iz - 1), the 

action of  M~ on the Poincar6 upper half  plane becomes 

v~z for x r B, 
Gt~176 - (v2z)  -1 for x E B. 

The imaginary line is invariant and, conjugating by L(z) = ln ( - i z )  on IR +, we 

finally obtain an affine map a(x) : R --* R, 

L o G1 o M x o G 1 1  o L- l ( t )  : ax(t) = a~(t +/3~), 

where a~ = exp( i~B)  and/3~ = 2 In [v~ [. By  hypothesis onlB,  a is not a coboundary  

on any invariant set. Thanks to Proposition 3.7, a(n, x) or M(n,  x) is recurrent.  On 

X \ Xo~, there exists thus an a-invariant function 0 : X \ X ~  ~ IR which satisfies 

a~(O~) = 0r a.e. on X \ Xoo. By  conjugating, ~ = (L o G)-l(O(x)) E R becomes  

an M-invariant function M~ ( ~ )  = (,(~). Conjugating by Kx(z)  = ( z+(~) / ( l+z(~) ,  

M~ becomes cohomologous to 

K -1 oM~: o K~(z) = zexp(i~clB(X)). [] r 
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P r o o f  o f  P r o p o s i t i o n  1.6. (i) Since M(n,x) has to be recurrent on XE 
and XWH according to the Main Theorem, these two sets have measure zero; and 

on each remaining invariant set XH or Xp, M(n, x) is cohomologous to an upper 

triangular matrix N(n, x): M~ = Kr 1. I f A  denotes the horizontal axis on 

I~ 2 , Kx(A) is an M-invariant line. 

(ii) In conformal notation, i f  {~x,z/~} are globally M-invariant, as in the 

main proof, M~ is cohomologous to N~ = R(IB(x){)diag(v~, v~ -1) for some log- 

integrable v : X ~ I~*. Thanks to Proposition 1.5, IB is cohomologous to 0, 

IB = 7 o r - 7 (mod 2) where the range of  7 can be chosen in Z. Then 

~" . . . .  i 71" 

where 5~ = vx i fT(x)  E 2Z and ~3~ = v~ -1 otherwise. By  hypothesis 

n--1 

in IlM(n, x)ll = In IKn, x)l = [ ~ in ]~ o Ok(x) 
k=O 

converges a.e. to +oc;  by Atkinson's Theorem, E[ln ]~] [ Z] :/: 0 a.e.; and by  

( ) converges to + ~  a.e. [] Birkhoff's ergodic theorem, 1 In 1~3(n, x)l n>0 

3.3 T h e  e l l ip t i c  c a se  We give in this section a necessary and sufficient 

condition for a cocycle M : IN • X :---, SL(d, II~) to be cohomologous  to a 

rotation R. 

P r o p o s i t i o n  3.8.  I f  M(n, x) is a measurable SL(d, ~)-valued cocycle (not 
necessarily log-integrable) and if oc is not an essential value on any invariant set, 
then M(n, x) is cohomologous to a SO(d, l~)-valued cocycle. 

P r o o f .  Let  X '  be a r set of  maximal measure on which M(n, x) is 

cohomologous to a rotation. We want to prove that X '  = X a.e. By  contradiction, 

since ~ is not an essential value on X \ X ' ,  there exist B in X \ X '  o f  positive measure 

and a constant K > 0 such that lIMB(n, z)ll < K for every n > 1 and a.e. x 6 B. We 

claim that Ms is cohomologous to a rotation R, that is, MB (x) = Kr (~) R~K;i  for 

some measurable function K : B ~ SL(d, R). We extend the conjugating matrix 

K and the rotation R on /3  = U,~_>0 r  by 

nx  -- Id, Kz = M(TB(X), x ) - IK  o r 

for every x E /3 \ B and notice that M,  = Kr 1 a.e. o n / 3 ,  which is a 

contradiction. 
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To prove the claim, we first simplify notation by assuming that 11M(n, x)l[ < K 

for every n _> 1 and for a.e. x E X. In conformal notation, 

M(n, r  = e i2a"'~ (z + #n,z) / (1 + zfzn,z), 

M(n, r = Jn, reb, 

Jn,x(t) = (1 -l~.,~12)/I t - M ( n ,  r  2. 

By hypothesis, Jn,x < (1 + I~,~,xl)/(1 - I~-,~1) = e2g is uniformly bounded. By 
Proposition A. 14, we obtain an M-invariant M 1 (0ID)-valued function v as a weak 

limit point of  (~,(n, x))n>0: 

rt--1 

x) = _1 M(k, 
n 

k = 0  

For some subsequence (nk)k>0, for every ~a E Lx(~) and r continuous on OD 

lim f f k---*+or 

Since t/(nk, x) < e2gLeb, ~z < e2KLeb so t/z is absolutely continuous with respect 

to Leb. By the Douady-Earle theorem and Lemma A.12, there exists ~ : X ~ D, 

M-invariant measurable. As in the proof of  the Main Theorem (parts ii-iv), we 

conclude that M is cohomologous to a rotation. [] 

3.4 An  ex tens ion  o f  F u r s t e n b e r g ' s  t h e o r e m  This section is devoted 

to proving Proposition 1.10. We assume that (X ,m,  r is an ergodic invertible 

dynamical system and M(n, x) is a log-integrable cocycle independent with respect 

to some a-algebra ~0 (see Definition 1.9). By ergodicity, the Lyapunov exponent 

A+ is constant a.e. If  it is equal to zero, the cocycle M(n, x) is cohomologous to 

either a parabolic or an elliptic or a weak hyperbolic cocycle. Since, in each case, 

the conjugating matrix appears as an M-invariant function, the main ingredient of  

the proof is the following lemma. 

