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A b s t r a c t .  Let {fa}ae.,t be a C 2 one-parameter family of non-flat unimodal 
maps of an interval into itself and a* a parameter value such that 

(a) fa* satisfies the Misiurewicz Condition, 
(b)fa* satisfies a backward Collet-Eckmann-like condition, 
(c) the partial derivatives with respect to x and a of fn(x) ,  respectively at the 

critical value and at a*, are comparable for large n. 
Then a* is a Lebesgue density point of the set of parameter values a such that the 

Lyapunov exponent offa at the critical value is positive, andfa admits an invariant 
probability measure absolutely continuous with respect to the Lebesgue measure. 
We also show that givenfa* satisfying (a) and (b), condition (c) is satisfied for an 
open dense set of one-parameter families passing throughfa. .  

I. Notat ions  and m a i n  results  

In [BC2] (see also [BC 1 ]) Benedicks and Carleson proved the following theorem: 

T h e o r e m  1.1. Let  qa = 1 - ax 2, 0 < a < 2, - 1  < x < 1 be the real quadratic 

family. Then there exist 0 < A < log 2 and a subset f~x c_ [0, 2] of  positive Lebesgue 

measure such that fo r  all a E f ~ :  

(*) Vn >_ 0 IDqan(1)] _> exp(nA). 

Property (,) is useful for proving the existence of absolutely continuous invariant 
measures. The goal of  this paper is to put Theorem I. 1 into as general a context as 
possible. Leaving precise statements for later, we prove 

(1) the quadratic family {qa} above can be replaced by any one-parameter family 
of C 2 unimodal maps passing through a Misiurewicz point  a* and satisfying 
certain tranversality conditions; 

(2) every Misiurewicz point  a* is a Lebesgue density point for the set of param- 
eter values with property (,) for all generic one-parameter families passing 

throughfa.. 

* This work is partially supported by NSE 
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These results have been announced in [TTY]. Independently, M. Tsujii [Ts], 

S. van Strien and W. de Melo [MS] have obtained similar results for parameters 

a* satisfying different hypotheses. Our line of  proof follows very closely that of  

Benedicks and Carleson. In that sense a large part of  this paper consists essentially 

of a detailed exposition of  their work. The final manuscript has been written by 

the first author. 

We now give a precise description of  the one-parameter families we consider. 

Defini t ion 1.2. Let A be an interval of  parameters. A regular family { fa}ac,4 
is a C 2 one-parameter family of  unimodal maps with non-flat critical point, that 

is a family of  maps [fa : x  ~ f~(x)] of  the interval I = [-1,  1] which satisfy the 

following conditions: 

(i) [(x, a) ~fa(X)] is C 2 with respect to (x, a), 

(ii) co = 0 is the unique critical point of  f~, fa is increasing on [-1 ,0)  and 
decreasing on (0, 1], fa z (0) < 0 < f l  (0) and f 2 (0) < f3 (0), for all x E ( -1 ,0 ) ,  

fa(X) > X, 

(iii) there exist positive constants A~, A~, C* and r _> 2 such that for all a E .A and 

for all (x, y) E I 

a~lxl r-1 < [Of~(x)[ < a~lxl ~--1 and Ofa(X) < expC* y -  1 .  
- - Df~(y) - 

We denote by cn(a) the orbit of  the critical point: cn(a) = f~(0) where fn  = 

fa o . . .  Ofa n times. We also use the notationfn(x, a) =fn(x )  and write Ox, Oa for the 

derivatives with respect to x and a. A stable periodic point for a e l -map  I f  : I --+ I] 

is a point x such that for s o m e p  _> 1,fP(x) = x and ]DfP(x)[ < 1. We recall also 

that a unimodal map [ f  : I ~ I] is called S-unimodal or has negative Schwarzian 
derivative if  it satisfies the following condition: 

g x # O  Sf(x) = - 2 ~  - f - - ~  2 \ f ' ( x ) ]  < 0.  

