ERGODIC REDUCTION OF RANDOM PRODUCTS
OF TWO-BY-TWO MATRICES

By

PH. THIEULLEN

Abstract. We consider a random product of two-by-two matrices of determi-
nant one over an abstract dynamical system. When the two Lyapunov exponents
are distinct, Oseledets’ theorem asserts that the matrix cocycle is cohomologous
to a diagonal matrix cocycle. When they are equal, we show that the cocycle is
conjugate to one of three cases: a rotation matrix cocycle, an upper triangular
matrix cocycle, or a diagonal matrix cocycle modulo a rotation by 7 /2.

1 Introduction and main results

Let us consider a smooth dynamical system (X, ¢), where X is a compact
oriented smooth Riemanniann manifold of dimension 2 and ¢ : X — X is a smooth
orientation preserving diffeomorphism acting on X. We want to understand the
asymptotic behaviour of typical orbits (¢"(z))ncz. Since the number of degrees of
freedom increases exponentially when we iterate, we assume in addition that the
system admits some constant of motion. We assume precisely that the Lebesgue
measure m of X, normalized to one, is preserved by ¢, ¢.(m) = m. Periodic orbits
may be seen also as constants of motion but they are not usually typical with respect
to the Lebesgue measure. We say that an orbit is typical if it returns infinitely often
in any Borel set of positive Lebesgue measure with a frequency equal to the mass
of the set. By invariance of m, Birkhoff’s ergodic theorem asserts that almost all
orbits are typical, provided the system is ergodic.

More modestly, we want to describe the asymptotic behaviour of infinitesimal
perturbations of typical orbits. If T¢ : TX — TX denotes the tangent map and
z € X is a periodic point of period p > 1, the asymptotic behaviour is determined
by the operator T¢? and infinitesimally the motion is either hyperbolic, parabolic
or elliptic. We shall show that a similar classification exists for typical orbits (with
respect to the Lebesgue measure).
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The case of hyperbolic non-periodic orbits has been studied since Oseledets [12].
These orbits are characterized by two distinct Lyapunov exponents Ay(z) > 0 >
A_(z) and by one expanding direction F, (z) and one contracting direction E_ ().
The two limits

1 . o1 Y
(@)= lm ~1n|Tg"| and  A-(e)= lim ~In|Te¢ 7

exist and satisfy A (z) + A-(z) = 0 (we have assumed det(T;¢) = 1). The tangent
space can be decomposed into the sum of two invariant and measurable vector
bundles of dimension one:

T.X =E,(z)®E_(z) and T.¢(E+(z))= Esod(z).

Each non-zero vector in E(z) (resp. E_(z)) is expanded (resp. contracted) expo-
nentially. For all v. € F4(x),

. 1 n .
Jim = In|Teg™ - vg || = Ax(2).

In the non-hyperbolic case the two Lyapunov exponents are equal to zero and
there do not exist any more invariant sub-bundles. We now consider a more formal
framework, which includes both the case of smooth dynamical systems and the case
of random walk on SL(2,R). We have chosen the group of orientation preserving
matrices in order to simplify the notations. We show in Section 2.5 how to extend
the Main Theorem to the case of GL(2,R). From now on (X, m, ¢) is an abstract
dynamical system where X is a standard Borel space, ¢ : X — X is a Borel
invertible map and m is a ¢-invariant probability measure on the Borel o-algebra
Bx. We choose a Borel SL(2, R)-valued function M : X — SL(2,R) and define
the associated random product or cocycle M(n, z) for all n > 0 by

M(n,w) = M¢n—l($) s M¢($)Mw,

n -1 - -

M(-n,z) = (M(n,¢"(z))) = Md,_ln(m) v--M¢}1($).
Notice that M satisfies the cocycle identity, for all m,n € Z:
M(m + n,z) = M(n, ¢™ () M(m, z).

Oseledets’ theory tells us how to construct explicitly the invariant sub-bundles
E4(x) in the hyperbolic case. By Kingman’s ergodic theorem [9], the two Lya-
punov exponents exist almost everywhere and can also be computed by using the
polar decomposition, M(n,z) = R(a(n, z))|M(n,z)], where R(a) denotes the ma-
trix rotation of angle « and | M (n, z)| is the symmetric matrix (M (n,z)* M(n, z)) 1z
with eigenvalues x4 (n,z) > 1 > x_(n,z) and eigenspaces E.(n,z) (when the
eigenvalues are distinct). Oseledets’ theorem may be summarized as follows.
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Theorem 1.1 (Oseledets [12]). Assume that ln||M|| is integrable; then the
sequence (%ln xi(n,x)) , converges a.e to Ai(z), Ap(z) + A_(z) = 0 and
>

Aa(z) = As o &(x). If Ay () is positive, then
(8) Lty so0 M(n, 67" (2)) - B4 (n,6™"(2)) = (),
(b) Bmyoso0 B (n,2) = E_(a),
(c) R? = E,(z) ® E_(z) and M, - E+(z) = Ey o $(z).

Oseledets’ theorem is also true in higher dimensions, but the formulation of
the statement is more complicated (see [12], [10], [14], [15], [11], [20] and [16]).
By choosing a measurable basis adapted to this spectral decomposition, Oseledets’
theorem may be restated as follows. There exist a measurable change of coordinates
K : X — SL(2,R) and a measurable diagonal matrix D, = diag(v,,v; ') such that

1
Afz = Kd,(m)DzKI_l and Im -

n—+oo N

n—1
S Infv o ¢*(@)] = As(@)-
k=0

Such a conjugating matrix K is not unique; we shall show that there exists a unique
“minimal” one up to a rotation modulo /2 which corresponds to the choice of a
basis of two vectors adapted to E. of equal length and area equal to one.

When we iterate a single matrix M in SL(2,R), the dynamics of the projective
map PM acting on PR? is classified by the number of fixed points of PM and
we obtain three cases: hyperbolic, parabolic or elliptic dynamics. The following
theorem shows that the same classification remains true along most stationary
orbits. A fourth case occurs when two lines are permuted globally in a non-
cohomologous manner. We first recall two notions of recurrence for cocycles (a
thorough analysis is given in [17]).

Definition 1.2. (i) The cocycle M (n, z) is said to be recurrent if for any Borel
set B of positive measure and any € > 0 there exists n > 1 such that

m(BNe¢ "Bn{z € Bsit |M(n,z)-1Id| <e})>0.

(ii) Infinity is said to be an essential value of M (n, z) if for any Borel set B of
positive measure and any real R > 0 there exists n > 1 such that

m(BN¢ "Bn{z e Bst |M(n,z)| > R})>0.

We first recall an easy dichotomy for general cocycles and then state the Main
Theorem.
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Lemma 1.3. If M : X — SL(2,R) is a measurable (not necessarily log-
integrable) function and X; = {z € X : lim,_. |, [|M(n,z)|| = +oo}, then on the
complement set X, = X \ X;, M(n,z) is a recurrent cocycle.

The following theorem can be seen as a classification into four distinct types
of dynamics. The log-integrability condition is used only to define the Lyapunov
exponents and to prove various recurrence properties; it is not used in the classifi-
cation result.

Main Theorem 1.4. Assume [In||M;| dm(z) < +oc. Then there exist a
Borel function K : X — SL(2,R) and a partition of X into four invariant Borel sets

X=XgUXpUXgUXwg such that N, = K;(;)Msz takes one of the following

forms:

(i) Fora.e z € Xy,
N, = vz O
0 vt
for some Borel v: Xy — R satisfying lim,_ . £ Injvo ¢™(z)] = Ay(z) > 0.
Nm - { o - ‘|
0 wv;!

for some Borel v,w : Xp — R satisfying lim,_. 400 2 Inv 0 ¢™()] = Ay (x)
=0.

(ii) Fora.e z € Xp,

(iii) For a.e. z € Xg,

N; = R(w;) =

COSw, —sinw,
sinw, COSW,

for some Borel function w : Xg — R not cohomologous to 0 modulo © on
any invariant set. Restricted to Xg, M(n,z) is recurrent and oo is not an
essential value (on any invariant set). In particular A, (z) = 0.

(iv) Fora.e z € Xwn,

Nsz(lA(m)g)[vz 0 ]

-1
0 v

for some Borel function v : Xywg — R and A C Xy such thatl, is not
cohomologous to 0 modulo 2 on any invariant set. Restricted to Xw g,
M((n, ) is recurrent and oo is an essential value. In particular A (z) = 0.
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Moreover, we have

(a) In all four cases, | Mz||™" < | Kz|l/IIKp)ll < M|l and ||Nz|| < [ Mz]| a.e.
More precisely, there exist Borel maps v,u : X — R such that

1Kot 5 ) < M1 and Kz=R(%+g)[‘g uglJR(_E).

(b) If K : X — SL(2,R) is a Borel function such that N, = K, M, K, takes
the same form as N, on each set Xy, Xp, Xg and Xwg, then | K. | < || K.
a.e. Move precisely, there exist A C Xy U Xwa, AN Xy invariant and D :
Xg U Xwn — SL(2,R) a diagonal matrix such that K, = K R 4(x)3)D;
ae. on Xy U Xwyg and | K| = ||K|| if and only if D, = £1d. There exists
a: Xg — R such that K, = K,R(a;) a.e. on Xg. In all four cases
|K|| = || K| if and only if K;' K, is a rotation a.e.

We say that a Borel function f : X — R is a coboundary modulo « if there
exists g : X — IR, Borel, such that f — go ¢+ g € aZ. On the weakly hyperbolic set
Xwa, the two lines E4 (z) = K (R x {0}) and E_(z) = K, ({0} x R) are globally
M-invariant and are permuted in a non-cohomologous way. Conversely:

Proposition 1.5. If1p is not a coboundary modulo 2 on any invariant set,
v: X — R* is log-integrable and M, = R(I(x)%) diag(ve, vy '), then

(i} M(n,z) is recurrent (in particular, the Lyapunov exponents are zero).

(ii) If X denotes an invariant set of maximal measure on which oc is an essential
value, then on X\ X o, M, is cohomologous to a rotation R(w, ), wherew, = 0
modulo %.

The next proposition gives a sufficient condition for a cocycle to possess an
invariant line.

Proposition 1.6. Let M : X — SL(2,R) be a log-integrable cocycle such that
the norm of M(n, z) converges to co a.e. Then

(1) There exists a measurable M-invariant line £ : X — PR?, that is a line £, of
R? satisfying M () = £4(r) a.e. on X.

(i) If there exist two measurable globally M-invariant lines £, : X — PR?,
Mo {&,n:} = {€4(2), Mo(z) }» then each line & and n is actually invariant with
respect to M and lim,,_, 1, 2 In||M(n,z)|| > 0 a.e. on X.

n
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Oseledets’ theorem in the case of distinct Lyapunov exponents already shows
that a log-integrable cocycle M is cohomologous to a diagonal cocycle D, =
K(;(; )MEK,;. The Main Theorem shows that D and K can be chosen so that
D and ||K o ¢||/||K|| are log-integrable and (K*K)'/? is diagonal in the basis
{%(——1, 1); %(1, 1)} independently of x. Geometrically, K, sends the canonical
basis of R? to a basis of two vectors of length (sin8,)~'/2, where 8, €]0, ][ is
the angle between these two vectors and tan(36,) = ||K,||"2. In the category of
log-integrable cocycles, the following proposition shows there cannot exist other

general constraints.

Proposition 1.7. If K, = R(y, + §)diag(usz,u;')R(—%) for some Borel
Sunctions v,u : X — R such that In|u o ¢/u| or In||Ky,)K; | is integrable,
then there exists a log-integrable cocycle N : X — SL(2,R) such that M, =
K42 )No K71 becomes log-integrable and has positive Lyapunov exponent.

Similarly, we can reconstruct an elliptic cocycle from any such conjugating
matrix K.

Proposition 1.8. For any K; = R(y, + §)diag(u.,u;')R(—5) such that
| Kpz) K5 || is log-integrable, there exists w : X — R not a coboundary mod-
ulo m on any invariant set such that M, = K4, R(w:)K;! is log-integrable.

We now give two simple applications of the Main Theorem: one for random
products of independent matrices and another one for random products of matrices
with non-negative entries. We first recall the notion of independence:

Definition 1.9. Let (X,m, ¢) be an ergodic invertible dynamical system, M
a SL(2,R)-valued measurable cocycle and Fy C Bx a sub-o-algebra. We say that
M is independent with respect to Fy if M, = M(0,z) is Fo-measurable and the
sequence of o-algebras (F, = ¢"(¥0)),,., are independent.

Applied to the independent case, the Main Theorem gives

Proposition 1.10. Let (X, m,¢) be an ergodic invertible dynamical system,
M : X — SL(2,R) a measurable function which is log-integrable and independent
with respect to some g-algebra Fo. Then lim,_, 0o = In||M(n,z)|| = A, exists and
is constant a.e.