L e m m a  3.9. Let ( X, m, r be an ergodic invertible dynamical system, ~o a 

sub-a-algebra o f  l3x such that (r are independent and generate Bx 

and M : X --. AAob+(D) a Yro-measurable cocycle. I f  M(n ,x )  is recurrent, then 

any t3x-measurable M-invariant function ~ : X ~ D is constant a.e. 

Proof .  As in Lemma 3.2, we introduce the group extension ()f, Ca, r defined 

by R = X x 7"(, where 7-/= ;k4ob+(D), Ca = m | ran, r h) = (r Mxh). We 

also extend ( to )f  by ~(x, h) = h - l ( ~ z ) .  An algebraic computation shows that ~ is 

r We want to apply Lemma C.6 to the two sub-a-algebras 750 = :Do | Bn 
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and So = go | B~, where Do = Vk_>o r and go = V~<o r Since M is 

f0-measurable, ~-~(75o) C /5o and ~(go) c go. I f  we assume for a while that 

/50 and $o generate/32, since (2 ,  rh, ~) is conservative (M(n, x) is recurrent), we 

would obtain that ~ is measurable with respect to/5o n go. For a.e. h E 7-/, the map 

x ~ h-~(~)  would be Do n go-measurable, that is, constant a.e. and ~ would be 

constant a.e. 

Since {r generates Bx,  to prove that Vk_>o~k(Do) generates /32 it 

is enough to prove that f o 4~ -k | g belongs to q~k(/Sa) for any f : X --, R 

/?o-measurable and 9 : 7-/ --* R Bn-measurable. Indeed, let f be such that 

f(x, h) = f (x )g(M(n,  x)h); then f is/5o-measurable and f o 4~ -k | g = f o ~-k 

(everywhere). [] 

We first obtain the following corollary which generalizes Lemma C.6 to some 

non-abelian groups. 

C o r o l l a r y  3.10. Let (X, m, r be an ergodic invertible dynamical system, let 

{~n~'}n~Z be a generating sequence o f  independent a-algebras and K a SL(2, II~)- 

valued measurable function. I f  the coboundary Mx = K~(~)K; 1 is measurable 

with respect to ~o, then K is constant a.e. 

Proof .  In conformal notation, for each ( E 1I), ((x) = K~(~) is M-invariant 

and therefore constant a.e. Since this is true for all ~, K is constant a.e. [] 

We now show how this last lemma applies to the proof of  Proposition 1.10. 

P r o o f  o f  P r o p o s i t i o n  1.10. Let A+ be the top Lyapunov exponent constant 

a.e. I f  A+ > O, nothing new is said. I f  A+ = O, then three cases may occur, as the 

Main Theorem shows. 

The elliptic case: There exist K : X ~ SL(2, R) and w : X ---, N such that M~ = 

K~(~)R(w~)K~ 1 a.e. on X. The cocycle M(n, x) is recurrent and ~(x) = K~(0) is 

M-invariant, therefore constant a.e. With the normalization K2a(O) E il~-, K has 

to be constant a.e. 

The weak-hyperbolic case: There exist K : X ~ SL(2, R), A E 13x and v : X --* 

I~* such that M~ = K4,(~ ) R~IA (•) ~ ) diag(v~, v~- 1 ) K~- 1 and IA is not cohomologous 

to 0. Proposition 1.5 shows that M(n ,x )  is recurrent. Let ~+(z) = K~(1) and 

(_(z) = K~(-1) ;  then {~+(x), ~_(x)} is globally M-invariant. We then introduce 

the quotient space D = 0I~x 0II)\ ,~, compact metrizable, where -,~ is the equivalence 

relation (~, r/) ,,~ (r/, (). Each M6bius transformation acts on 1~ in the trivial way, and 

~(z) = (~+(x), ~_ (x)) E ~ becomes M-invariant. As in the proof of  the previous 

lemma, ~ has to be constant a.e. and K can be chosen constant a.e. 
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The general case." As in the p roof  o f  the Main Theorem, we consider a weak 

limit point u + o f  the sequence 

n 

!~-~M(k,r  
n 

k = l  

Since c+(x) = card{t e 0D : u+(t) > �89 is constant along the trajectories, c+(x) 
is constant a.e. I f  c+ = 0, M is cohomologous to a rotation and we have seen 

that the conjugating matrix is constant a.e. I f  c+ = 2, M is cohomologous  to 

Nx = R(IA(x)~) diag(vx, v21), M(n, x) is recurrent (otherwise, I]M(n, x)[I would 

go to +ec  and A+ would be positive) and we have seen that the conjugating matrix 

can be chosen constant a.e. 

I f  c+ = 1, we also choose a weak limit point u 2 o f  

n 

1 Z M(-k ,  Ck(x)).Leb. 
n 

k = l  

As before, v -  is M-invariant and c_(x) = caxd{t e 0113 s.t. v2(t) _> �89 is constant 

a.e. The same conclusions hold when c_ = 0 and c_ = 2. Let  us assume c_ = 1. We 

have thus proved the existence o f  two M-invariant functions ~+, ~- : X --, 0I). The 

function (+ is measurable with respect to V,~_>a r  and ( -  is measurable with 

respect to Vn>0 r I f (  + is not equal to ~- a.e., then M(n, x) is cohomologous  

to a diagonal matrix and has to be recurrent (,~+ = 0). By Lemma 3.9, (+ and ( -  

are constant a.e. Otherwise, (+ = ~-  a.e. and (+ (for instance) is measurable with 

respect to Vn>o r  f? Vn>0 cn~0" Thanks to the independence o f  (r 

~+ = ~-  is constant a.e. so M(n, x) is cohomologous to an upper triangular matrix 

with constant conjugating matrix. [] 