We begin by a simplified version of  our main result. 

T h e o r e m  1.3 (a special case) Let a* be a parameter value such that: 
(i)fa* is a C 3-unirnodal map, with negative Schwarzian derivative and fa'. (0) # O, 
(ii) there exists a constant N >_ 1 such that clv(a*) is a nonstable periodic point 

x* o f  period p, 
( i i i ) / f[a  ~ x(a)] denotes a local smooth continuation o f  x* (i.e. •(a*) = x* and 

fPa (X(a)) = x(a) in a neighborhood o f  a*), then 

d 
-d-da (X - ClV)(a*) # O. 
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Then a* is a Lebesgue density point of  a set o f  parameters .AK,a of  positive Lebesgue 

measure for  some constants K, A such that for  all a E .AK,~ : 

(a) for  all n >_ O, IDfan(cl (a))l _> K exp(nA), 

(b) fa  admits an invariant probability measure absolutely continuous with respect 

to the Lebesgue measure. 

W e  now in t roduce  a new not ion o f  pe r tu rbab le  p a r a m e t e r  a* wh ich  ex tends  the 

three  proper t ies  o f  T h e o r e m  1.3: 

D e f i n i t i o n  1.4.  Le t  {fa}aE.A be  a regula r  family.  A p a r a m e t e r  a* is said to be  

perturbable, i f  one  can  find a cons tant  e* > 0 such  that  

( C E 0 ) *  for  every  6 E (0, e*) and n > 1, i f x  E I satisfies f / . ( x )  r (--6,~5) and 

fa~.(x) E (-6,/~) for  all i = 0 , . . .  ,n  - 1 then  IOfan.(x)l >_ ~*, 

(M)  for  all n > 1, ]Cn(a*)[ > ~* andf~ ,  has  no s table  per iod ic  point ,  

(T) l i m n ~ + ~  Oafn(co(a.) ,a.) /Oxfn_l(cl(a.) ,a.)  def Q. ~ O. 

O u r  first result ,  wh ich  is the ma in  one,  is the fo l lowing  theorem:  

T h e o r e m  1.5.  Let {fa}a~.4 be a regular family. For every perturbable point 

a*, there exist positive constants K, ~, a and )~ such that a* is a Lebesgue density 

point of  the set ~ of  parameter values a which verify the four  conditions: 

( N S ) f a  has no stable periodic point, 

(ER)  Vn _> 1 [fan(0)[ _> e e x p ( - n a ) ,  

(CE1)  Vn _> 0 [Dfff(fa(0))[ _> K e x p ( n A ) ,  

(CE2) for  all n >_ 1, i f  x E [--1, 1] satisfies fka (X) ~ O for  all k = 0 , . . . ,  n - 1 and 

fan(x) = O, then [Dfan(x)[ >_ K exp(nA). 

T h e  condi t ions  (CE1)  and  (CE2)  are re fe r red  to as the fo rwa rd  and b a c k w a r d  

C o l l e t - E c k m a n n  condi t ions;  the condi t ion  (ER)  is wha t  Bened icks  and  Car leson  

call  the exc lus ion  rule. Be fo re  g iv ing the m a i n  Coro l l a ry  1.7, we  recal l  two  

defini t ions.  

A p a r a m e t e r  a* is said to be  a Lebesgue density point o f  a Bore l  set ft C_ .A if  

l im [f~ N (a*--e,a____~*+ ~)1 = 1 
~ 0  I.AM (a* - ~,a* + E)[ ' 

* Note added in proof: For C3-unimodal mapsf  satisfying the Misiurewicz condition (M) and the 
�9 . i t  . . 

nonflatness condmonf (0) 5~ 0, condlUon (CE0) is actually a consequence of the Koebe Distortion 
n Principle [St;3.2] and the fact that y]~i=oIfi(In)l is uniformly bounded in n for any n-homterval In 

[St;9.1 ]. Using moreover the fact that the length of Iln I decreases exponentially uniformly [St; 11.1 ], we 
get to the conclusion: there exist positive constants e,K and A such that, if n >_ 1, x E [-1, 1] satisfies 
fn(x) E (--s,E) and fk(x) ~ O for all k = O, 1 . . . . .  n - 1, then IDfn(x)l >_ Ke nx. 
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where Ill] denotes the Lebesgue measure of the set ~. 