(1) If Ay > O then there exist K : X — SL(2,R), v : X — R* measur-
able such that M, = Ky, diag(ve, vz 1)K, [In|v(z)|dm(z) = Ay and
max(|v,}, Jve| 1) < | M, a.e.
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(1) If Ay = O then there exist K € SL(2,R) (constant), Fo-measurable functions
v,w,w : X — R such that max(|jvz|, lvz| 71, lwz]) < ||M:|| and a non-trivial
set A € Fy such that N, = K~ M_K is almost everywhere equal to either:

Uy Wy
0 vt

T

(a') N:z: =

} where [ In|v(z)|dm(z) =0,

{b) N, = R{w,) a.e. on X,
(c) N, = Rl o(z)%) diag(v,,v; ') where [In|v(z)| dm(z) € R
The second application is a geometric proof of Wojtkowski’s estimate.

Proposition 1.11 (f21]). Let (X, ,m, $) be an abstract dynamical system and

a

M : X — SL(2,R) a log-integrable function. If M = [ Z ] where all the entries
c

are non-negative, then for a.e. © € X

lim %m 1M, 2| > E[ In(Vad +VFe) | T

n—-+00
where I, denotes the Borel o-algebra of ¢-invariant sets.

We mention for completeness that Wojtkowski has extended this lower bound
to general symplectic matrices (see [22]).

We have added for the convenience of the reader three appendices. In Appendix
A, we give a different and new proof of the main tool, Douady—FEarle’s theorem
about the existence of a conformal barycenter. We use the Busemann function in-
stead of an argument in degree theory. This method is borrowed from [3] and can
be extended to higher dimensions. In Appendix B, we reprove the Dundford—Pettis
theorem (see [4]). The fact that we have chosen ¢ : X — X merely measurable
introduces certain complications which are rarely explained. We introduce differ-
ent topologies and prove that bounded sets in certain functional spaces are weakly
compact. In Appendix C, we gather several results on recurrence of additive cocy-
cles for finite or o-finite abstract dynamical systems. Deeper results can be found
in [17]. Finally, related works on the classification of GL(2, R)-valued cocycles
can be found in [5], {13].

2 Proof of the Main Theorem

Throughout the rest of this section, we choose an invertible abstract dynamical
system (X,m,¢) and a log-integrable cocycle M : X — SL(2,R). We denote
by D the open unit disk of the complex plane C and by Mob* (D) the group of
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Mébius transformations which preserve D. Using a standard isomorphism between
SL(2,R)/{+ld} and Mob* (D), we first reduce the cocycle M to a cocycle M (we
will use the same notation) taking values in Mob™ (D).

2.1 A quasi-conformal approach of SL(2,R) The following is taken
from the beginning of [1]. Consider a two-by-two matrix

u=[ )

of determinant one. When R? is identified with C, M becomes a linear operator
in C which can be written in the form M.z = (8,M)z + (8; M)z, where d, M and
9; M are two complex numbers. A simple computation gives

8.M=1L(a+d)+i(c—b)] and 8:M = i{(a—d)+i(c+b)

The Beltrami coefficient 4 = 8: M /8, M measures the degree of non-conformality
or distortion of M. If J denotes the determinant of M and x4 the eigenvalues of

vM*M, then
J=ad —bc=|0,M* - |0;:M|* =1 and xu =0, M|=£|8;M]|.
In particular, u € D and

In MY = %m (i‘(—f) - %m (1 * :Z:) = dp(0, 1),

where dp(., .) is the Poincaré metric of the unit disk (cf. Appendix A). Conversely,
(M*M)'/? can be rebuilt from p as shown in the following lemma.

Lemma 2.1. If M € SL2,R), e = 8,M/|8,M], pe’® = 8;M/3,M and
A = diag(1,—1), then M = (1 — p?)"'/2R(a)[1d + pR(36)AR(—30)].

Proof. R(a).z =€z, Az =7and |8, M| =(1-p?)" /2 O
If u4, up are the distortion coefficients of A, B € SL(2, R), then the distortion

coefficient u4p of the product AB is equal to T (ua) = T5' o T ' (0) where for

each M € SL(2,R), Tas € Mob™ (D) is the Mdbius transformation of D defined by
to.M - 9:M

T t = .
w) = 53 —vot

This suggests associating to each linear operator M € SL(2,R) a Mbius transfor-
mation which we denote by the same letter M. More precisely,
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Proposition 2.2. Foreach M € SL(2,R), exp(iap) = 8, M/|0. M| and py =
9:M /0, M, we associate a Mébius transformation

. t+
M(t) = exp(i2 .
(t) p( aM)1+tﬂM

This defines a surjective group endomorphism whose kernel is {x1d}.

Proof. 8,(AB) =9.A0,B +8;A9;B and 8;(AB) = 3,A8:B + 9;A9,.B. [

The foregoing isomorphism between PSL(2,R) and Mobt (D) has another
geometric interpretation. If M € SL(2,R), then M acts on the set of half lines
identified with 8D and acts also on D when considered as a Mébius transformation.
These two actions are conjugated by p as shown in

Lemma 2.3. Letp:t€ D —t* € OD. Then Mop=po M.

Proof. M(t) acts on 8D by M(t) = (t9,M + £8; M) / [ta, M +&o:M|. O

2.2 ProofofOseledets’ theorem when A\ > 0> A_ Aswehaveseenin
the previous section, we may assume that the cocycle M takes values in Mob™ (D).
As usual M(n,z) = Myn-1(g) 0 --- 0o My and M(—n,z) = M(n,¢ "(z))"'. The
log-integrability condition is equivalent to the integrability of dp(0, M,,(0)) and the
existence of Lyapunov exponents is given by

Lemma 2.4. Let M : X — Mob* (D) be a log-integrable cocycle. Then the
sequence ( L4(0, M(n, z)(O))) | converges a.e. to a non-negative Ay (z).
n>

Proof. The sequence of functions 6,(z) = dp(0, M(n,z)(0)) is subadditive
(bman < 6m + 6, 0 @™); 6; is integrable; and by Kingman’s ergodic theorem
[9] (or [8]), (16n)n>1 converges a.e. If x:(n,z) denote the eigenvalues of
(M(n,z)*M(n,z))'/2, then dp(0,M(n,z)(0)) = LIn[x4(n,z)/x-(n,z)]; and by
Oseledets” theorem, ( L1n x4 (m, x))n>0) converges a.e. to A(z). O

The main difficulty in Oseledets’ theorem is to show the existence of two
measurable invariant bundles E; of dimension one. In the context of a cocycle
M, this is equivalent to finding two measurable functions £+ : X — 8D which are
M-invariant in the following sense: M,(é+(z)) = £+ o ¢(x). The proof of part (i)
of the Main Theorem is a consequence of the following proposition.

Proposition 2.5. Let M : X — Mob* (D) be a measurable cocycle satis-
fing [ dp(0, M,(0))dm(z) < +oo. Then, on the set { y > 0}, the sequences
(M (n, ¢>‘"(x))(0)) and (M (—n, ¢”(z))(0)) converge a.e. exponentially to

n>0 n>0

two distinct M-invariant measurable functions £ (z) and £_(z).
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Proof. The proof is divided into two parts: in part one we prove the con-
vergence of £, (z) = M(n, ¢ "(z))(0) exponentially fast to the boundary of D. In
the second part, by choosing a conjugacy sending £+ (z) to oo, M(n,z) becomes a
Mobius transformation of the upper half plane; and we show that M(—n, ¢(z))(0)
converges to a real (and finite) point £_(z).

Part one. The log-integrability condition implies that (1dp(0,£,)) ., con-
verges to A, > 0. In particular, dp(0, £, ) converges to +oc, which shows that &,
converges to the boundary of D. If we establish that |£, — &,+1| converges to 0
exponentially fast, then ({,)n>1 is a Cauchy sequence which converges to a point
£, (x) € 8D. Let us prove the assertion. By invariance of the Poincaré metric,

dp(€ns&n+1) = dp (0’ M¢—"—‘(z)(0)) :

Thanks to the integrability of M, given e : X — R* satisfying A, > 2¢, we have for
sufficiently large n, dp(&n, £nt1) < ne and dp(€n,0) > n(A; —¢). Lety, : [0,1] = D
be a geodesic joining £, and &,;; then
I ()] : ( ! )
d nIsn = ———dt Z PO n - n .
D(£ E +1) / 1 — I’Yn(t)lz [l(ff] 1 - |'Yn|2 |§ E +1]
We now estimate the euclidean distance of v, to the boundary of D:

dlD)(gm 7n(t)) < dD(fn,gn—f-l)’
d]D(Oa ’Yn(t)) z dD(01 fn) - dD(§n1 ’Yn(t)) 2 n()‘+ - 26)1

d5(0,7(t) = 310 (1 + b)) /(1= 1l)) < =310 (1= (0.

We thus obtain infjg 1j(1 — |y |?)™! > 4exp2n(Ay — 2¢) and that (&, — &nt1)n>o0
converges to 0 exponentially. A similar proof shows that M(—n, ¢"(0)) converges
to a point {_ € dD.

Before proving the second part (£.(z) # £-(z) a.e.), we need the following
technical lemma. We recall (see Lemma A.2) that G, denotes the unique Mdbjus
transformation sending 8D to 8H, the boundary of the Poincaré upper half space,
& € OD to oo and 0 to <.

Lemma 2.6. Let M : X — Mob* (D) a log-integrable cocycle, § : X — 9D
a measurable M-invariant function and T, = GE°¢(I)MZGE_(}L-) the cohomologous
MGobius transformation on the Poincaré upper half space. ThenT,(z) = a(z)z—b(z)
for some measurable a,b: X — R, wherea > 0a.e., In(a) andIn™ |b| are integrable.
IfT(n,z)(z) = an(z)z — bu(z), then
lim %| Ia,(z)| = lim_ %dD(O, M(n,z)(0) = Ay (z)  ae.

n—+4-o0
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Proof. From Lemma A.5 we get
1 b2 ' 1 b2
In [max (am a) + E,:] < 2dp(0, M(n,z)(0)) < In [1 + max (am a) + —] ,

an

which already implies that Ina and In™ || are integrable. Moreover,

n—1 n—1

an(z) = [[ao¢¥(z) and by=) an_k10¢"(z)bo¢*(z)

k=0 k=0
and by Birkhoff’s ergodic theorem (% Ina,(z)) converges to v a.e. The left
inequality shows that 1| In a, ()| is bounded by dp (0, M(n, z)(0)) and thus |v| < A,
a.e. To prove the other inequality, for every € > 0 one can find a measurable function
¢e : X — RY such that

ce(@) " exp(~ne — |kle) < an 0 ¢*(z) exp[-n7(z)] < ce(x) exp(ne + [kle),

[bo ¢*(2)] < ce(z) exp(lkle),

foralln>0,ke Zanda.e. z € X. Then
n—1
ba(@)] < e(@)? Y explke+ (n — k= 1)y +¢) + (k + e].
k=0
The bound from above of b2 /a,, is different depending on whether v > 0 or v < 0.
Ify > 0 we get |by(z)] < eV +3¢(z)2/ (e — 1). If v < 0 we choose € > 0 such
that ¥ + € < 0 and |b,(z)| < e®™c(z)?/(1 — e7*¢). In both cases

b,(x)? ) 1 b,(z)?
PNES) < D(z)expn(y+Te} and lirﬂilg - a,;(x) <. 0

Proof of Proposition 2.5. Part two. We have already proved the exis-
tence of £,.(z) and £_(z) a.e.; we show here that £, (z) # £_(z) a.e. As in the
previous lemma, we rewrite the cocycle M in a new system of coordinates T, =
Ge,opiz) © My 0 ng(m). Then T(n,z)(z) = an(z)z — by(z), the sequence
(35 Inan(2)),,,, converges to some v and |y| = A;. If v < 0, then

Jm T, ¢™"(@)0) = Y ax 0™ (@)bo 67" (x)

k>0

exists a.e. and contradicts the convergence of (M (n, d)‘”(:zc))(O))n>0 to &+ (z).

Therefore v > 0, T(—n,¢"(z))(z) = z/a,(z) + zz;éb o ¢k(z)/;k+1(m) and

litp— oo T(—7,¢™(@)) (i) = 50 © ¢*(z)/ar+1(z) exists ae. on {X; > 0}.
0O
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The log-integrability of Ky,)K;' and the minimality of ||K| among all
conjugating matrices will follow from the next two lemmas.

Lemma 2.7. If (K,L,N) € Mob*(D), K~'(0) and L7'(0) are pure
imaginary, N fixes £1 and M = LNK™1, then dp(0,N(0)) < dp(0,M(0)) and
dp(0, LK ~1(0)) < dp(0, M(0)). Moreover, dp(0, N(0)) = dp(0, M(0)) if and only if
either N = Id and LK~1(0) = 0 or K(0) = L(0) = 0.

Proof. The assumptions on X, L, N imply

zZ+n
1+ 2zn

2iy 2 T 1K _ gzt N(z) =
zik’ L(z)=e 1—zil’ 2)

K(z)=e T

where k, [, n belong to |— 1,1[. Then
dp(0, M(0)) = dp(L~1(0), NK~1(0)) = dp(~il, (n — ik)/(1 — nik)).
If we define m by dp(0, M(0)) = 3 In ((1 + m)/(l - m)), we obtain

2 P14k +(I-k)?
ATy ) Py Y P

We first get m? > n?, which is equivalent to dp(0, M(0)) > dp(0, N(0)). We also
obtain m? > (I — k)?/(1 — kl)? since the righthand side is increasing with respect to
n, which is equivalent to dp(0, M(0)) > dp(L~1(0), K~1(0)). Moreover, m? = n?
ifand only if (k+[)?n?+(k—1)? =0ifandonlyifn =0andk=lork=1=0. O

Lemma 2.8. Let £, £ be two distinct points of D. There exists a unique
K € Mob*(D) such that K(1) = &, K(-1) = ¢ and K7Y(0) € iR If K
is another Mobius transformation satisfying K(1) = €, and K(—1) = &_ then
dp(0, K(0)) > dp(0, K(0)) with equality if and only if K = K.