Appendixes 

A Conformal dynamics 

The purpose o f  this appendix is to gather elementary facts on the hyperbolic 

geometry o f  the unit disk and to give a new proof  o f  the main tool, namely, the 

existence o f  Douady-Ear le ' s  conformal barycenter. 
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A.1 M6bius group on the disk and the hal fplane We denote by D 
the unit open disk of C. A M6bius transformation is a map M : C -~ C defined 

by M(=) = (az + b)/(cz + d) with ad - bc non-zero. A M6bius transformation M 

preserves D if and only i f M  has the form M~,~(z) = ei2~(z + #)/(1 + z#) where 

a E ~ and # E D. The set of M6bius transformations of  D is denoted by Mob+(D).  

Apart from the identity, the dynamics of M6bius transformations can be classified 

into three distinct classes depending on the number of  fixed points inside 2. 

The first tool we use in the study of general Mob+( •)-valued cocycles is the 

Poincar6 metric. 

Proposition A.1. There is a unique (up to a multiplicative constanO 

Riemannian metric d~ on N invariant by the group o f  M6bius transformations. 

Infinitesimally it is given by I d z l /  (1 - [zl 2) and satisfies 

(i) dD(M(~?),M(~)) = dD(~,() V M E Mob+(D),  rl,~ E D, 

(ii) dD(r/,~)= � 8 9  ). 

It is convenient sometimes to introduce new coordinates where a point ~ E Ol/~ 

is seen at infinity. More precisely, we have 

L e m m a  A.2. Let H = {z E C : ~m(z)  > 0} be the upper hal f  plane. For any 

E OD, there exists a unique Mobius transformation Gr : D --, H sending 0~) \ {~} 

onto {~m(z) = 0}, ~ to ~ and 0 to i: Gr = i(~ + z)/(~ - z). I f  d~ = (Ge).d~ 

denotes the new Poincar~ metric on ~ infinitesimally da is given by �89 [dzi/~rn(z). 

Any M6bius transformations preserving H and oo is equal to some map T~,b (z) = 

az - b where a > 0 and b E R. Conjugating M by Gr we obtain 

L e m m a  A.3. For any ~ E OD, M E Mob + (D) and T~,b = GM(~)MG~ 1, 

 /0/i  /0/I 

As we have seen in Proposition 2.2, PSL(2, R) is isomorphic to Mob+(D).  

Conjugating by G1 we obtain another isomorphism between PSL(2, R) and the 

group of M6bius transformations of H. The choice we have adopted in Proposition 

2.2 implies 

L e m m a A . 4 .  Let M [ a b ] = E SL(2, R), Ms u the correspondingMdbius 
c d 

transformation on I~ and T = G1M~,uG-~I, �9 then T(z)  = - ( a z  - b)/(cz - d). 

We conclude this section with an estimate. 
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L e m m a  A.5. For any a > 0 and b E 

1 
d~(i, a i - b ) = - l n  + a + - +  - 4  

a 2 a 

d~(i, a i - b )  <_ ~ln max a, +--a + 1  . 

A.2 The Douady-Earle theorem This section is devoted to the proof 

of  the Douady-Earle theorem A. 11 using ideas of  convex analysis in conformal 

geometry, The main tool is the Busemann function, which is geodesically convex 

for the Poincar6 metric. 

Definition A.6. Let ~ be a point o f  OD, For every z E D, we denote by Cz the 

circle tangent to 0I/) containing z and ~, by/gz the disk bounded by C~, and by 7r(z) 

the intersection point of C~ and the line joining ( and 0. We define the Busemann 

function at the point ( by 

b~(z,z') = -do(Tr(z),Tr(z')) ifD~ C 19~,, 

For any ~ E 0D, a hyperbolic cone F~ is a convex open set in D delimited 

by one connected arc of  OD \ {{} and by two geodesic lines passing through ~. 

The Busemann function is characterized by the following property invariant under 

MSbius transformations. 

Proposition A.7. For every ~ E OD, (z, zQ E D and every hyperbolic cone F~ 
containing z and z', 

br z') = lira do(z, w) - do(z', w). 
z~--*~ w e r e  

Proof .  By conformal transformation G~ : D ~ /E, the Busemann function 

at ~ takes the form b~(z ,z ' )  = d~(~m(z) ,~m(z ' ) )  if  ~m(z) < ~m(z'), and the 

form b~(z,  z') = -da(~gm(z), ~m(z ' ) )  i f  ~m(z)  > ~m(z ') .  In this geometry, a 

hyperbolic cone is delimited by vertical lines: F~  = {z e /E : u < ~e(z) < v} for 

some u, v E/tr For every z, w E Fcr we define t = t(z, w) = ~e(z) + K3m(w). By 

the triangle inequality we have Ida(z, w) - dr~(z, t)l <_ dH(w, t) and 

w 
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Letting w go to oc in I '~ ,  we obtain 

J i m  d (z, - d (z, t(z, w)) = 0, 

l i m  ds(z,  w) - dM(i.~ra(z), i~m(w)  ) = O. 

We conclude the proof  by noting that i.~m(z), i.~m(z') and i.~m(w) are all on the 

same geodesic line. [] 

We could have used a more analytic approach to define the Busemann function 

using the Poisson kernel. 

Def in i t ion  A.8.  Let ~ E 0I) be given. The Poisson kernel o f  the unit disk D 

is the function p(z, ~) = (1 -Izl~)/I  z -~12. 