A measure tZa is said to be invariant with respect tOfa if #a(fa 1 (B)) = #a(B) for 

every Borel set B c_ I, and #o is said to be absolutely continuous with respect to 

the Lebesgue measure if #~(B) = 0 for every Lebesgue-negligible Borel set B. 

Using a result of T. Nowicki and S. van Strien [NS 1; Theorem A], we obtain the 

celebrated Theorem of M. Jakobson [Jal] and [Ja2] (see also [BC1], [Ry] and for 

the complex case [Re]). 

T h e o r e m  1.6 [NS 1] Let If : I ~ I] be a C 2 unimodal map with a unique non-flat 

critical point. I f  f satisfies the conditions (NS), (CE1) and (CE2), then f admits an 
invariant probability measure absolutely continuous with respect to the Lebesgue 

measure. 

C o r o l l a r y  1.7 [Jal], [Ja2] I f  ~f~}~c,a is a regular family, any perturbable point 

is a Lebesgue density point of  the set of  parameter values a such that fa admits an 
invariant probability measure absolutely continuous with respect to the Lebesgue 

measure. 

The definition of a perturbable point requires several remarks: 

- The first condition (CE0) is technical and is only used to prove Theorem I1.3 

(essentially to prove that the exponent A we obtain in Theorem II. 1 is independent 

of the neighborhood the critical orbit avoids). We conjecture that this condition is 

always satisfied for maps satisfying the Misiurewicz condition. Iffa* happens to 

have negative Schwarzian derivative, the condition is automatically true. 

L e m m a  1.8 [CE; Appendix A] Let ~ : I ~ I] be a S-unimodal map satisfying 

condition (M). There exists a positive constant ~* such that for  all n >_ 1 and x E I, if  

x satifiesf n (x) E (-e*, e*) andfk(x) ~ O for  all k = 0 , . . . ,  n -  1, then ]Df n(x) l > ~*. 

- The second condition (M) is referred to as the Misiurewicz condition and says 

that the critical point is not recurrent. The fact that fa, do not possess stable 

periodic point (condition (NS)) ensures exponential growth for any sufficiently 

long orbits staying outside any neighborhood of the critical point (see Theorem 

II. 1). This condition generalizes the Strong Misiurewicz Condition where an iterate 

of the critical point reaches a nonstable periodic point, (i.e. cN(a*) = x(a*) with 

fPa(X(a)) = x(a) and IDfaP(x(a))l > 1 for all a in a neighborhood of a*). 

- The third condition (T) is a kind of transversality condition. It shows in which 

way the one-parameter family has to crossfa*. It should be noticed that condition 

(M) ensures the existence of the limit in (T) as is explained in Lemma VII.1. In 

the particular case wheref~, satisfies the Strong Misiurewicz Condition, condition 

(T) is equivalent to the transversality of the two curves [a ~ CN(a)] and [a ~ x(a)] 

(see Section VII. 1 for a proof). 
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P r o p o s i t i o n  1.9 [Re], [Ru], [Ry] I f  fa. satisfies the Strong Misiurewicz condi- 
tion then 

oafn(co(a*),a *) /dCN , dx  Q(a*) -- lim 
= { - daa (a*) 

---~a (a ) ) /Df2-1(c l (a*)) .  
tgxfn-l(cl(a*),a *) n ---~ dy o o  \ 

For a map fa* which satisfies the more general Misiurewicz condition (M), the 

transversality condition is equivalent to the fact that ~ da ~ )fn>_l is not bounded 
(see Proposition VII.7). In the particular case of  the quadratic family qa(x) = 
1 - ax 2, one can show [Do] that any parameter satisfying the Strong Misiurewicz 

condition also satisfies the transversality condition (T) (for a* = 2, the computation 

shows Q(a*) = - 1 / 3 ) ,  and consequently is a perturbable point ({qa}o<a<2 is a 
regular family of  S-unimodal maps). As the referee suggested, the transversality 

condition could be formulated as a nontangency of  higher order in the case of  

higher smoothness. 