Proof. (i) Existence of K. By hypothesis, K(z) = €"(z + ik)/(z — ik). If we
denote by £, = '@+, £_ = e'®- the existence of K is equivalent to

(ar =)+ (a-—y)=7 and ay—v€]—-n/2,7/2] (mod 2~).

The solutions are given by oy — v = (o —a_)/2 £ 7/2. Since £, # £_, we have
a4 — v # £m/2 modulo 27r. Only one of these solutions belongs to |— n/2,7/2],
and we determine k by the equation @+~ = (1 +ik)/(1 — ik).

(ii) Extremality of K. If K sends 1 to £, and —1 to £_, we show that K(0)
belongs to the geodesic I joining £, and £_ and that K(0) realizes the minimum
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of dp(0,T). Indeed, I' = K([-1,1]), K(0) = K(K~' 0 K(0)) and K~ o K fixes 1
and —1. Therefore, K ! o K([~1,1]) = [~1,1] and K(0) € I'. Moreover

t+ik 1. ¢1+d . 2+ k2
d 0 t = 0 —_— = - —— 2 — .
o(0, K(t)) d”( ’1—tz’k) 21“(1—02) with & = -5z
The minimum of dp(0, K (¢)) is achieved if and only if t = Q. O

Proof of the Main Theorem (parti). Since PSL(2,R) is isomorpbhic to
Mobt (D), we may assume that M is a cocycle taking values in Mob™ (D). By
hypothesis, A+ (z) > 0 on an invariant set of positive measure and Proposition 2.5
implies the existence of two M-invariant functions £, £_:

£4(a)= lim M(n,6™"(@)0) and 6-(s) = lim M(-n¢"@)0)

which satisfy M, (£.) = €4 o ¢(z) and &, (z) # €_(z) a.e. By Lemma 2.8, there
exists K, € Mob* (D) (depending measurably in z) such that K,(1) = £:(z),
K (-1) = £&.(z) and K;71(0) € :R. Then N, = K;(lz)Msz fixes £1 each. Asa
matrix N, = diag(uz,u; '), In||Nz]| = |In]u.|| = dp(0, N;(0)) and by Lemma 2.7

dp(0, K2(0)) — dp(0, Ky(z)(0))| < dp(0, Mz(0)).

If K: X — MobH(D) is another conjugating matrix and N, = ¢( )M,,.Kx
leaves 1 and —1 invariant, then &, (z) = K,(1) and £_(z) = K,(—1) are invariant
with respect to M and {£,(z),¢é_(z)} = {€4(z),E_(z)} (this statement will be
proved at the end). Let A = {z € Xg : K,(1) # K.(1)} and R the rotation
R.(z) = e'4@®) 3 Then K, R, and K, send both %1 to the same points. There
thus exists D, € Mob* (D) fixing £1 such that K, = K.R,D,. By Lemma 2.8,
dp(0, K, R(0)) > dp(0, K.(0)) with equality if and only if K, = K, R,. Since
N, = Ry(s)Dy(oy N D7 1 R; 1, necessarily R, = Ry(,) and A is invariant.

To prove the claim we show that any M-invariant £ : X — 0D satisfies
¢(z) € {£x), €&+ (z)}. Suppose that £(z) # £4(x) on an invariant set of positive
measure.  After conjugation by G, (;), M, becomes cohomologous to the
cocycle To = G, op(a) MGy () Where Ty(z) = a(z)z — b(z) and the sequence

( Srelnaoc ¢f(z ))n>0 converges to Ay (z). Let {(z) = G,(¢(z)) and (_(z) =
G:(£-(z)). From the equality
T(—n,¢"(z))(z) — T(—n,¢"(z))(0) = z/a(n, z),

where a(n,z) = Hk ~o a o ¢*(z), we obtain that (C o ¢"(z)/a(n, .7:)) , converges
n>
a.e. to ((z) — {_(z). Since the convergence also holds in measure and (a{n, z))n>0
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converges to +oo, we obtain finally ((z) = {_(z) a.e. and therefore ¢((z) = £—(z)
a.e. 0

We end this section by proving that we cannot hope to obtain in the class of
log-integrable cocycles additional properties on the conjugating matrix K.

Proof of Proposition 1.7. Let K be the corresponding Md&bius trans-
formation. By hypothesis, K;*(0) is pure imaginary and dD(K;(;)(O),K; 10))
is integrable. We show that there exists a Borel function n : X —]0,1[ such
that, if No(z) = (2 + nz)/(1 + zn;) and M, = Ky N, K;', then dp(0, M(0))
and dp(0, N;(0)) are integrable. (We recall that the matrix cocycle is given by
N, = diag(uz,u;!) where v, = ((1 + nz)/(l — ng))/? and the correspond-
ing top Lyapunov exponent is given by the limit of %ZZ;; Inu o ¢*, which
is positive a.e.) As in the proof of Lemma 2.7, we introduce the notation
K {(2) = e*7= (2 + ik, ) /(1 — zikg),
1+m,

1 +m:t —1 1
d K_(0) =<1
1—m, and D(Oa K¢(:c) z ( )) 3 n 1—-m,

do(0, M(0)) = 3 In

Since dp(0, M, (0)) < In2 — £ In(1 — m2), it is enough to show that —In(1 — m2) is
integrable. One can show that — In(1 — m2) is equal to F(z,n,), where

o 1P (Rs + ) + (1= kakg))
F(z,n)=1In ( (1-n2)(1-Kk2)(1- kz(w)) ) .

When n, = 0, M; = Ky K and F(z,0) = —In(1 — m2) is integrable by
assumption. We choose therefore any Borel function » : X —10,1 such that
F(z,n.) and — In(1 — n?) are integrable. a

2.3 Proof of the Main Theorem when A, = 0 = A_ In the case of
positive Lyapunov exponents, the reduction of a log-integrable cocycle M : X —
Mobt (D) to a hyperbolic cocycle N is a consequence of the existence of two
M-invariant functions ¢4 : X — 8D. In the same manner, the reduction of M to
an elliptic cocycle is equivalent to finding an M-invariant function { : X — D; and
the reduction of M to an upper triangular matrix will follow from the existence of
just one M-invariant § : X — OD.

In the case of null Lyapunov exponents, these M-invariant functions cannot be
obtained as limits. We first solve a weak equation (M;).(vz) = Vg(s), Where the
unknown v : X — M;(8D) is a measurable function taking values in the space of
probability measures on 8D and M, (v) denotes the forward image by M : 0D — oD
of a probability measure v. This first step is standard, the main technical part is the
Dunford—Pettis theorem. We define precisely in Appendix B the weak topologies
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used in this theorem and give a condensed proof. The second step is new and
is a substitute for Furstenberg’s martingale argument. We use the Douady—Earle
theorem [6], which associates a conformal barycenter bar() € D to any probability
measure v € M, (8D) whose support does not contain masses greater than or equal
to 7. The main property satisfied by the conformal barycenter is that it is preserved
by Mébius transformations of D: if M € Mob™ (D) then M(bar(v)) = bar(M.v).
In Appendix A, we give a different proof of this theorem not using degree theory
but rather using the convexity of the Busemann function. A more general statement
which extends the Douady—Earle theorem can be found in [3].

We start by proving the existence of a weak solution v : X — M,(9D) of
the equation (Mz)u(vz) = vg(z). We identify M;(OD) and the set of positive
linear forms v on E = Co(OD, R) satisfying v(1) =1. We use the notations of
Appendix B.

Proposition 2.9. Let (X, m,¢) be an abstract dynamical system. For any
measurable cocycle M : X — MobT (D), thereexistsv : X — M, (0D) measurable
such that (Mz)«(ve) = Ve(z) a-€.

Proof. We first choose a reference measure, the Lebesgue measure Leb and
define a sequence of probability measures v™ : X — M;(D) by

n—1

o= % S M(k, ¢ 5 (z). (Leb).
k=0

By Corollary B.5, the unit ball Bg, is compact metrizable. One can find v : X —
M;(8D) measurable and a subsequence (ng)k>o such that

/ (@) () dm(z) *225° / (@) () d(z)

forall o € L}, ¥ € E. By Lemma B.7, the weak convergence extends to essentially
bounded measurable ¢y : X - E and in particular to ¢, = ¢ 0 M,

/%"(x)v;”k(w o M) dm(z) "= [ p(z)va(y 0 M) dm(a).

By construction

n+1
n

and we get finally [ o(z)v,(¢ o M;)dm(z) = [ ¢(z)vys)(¥) dm(z) for all p € Ly
and ¢ € E, which is equivalent to (Mz).(v) = Vg(z)- O

(M) (vg) = Vg(z) + %[M(n, ¢~ "+ (z)). Leb — Leb)
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Before giving the proof of the Main Theorem (parts ii-iv), we collect two
lemmas about the conjugating matrix K in the elliptic case:

Lemma 2.10. If K,L,N € Mob*(D), K~1(0) and L~1(0) are non-positive
pure imaginary, N is a rotation and M = LNK ™!, then the conjugating Mébius
tranformations satisfy dp(L~(0), K ~1(0)) < dp(0, M(0)).

Proof. By hypothesis, we can write

iy z+ik

K(Z)=€2z — . 2i)\z+7'l

— pliw
L(z)=e T2 N(z) =e“™z

where k, [ € [0, 1[. Moreover, dp(0, M(0)) = dp(0, LNK ~1(0)) = dp(il, e*“ik); and
if m is defined by dp(0, M(0)) = $1n ((1+m) /(1 - m)), we obtain the following
relation between &, [, m and w:

2 (k=1)?+4kisin’w
T (1 - k)2 + 4klsin®w

Since the above function is increasing with respect to sin® w, we obtain

k-2 1. (1+4+m _

2 > —-———-—( = 2 — = 1 .

Z AR m where 5 ln( — ) dp(0, LK~(0))

We have just proved that dp(L~1(0), K~1(0)) < dp(0, M(0)). 0O

Contrary to the hyperbolic case, the conjugating matrix K is not unique in
the elliptic case but they all differ from each other by an arbitrary rotation as the
following lemma shows.

Lemma 2.11. If a cocycle M : X — SL(2,R) admits two decompositions
M, = K¢($)NZK;1 and M, = I?d,(x)]{/'xli';l, where N, and N, are rotations of
angle w, and &, and if w, is not a coboundary modulo © on any invariant set, then
K 1K, is a rotation and w, is cohomologous to &, modulo .

Proof. The cocycles N and N are related by N, = K;(;)Ki,(z)ﬂzf{;l[{z.
In conformal notation, £(z) = K~'K,(0) is N-invariant. In polar coordinates,
&(z) = p,et?= and its norm is constant along the trajectories. On the set {p > 0},
w = y0 ¢ — modulo 7, where N,(z) = e*?*=2. On the set {p = 0}, K; 1 K,(0) = 0,
there exists o : X — R such that K;'K,(2) = e¢?*<zandw = & + a0 ¢ — a. By
hypothesis, w cannot be cohomologous to 0 modulo 7 on any invariant set, and
p=0ae. D

We also use in the main proof the following lemma on real coboundaries.
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Lemma 2,12, If ¢ : X — R is a measurable function such that co ¢ — c is
an integer a.e., then there exists a ¢-invariant function c* : X — R such that
oz)—c*(z) € Zae.

Proof. For each r € X, we denote by ¢*(x) the unique real in [0, 1] such that
cz)—c*(z) € Z. Thenco¢p —c€ Zae. ifandonlyifc* o ¢ = c* ace. O

Proof of the Main Theorem (parts ii-iv). We do not assume in this
section that M is log-integrable. Let Xp be an invariant set of maximal measure
on which there exists an M-invariant function ¢ : Xp — 9D. If &(z) = €27 and
if we choose K,(z) = 27>z then N, = K(;(;)M,KI leaves 1 invariant. In matrix

notation,

Nz'—_-l:?:; :J_wl :la K; = R(vz),
INz{| = |Mc|| and [ Ko || = 1.

Let Xgp € X \ Xp be an invariant set of maximal measure on which there
exists an M-invariant function £ : Xg — D. For each z, we choose the unique
K, € Mob* (D) which satisfies K,.(0) = £(z) and K !(0) € :R~. After conjugation
by K, N, = K(;(;)Mme becomes a rotation (N,(0) = 0); and by Lemma 2.10,
Koz K7l < | Mz, | Nz|| = 1 < || M]|. In matrix notation,

A(-3)

forsomew : Xp — R, u : Xg — RT measurable. If the angle w is a coboundary on
an invariant set of positive measure, all points in D would be M-invariant on that
set, which would contradict the definition of Xp.