The Buseman function is related to the Poissson kernel by 

L e m m a  A.9.  Fora l l~  E OD, z E D, br z) = �89 lnp(z,~). 

Proof .  We first assume ~ = 1. For any z = re i~ E If), the equation of  the circle 

C~ tangent to 0I) and containing z and ~ is given by 

( x -  aJ) 2 + y2 = ( l - w )  2 = ( r c o s O -  w) 2 + (rsinO) 2, 

where (w, O) is the center of  Cz and w is given by 2w = (1 - r2)/(1 - r cos 0). If~r(z) 

denotes the intersection point of  Cz and the real axis, we obtain ~r(z) = 2~0 - i and 

1 1 + 7r(z) 1 1 - r 2 
be(0, z ) = ~ l n l _ T r ( z )  - 2 1 n l - 2 r c o s 0 + r  2 '  

For a general ~, be(0, z) = bl (0, z/~.) and p(z, ~) = p(z / ( ,  1). [] 

We say that a function r : II3 ~ I~ is geodesically convex (or geodesically 

strictly convex or affine) on a geodesic ",/: R ---, D, if  r o ~, is convex (or strictly 

convex or affine) in the usual sense. 

P r o p o s i t i o n  A.10.  Let ~ E OD and w E D be given. Then the function 

z E • ~ br (z, w ) E R is geodesically strictly convex on any geodesic not containing 

and geodesically affine on any geodesic containing ~. 

Proof .  Let -y be a geodesic. 

"y does not contain ~. By the invariance of  the Busemann function under 

conformal transformations, we may assume that ~ = 1, 3' is the imaginary axis and 

is parametrized by -y(t) = i tanh(t). The circle Ct tangent to OD containing 7(t) and 

intersects the real axis at "~2(t) and 

b,(7(t),O) = dD(O,7(t)2) = l l n ( 1  + t a n h 2 ( t ) / 1 -  tanh2(t)),  
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d d~ 
br 0) ---- tanh(2t), -~7b~(7(t), 0 ) =  2/cosh2(2t) > 0. 

7 contains ~. We may assume that ~ = I and 7 is the real axis. The geodesic 7 is 

then parametrized by 7(t) = tanh(t) and either t < 0 and b~(7(t), O) = dD(O, 7(t)) = 

- t o r t  > 0 and b~(7(t), 0) = -d~(0,  7(t)) = - t .  [] 

We are now able to prove the main tool we need in Section 2. The proof  does 

not rely on degree theory as in [6] but uses the convexity o f  the Busemann function 

to obtain a unique minimum. This idea is borrowed from [3]. 

T h e o r e m  A.1 1 (Oouady---Earle [61). Let u be a probability measure on OD 
such that u({t}) < �89 all t E OD. Then there exists a uniquepoint bar(u) in D, 
called the conformal barycenter o f  v, which realises for  any w E D the minimum 

o f  the function z E D H fs~ b~ (z, w) dv(s 

P roo f .  We write ~(z) = fbr and observe that fbe(z,w)d~(~) i s  

equal to r - ~h(w). It is therefore enough to prove that r has a unique minimum 

in D. We actually show that r is strictly geodesically convex and that r  

converges to + ~  uniformly when z ~ 0D. The proof is divided into two parts. 

Existence. We use Lemma A.9 to obtain, for all z E D and ~ E OD, 

Iz - ~l 
be(z,0) = d~(z,O) + ln 1 + Izl" 

Since b~(z, O) > -d~(z,  0) always holds, we obtain for all z E ~ and e El0, 1[ 

r _> -v (B(z ,  e) N 01I)) dD(z, O) + v(OD \ B(z, e)) Ida(z, O) + In �89 

_> [1-- 2tz(B(z,e) fq O]~) ]dD(z,O)-J- ln lge, 

where B(z, e) is the euclidean ball o f  radius e. By the hypothesis on v, there exist 

constants e > 0 and v* < �89 such that, for every arc A of  0Ii) of  length less than 2e, 

v(A) < u*. Since B(z, e) nOD is an arc o f  0D of  length at most 2e, we finally obtain, 

for all z ~ !~, r _> (1 - 2v*)dD(z, 0) + In �89 which shows that r  converges to 

+co when Iz] ~ 1. 

Uniqueness. Suppose to the contrary that zl and z2 realize the minimum of  

~. Let 7 be the arc-length geodesic joining zl = 7(tl)  and z2 = "y(t2). By  the 

convexity of  ~ o 7, ~ o 7 has to be constant on [t~, t2] and therefore the second 

derivative o f  zh o 7, 

d---~b~(7(t), 0) &'(~) = 0 for all t E It1, t2]. 

Since the second derivative o f  a convex function is non-negative, be (7(t), 0) is affine 

in t, u a.e.; and v is therefore supported by {7 +, 7-} ,  the endpoints o f  7 in 0D. This 

for all t E OD. [] last statement is in contradiction with v(t) < 
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We next prove that bar(u) is continuous with respect to u. 

P r o p o s i t i o n  A.12.  The set blo o f  probability measures u such that u(t) < 
for ever), t E OD is open. The map u E /go ~ bar(u) E I3 is continuous and 
M(bar(u)) = bar(M, u)for any m E Mob+(D). 

Proofi  To prove that/go is open, we fix Uo E /go and construct a finite 

covering of  OD by compact sets K1 , . . .  ,Kp such that uo(Ki) < �89 There then 

1 and therefore exists a neighborhood Vo o f  uo such that for every u E V0, u(Ki) < 

v(t) <_ v(K,i) < �89 for all t E Ki, which proves )20 C lgo. 
To prove that bar(u) is continuous, we fix uo E b/o, eo > 0 and write zo = bar(u0) 

and b0 = f b~ (z0,0) duo (~). We first show that for some neighborhood ~o o f  ~o and 

ro c]o, 1[ 

(1) v u e  Vo, Vlzl > fbdz, O)du( ) > bo + 1. 