The fact that the transversality condition can be checked after a finite number 

of  iterations, enables us to prove that condition (T) is generic among all regular 

families passing through a Misiurewicz point. We first define the topology of such 

families. 

Def in i t i on  1.10 Let a* E `4 and f* be a C 2 unimodal map verifying the 

conditions (M), (NS) and (CE0). We denote by R(a*,f*)  the set of  regular families 

{ fa)a~,a such that fa* = f*.  We consider 7~(a*,f*) as a subset of  the space of  

continuous maps from .4 into the space C 2 (I) and we define on R(a*,f*)  the uniform 

C2-norm: for each f = { f~}~e.a, 11 f ]l= SUPac.~,xci{I fa(X)l + IOf~(x)l + ID2fa(x)l }. 

Our second result is the following proposition: 

Proposition 1.11 The subset o f  regular families which satisfy condition (T) at 
the point a* is dense and open in R(a*,f*).  

We would like to thank D. G6rard for a careful reading of  the manuscript. 

II. Strategy of the proof 

We choose once and for all a regular family ~fa}aE.A and a perturbable point 

a* E `4. In order to simplify notation, we denote for all n _> 0 and a E `4 

Cn(a) =fan(O) and dn(a) =Dfan(cl(a)). 

Before describing in detail the strategy of  the proof, we summarize the main 

ideas in a nontechnical way. We start by choosing a small interval f~0 containing 

a* and consider all the curves {cn : f~0 -~ I) .  I f  Cn(a) = co for some parameter a, 
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the critical point is a super attractive periodic point and we have to eliminate this 

parameter. Actually, we have to exclude also a small neighborhood V~ about all 

these parameters a; the size of  Va will depend on dc, Ida over Vo. The transversality 

condition shows that dcn/da has the same magnitude as dn-l(a). In order to leave 

out some subset of f~0 of positive measure in the process of  elimination, we show 

that dn(a) follows an exponential growth. Actually, polynomial growth would be 

enough (and easier to prove) to obtain Corollary 1.7: it would be enough to use 

the Bound Return Theorem II.7. To obtain exponential growth, we study more 

carefully the statistic of  the sequence {c,},_>1 and show that a subsequence {cro }n>l 
behaves like a Markov chain. 

We now return to a more precise formulation. As f~. is a C 2 unimodal map 

without stable periodic point,f~, possesses a strongly hyperbolic dynamics outside 

any neighborhood of  the critical point. More precisely, M. Misiurewicz, R. Marl6 

and essentially S. van Strien and W. de Melo have established 

T h e o r e m  I I . l  [Mi], [Marl], [St], [Me; Theorem III.5.1] Let [ f  : I ~ I] be 
a ~2 unimodal map without stable periodic point. For every e > 0 there exist 
positive constants A2. l (e) and K2.1 ( e ) such that,for every x E I and n > 1 satisfying 
{x , f (x) , . . .  , f , - I  (x)} N [-e, e] = (~, 

IOf"(x)l ~ K21 exp(nA2.1). 

Using the above theorem and the fact thatfa, satisfies the Misiurewicz condition 

(M), we can find positive constants e*, K* and A* such that for all n > 1 

Id,(a*)l > K*exp(nA*) and Ic,(a*)l _> e*. 

In order to explain why a* is a Lebesgue density point, we introduce the 

following notation. 