On Xwy = X \ (Xp U Xg), Proposition 2.9 enables us to solve the equation
(Mg)(ve) = vg(s) Where v : Xwy — M;(9D) is the unknown. Three cases may
occur, depending on the cardinality of atoms of v, of mass not smaller than 1. Let

_ _ T uy, O
Nz - R(wz) Kw - R(’h‘ + 4) l 0 u;l

c.(z) =card{t € 8D : v(t) > 1/2}.

Since ¢, is an invariant function, Xy g may be partitioned into three invariant sets
{c, =i} fori=0,1,2.

On the set {c, = 0}, the Douady—Earle Theorem A.11 implies that each v,
admits a unique conformal barycenter £(z) = bar(v,) € D measurable with respect
to z (Proposition A.12). By conformality M,(£(z)) = € o ¢(z) on {c, = 0}. By the
maximality of X, the set {c, = 0} necessarily has measure 0.
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On the set {¢, = 1}, each v, admits a unique atom £(z) of mass not smaller
than I which is measurable with respect to z (Lemma A.14). The weak equation
implies M,(£(z)) = £ o ¢(z) a.e. on {c, = 1}. By the maximality of Xp, the set
{c, = 1} also has measure 0.

On the set {¢, = 2}, v, consists of two Dirac measures of mass % each v, =
$(8¢(z) + by(z))> Where ((z) and n(z) depend measurably on z. Since v is M-
invariant, {{(z),n(z)} is globally preserved:

Mo{{(z),n(z)} = {C o ¢(x),n 0 (x)}-

By Lemma 2.8, there exists a unique K, € Mob™ (D) such that K;(1) = ((z),
K.(-1) = n(z) and K;*(0) € iR. The cocycle N = K, MK, preserves or
permutes the points {£1} and in matrix notation

veerfoof) [ 5] memrGee )Y L R(-D)

where B = {z € {c, = 2} : M ({(z)) = no ¢(x)}. The estimates of Lemma 2.7
give || Ng|| < ||M|| and ||Ky) K7 | < |[Mc]|. Let us show that 15 cannot be
cohomologous to 0 on an invariant set of positive measure. Otherwise, there would
exist o : {c, = 2} — R satisfyinglp = a o ¢ — a modulo 2, which could be chosen
by Lemma 2.12 such that a(z) € Z a.e. Then

R(IB(-T);'E) [ U(;c Ugl =R<a¢(m)—72£) [ ﬁ(’;v "7;1 R(—az—;[),

where () = v(z) if and only if a(x) € 2Z and #(z) = v(z)~! otherwise. In matrix
notation, M, = I~{¢(z)1\~lzf{;1,

R A R e R L)

where i(z) = u(z) if and only if () € 2Z and 4(z) = u(z)~! otherwise. The
cocycle M would then admit two invariant lines, which contradicts the maximality
of Xp.

Let us now prove the minimality of the norm of the conjugating matrix K. If
the cocycle M admits on Xg another decomposition M, = I~{¢(z)1\7,,.f{; 1 where
N, is a rotation of angle &, not cohomologous to 0 modulo =, then K; K, is a
rotation by Lemma 2.11 and satisfies || K;|| = || K;|| a.e. In the same manner, if the
cocycle admits on Xy i a decomposition of the form M, = K4, N.K; !, where
N. = R(l5(z)%) diag(#, @3 1), then {(z) = K,(1) and /i(z) = K.(—1) are globally
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M-invariant and necessarily {((z), 7(z)} coincides with {¢(z),7(z)}. (Otherwise,
M would admit 3 or 4 globally invariant points on 8; and putting equal masses on
these points, we would obtain by the Douady-Earle theorem another M -invariant
point in D, which would contradict the maximality of Xz.) Let

B={x€XWH:éz:77z};

then K, = K, R(l5(z)Z) satisfies K, (1) = {(z), Ko(~1) = n(z) and by Lemma 2.8,
Kzl = [|Kz|| > || Ke|l. As in the proof in Oseledets’ case, there exists D : X —
SL(2,R) diagonal such that K, = K, R(l3(z)%)D,. O

We have actually given a partial proof of the Main Theorem: we have shown
how to conjugate a general cocycle to a cocycle which is either parabolic, elliptic
or weak-hyperbolic. We have not yet proved the properties of recurrence of these
basic cocycles, and we postpone the complete proof of the Main Theorem to
Section 3.

We prefer to close this section by giving the proof of Proposition 1.8. We first
establish an abstract lemma for additive real cocycles.

Lemma 2.13. Let (X, m,¢) be an ergodic (not necessarily invertible) dynam-
ical system and § : X — Rt a non-negative function such that [ §dm > 0. Then
any integrable w : X — R satisfying 0 < [wdm < [&dm is cohomologous to
some integrable & : X — R satisfying 0 < &(z) < 6(z) a.e.

Proof. Part one. We first find a conjugating function ¢; : X — R such that
wheciod—c >0ae. Letc = infrsoSw (Where Spw = S50 w o ¢%). Since
(#Skw)k>0 converges to Jwdm > 0, ¢ is non-positive and finite a.e. Moreover,
Spr1w = Spw o ¢ + w for all k£ > 0 so by taking the infimum on both sides, we
obtainc; < ¢j o ¢+ w a.e.

Part two. Letw; = w+c10¢ —cip. Since (¢c; — ¢y 0 ¢)* is integrable, ¢; —c10¢
is integrable too. Wenow findc; : X —» Rsuchthat & = w; + 20 —ca is
the desired cocycle. Let c; = supy>g Sk(wy — 6). As before, ¢, is finite since
f(w1 — 8)dm = [(w — 8)dm < 0, non-negative and

CzZSUpSk(wl—(S):Cz o¢+w1—5 a.c.
E>1
We first observe that @ < 6. Either for all £ > 1, Si(w1 — §) < 0, in which case

e =0and @ = w, +c20¢ > w; > 0, or there exists k > 1 such that Sx(w; —§) > 0,
inwhich case cy =cy0¢+w; —dand@ =6 > 0. Inbothcases @ > 0 a.e. O

Proof of Proposition 1.8. In conformal notation, the conjugating matrix
K.(z) = €?"=(z + ik,)/(1 — zik;) and k, > 0 if and only if |uz| > 1. We may
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assume that k; > 0 a.e. by choosing o : X — {0, 7/2} so that the new conjugating
matrix K, = R(0y(z)) Kz R(—0; ) satisfies

K. (2) = eP= (2 + i|k,|) /(1 — zilkg]).

We choose a{z) = 0 if and only if k, > 0 and a(z) = w/2 otherwise. By
Lemma 2.10, for any & : X — R the cocycle M, = R¢(Z)R(d}x)K;1 satisfies

1+ m{z, &)

~ 1
In [Ae]| = 5111 (1 - m(z,0z)
Lt

) =P

_ (ks = kg(@))? + 4lkaky(s)| sin® w
(1 - lkzk¢(a;)|)2 + 4|kwk¢(z)l sinzw

m?(z,w)

Setw = 0; then F(z,0) = In ||K ) K; 1| = || In juo ¢(z)|| — | In |u(ac)H| is integrable
by hypothesis. Since F(z,w) is increasing with respect to w € [0, /2] for z fixed,
we construct § : X —]0, 7/2] such that F(z, §(z)) is integrable too. From the theory
of weak orbit equivalence (see [17]), one can find a cocycle w : X — [0, 7] not
cohomologous to 0 modulo 7. For any integer N > 1, @ is not cohomologous to
0 modulo 7; and we may therefore assume that @ satisfies in addition 0 < [ @ dm <
[ 8dm. By the previous lemma, & is cohomologous (in R) to some & satisfying
&(z) €]0,6(x)[ a.e. Finally, letw = & + a o ¢ — a; then My = R(—a4(s)) Mo R(ct)
is log-integrable and w is not cohomologous to 0 modulo . |

2.4 An application to Wojtkowski’s cone theory In this section we
give a geometric proof of Wojtkowski’s estimate (Proposition 1.11) on random
products of two-by-two matrices with non-negative entries. For such products
M(n, z), the top Lyapunov exponent is positive, and Wojtkowski’s estimate [21]
gives a lower bound of that exponent by a computable formula taking into account
only M, itself and not its iterates. Technically, Wojtkowski exhibits a superadditive
cocycle and can apply Birkhoff’s ergodic theorem. For any M € SL{2,R) with
non-negative entries we define a real number p(M) as follows:

a b

if M=[ d] then p(M) = In(vad + vbc).

c

Lemma 2.14. For any M,N € SL(2,R), p(M) is a positive real number,
In ||M]| > p(M) and p(MN) > p(M) + p(N).

Using Birkhoff’s ergodic lemma, the proof of Proposition 1.11 is a direct
consequence of Lemma 2.14. Our purpose in this section is to give a geometric
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proof of that lemma. Let us first recall the definition of the cross ratio of four
points (21, ..., z4) of the plane:
23 — 21 22 — 24

[21,22,23, 24] = .
22 — 2123 — 24

We need the following estimate on cross-ratios:
Lemma 2.15. Forall o, € [0,7/4], [1,€"2*,e4"28)) —1] = (tanatan §) L.

A matrix preserves the cone C = {(z,y) € R? : z > 0,y > 0} if it has non-
negative entries. Such a matrix acts on half lines of C identified to the first
quadrant of 8D. If we conjugate by t € D ~ t* € 9D, the corresponding Mobius
transformation of the disk sends the upper half-space H into itself.

Lemma 2.16. I[f M = [ ¢ 3 ] € SL(2,R) has non-negative entries then
[+

dp(®, M(R)) = }1n (VE+1) /(- 1)) = p(M),

where { = [1, M(1), M(-1),—1] and dp(R, M(R)) denotes the hyperbolic distance
between the two geodesics R and M(R).

Proof. (i) Thefirst equality. Since the cross-ratio and the hyperbolic distance
are invariant with respect to a Mobius tranformation, we may assume that M (1)
and M(—1) are symmetric with respect to the imaginary axis. Let M(1) = e'®,
M(—1) = ¢“7=20)_ The cross-ratio is then given according to the previous lemma by
[1,M(1), M(-1),—1] = (tan8)~2. On the other hand, the geodesic passing through
M(1) and M(—1) intersects the imaginary axis at g = ¢tanf. The hyperbolic
distance between R and M (R) is then given by

do(R, M(R)) = 31n (1 +|ul) /(1= 1)) = $1n (VE+1)/(/C - 1))

(ii) The second equality. If we consider M as an element of SL(2, R) and denote
by a (resp. 3) the angle of the horizontal axis (resp. the vertical axis) with its image,
we have a = ¢/a and 8 = b/d. If M is considered as a Mobius transformation,
because of the conjugacy t € 8D — t2 € 8D, we have on the other hand M(1) = e2*
and M(—1) = e*("=28), The first part shows

1 1+\/tanatan23 _
do(R, M(R)) = 5 In — Norroy = In(vViad + Vbe). -

Proof of Lemma 2.14. Using conformal notation, by the definition of
the distance between two lines, we have dp(0, M(0)) > dp(R, M(R)). If N is
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another Mdbius transformation sending the upper half space into itself, the geodesic
realizing the minimum of the distance between R and M N(R) intersects M (R) and
we thus obtain

do(R, MN(R)) > dp(R, M(R)) + dp(M(R), MN(R))
= dp(R, M(R)) + dp(R, N(R)). O

2.5 Extension of the Main Theorem to GL(2,R). We denote by
Mob( D) the group of isometries of the hyperbolic disk D. Then Mob( D) is equal
to the disjoint union of Mobt (D), the set of isometries preserving orientation and
Mob~ (D) those which reverse orientation. Any map in Mob~ (D) can be written
in a unique way as MI, where M € Mob"(D) and I(z) = z. In the same way
PSL(2,R) is isomorphic to Mob™ (D). We have

Proposition 2.17. PGL(2,R) is isomorphic to Mob( D).

Proof. For every M € GL(2,R), M(z) = az + bz, we associate a matrix
[ g Z ] and its projective action on €, M(z) = (az + b)/(bz + &). This defines
a group homomorphism onto the group of complex Mé&bius tranformations pre-
serving S!. We denote by J(z) = 1/7 the inversion about S*; then JM = MJ
for all M € GL(2,R). Ifdet M = |a|? — |b|2 > 0, M = M belongs to Mob™(D);
if det M < 0, M = JM belongs to Mob~ (D). We thus obtain a surjective group
homomorphism M € GL(2,R) — M € Mob(D) whose kernel is {\Id : A € R*}.
O
The fact that Douady—Earle’s barycenter is preserved by the whole group
Mob( D) enables us to extend the Main Theorem to GL(2,R). In order to avoid
repeating the same notation, we stress the points of difference.

Main Theorem (revisited) 2.18. Let M(n,z) be a GL(2,R)-valued log-
integrable cocycle. Then one can construct a measurable conjugating matrix

Ke=re D)5 2

R( - ;-’) € SL(2,R)

such that N, = K;(;)Msz takes one of the four following forms:

0

€;u; !

(i) N, = det Mz[ “(;‘ } Au(z) = Efln |v] | 5] > 0,

(ii) N, = det Mz[ ”6‘ o ] @) =Empl |7 =0,

€V,
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CoOsSw,; —€gSinw
(ili) Ny = det Mz[ T ¥ ¥ ]
sinw, €;CO08w,

0
Ve L }, 14 is not a coboundary modulo 2,

(v) Ne = det M, RUA@)3)| 7

where ¢, = sgn{det M_). In all four cases

1 0 _
INA <Ml and o[ o [KGH< M)

€T

In particular ([ ||/| K pia) )2 < M.