The estimations in the proof  o f  the Douady-Ear le  theorem give for any probabili ty 

measure u, z E D and e > O, 

/b~(z,O)du(~) >_ d~(z, 0)[1 - 2u(B(z,e)MAD)] + In le.  (2) 

We construct a covering o f  D by open sets P ~ There (V~)~=I so that uo(~ n 0D) < 7" 

then exists a neighborhood Vo o f  u0 and e > 0 such that for every u e Yo and 

1 and B(z, e) belongs to some 17/. Inequality (2) becomes z ~D, u (~  nOD) < ~ -  e 

f b~ (z, O) du(~) >>_ 2edD(z, 0)+ln �89 and for Izl > ro sufficiently close to 1, inequality 

(1) is satisfied. We now define a compact set 

140= { z E D :  Izl <ro and I z - z o l _ > e o }  

and by the uniqueness of  bar(uo) choose *7 > 0 such that f be(z, O)duo(~) > bo + 
4r] for every z E Ko. We construct an v-net o f K o ,  {z l , . . . , zp} ,  and choose a 

neighborhood lYo ofuo such that I f b~(zi, O) du(~) - f b~(zi, O) duo(()l < r/for  every 

u E ~0 and i = 0 . . . .  , p. Using the fact that any z E Ko is rt-close to some zi and 

the inequality Ibm(z,0) - b~(zi,O)l < d~(z, zi), we obtain f br >_ bo + 7? 
and f b~(zo, O) du(~) < bo + ,1 for all z E Ko. These two last inequalities imply that 

bar(v) E B(zo, e0) for all u E ~0, and the p roof  is complete. [] 

The proof  of  Douady-Ear le  uses an argument o f  degree theory to prove that a 

certain vector field necessarily has a zero. We show that the barycenter, obtained 

in Theorem A. 1 1 as a solution o f  a variational problem, is also a zero o f  the vector 

field gradzB defined in the following proposition. 
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Proposition A.13.  Let u be a probability measure on OD satisfying u(t) < �89 

f o r  every t E OD. For any w E D, the gradient with respect to z (for the hyperbolic 

metric) o f  the function B(z ,  w) = f b~(z, w) du(~) is given by 

fz 
- ~  

(gradzB)(z , w) = ~ du(~). 

1 s l o ( , -  i l /iz- Proof .  By Lemma A.9 we have B(z,O) = - 5  

Differentiating with respect to z, we obtain for every h E C 

d ( 2 /1 -1z]2~ '~  
1 - I z l  ~ 

~e(~t(z+ ~z-__-~(z-1- [z[2 ~))) , 

1 - Izl ~ z - 
gradzb~(z, O ) = z + Vz-- 7-(-4(z - ~) = 1 ~ [] 

We end this section by proving that the set of  measures on 0D with one or two 

atoms of  mass not smaller than �89 is a Borel set. 

L e m m a  A.14.  The set l~ 1 o f  probability measures u E .Mob+(D) having a 

1 is a Borel set and the map unique atom 6~ E OD o f  mass not smaller than 7 

u E lax ~ 5~ E OD is continuous. 

Proof. 

F = {u e MI(0]I}) : 

G -- {v E .Adl(OD) : 

S = {u e M I ( 0 D )  : 

By Proposition A. 12, F is closed. 

We first introduce three sets: 

#{ t  E OD: u(t) > �89 > 1}, 

# { t  e o • :  . ( t )  _ �89 _ 1},  

u(t) = 1 for some t E 0II3}. 

1 for every We first show that G \ S is open. Let uo E G \ S; then either uo(t) < 5 

t E 01b and u0 belongs to the previous open set/go c G, or uo(to) E [�89 1[ for some 

to E 0D and uo(t) < �89 for every t r to. As before, we construct a covering of  0IN 

a f o r i  = 1,. .  , N  and uo(Ko) < 1. by compact sets K 0 , . . . ,  KN, where uo(Ki) < ~ 

For u sufficiently close to uo, u(Ki) < �89 for i = 1 . . . .  , N ,  u(Ko) < 1 and u belongs 

to G \ S. We have just proved that G \ S is open. 

To prove that S is Borel, identify [0, 1[ to 0II) and observe that S can be written 

in the form 

s = N U E J'~l(O]~)) : / ] ( [ q , p ] ) :  ]-}. 
n>_l O<p,q<l,p--q<l/n 

To prove the continuity of  u E b h  ~ 6~ E OID, choose a sequence (u,~),~>0 

of  measures o f /g l  converging to uo~ E /gl and let tn, too be the corresponding 
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By compactness, some subsequence unique atom of  mass not smaller than 7. 

(t~)~>0 converges to a limit point t*. I f  r : OD ~ [0, 1] is a continuous test 

function satisfying ~ = 1 on a neighborhood oft*,  then ~b(t~) = 1 for large n and 

u~(r = limn_~+~ u~(~b) _> �89 By letting r converge to the Dirac function at t*, 

we obtain u~(t*) _> �89 and by uniqueness t* = too. Thus the sequence (tn)n>0 

admits a unique limit point and v ~ 6~, is continuous. [] 
1 The set/12 of  probability measures v E A,~ 1 (0]I)) having two atoms of  mass 

each is Borel since/g2 = .MI(0D) \ (/10 U/11) and, i f  we denote by the two atoms 

of v, ( (v) , , (v)  E [0, 1[, on each set 

H2(~) = {v E/12: ~(v),~(v) E [0, 1 - el, I~(v) - r/(v)l >_ e}, 

the function u E/12(e) ~ (~(u),~/(u)) E It~ 2 is continuous. 