N o t a t i o n  11.2. For every neighborhood V of  a* and 6 E (0, 1), we denote by 

N2.2(8, V) the smallest integer N such that CN(V) n [--16, �89 ~ 0. By continuity 

of  the family {fa}ac.~, we obtain limv~(a.}Nz.z(8, V) = +c~. We also define 

Nz.z(V) =Nz.z(e*,V). 

Our main goal is to construct by induction a decreasing sequence of subsets 

{f~k}k>0 such that f~0 is any interval containing a* sufficiently small and for all 

k >  l a n d a E f ~ k  

(CE1 - k) 

( E R  - k) 

V0 < i < 2kN2.2(f~o) Idi(a)l > K* exp(i~), 

V 1 < i < 2kN2.2(~20) Ici(a)l > e* e x p ( - i a ) ,  

If~k+~l/If~kl --- 1 - exp{-2k-lc~v2.2(f~0)}, 
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where A E (0, A*) and a C (0, A) are constants which will be determined later. I f  

the orbit has accumulated the expansion [dn-1 (a)] _> K* exp((n - 1)A) at time n, 

the exclusion rule (ER) allows us to keep some expansion at time n + 1: 

Idn(a)l = Idn- l ( a ) l  • [Dfa(Cn(a))[ > A~ldn-l(a)[ • Icn(a)l " -1  > Kte  n(~-r , 

for some constant K '  > 0. We stress that all the constants chosen in the course 

of  our proof will depend only onfa*. Following [BC1] and [BC2], we divide our 

proof into four main steps, which we now describe. Our proof for the last step 

differs slightly from the one in [BC2]. 

In the first step (see Section III. Perturbed Misiurewicz Theorem), we show that 

the orbit of any point x recovers an exponent A2.3 C (0, A*) independent of 6 as 

long as its orbit stays outside the neighborhood [-�89 �89 of  co. More precisely, we 

prove: 

T h e o r e m  11.3 Let {fa}ac.4 be a regular family and a* E .A be a parameter 
satisfying (M) and (CEO). There exist positive constants 62.3, A2.3, K2.3 and for all 
6 E (0, 62.3) a neighborhood V2.3 (6) of a* and a constant K2.3 (6) such that, i fx E I, 
a E V2.3(6), n _> 1 and {x,fa(x),...  ,f~n-l(x)} f3 (-�89 16) = 0, then: 

(i) IDf~(x)I > Kz3(6) exp(n)~2.3), 

(ii) iffJ(x) E [-62.3, 62.3], then IDf~(x)l >_ Kz.3 exp(n,~2.3), 
(iii) if (x,fa~(X)) E [-rz3,rz3] ,  then IDfff(x)l >_ exp(n~2.3). 

From now on we fix ~ 6 (0, ~2.3), ~ 6 (0, c~z3(~)) and ~ = �89 + ~2.3) + 10a~-, 

where OL2.3 (/~) = /~ min(A, A2.3 - A)/100rA* and A* = log SUPx,a IDfa(X)[. 

R e m a r k  11.4 I f fa .  satisfies (M), Theorem 11.3 is actually equivalent to the 

condition (CE0). ii) is a d 2 version of  a result already proved in [CE2; Appendix 

A]. 

In the second step (see Section IV. Bound Return Theorem), we prove a version 

(Theorem I1.7) of  Benedicks and Carleson's Bound Return Theorem which is more 

appropriate to our purpose. When the orbit of the critical point {ci(a)}~=l returns tc 
itself, cn(a) is close enough to co so that the two orbits {Cn+k(a)}P= 1 and {ck(a)}~-~ 

become bound during a period p, where p is defined so that the distortion of  the 

maps f~, k = 0 , . . .  ,p - 1, stays bounded. If  co(a) and co are not too close, the 

period p is equal to a small proportion of  n and the orbit {Cn+k(a)}P=o captures pall 

of its past exponent: 

[DfP(c.(a))] > exp (pA - 2ra] 
- -  7 "  /" 
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In order to define a bound period p globally for any a E w belonging to some 

interval of  parameters ~v, we begin to partition I into a countable number of  

subintervals: 

Defini t ion I I .5  Let A4 = {#i}i_>0 be the sequence defined by induction by 
#0 -- 0, #l = 2 and for all i _> 1 

1 exp(-#i )  - exp(-#i+l)  

#i exp(-#i+l  ) 

Let ](#i) denote the interval (exp(-#i+l) ,  exp(-#i)] and ] ( -# i )  the symmetric of  

](#i) about the origin. 