3 Recurrence properties

We study in this section the recurrence properties of a cocycle M(n, z) in each
case (hyperbolic, parabolic, elliptic and weak hyperbolic) and finish the proof of
the Main Theorem. We begin with general definitions and properties.

3.1 Cocycles and coboundaries We denote as usual by (X, m,¢) an
abstract finite or o-finite dynamical system, not necessarily ergodic or invertible,
and by G a locally compact second countable (in particular Polish) group. A
G-valued cocycle is a measurable function a : IN x G — G satisfying the cocycle

property
a(m+n,z) = a(n, ¢™(z)) a(m, ) a.e.

For such IN-actions, a cocycle is actually given by a unique @ : X — G and the
associated cocycle is given by

a(n,m) = a¢n—1(z.) e d¢(z)&z.

In the sequel, we identify the two notations. A cocycle a(n,z) is called a
coboundary if there exists ¢ : X — G measurable such that

a(n, ) = cyn(z) 3 s

andtwo cocycles a, b : X — G are said to be cohomologous if thereexistsc: X — G
measurable (called the conjugating function) such that

a(n, ) = cyn(z) b(n, z) et
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If B is a Borel set of positive measure and 75 denotes the first return time to B, we
define the induced cocycle ag: fora.e. z € B

m(z) = inf{k > 1:¢*(x) € B} and ap(zx)=a(rs(z),z).

In order to classify cohomologous cocycles, it is standard to introduce two
important notions, recurrence and essential value.

Definition 3.1. (i) A cocycle a(n, z) is said to be recurrent if for every Borel
set B of positive measure and every neighborhood V' of the neutral element of G
there exists n > 1 such that

m(BNn¢ "Bn{z € Blaln,z)eV}) >0

(ii) Infinity is said to be an essential value if for every Borel set B of positive
measure and every compact K of G there exists n > 1 such that

m(BNé¢ "BN{z € B|a(n,z) €K}) > 0.

Lemma 3.2, Let (X, m,¢) be a o-finite conservative dynamical system, G a
locally compact second countable group and a(n,z) : N x X :— G a G-valued
cocycle. Let (X,7,¢) be the group extension X = X x G, where th = m ® mg
(mg is the Haar measure) and ¢(z,g) = (¢(x), a(x)g). Then a(n,z) is a recurrent
cocycle if and only if (X, 7, §) is conservative.

Proof. (i)=-(ii). Let # : X — RT be integrable and ¢ : G — R* continuous
and integrable. Forevery g € Ganda.e. x € X

S (8@ )0 d™(z,9) =+ ae.

n>0
Indeed, choose € > 0 such that A, = {# > €} has positive measure and B, = {/ > €}
is nonempty. Since B, is an open set it has positive measure and, for every
g € B., B.g! is a neighborhood of the neutral element e € G. By hypothesis,
for a.e. z € A, there exists an infinite number of n’s such that ¢™(z) € A, and
a{n,z) € Beg™?, that is 8 o ¢"(x) > ¢ and ¥(a(n,xz)g) > e. Using Lemma C.5, we
see that ¢ is conservative.

(i)=(i). If V is a neighborhood of € € G, mg(V) > 0; and if B is a Borel set

of positive measure, then for a.e. z € B and g € V, there exists n > 1 such that
¢"(z) € B and a(n,z)g € V. In particular, a(n,z) € VV L. a

Corollary 3.3. If G is a compact second-countable group and (X, m, ¢) is
a conservative o-finite dynamical system, then any G-valued cocycle a(n,z) is
recurrent.
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Proof. It is enough to show that the group extension (X, %, ¢) introduced in
Lemma 3.2 is conservative. Let 8 : X — R™ be a positive and integrable function;
then considered as a function of (z, g), 8 is again integrable (since m¢ has finite
measure) and satisfies

Zeo&‘(x,g) = Zé?oqsn(x) =400 ae. onX.

n>0 n>0
By Lemma C.5, & is conservative. 0

Corollary 3.4. Let G be a locally compact second-countable group, H a
normal and compact subgroup of G and a(n, z) a G-valued cocycle. Let G = G/H
and @(n, z) be the G-valued corresponding cocycle. Then (i) a(n, ) is recurrent if
and only if (i) a(n, x) is recurrent.

Proof. We only prove (ii)=-(i). Denote by (X,rh, ) the G-group extension
associated to @(n, ) as defined in Lemma 3.2. The transformation é is conservative
since a(n, z) is recurrent. We now consider a(n, z) as a cocycle over X and show
that it is cohomologous to a H-cocycle. Let o : G — G be a measurable section.
Then for every z € X, § € G, a(z)o(g) = a(x)g. There exists a unique b(z, §) € H
such that a(z)o(g) = o(a@(x)g)b(z, g). Considered as a function over X, the cocycle

o satisfies
a(z) = o o p(x)b(z)o(z) ™, zeX.

By the previous corollary, b(n, z) and, in particular, a(n,z) are recurrent over X
and therefore over X. O

Corollary 3.5. Let (X, m, ¢) be afinite dynamical system, G a locally compact
second-countable group, a{n,z) a G-cocycle and X, the transient part X; =
{z € X :lim, .1 a(n,z) = co}. Then a(n,x) is a recurrent cocycle on X \ X,.

Proof. Let (K;);>o be compact subsets of G such that K; C int(K;41). To
show that a(n,z) — oo, it is enough to show that

Vi>03dneVn>ng, an,z)¢€¢K;, ae.

We introduce the complementary set X, of points x such that, for some £;, a(n, z)
returns to K; infinitely often. The set X, is invariant (¢~1(X,) = X,), and we can
introduce the group extension (X, %, ¢,) as in Lemma 3.2. Let¢ : G — R* be a
continuous, positive and integrable function. Considered as an integrable function
over X, since ¢ is uniformly bounded from below on each K; by a positive constant

> yod(z,g)=+x ae X, g€l

n>0
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We use the fact that every K;g~* is included in some int(K;). Thanks to LemmaC.5,
¢ is conservative and a(n, z) is recurrent. O

The previous corollary is an abstract form of Lemma 1.3.

3.2 The weak hyperbolic case The main purpose of this section is to
prove a converse of part (iv) of the Main Theorem. To prove Proposition 1.5, we
introduce a subgroup G of affine transformations of R, a(t) = a(t + 5), t € R
where a € {£+1} and 3 € R are constants and we shall consider G-valued cocycles
az(t) = az(t+ B;), where @ : X — {£1} and 8 : X — R are measurable functions.
We first notice that a(n, z) can be written as

a(n,z)(t) = a(n,z)(t + 8(n, x)),

where a(n,z) = a0 ¢ 1(z) - - - ao ¢(z)a(zr) and B(n, z) is an a-cocycle defined by

n—1

Bn,z) =Y alk,z)8 0 ¢*(x).
k=0
To study double recurrence of a(n,z) and 8(n,z), we introduce a two point
extension (X,rh,q;), where X = X x {1}, m=m® %(6“ +6_1) and q@(m,e) =
(¢(z),a(x)e). Let B(z, €) = ef(x); then an easy computation shows that ,@(n, T,€) =
efB(n,z) and ¢™(z, €) = (¢™(z), a(n, x)e).
Lemma 3.6. If o is not equal to a (multiplicative) coboundary on any ¢-

invariant set, then any ¢-invariant set B is of the form B = B x {£1}, where B is

¢-invariant.

Proof. We first prove that —1 is an essential value for a(n, z): that is, for any
B of positive measure there exists n > 1 such that

m(BN¢ "Bn{z € B: a(n,z)=-1}) > 0.

By contradiction, there exists B of positive measure such that for every n > 1
and a.e. z € B, ag(n,z) = 1 where ap denotes the induced cocycle on B. On
B =, 50 ¢~ "(B) we can extend 75 and ap by the same formula:

TB(x)—1

re(z) =inf{k >1: ¢"(z) € B} and ap(z)= H a o ¢f(z).
k=0

An easy computation shows that & = ap/ap o ¢ on the ¢-invariant set B, which is
the desired contradiction.
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Now let B be a ¢-invariant set B = B, x {+1} U B_ x {-1}. We prove by
contradiction that By C B_ a.e. Otherwise, B = B, \ B_ would have positive
measure and for a.e. = € B there would exist n > 1 such that ¢"(z) € B and

a(n,z) = —1. In other words, B x {+1} C >, ¢ "B x {-1}and B x {+1} C
Uns1 (X \ B) = B, which is a contradiction. O

Proposition 3.7. Let a(n,z) be a G-valued cocycle, a(z)(t) = a.(t + 5;)
where o : X — {£1} is not a coboundary on any invariant set and (3 is integrable.
Then a(n,x) is a recurrent cocycle. If X, denotes a ¢-invariant set of maximal
measure on which +oo is an essential value with respect to a(n,z), then on the
complement there exists 6 : X \ Xoo — R measurable such that a(z)(6:) = 0y(z)
ae on X\ X.

Proof. ao(n,x) is recurrent. Let B be a Borel set of positive measure, ¢ a
positive number and B = B x {+1}. For any ¢-invariant set C, ¢ = C x {#1}
for some C and [, Bdm = 0. By Atkinson’s Theorem C.2, 3(n, z,€) is a recurrent
cocycle: there exists n > 1 such that

m (B Né"Bn{(ze € B: |3(n,z,¢)| < e}) >0
or, in other words, there exists n > 1 such that
m(Bn¢ "N{z € B: a(n,z) =1and |3(n,z)| <e€}) >0

Since Ve ={a € G : (a(t) =t + 8Vt € R) : |G < €} defines a neighborhood basis
of Id, we have proved that a(n, z) is a recurrent cocycle.

Existence of 6. It is enough to show, for any ¢-invariant set X’ C X \ X
of positive measure, that there exist C C X' ¢-invariant of positive measure and
f: C — R such that a(z)(f;) = 84 a.e. on C. By the definition of X, there
exist B C X’ of positive measure and R > 0 such that |g(n,z)| < R fora.e. in B
and every n > 0, where

TB(:L')—I
Bp(n,z) = ZaB(kz,BBOQSB() and Bp(z)= Y a(k )80 (z),
k=0
k—1 Te(z)-1
gk, z) = HaBOqSB(:L') and oap(z H ao ¢i(z

Let B = B x {#1}; then BB(n,m,e) = ¢fp(n,z) and |E3(n,x,e)| < R. By
Lemma C.1, 3 is equal to a coboundary 4 on an invariant set C (in fact, C =
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Unso $~(B)); and by the previous lemma, € = C x {+1} for some ¢-invariant C':
ef(z) = 4 0 d(z,€) — 4z, ¢) for a.e. = € C and every e = +1. By taking ¢ = 1 and
€ = —1, we obtain

Az, 1) + 4z, —1) = 5 0 §(2,1) + 7 o $(z, 1)
= 'Ay(d)(w)’ 1) + "Ay((ﬁ(l‘), '—1)'

Without changing 3, we modify 4 by ¥(z,¢) = 4(z,€) — :(3(x, 1) + Az, —1))
so that 4 satisfies ¥(z,1) + #(z,—1) = 0 a.e. z € C. In particular, we obtain
F(o(z), a(z)) = a(z)¥(¢(z),1) for a.e. z on C. If 8(x) = F(x, 1), then

o(z)0 0 ¢(z) = 7 0 B, 1) = B(z) + 6().
This shows the existence of 8 : C — R satisfying a(z)(0;) = 04() a.. on C. O

Proof of Proposition 1.5. We first notice that, according to Lemma 3.4,
M (n,z) is a recurrent cocycle if and only if the corresponding projective cocycle
is. Moreover, M, is cohomologous to a rotation R(w, ), where w, = 0 modulo
7/2, if and only if the projective cocycle is cohomologous to a rotation R(w,),
where @, = 0 modulo m. We can therefore choose the conformal notation. On the
Poincaré disk,

_ . z4 g 1+ py 12 _
M, (2) = exp(inl g(z)) T o where (1 — Nw) = |vgl.
After conjugation by Gy(z) = i(1 + 2)/(1 — z) or GT}(2) = (iz + 1)/(iz — 1), the
action of M, on the Poincaré upper half plane becomes

viz forz ¢ B,

GiloM,oGy! =
Lo MeoM {—-(vﬁz)'1 forz € B.

The imaginary line is invariant and, conjugating by L(z) = In(—iz) on Rt, we
finally obtain an affine map a(z) : R — R,

LoGyoM, oG o L7Y(t) = a(t) = az(t + Be),

where o, = exp(inlg)and 8, = 21n|v,|. By hypothesis onlp, e is nota coboundary
on any invariant set. Thanks to Proposition 3.7, a(n, z) or M(n, z) is recurrent. On
X \ X, there exists thus an a-invariant function 8 : X \ X, — R which satisfies
az(0z) = 04z) a.e. on X \ X. By conjugating, £, = (Lo G)~'(6(z)) € R becomes
an M-invariant function M (§z) = £4(s)- Conjugating by K.(z) = (2+£;)/(14+2&2),
M, becomes cohomologous to

K-—l

o(x) ° M, o K.(z) = zexp(irl g(z)). O
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Proof of Proposition 1.6. (i) Since M(n,z) has to be recurrent on Xg
and Xw g according to the Main Theorem, these two sets have measure zero; and
on each remaining invariant set Xy or Xp, M(n,z) is cohomologous to an upper
triangular matrix N{n,z): M, = K4, N.K;'. If A denotes the horizontal axis on
R?, K,(A) is an M-invariant line.