B The  Dunford- -Pet t i s  t h e o r e m  

Let E be a separable Banach space, E t the dual space equipped with the 

weak topology and (X, B, m) a standard measurable space, where X is metrizable, 

complete and separable, B is its Borel e-algebra and m is a a-finite measure on B. 

The Dunford-Pettis theorem [4, Chap. VI, w n ~ 5] tells us that the dual o f  L~ 

can be identified with L~,. In particular, this theorem shows that the unit ball B~, 

of L~, is weakly compact. 

Def in i t ion  B.1.  Let s  be the space of  measurable functions r : X ~ E such 

that f [1r [1 din(x) < +c~ and s be the space of  measurable functions u : X ---+ E '  

such that ess suP~EXlUx(~b)[ < +c~. We define two equivalence relations: 

.~.' VCeE 

Denote the quotient spaces L~ = s ,,, and L~, = s ,,~. They become, 

respectively, a Banach space where 11r = f I1r din(x) and a Frechet space 

where the weak topology is defined by the family of  semi-norms 

= f l : ( x ) v x ( r  ~o E LR, ~ E E. p~,,r 

If  (~oi)i_>0 is dense in L~ and (r is dense in E, then the vector space 

generated by (~oir is dense in L ) .  A continuous linear form T on L~ gives 

rise to a continuous bilinear form on L~ x E by B(~, r = T(~r The main part 

of the Dunford--Pettis proof  consists in showing that such a bilinear form can be 

represented by an element u E L~,. 
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Proposition B.2.  (i) l f  B is a continuous bilinear fo rm on L~ • E, then there 

exists a unique u �9 L~ such that B(~,  ~) = f qa(x)u~(~) dra(x). 

(ii) Conversely, f o r  any u �9 L~ the bilinear fo rm defined above is continuous 

andsatis.fies {IB[I = ess suPzEX lit,all < +oo. 

P r o o f .  (i) For every ~ �9 E,  the map ~ �9 L~ ~ B(~,  ~) is a continuous linear 

form on L~ which can be represented by some ~(., r  in L ~ ,  so that B(~,  ~) = 

f ~(x)f ,(x,  ~) din(x) for all ~, r E L~ • E.  As a function o f  ~b �9 E,  ~(., ~) �9 L ~  

is linear, continuous and esssup,~ x [~(x,r _< ][B[[ [[~1[- The next lemma shows 

such a continuous linear map can be lifted to E ~ .  Let u(., ~b) E /2~ be a linear 

lift satisfying ess supxe x lu(x, ~)[ < IIB[I [lr Taking the evaluation at any point 

x E X,  we obtain a continuous linear form u, : ~ �9 E ~ u(x, r  �9 R on E that is 

an element u �9 L~,. Uniqueness o f  such a u requires the separability o f  E.  

(ii) To prove that [IBll < ~ ,  we use the separability o f  E and the Ban ach -  

Steinhaus theorem. [] 

L e m m a  B.3.  I f  ~ �9 E ~ ;,( r ) �9 L ~  is a continuous linear map, then there 

exists a continuous linear map ~ �9 E ~* u(r �9 E ~  such that f o r  all r �9 E, 

v(~)  = ~(~) in L ~ and supxex [v(~)[ = esssupa~x [1)(~b)[. 

P r o o f .  Let (r be a sequence o f  linearly independent vectors in E such that 

the closure o f  the span o f  (r is E itself. For each r we choose a lift ui E s  

of~( r  We define u on all rational linear combinations F = { ~ - 1  Air ] Ai E ~ }  

by u(~iT~=t Air = ~i~__1 Aiui. Since F is countable, there exists N of  measure 

zero such that suPX\N lu(r = I1~(~0)11~ for all r E F.  We may assume now that 

u~ = 0 on N. Since Itu(~b)l[~ <_ II~ll I[~IIE for a dense set o f r  we can extend u 

continuously to E. [] 

We are now able to state and prove the canonical isometry between the dual 

(L~) '  and L~,. 

T h e o r e m  B.4.  I f  T E (L1E) ', then there exists a unique u E L~, such that 

T(~or = f ~ (x )u~( r  fo r  all ~o,r �9 L~ x E. The transformation T ~ u 

defines a bijective linear map and IITII = ess s u p , e x  II~a II. 

P r o o f i  As we have already seen, T defines a continuous bilinear form B 

on L~ • E which can be represented by a unique u E L~,. Conversely, let 

L be the vector space generated by {~r  [ ~ E L~, r E E} and T defined on 
T n n L by (~i=1 ~ir  = ~ i = l f ~ i ( x ) u a ( r  This is well defined since i f  

n n T n ~i=1  ~PiV)i = 0, then f ua(Y~i=l ggi(x)r dm(x)  = 0. Moreover,  [ (}-~i=1 ~oizbi)l <_ 
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ess supx~x I1 us II II ~ i ~ 1  ~Will  L~ and can therefore be extended continuously to L~ 

with IITbl = ess supzcx ]]v~ 1]. [] 

C o r o l l a r y  B.5.  The unit ball ofL~, ,  B ~  = {v E L~, : esssupxcx IIv~ll - x}, 
is compact metrizable with respect to the weak topology given by the semi-norms 

= f din(x). 