It may happen that, for some w and some integer n, Cn(W) is not equal to a union 

of intervals i(#i). We define therefore a notion of state., 

Definit ion 11.6 A state is any interval l (# i )  which satisfies 

l(#i) C I(#i) C__ ] ( # i - 1 )  I J l ( # i )  U/(#i+1), 

and by the same convention: l ( - -# i )  : --I(#i) .  

T h e o r e m  11.7 (Bound Return Theorem) Let {fa}aE.a be a regular family, 

.~ E (0,)~2.3) and a E (0, O~2.3()~))- There exist constants ~2.7 : exp(-A2.7) E (0, 1), 

D2. 7 ~ 1 and a neighborhood V2.7 of  a* such that, i f  w C_ V2.7 is an interval 
satisfying: 

(i) Cn(~V) C_ l(r) for  some [r[ E .A4 andA2.7 <_ Ir[ < nc~, 

(ii) Va E ~vV1 <_ k <_ nick(a)[ _> e* e x p ( - k a )  and  [dk-l(a)[ _> 
K* exp(k - 1)),/10, 

(iii) Va E ~v V 1 < k < n/ lO Idk(a)l _> K* exp(k)~), 

then there exists an integer p = p(n, r, w) such that for  all (a, s, t) E w and w' C_ w: 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

some 

(1/3a*)[r  I <_ p <_ (2r/A)lr ], 

IDfPa(cn(a))[ > exp{p(A - 2ra) / r } ,  

g 1 < k < p [Df~(cn(a))[ >_ e x p ( - r n a  + kA), 

V l < _ k < p + n  [ck(a)[ _> 2exp(- i r [ )  _> e*exp( -ka ) ,  
p - 1  

Ek=o I(c.+k(s) - c.+k(t) )/c.+k(t)l < O2.7l(c.(s) - e.(t) )/Cn(t)l, 

Ic ,+p(J)[/ lc , (J)]  > exp(-3aP)/ lI(r)] ,  

for  all n < k < n + p, i f  ck(w) fq [-�89189 ~ 0, then ck(w) C_ l(r') for  

Ir'l _ ZXZT. 
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In future, we will call p(n,  r, to) the bound period associated to (n, r, to). If  we  
combine Theorems 11.3 and 11.7, we obtain a simple criterion for the non-existence 
of  stable periodic point and the backward Col le t -Eckman condition: 

C o r o l l a r y  11.8 Let {fa}a~A be a regular family,  a* C .A a parameter  such that 

fa* satisfies the conditions (M) and (CEO), A E (0, A2.3) and a E (0, a2.3(A)). There 

exists a neighborhood V2.8 o f  a* such that, i f  a E V2.8 and verifies: 

(CE) Vk > 1 Ick(a)[ >_ e * e x p ( - k a ) ,  

(CE1) Vk_> 0 [dk(a)[ > K*exp(kA), 

then for  all x E I and n >_ 1 : 

(i) i f  fka (X) ~ O for  all k > 1, then limsupn__.+~(1/n ) log [Offf(x)[ > A/2~-, 
(ii) i f  fka (X) ~ O for  0 < k < n and fn(x)  = O, then [Ofan(x)] > K* exp(nA/2T). 

In the third step (see Section V. Distortion of  the tip), we show that the distortion 

of  the map [a ~ Cn(a)] is bounded from above uniformly with respect to n on any 
adapted interval to. 