(ii) In conformal notation, if {£,,7.} are globally M-invariant, as in the
main proof, M, is cohomologous to N, = R(lg(z)}) diag(vz,v; ') for some log-
integrable v : X — R*. Thanks to Proposition 1.5, 15 is cohomologous to 0,
15 = v o ¢ — v (mod 2) where the range of v can be chosen in Z. Then

M, = R(Zy 0 9(z)) diag(3, 77 )R(5 ()

where 9, = v, if y(z) € 2Z and ¥, = v_ ! otherwise. By hypothesis
n—1
n[|M(n,2)] = |1 [5(n,2)|| = | Y Inl7 o ¢*(a)]
k=0

converges a.e. to +oo; by Atkinson’s Theorem, E[ln |3| | Z] # 0 a.e.; and by
Birkhoff’s ergodic theorem, (% In|3(n, :c)|) , converges to +oo a.e. m
n>

3.3 The elliptic case We give in this section a necessary and sufficient
condition for a cocycle M : IN x X :— SL(d,R) to be cohomologous to a
rotation R.

Proposition 3.8. If M(n,z) is a measurable SL(d,R)-valued cocycle (not
necessarily log-integrable) and if  is not an essential value on any invariant set,
then M(n, z) is cohomologous to a SO(d, R)-valued cocycle.

Proof. Let X’ be a ¢-invariant set of maximal measure on which M(n,z) is
cohomologous to a rotation. We want to prove that X' = X a.e. By contradiction,
since oo is not an essential value on X\ X, there exist B in X\ X' of positive measure
and a constant K > 0 such that || Mp(n,z)|| < K foreveryn > landa.e. z € B. We
claim that M is cohomologous to a rotation R, that is, Mp(x) = Ky, (-) R K; ! for
some measurable function K : B — SL(d,R). We extend the conjugating matrix
K and the rotation Ron B = J,5, ¢~ "B by

R.=1d, K,=M(rp(z),z)" K 0¢™5@(z)

for every z € B \ B and notice that M, = K¢(I)R,,.K;1 a.e. on B, which is a
contradiction.
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To prove the claim, we first simplify notation by assuming that ||M(n,z)|| < K
for every n > 1 and for a.e. z € X. In conformal notation,

M(n,¢7"(2))(z) = gi?on= (2 + pne) /(1 + 2finz),
M(n,¢ " (z))xLeb = J, o Lebd,
Tne(t) = (1= |ungl?)/It = M(n,¢~"(2))(0)[*.

By hypothesis, J, » < (1 + |gn,z|)/(1 = |ttnz|) = €2¥ is uniformly bounded. By
Proposition A.14, we obtain an M-invariant M (8D)-valued function v as a weak
limit point of (v(n, z))n>o:

n—1

_1 —k
v(n,z) = - Z M(k,¢ "(x)).Leb.
k=0
For some subsequence (n)x>0, for every ¢ € L'(R) and ¢ continuous on oD

Jim [ @, 2)w)dm(@) = [ o))
Since v(ny, z) < e?X Leb, v, < €2X Leb so v, is absolutely continuous with respect
to Leb. By the Douady—Earle theorem and Lemma A.12, there exists { : X — D,
M-invariant measurable. As in the proof of the Main Theorem (parts ii—iv), we
conclude that M is cohomologous to a rotation. O

3.4 An extension of Furstenberg’s theorem This section is devoted
to proving Proposition 1.10. We assume that (X, m, ¢) is an ergodic invertible
dynamical system and M(n, z) is a log-integrable cocycle independent with respect
to some c-algebra Fy (see Definition 1.9). By ergodicity, the Lyapunov exponent
A, is constant a.e. If it is equal to zero, the cocycle M(n,z) is cohomologous to
either a parabolic or an elliptic or a weak hyperbolic cocycle. Since, in each case,
the conjugating matrix appears as an M-invariant function, the main ingredient of
the proof is the following lemma.

Lemma 3.9. Let (X, m, ) be an ergodic invertible dynamical system, Fy a
sub-a-algebra of Bx such that (qS‘"(]-‘o))nEZ are independent and generate Bx
and M : X — Mob*(D) a Fo-measurable cocycle. If M(n,z) is recurrent, then
any Bx-measurable M-invariant function ¢ : X — D is constant a.e.

Proof. AsinLemma 3.2, we introduce the group extension (f( , 7, 43) defined
by X = X x H, where H = Mob*(D), i = m ® my, ¢(z, k) = ($(z), Mzh). We
also extend ¢ to X by £(x,h) = h~1(£;). An algebraic computation shows that is
$-invariant. We want to apply Lemma C.6 to the two sub-c-algebras Do = Do @By
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and & = & ® By, where Dy =V, ¢ ¥ Fp and & = Vo ¢ *Fo. Since M is
Fy-measurable, é‘l(f)g) C Dy and_gﬁ(fo) c &. If we assume for a while that
Dy and &, generate B ¢, since (X,7n, ) is conservative (M (n, z) is recurrent), we
would obtain that £ is measurable with respect to Dy N &. For a.e. h € H, the map
z —~ hY(£;) would be Dy N Ey-measurable, that is, constant a.e. and £ would be
constant a.e.

Since {¢*Fo}r>o generates Bx, to prove that V,, qAS’“(Do) generates BX it
is enough to prove that f o ¢~ * ® g belongs to ék(_ﬁo) forany f : X - R
Dy-measurable and g : H — R By-measurable. Indeed, let f be such that
f(z,h) = f(z)g(M(n,z)h); then f is Dy-measurable and fo¢™* @ g = fog*
(everywhere). ]

We first obtain the following corollary which generalizes Lemma C.6 to some

non-abelian groups.

Corollary 3.10. Let (X, m,$) be an ergodic invertible dynamical system, let
{¢"F}nez be a generating sequence of independent o-algebras and K a SL(2,R)-
valued measurable function. If the coboundary M, = Ky K; ' is measurable
with respect to Fyp, then K is constant a.e.

Proof. In conformal notation, for each £ € D, £(z) = K (£) is M-invariant
and therefore constant a.e. Since this is true for all £, K is constant a.e. O

We now show how this last lemma applies to the proof of Proposition 1.10.

Proof of Proposition 1.10. Let ), be the top Lyapunov exponent constant
ae. If A, > 0, nothing new is said. If Ay = 0, then three cases may occur, as the
Main Theorem shows.

The elliptic case: Thereexist K : X — SL{2,R) andw : X — Rsuchthat M, =
Kooy R(wg)K 7! ae. on X. The cocycle M(n,x) is recurrent and £(z) = K(0) is
M-invariant, therefore constant a.e. With the normalization K_!(0) € sR~, K has
to be constant a.e.

The weak-hyperbolic case: Thereexist K : X — SL(2,R), A € Bx andv : X —
R* such that M, = K;)RA4(z)%) diag(vs, v; ') K7 and1, is not cohomologous
to 0. Proposition 1.5 shows that M(n,z) is recurrent. Let {.(z) = K (1) and
£_(z) = K (—1); then {£;(z),€—(z)} is globally M-invariant. We then introduce
the quotient space D = 8Dx D\ ~, compact metrizable, where ~ is the equivalence
relation (£,7) ~ (n,£). Each Mébius transformation acts on D in the trivial way, and
£(z) = (€4 (z),€_(z)) € D becomes M-invariant. As in the proof of the previous
lemma, é has to be constant a.e. and K can be chosen constant a.e.
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The general case: As in the proof of the Main Theorem, we consider a weak
limit point v} of the sequence
1 n
~ > M(k,¢7*(x)). Leb.

k=1

Since ¢4 (z) = card{t € 8D : v}(t) > i} is constant along the trajectories, c4 (z)
is constant a.e. If ¢, = 0, M is cohomologous to a rotation and we have seen
that the conjugating matrix is constant a.e. If ¢ = 2, M is cohomologous to
N, = R1(x)%) diag(vg,v; '), M(n,z) is recurrent (otherwise, | M(n,z)|| would
g0 to +oo and A, would be positive) and we have seen that the conjugating matrix
can be chosen constant a.e.

If ¢4 = 1, we also choose a weak limit point v of
1 k
~ > M(—k, 4" (z)).Leb.
k=1

As before, v~ is M-invariant and c_(z) = card{t € dD s.t. v (t) > 3} is constant
a.e. The same conclusions hold whenc_ = 0andc_ = 2. Letusassumec.. = 1. We
have thus proved the existence of two M-invariant functions £¥,¢~ : X — 0D. The
function ¢* is measurable with respect to \/, .., ¢"Fo, and £~ is measurable with
respectto \/, ., ¢~ "Fo. If €S is not equal to {;_a.e., then M(n,z) is cohomologous
toa diagonal?natrix and has to be recurrent (A, = 0). By Lemma 3.9, ¢ and £~
are constant a.e. Otherwise, £ = £, a.e. and ¢+ (for instance) is measurable with
respect to \/, 50 ¢~ "Fo NV, 5o ¢"Fo. Thanks to the independence of (6" F0) pez>
£ = £ is constant a.e. so M(n, z) is cohomologous to an upper triangular matrix
with constant conjugating matrix. O

Appendixes
A Conformal dynamics
The purpose of this appendix is to gather elementary facts on the hyperbolic

geometry of the unit disk and to give a new proof of the main tool, namely, the
existence of Douady-Earle’s conformal barycenter.
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A.1 Mobius group on the disk and the halfplane We denote by
the unit open disk of C. A MG&bius transformation is a map M : C — € defined
by M(z) = (az + b}/(cz + d) with ad — bc non-zero. A Mdbius transformation M
preserves D if and only if M has the form M, ,(z) = €2*(z + u)/(1 + ziz) where
a € Rand p € D. The set of Mobius transformations of D is denoted by Mob™* (D).
Apart from the identity, the dynamics of Mdbius transformations can be classified
into three distinct classes depending on the number of fixed points inside D.

The first tool we use in the study of general Mob™ (D)-valued cocycles is the
Poincaré metric.

Proposition A.1. There is a unique (up to a multiplicative constant)
Riemannian metric dp on R invariant by the group of Mdbius transformations.
Infinitesimally it is given by |dz|/(1 — |z|?) and satisfies

() do(M(n), M(¢)) = do(n,€) VM € Mob*(D), ,€ € D,
(i) do(n,€) = $1n (11 = €l + In — ] /11 = nél — In - &1)-

1t is convenient sometimes fo introduce new coordinates where a point £ € oD
is seen at infinity. More precisely, we have

Lemma A.2. LetH = {z € C: Qm(z) > 0} be the upper half plane. For any
¢ € 0D, there exists a unique Mobius transformation G, : D — H sending 0D\ {{}
onto {Sm(z) = 0}, £ to co and 0 to i: Ge(z) = i€+ 2)/(€ — 2). If du = (G¢)udp
denotes the new Poincaré metric on H, infinitesimally dy is given by 1|dz|/Sm(z).

Any Mobius transformations preserving H and oo is equal to some map T, 5{z) =
az — b where ¢ > 0 and b € R. Conjugating M by G¢, we obtain

Lemma A.3. Forany £ € 9D, M € Mob*(D) and T, » = Grr(e) MG, ',

a=1- MO /|M() - MO)P, b=23m(MEM(O)) /1M(€) - MO)P.

As we have seen in Proposition 2.2, PSL(2,R) is isomorphic to Mob™ (D).
Conjugating by G; we obtain another isomorphism between PSL(2,R) and the
group of Mobius transformations of H. The choice we have adopted in Proposition
2.2 implies

Lemma A.4, Let M = [ ¢ Z ] € SL(2,R), M, , the corresponding Mobius

¢
transformation on D and T = G1 M, ,G7"; then T(z) = —(az — b)/(cz — d).

We conclude this section with an estimate.
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Lemma A.5. Foranya>0andbeR

. 111 1,07y 1 1op\?
dH(z,az~b)=-2~ln [5(0‘}‘;‘5‘;)4'5\/(&4‘54‘;) —4}7

1 2 1 2
-l-ln [max (a, -) + é—] <du(i,ai ~b) < =In [max (a, —1-) + i + 1] .
2 a a 2 a a

A.2 The Douady—Earle theorem This section is devoted to the proof
of the Dovady—Earle theorem A.11 using ideas of convex analysis in conformal
geometry, The main tool is the Busemann function, which is geodesically convex
for the Poincaré metric.

Definition A.6. Let £ be a point of . For every z € I, we denote by C, the
circle tangent to 81D containing z and &, by D, the disk bounded by C,, and by n(z)
the intersection point of C, and the line joining £ and 0. We define the Busemann
function at the point £ by

be(z,2") = —dp(n(2),w(z")) D, CD,,
be(z,2") = dp(n(z),7(z")) i D, DD,
For any £ € 9D, a hyperbolic cone I'¢ is a convex open set in D delimited
by one connected arc of 3D \ {¢} and by two geodesic lines passing through £,

The Busemann function is characterized by the following property invariant under
Mobius transformations.