We now apply this approach to identify the disintegration o f  a measure on a 

product space to an element o f  B ~ .  Let Y be a locally compact separable space 

and E = C0(Y, ~) the space of  continuous functions with compact support on Y. If  

v E E' is positive (v(r >_ 0 for any r > 0) then, by Riesz's theorem, v is a Borel 

measure finite on any compact subset of  Y. I f  in addition v(l) = 1, then v is a 

probability measure. We denote by 7r : X • Y ~ X the projection onto X. 

Proposition B.6.  I f  On is a Borel measure on X x Y such that r,(rh) : m, 

then there exists a unique v E L~, such that for  all ~ E L~, ~b E E 

f f  ~(x)r  drh(x, y) = f qo(x)v~(r din(x), 
v~ is positive and v~:(1) = 1 a.e. 

In other words, (v~)~:ex is a family o f  Borel probability measures on Y such that 

for all Borel sets A, B, rh(A • B) = fA vx(B) din(x) and v~(B) is measurable with 

respect to x. 

Proof .  The bilinear form on L~ x E,  B(~,~p) = f f  ~(x)r is 

continuous. By the Dunford--Pettis theorem, there exists v E L~, such that 

B(~, r = f ~(x)v~(r din(x) for all ~, ~ E L~ • E. If  ~, ~ _> 0, then B(~, ~) > 0, 

u~ is a positive linear form on E and therefore a Borel measure on Y. By taking an 

increasing sequence of  positive r converging pointwise to 1, we obtain v~ (|) = 1 

a.e. Given A E Bx,  the set o f  B E Br- such that x ~ u~(B) is measurable and 

~n(A x B) = fA v~(B)dm(z)  is a monotone class containing the open sets (as 

increasing limits of  positive r and therefore equal to By. [] 

We end this section by proving a technical lemma on convergence. 

L e m m a  B.7.  l f  v '~ E B ~  converges weakly to v, then for  every ~ E L~ and 

every ~ : X --~ E measurable and essentially bounded we have 

lim / qo(x)vn~(~b~)dm(x)= f qo(x)v~(r 

Proof ,  Let (r be a dense subset of  the ball of  radius ess supxex I1r ]1~. 

For each c > 0 we construct a partition (A~)i>0 of  X such that A~ is a subset of  
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{x ~ x : I1r - ~,11o~ < ~}. Let r = ~-~i>olA~ (x)~?i. Then by  Lebesgue ' s  theorem 

and the weak convergence o f  u n to u we have 

lim E f ~(x)u:(~)dm(x)=i~>o~A ~(X)Uz(~i)dm(x)' 
n ~ + c ~  i>O J A~ �9 

which shows the l emma is true for r Since I f ~(x)v~ ~ ( r 1 6 2  dm(x)l is un i formly  

bounded by  I1~ - r [I~IIL~, we can permute  the two limits and the l emma  is 

proved. [] 

C Conservative dynamics 

C.1 F i n i t e  m e a s u r e  p r e s e r v i n g  c a s e  We recall in this section basic 

facts about recurrence of /~-valued cocycles and give short proofs  for the sake o f  

completeness.  

In the sequel, (X, m, r denotes an abstract dynamical  system which is not 

necessari ly ergodic nor invertible. The notions o f  recurrence and essential values 

have been introduced in Section 3. The following l emma is a characterization for a 

cocycle to be a coboundary. 

L e m m a  C.1 .  I f  a(n, x) is a measurable cocycle, then (i) a is not equal to a 
coboundary (on any invariant Borel set of positive measure) if and only ~(i i )  cx3 is 
an essential value for a. 

P r o o f .  (i)=~(ii). Assume,  to the contrary, that there exists B E Bx o f  positive 

measure  and R > 0 such that [aB(n,x)[ < R for all n > 0 and almost  all x 6 B.  

Define 

S(x) =supaB(n,x) and I(x) = inf as(n,x). 
n>_O n>_O 

The cocycle property aB(n + 1, x) = as(n, CB(X)) + a s ( l ,  x) implies 

S(x) > SoCB(X)+aB(X) and I(x) < IoCs(x )+as(x ) .  

Then S - I _> (S - I )  o r  S - I is Cs-invariant  and actually S - S o r  = a s  a.e. 

on B. We extend S to B = Un>0 c - n ( B )  by  

= ~--,~'B (~)- 1 Ck S(x) S o r + z-,k=O a o 

and verify that S - S o r = a a.e. on /} .  This is a contradiction. 

(ii)=r Indeed, i f a  = c-cor  on a r set B and R > 0 is chosen so that 

/} = {x 6 B : [c(x)l < �89 has positive measure,  for every x 6 B which returns to 

B (r 6 B for some n > 1), we have la(n,x)l < R, which is a contradiction. [] 
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For integrable R-valued cocycles, there is a simple characterization for a 

cocycle to be recurrent. Our proof  is shorter than the original. 

T h e o r e m  C.2  ( A t k i n s o n  [2]). I f  a : X --* g~ is an integrable function then 

(i) fB adm = 0 (for every Borel r set B)  i f  and only t f  (ii) a(n, x) is a 

recurrent cocyele. 

Proof .  Denote by 2-r the cr-algebra of  Borel r sets. Condition (i) is 

equivalent to E [a I 2"r = 0 a.e., where E [. ] 27r denotes the conditional expectation. 

We only prove (i)=~(ii). 
By contradiction, there exist B E Bx  of  positive measure and e > 0 such that 

tbr every n > 1 and a.e. x E B, the induced cocycle [aB(n,x)l > e. Then for all 

p > n_> 0 and a.e. x E B  

laB(p, x) -- aB(n, x)[ -- laB(p - n, r _> e. 