D e f i n i t i o n  11.9. Let A E .M, 6 = exp(--A) and to C_ ,4 be an interval. We 

say that to is (n, A)-adapted if for all 1 < k < n, ck(to) c_ I(rk) for some Irkl ___ A, 
Irkl E .M whenever ck(to) fq [-�89 �89 r 0 and if Cn(to) C_ [-26, 26]. 

If  to is an interval of  parameters such that Cn is injective on to and Cn(to) contains 
the critical point co, the proportion of  parameters which are too close to co at time 

n depends on the distortion of  Cn on to. The following lemma shows that, under the 
transversality condition (T), the velocity of  the tip dcn(a )  and the exponent of  the 

critical orbit have the same magnitude. We choose, once for all, constants Q~ and 
Q~ such that: 

. Oafn(co(a*),a *) . 
Q1 < Q* de f lim Oxfn_l < Q2 n~+oo (cl(a*),a*) 

L e m m a  I I . 1 0  Let A > O. There exist N2.10(,~) and a neighborhood V2.10(A) 

o f  a* such that f o r  every n > N2.10 and a E V2.10, if ldk(a)l >_ K* exp(kA) fo r  all 
O < k < n t h e n  

I 1 dcn , 
a~ < dn- l (a)  da (a)l < Oz.  

Using properties (e), (f) and (g) of  Theorem 11.7, we can prove our main distortion 
theorem. 

T h e o r e m  I I .11  (Distortion Theorem) Let )~ E (0, A2.3) and ~ E (0, ~2.3()~)). 

There exist 62.11 E (0, 1), D2.11 > 1 and for  every 6 = e x p ( - A )  E (0,62.11) a 

neighborhood V2.t1(6) o f  a* such that, i f  n > 1 and to c V2.11 is an interval 
satisfying 
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(i) V a E w  V1 < k < n  
(ii) w is (n, A)-adapted, 

then for  every (s, t) E w: 

Ick(a)l _> e* e x p ( - k a )  and [dk(a)l >_ K*exp (kA) ,  

~a  s) / ~a  (t) <_ D2.11. 

Finally in step four (see Section VI. A Markov-like dynamics),  we prove our 

main induction step: Theorem 1.5 is a direct consequence of  Corollary 11.8 and the 

following theorem: 

T h e o r e m  11.12 (induction step) Let A E (0', A2.3) and  a E (0, a2.3(A)). There 
exist 62.12 E (0, 1) and fora l l  6 E (0, 62.12) a neighborhood V2.12(6) ofa* such that, 
i f  w c_ V2A2(6) is an interval satisfying: 

(i) Cn(W) = I ( r ) fo r  some Irl ~ A4 a n d / x  < Irl _< n~ ,  
(ii) V a E ~o V 1 < i < n [ci(a)[ > e* e x p ( - i a )  and [di-l (a)[ > K* e x p ( i -  1)A, 

(iii) Va E w [dn-l(a)[ >_ e x p ( n -  1)~, 
(iv) co is (n, A)-adapted, 

then a; contains a disjoint union o f  intervals w' and for  each o f  these w', one can 
find n' > 2n, A < Ir'l <_ an' such that (i), (ii), (iii) and (iv) are also verified by 
~o', n', r' and such that lU w'[ > ]wl{1 - e x p ( - n a / 2 )  }. 

The proof  of  Theorem II. 12 requires four main parts. 

In the first part (see section VI.A), we show that cN(f~o) n [--6,6] is a union 
of  states l(r) where Irl ___ A = - l o g 6  and N = N2.2(6, f~0). The remaining part 
CN(f~0) N [--1, --6) or CN(f~0) fq (6, 1] is either included in one of  the previous states 
or is equal to one of  the intervals J ( •  where J(izi) is any interval verifying 

I(/~i-1) C_ J(#i) C_ (exp(-#i ) ,  1] (J ( -# i )  = -J(tzi)) �9 Such intervals will be called 

prestates in the sequel. 