Proposition A.7. For every £ € 8D, (z,2') € D and every hyperbolic cone T'¢
containing z and ',

Y . o _ q/
bg(/,, z ) = wv}gll;‘(uler6 d]n)(p, w) dﬂ)(p ,w).

Proof. By conformal transformation G¢ : D — H, the Busemann function
at oo takes the form by (z,2') = du(Sm(z), Sm(z’)) if Sm(z) < Sm(z), and the
form boo(2,2") = ~duy(Sm(z), Sm(e')) if Sm(z) > Sm(z’). In this geometry, a
hyperbolic cone is delimited by vertical lines: I'so = {z € H: u < Re(z) < v} for
some u,v € R For every z,w € ', we define t = t{z, w) = Re(z) + :Sm(w). By
the triangle inequality we have |dy(z, w) — dy(z,t)] < dy(w,t) and

u(w,2) = i (s 5 )

. . u ———'———-v
gsup{dw(m‘l'wl""l)- Smiw) SE:Y< Sm(w)}'
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Letting w go to oo in I'w,, We obtain
Jim du(z,w) — du(z,t(z,w)) = 0,
wlglgo du(z, w) — du(iSm(z),iSm(w)) = 0.
We conclude the proof by noting that :Sm(z), iSm(z') and iSm(w) are all on the
same geodesic line. O

We could have used a more analytic approach to define the Busemann function
using the Poisson kernel.

Definition A.8. Let ¢ € 9D be given. The Poisson kernel of the unit disk I
is the function p(z,£) = (1 — |2|?)/|z — &]2.

The Buseman function is related to the Poissson kernel by

Lemma A.9. Forall ¢ € D, z € D, be(0,2) = £ Inp(z,£).

Proof. We first assume £ = 1. For any z = re?® € D, the equation of the circle
C, tangent to O and containing z and £ is given by

(z—w)?+9% =(1-w)? =(rcosf —w)? + (rsind)?,

where (w, 0) is the center of C, and w is given by 2w = (1—r%)/(1 —rcos ). If 7(z)
denotes the intersection point of C, and the real axis, we obtain 7(z) = 2w — 1 and

1 1+47w(z) 1 1—r?
be(0,2) = §1n 1-7(z) Eln 1—2rcosf+r2’
For a general £, b¢(0,2) = b,(0, 2/€) and p(z,£) = p(z/¢€, 1). ]

We say that a function ¢ : D — R is geodesically convex (or geodesically
strictly convex or affine) on a geodesic v : R — D, if ¢ o v is convex (or strictly
convex or affine) in the usual sense.

Proposition A.10. Let £ € 0D and w € D be given. Then the function
2 € D be(2,w) € Ris geodesically strictly convex on any geodesic not containing
¢ and geodesically affine on any geodesic containing €.

Proof. Lety be a geodesic.

v does not contain {. By the invariance of the Busemann function under
conformal transformations, we may assume that £ = 1, ~ is the imaginary axis and
is parametrized by ~(¢) = ¢ tanh(¢). The circle C; tangent to D containing ~(t) and
¢ intersects the real axis at v2(¢) and

be(7(t),0) = dp(0,7(t)?) = L In (1 + tanh(t) / 1- tanhz(t)),
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4 d2b( (t),0) = 2/ cosh®(2t) > 0
p pTe e (v(t),0) = 2/ cos .

~ contains £. We may assume that £ = 1 and ~ is the real axis. The geodesic v is
then parametrized by v(¢) = tanh(¢) and either t < 0 and b¢(v(2),0) = dp(0,¥(¢)) =
—tort > 0and be(y(),0) = —dp(0,7(t)) = —t. O

We are now able to prove the main tool we need in Section 2. The proof does
not rely on degree theory as in [6] but uses the convexity of the Busemann function
to obtain a unique minimum. This idea is borrowed from [3].

be{7(t), D) = tanh(2t),

Theorem A.11 (Douady—Earle [6]). Let v be a probability measure on 6D
such that v({t}) < 3 for all t € D. Then there exists a unique point bar(v) in D,
called the conformal barycenter of v, which realises for any w € D the minimum
of the function z € D v [0 be(z, w) dv ().

Proof. We write ¥(z) = [ b¢(z,0)dv(£) and observe that [ b¢(z,w)dv () is
equal to ¢(z) — ¥(w). It is therefore enough to prove that ¢ has a unique minimum
in D. We actually show that v is strictly geodesically convex and that y{z)
converges to +oo uniformly when z — 8D. The proof is divided into two parts.

Existence. We use Lemma A.9 to obtain, for all z € D and ¢ € 9D,
|z — ¢
1+ )z}

Since be(z,0) > —dp(z,0) always holds, we obtain for all z € D and € €]0, 1]
¥(z) > ~v(B(z,€) N D) dp(z,0) + v (8D \ B(z,€)) [dp(z,0) + In 1¢]
> (1 - 2v(B(z,€) N D) |dp(z,0) + In e,

where B(z, ¢) is the euclidean ball of radius e. By the hypothesis on v, there exist
constants € > 0 and v* < 3 such that, for every arc A of oI of length less than 2e,
v(A) < v*. Since B(z,¢)NdD is an arc of 0D of length at most 2¢, we finally obtain,
for all z € D, ¥(z) > (1 — 2v*)dp(z,0) + In 2¢, which shows that ¢(z) converges to
+oo when |z| — 1.

Unigueness. Suppose to the contrary that z; and 2z, realize the minimum of
. Let v be the arc-length geodesic joining z; = +{#1) and z2 = y(¢2). By the
convexity of ¢ o v, 1 o+ has to be constant on [¢;,¢;] and therefore the second
derivative of ¢ o v,

be(2,0) = dp(2,0) +1n

d2
'd't—2b5(7’(t),0) dI/(f) =0 forallt e {tl, tz].

Since the second derivative of a convex function is non-negative, b¢(y(t), 0) is affine
int, v a.e.; and v is therefore supported by {y+, v~ }, the endpoints of y in 1. This
last statement is in contradiction with v(t) < % for all ¢ € OD. a
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We next prove that bar(v) is continuous with respect to v.

Proposition A.12. The set Uy of probability measures v such that v(t) < 3
Jor every t € OD is open. The map v € Uy — bar(v) € D is continuous and
M(bar(v)) = bar(M.v) for any M € Mob* (D).

Proof.  To prove that U, is open, we fix vy € Uy and construct a finite
covering of D by compact sets K1,...,K, such that vo(K;) < %. There then
exists a neighborhood Vp of vp such that for every v € Vy, v(K;) < % and therefore
v(t) < v(K;) < § for all t € K;, which proves Vo, C Up.

To prove that bar(v) is continuous, we fix vy € U, €0 > 0 and write zyp = bar(vg)
and by = [ be(z0,0) drg(€). We first show that for some neighborhood Vy of v9 and

o €]0,1]
8] Yv eV, Yiz| > o, /bf(z,O) dv(€) > bp + 1.

The estimations in the proof of the Douady—Earle theorem give for any probability
measure v, z € Dand € > 0,

2) /bg(z,o) dv(€) > dp(2,0)[1 — 2v(B(z,¢) N 8D) ] +In 3e.

We construct a covering of D by open sets (V;)?_, so that v4(V; N1 D) < . There
then exists a neighborhood V; of vy and € > 0 such that for every v € V, and
2 €D, y(V; N 8D) < 1 — e and B(z, €) belongs to some V;. Inequality (2) becomes
[ be(2,0) dv(€) > 2edp(z, 0)+In Se: and for |z| > rg sufficiently close to 1, inequality
(1) is satisfied. We now define a compact set

Ky={z€D: |z] <ry and |z — 29| > €0}

and by the uniqueness of bar(1g) choose n > 0 such that [ be(z,0)drp(€) > bo +
4n for every z € Ko. We construct an n-net of Ky, {z1,...,2p}, and choose a
neighborhood V; of v such that | [ b¢(z;,0) dv(€) — [ be(z:,0) dro(€)] < 1 for every
veEVyandi = 0,...,p. Using the fact that any z € K is n-close to some z; and
the inequality |bg(z,0) — be(2:,0)| < dp{z,2;), we obtain [ bg(z,0)dv(€) > bo + 7
and | be(z0,0) dv(€) < by +n for all z € Kg. These two last inequalities imply that
bar(v) € B(zp, €¢) for all v € Vy, and the proof is complete. 0

The proof of Douady-Earle uses an argument of degree theory to prove that a
certain vector field necessarily has a zero. We show that the barycenter, obtained
in Theorem A.11 as a solution of a variational problem, is also a zero of the vector
field grad, B defined in the following proposition.
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Proposition A.13. Let v be a probability measure on 9D satisfying v(t) < }
for everyt € OD. For any w € D, the gradient with respect to z (for the hyperbolic
metric) of the function B(z,w) = [ b¢(z,w)dv(€) is given by

z —

(gra.dzB)(z,w)=/1 f_ dv(§).

—¢z

Proof. By Lemma A.9 we have B(z,0) = —1 [In (1 —~12?/|z - £|2) dv(§).
Differentiating with respect to z, we obtain for every A € C

i (3 (=) += e (e =t 9),

(-0=1%

122

|z — £}

grad, b:(z,0) = z + 0O
We end this section by proving that the set of measures on 9D with one or two
atoms of mass not smaller than 1 is a Borel set.
Lemma A.14. The set U, of probability measures v € Mob™ (D) having a
unique atom 6, € 8D of mass not smaller than % is a Borel set and the map
v € U; — b, € ID is continuous.

Proof. We first introduce three sets:
F={veMy@dD): #{t€dD: v(t) >3} >1},
G={veM@D): #{tedD: v(t)>1} <1},
S ={v € M(8D) : v(t) =1 for some ¢t € OD}.

By Proposition A.12, F'is closed.

We first show that G \ S is open. Let vy € G\ S; then either vy(t) < 1 for every
t € 8D and v belongs to the previous open set Uy C G, or vy(to) € (1, 1[ for some
to € 0D and vo(t) < 1 for every ¢ # to. As before, we construct a covering of oD
by compact sets Ko, ..., Ky, where vo(K;) < 3 fori =1,...,N and vp(Ko) < 1.
For v sufficiently close to vg, v(K;) < § fori =1,..., N, v(Ko) < 1 and v belongs
to G\ S. We have just proved that G \ S is open.

To prove that S is Borel, identify [0, 1] to D and observe that S can be written
in the form

S= U / {v € My(8D) : v([g,p]) = 1)}.
n210<p,g<1,p—g<1/n

To prove the continuity of v € U; — 6, € 9D, choose a sequence (Vn)n>o0
of measures of U converging to v, € U; and let t,,t,, be the corresponding
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unique atom of mass not smaller than ;. By compactness, some subsequence
(t )n>0 converges to a limit point t*. If 3 : oD — [0,1] is a continuous test
function satisfying ¢ = 1 on a neighborhood of ¢*, then ¥ (t]) = 1 for large n and
Voo(¥) = im0 vn(¥) > . By letting ¢ converge to the Dirac function at t*,
we obtain veo(t*) > 3; and by uniqueness t* = to. Thus the sequence (tn)n>o
admits a unique limit point and v — §,, is continuous. O

The set U, of probability measures v € M;(9D) having two atoms of mass
each is Borel since Uy = M;(8D) \ (Up U U, ) and, if we denote by the two atoms
of v, &(v),nm(v) € [0, 1], on each set

Up(e) ={v €Uy : {(v),n(v) € (0,1~ ¢, [€(v) —n(¥)] = e},

the function v € Us(e) — (£(v),n(v)) € R? is continuous.

B The Dunford—Pettis theorem

Let E be a separable Banach space, E’ the dual space equipped with the
weak topology and (X, B,m) a standard measurable space, where X is metrizable,
complete and separable, B is its Borel o-algebra and m is a o-finite measure on B.
The Dunford—Pettis theorem [4, Chap. VI, §2, n° 5] tells us that the dual of L
can be identified with LS. In particular, this theorem shows that the unit ball Bg;

of L% is weakly compact.

Definition B.1. Let £}, be the space of measurable functions ¢ : X — E such
that [ ||| dm(z) < +oo and L, be the space of measurable functions v : X — E’
such that ess sup,¢ x |¥z(¥)] < +00. We define two equivalence relations:

v~y = m({zeX g #YL}) =0,
ver! &= VYEeEE m({zeX: v(v¥) £V (¥)}) =0

Denote the quotient spaces LY, = £L/ ~ and LE = L%/ ~. They become,
respectively, a Banach space where ||| = [ |[¢s| dm(x) and a Frechet space
where the weak topology is defined by the family of semi-norms

pow() = [le(@Wa(w)lam(a), ¢ € Lz, v €.

If (¢;)i>0 is dense in L and (¢;);>0 is dense in E, then the vector space
generated by (wit;); ;>0 is dense in LY. A continuous linear form T on L gives
rise to a continuous bilinear form on L} x E by B(yp,¥) = T(¢y). The main part
of the Dunford—Pettis proof consists in showing that such a bilinear form can be
represented by an element v € L.
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Proposition B.2. (i)/fBisa continuous bilinear form on Lk x E, then there
exists a unique v € LS, such that B(p,¢) = [ o(x)v;(¥) dm(x).