On any interval [ -R,  R], there cannot exist more than N ( R )  (the integer part o f  

1 + 2R/e) distinct times n _> 0 for which aB(n, x) E I -R ,  R]. In other words, there 

exists at least one n E [0, N(R)] such that laB(n,x)l > R. We then construct by 

induction two increasing sequences of  integers (ni)i>_o and (Ri)>o where ni is the 

smallest n such that laB(hi, x)[ > Ri and 

Ri+l = 1 + sup{Ias(n, x)[ : n < N(Ri)}  

(the choice of  Ri+l implies ni+l > N ( R i )  >_ ni). Then for a.e. x E B 

liminf l [aB(ni,x)[ > liminf Ri > liminf (N(R i )  - 2)e > 6. 

i - - * q - o o  n i - -  i ~ + o o  n i  - -  i - - * + o e  2 h i  - -  2 

If (r~)n>0 denotes the sequence o f  successive return times to B, then for every 

n >_ 1, aB(n, x) = a(r~(x) ,  x). Since (�88 converges a.e. to E[IB I 2r < 1, 

the sequence 1�88 converges a.e. to IE[a 12-r _> e/2 o n / )  = U,>0 r  
[] 

C.2 ~r-finite m e a s u r e  p r e s e r v i n g  c a s e  The recurrence of  a cocycle is 

often related to the fact that some skew product extensions are conservative. I f  

the range o f  a cocycle is not finite (more generally, not compact),  the extension is 

usually a-finite. We give in this section some properties o f  conservative dynamical 

systems. 

D e f i n i t i o n  C.3.  A a-finite abstract dynamical system (X, m, r is said to be 

conservative if  for any B E Bx  of  positive measure there exists n > 1 such that 
m(B M r  > O. 



62 PH. THIEULLEN 

We observe that (X, m, r is conservative i f  and only i f  (X, m, r  is conserva- 

tive too. Ergodic theory can be done for a-finite coriservative dynamical  systems. 

The starting point is the Hurewicz theorem. We shall not use it, but will use instead 

the main ingredient of  its proof, the maximal lemma which we now recall. 

L e m m a  C.4 .  l f  a : X --* IR is an integrable function and B is the Borel set 

B =  {x C X : 3n  >_ l s.t. a(n,x)  > O}, then f B a d m  >_O. 

The maximal lemma will help us to prove a characterization for a dynamical  

system to be conservative. We give here a different p roof  than the one in [18]. 

L e m m a  C.5.  Let a : X --* ~+ be a positive and integrable function. Then 

(i) (X,m,  ~b) is conservative i f  and only/ f ( i i )  ~n_>0 a o r diverges a.e. 

P r o o f .  (ii)=r Let B be a Borel set o f  positive measure, b the function 1B 

and suppose that ) f  = {x E X : l imn~+~ b(n, x) < + ~ }  has positive measure. 

Since X is r and (a(n, x) - b(n, x))n>_o converges to + ~ ,  by  the maximal 

lemma f 2 (a  - b)dm > O. The same equality is also true for h a  instead o f a .  By  

letting N go to + ~ ,  we obtain that ,~ is disjoint from B and that a.e. point in B 

returns infinitely often into B. 

(i)=~(ii). This part is obvious. [] 

The following lemma shows that under some conditions related the notion o f  

K-system, i f a  coboundary f o r - f is 9r-measurable for some sub-a-algebra, then 

f is 9r-measurable itself. A more elaborate version is given in [19, Lemma 4.3]. 

L e m m a  C.6 .  Let (X, m, r be a conservative, a-finite and invertible dynam- 

ical system and f : X --. ]Ra 13x-measurable function. I f  there exists a a-finite 

sub-a-algebra 9r C Bx  invariant (r gr C Jr) and generating (V,~>_o r = B x )  

such that f o r - f is measurable with respect to 9r, then f i tself  is measurable with 

respect to 9r. 

P r o o f .  Case re(X) < +oc. For every e > 0, there exist n > 0, a function ] ,  

measurable with respect to 5 r and a set A, of  measure re(A,) > 1 - e such that for 

every x in A~., I f(x) - L o r  < e. Then If  o r - h t  < e on B,  = r 

and If - g,[ < e on B,,  where 9, = f o r - f - f ,  is 9r-measurable. On the set 

Um Nn>_m Ba/z, of  full measure, gl/2~ converges pointwise to f ,  which is thus 

9r-measurable. 

The general case. Since 9r is a-finite, it is enough to show that the restriction 

f y  of  f to any set o f  finite measure F E F is 9r-measurable. Let  F E 9r be o f  

finite positive measure, (F, mF, CF) the induced map on F and 9rF the a-algebra 

{ B  N F : B E 9r}. We are going to show that fF o ~F -- fF is .T'F-measurable, 
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TF is Cv-invariant and generating. The first part o f  the proof  will imply that fv  is 

:'F-measurable. 

To prove the assertion, denote by 7- the first return time to F and observe that 

for all B E : and n _> 1 

{T = n} : F n r ~) n . . -  n r r l  r e .F', 

fp o CF -- fF = 2..,l(~-:,~].(f o cn _ f) is : 'F-measurable,  
n>_l 

r = U F N r  n . . .  n r  n r e ~F.  
n_~l 

To prove that : 'F  is generating, we consider for every n __> 0 and f : X ~ R 

measurable with respect to :"  the function f(x) = f o r  o r Since 

k>n 

where r~ is the nth return time to F ,  f is measurable with respect to : ' ,  

f o r = f o r is measurable with respect to r and we have proved that 
_ n Dr" (r C r Since (r generates Bx, (r V))n_>0 generates BE 

too. [] 
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