(ii) Conversely, for any v € LE., the bllmear form defined above is continuous
and satisfies || B|| = ess sup,e x [|vz]] < +00.

Proof. (i) For every ¥ € E, the map ¢ € L} — B(p,v) is a continuous linear
form on Lj which can be represented by some #(-,%) in Lg®, so that B(p,v) =
Jo(z)i(z, ¢)dm(z) for all p,4 € Ly x E. As a function of ¢ € E, o(-,9) € L
is linear, continuous and esssup,¢ x |#{z,%)| < ||B|l||%||. The next lemma shows
such a continuous linear map can be lifted to £L§°. Let v(-,¢¥) € L be a linear
lift satisfying esssup,¢ x [v(z,¥)] < [|B][[¥]. Taking the evaluation at any point
z € X, we obtain a continuous linear form v, : ¢ € E — v{z,v¢) € R on E that is
an element v € L%,. Uniqueness of such a v requires the separability of E.

(ii) To prove that ||B]| < co, we use the separability of £ and the Banach—
Steinhaus theorem. O

Lemma B.3. Ify € E — 0(¢) € LY is a continuous linear map, then there
exists a continuous linear map ¥ € E — v(y) € LY such that for all ¢ € E,
v() = (y) in LY and sup e x |v(9)] = esssupyex [9(¢)].

Proof. Let(¢;);>0 bea sequence of linearly independent vectors in £ such that
the closure of the span of (¢;);>0 is E itself. For each +; we choose a lift v; € L
of #(¢;). We define v on all rational linear combinations F = {3 | Ai¢; | i €Q}
by v(37.; Aivs) = 3.1, M. Since F is countable, there exists N of measure
zero such that sup x\ v |[v(¥)| = [|#{¢)|le for all ¥ € F. We may assume now that
v; =0 on N. Since ||v(¥)|lo < ||7]|||#]| £ for a dense set of ¢’s, we can extend v
continuously to E. O

We are now able to state and prove the canonical isometry between the dual
(LL) and L%,

Theorem B 4. If T € (LL), then there exists a unique v € LY, such that
T(py) = [@(z)vg(¥)dm(z) for all p,9p € Ly x E. The transformation T — v
defines a byectzve lmear map and ||T|| = esssup,¢cx ||ve]|-

Proof. As we have already seen, T defines a continuous bilinear form B
on L} x E which can be represented by a unique v € L% . Conversely, let
L be the vector space generated by {py | ¢ € LL,v € E} and T defined on
Lby T3, eiti) = Yooy fwilz)ve(¢i)dm(z). This is well defined since if
S et = 0, then [ v (31 wi(z)y;) dm(z) = 0. Moreover, [T(Y .., vits)] <
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esssup,e x vzl || or ) wathill 11, and can therefore be extended continuously to L
with | T|| = esssup, ¢ x ||vz . O

Corollary B.5. The unit ball of L%, BE = {v € L, : esssup_¢ x ||v.]| < 1},
is compact metrizable with respect to the weak topology given by the semi-norms

ptpw (v) = f“P(z ve(¥)| dm(z).

We now apply this approach to identify the disintegration of a measure on a
product space to an element of BE. Let Y be a locally compact separable space
and E = Cy(Y, R} the space of continuous functions with compact supporton Y. If
v € E' is positive (v(¢) > 0 for any 3 > 0) then, by Riesz’s theorem, v is a Borel
measure finite on any compact subset of Y. If in addition (1) = 1, then v is a
probability measure. We denote by 7 : X x Y — X the projection onto X.

Proposition B.6. If v is a Borel measure on X x Y such that n,(fh) = m,
then there exists a unique v € L, such that forall p € Ly, Y € E

{ [ e(@)d(y) din(z,y) = [ o(z)ve () dm(z),

v, is positive and v.(I) = 1 a.e.

In other words, (v;)zex is a family of Borel probability measures on 'Y such that
for all Borel sets A, B, m(A x B) = [, vo(B)dm(z) and v.(B) is measurable with

respect to x.

Proof. The bilinear form on L} x E, B(p,v) = [[e(z)y(y)dmn(z,y) is
continuous. By the Dunford—Pettis theorem, there exists v € L% such that
¥) = [ (z)v () dm(x) forall ¢, € L x E. If ¢, > 0, then B(p, %) > 0,

v, is a positive linear form on E and therefore a Borel measure on Y. By taking an
increasing sequence of positive v, converging pointwise to 1, we obtain v, (1) = 1
ae. Given A € By, the set of B € By such that z — v,(B) is measurable and
(A x B) = [,vz(B)dm(z) is a monotone class containing the open sets (as
increasing limits of positive ¥, ) and therefore equal to By. O

We end this section by proving a technical lemma on convergence.

Lemma B.7. If v" € Bg, converges weakly to v, then for every ¢ € L} and
every ¢ : X — E measurable and essentially bounded we have

Jim [ @z dm(e) = [ e@va(ye) dm).

Proof. Let (¥;)i>0 be a dense subset of the ball of radius esssup, ¢ x [|¥z o
For each ¢ > 0 we construct a partition (A$);>o of X such that Af is a subset of
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{zeX: ||, —¢illo <€} Letys = > isolas(z)¢;. Then by Lebesgue’s theorem
and the weak convergence of v" to v we have

lim 3 f (@ (%) dm(z) = 3 / 2 (s) dm(a),

n—+00
20 >0

which shows the lemmais true for y<. Since | [ o(z)v? (Yo —9%) dm(z)|is uniformly
bounded by [|¢. — ¥ |l ll¢llL1, we can permute the two limits and the lemma is
proved. i

C Conservative dynamics

C.1 Finite measure preserving case We recall in this section basic
facts about recurrence of R-valued cocycles and give short proofs for the sake of
completeness.

In the sequel, (X, m, ¢) denotes an abstract dynamical system which is not
necessarily ergodic nor invertible. The notions of recurrence and essential values
have been introduced in Section 3. The following lemma is a characterization for a
cocycle to be a coboundary.

Lemma C.1. If a(n,z) is a measurable cocycle, then (i) a is not equal to a
coboundary (on any invariant Borel set of positive measure) if and only if (ii) co is
an essential value for a.

Proof. (i)=(ii). Assume, to the contrary, that there exists B € By of positive
measure and R > 0 such that lag(n,z)| < R for all n > 0 and almost all z € B.
Define

S(z) =supag(n,z) and I{z)= iI;anB(n,x).

n>0

The cocycle property ag(n + 1,z) = ap(n, ¢5(z)) + ap(l, =) implies
S(z) > So¢p(r)+ap(z) and I(z)<Iog¢p(z)+ap(z).

Then S— 1> (S—1I)o¢p, S —Iis ¢p-invariant and actually S — So¢p = ap a.e.
on B. We extend Sto B = Unso 87 "(B) by

S(z) =S o0¢™@ + 25 a0 ¢k

and verify that S — S o ¢ = a a.e. on B. This is a contradiction.

(ii))=(i). Indeed, ifa = c—co¢ on a ¢-invariant set B and R > 0 is chosen so that
B={z€B: |c(z) < 3R} has positive measure, for every z € B which returns to
B (¢"(x) € B for some n > 1), we have |a(n, z)| < R, which is a contradiction. O
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For integrable R-valued cocycles, there is a simple characterization for a
cocycle to be recurrent. Our proof is shorter than the original.

Theorem C.2 (Atkinson [2]). If a : X — R is an integrable function then
(i) [yadm = 0 (for every Borel ¢-invariant set B) if and only if (i) a(n,z) is a

recurrent cocycle.

Proof. Denote by 7, the o-algebra of Borel ¢-invariant sets. Condition (i) is
equivalentto E [a | Z,] = O a.e., where E |- | Z4] denotes the conditional expectation.
We only prove (i)=>(ii).

By contradiction, there exist B € Bx of positive measure and € > 0 such that
forevery n > 1 and a.e. z € B, the induced cocycle |ag(n,z)| > €. Then for all
p>n>0andae. z€ B

las(p,x) — ap(n,z)| = lap(p — n, #3(2))| >

On any interval [-R, R], there cannot exist more than N(R) (the integer part of
1+ 2R/e) distinct times n > 0 for which ap(n,z) € [-R, R]. In other words, there
exists at least one n € [0, N(R)] such that [ag(n,z)| > R. We then construct by
induction two increasing sequences of integers (n;);>o and (R;)>o where n; is the
smallest n such that lag(n;, z)| > R; and

Riy1 =1 +sup{lag(n,z)| : n < N(Ri)}
(the choice of R;.; implies n;41 > N(R;) > n;). Thenforae. z € B

i . i) —2
lim inf —l—]aB(ni,x)l > ljminf-]i > liminf M > <.
i—+o00 N i—+oo T i—+00 2n; 2

If (7)o denotes the sequence of successive return times to B, then for every
n>1,ag(n,z) = a(ti(z),z). Since (175(z))n>0 converges a.e. to Ell g | Zy] < 1,
the sequence |La(n, z)| converges a.e. to [Ela | Zy]| > €/2 on B = 5, ¢~ "(B).

O

C.2 o-finite measure preserving case The recurrence of a cocycle is
often related to the fact that some skew product extensions are conservative. If
the range of a cocycle is not finite (more generally, not compact), the extension is
usually o-finite. We give in this section some properties of conservative dynamical
systems.

Definition C.3. A o-finite abstract dynamical system (X, m, ¢) is said to be
conservative if for any B € By of positive measure there exists n > 1 such that
m{BNg¢~"(B)) > 0.
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We observe that (X, m, ¢) is conservative if and only if (X, m, ¢™!) is conserva-
tive too. Ergodic theory can be done for o-finite conservative dynamical systems.
The starting point is the Hurewicz theorem. We shall not use it, but will use instead
the main ingredient of its proof, the maximal lemma which we now recall.

Lemma C.4, Ifa: X — R is an integrable function and B is the Borel set
B={zeX: In>1st a(n,z) >0}, then [adm >0.

The maximal lemma will help us to prove a characterization for a dynamical
system to be conservative. We give here a different proof than the one in [18].

Lemma C.5. Let a : X — Rt be a positive and integrable function. Then
(i) (X, m, ¢) is conservative if and only if (i) 3_, 5, a0 ¢"(z) diverges a.e.

Proof. (ii)=(i). Let B be a Borel set of positive measure, b the function 15
and suppose that X = {z € X : lim,_ 14 8(n,z) < +oo} has positive measure.
Since X is ¢-invariant and (a(n, ) — b(n, z))n>0 converges to +oo, by the maximal
lemma [;(a — b)dm > 0. The same equality is also true for +a instead of a. By
letting N go to +o0, we obtain that X is disjoint from B and that a.e. point in B
returns infinitely often into B.

(i)=-(ii). This part is obvious. d

The following lemma shows that under some conditions related the notion of
K-system, if a coboundary f o ¢ — f is F-measurable for some sub-o-algebra, then
f is F-measurable itself. A more elaborate version is given in [19, Lemma 4.3].

Lemma C.6. Let (X, m,¢) be a conservative, o-finite and invertible dynam-
ical system and f : X — R a Bx-measurable function. If there exists a o-finite
sub-c-algebra ¥ C Bx invariant (¢~ F C F) and generating (\/ .-, ¢"F = Bx)
such that f o ¢ — f is measurable with respect to F, then f itselfis measurable with
respect to F.

Proof. Case m(X) < +oc. For every ¢ > 0, there exist n > 0, a function f,
measurable with respect to F and a set A, of measure m(A,) > 1 — € such that for
every z in A, |f(z) — feoc 6™ "(z)| < €. Then|fod" —~ f| < e on B, = ¢ ™(A)
and |f — g] < € on Be, where g = f o ¢" — f — f. is F-measurable. On the set
U N> Biyan of full measure, g, o» converges pointwise to f, which is thus
F-measurable.

The general case. Since F is o-finite, it is enough to show that the restriction
fr of f to any set of finite measure F € F is F-measurable. Let F € F be of
finite positive measure, (F,mr,¢r) the induced map on F and Fr the o-algebra
{BNF: B g F}. We are going to show that fp c ¢5 — fr is Fp-measurable,
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Fr is ¢p-invariant and generating. The first part of the proof will imply that fp is
Fr-measurable.

To prove the assertion, denote by 7 the first return time to ' and observe that
forallBe Fandn > 1

(r=n}=Fn¢ Y (F)n---n¢~""F)n¢~"(F) € F,

frogr—fr= Zl{rzn}(f o @™ — f) is Fp-measurable,

n>1

¢! (B)=|J Fno¢ ' (F)n---n¢ "t (F°)n¢~"(B) € Fr.

n>1

To prove that Fr is generating, we consider for everyn > 0Oand f : X — R
measurable with respect to F the function f(x) = f o ¢~ o ¢ (z). Since

f= Zl{Tn:k}f 0" ™(x) Vze€PF,

k>n

where 7,, is the nth return time to F, f is measurable with respect to F,
fog¢™™ = fo¢z" is measurable with respect to ¢%(F) and we have proved that
(6™(F)) p C #%(FF). Since (¢™(F))n>o generates Bx, (93(Fr))n>0 generates Br
too. O
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