In the second part (see section VI.B and VI.C), we assume that, for some interval 

and some integer n _> 1, cn(w) is either equal to a prestate J ( •  or to one of  

the states l(r) where lrI _> A. 
If Cn(W) = J ( •  we call f ree  period q, the smallest integer q such that Cn+q(W) 

meets [-16,  �89 We then show that the length of  Cn+q(W) is at least 36 and that, in 

particular, Cn+q(W) contains again at least one of  the two prestates J ( •  

If  Cn(W) = I(r) for some Irl _> A, we denote by P0 the hounded period associated 
to (n,r,w) and by q0 the first time such that Cn+po+qo(W ) M [-�89 �89 # 0. At time 

nl = n q- P0 -t- q0, it may happen that Cnl (w) is included into some I(rl ), Irll _> A; 
q0 is then called a partially free period. We begin again the process: we denote by 

pl the bound period associated to (nl, rl, w) which may be fol lowed by a partially 

free period ql.  Let  n2 = nl + P l  -1- ql. We stop the process until c~,+~ (w) contains 
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r 
a state l ( r )  with Irl ~ m. We call essential bound per iod  p associated to (n, r, w), 

the total sum of bound and partialy free periods: 

P -- (fro + qo) + " "  + (P , - i  + q~- l )  + pu . 

We show that p satisfies all the properties stated in Theorem II.7 and we notice 

that, by construction, Cn+p+q(OJ ) contains at least one of  the states l ( r ) ,  [r I _> A 
and possibly one of  the prestates J ( ! A ) ,  where q is the smallest integer such that 

Cn+p+q(03 ) meets [-16, �89 

In the third part (see section VI.D), we choose an interval ~ which satisfies the 

assertions (i). . .  (iv) of  Theorem II.12. We construct by induction on 0 _< k _< n 

an increasing sequence of  partitions of  w. At stage k, w is a disjoint union of  

intervals of  the form W(tr~ where to = n, r0 = r, to < . . .  < tk and [ri[ _> A. By 
definition, W(r ~ = ~o and each ~'  = Oj~.ro...rk}(to."tk ~ is a disjoint union of  intervals of  the 
form w t' r = Wkro...rk+l). 

The induction process stops as soon as the exclusion rule is violated or the time 

tk exceeds 2n. If  Irkl > c~tk or tk > 2n then r~+l = rk, tk+l = tk and w" = w'. If  
[rkl _< c~tk and tk < 2n then tk+l and rk+l are defined in the following way. Letpk 

be the essential bound return associated to (tk, rk, w'), where w' ,to...t~, : O.)~ro...rk ) and q 
the smallest integer such that Ctk+pk+q(03 t) 1"7 [--15, �89 ~ ~. 

Either ctk+m+q(W') is equal to a union of  states l ( r ) ,  Irl _> A, then qk = q, 

tk+l = tk +Pk + q and w' is equal to a disjoint union of  intervals w" = w'(rk+l) 

corresponding to the part of  w' which is mapped by ctk+pk+q onto l(rk+l ). 

Or ct~+m+q(W') contains also one of  the prestates J (+A) .  We note t~+ 1 = t~ +Pk + 

q, by w' ( r~+ 1 ) the part of  w' which is mapped by ct, +m +q onto I (rk+ 1 ) and by w' (+), 

the part of  w' mapped onto J (+A) .  Let q(• be the free period associated to J ( •  

and t~+l(+ ) = t~+ 1 + q(+).  We already know from part two that ct~+l(• 

contains again states and prestates. We note by w'(+)(rk+l) the part of w'(+) 

mapped by ct,~+~ (• onto I(rk+l ) and by w'(+, •  the part mapped onto J ( •  Let 

q(•  •  be the free period associated to w'(• •  and t~+ 1 (• • = t~+ 1 (• +q( •  •  

and so on. 
We continue this process and obtain by induction a partition of  w' into a disjoint 

union of  intervals of  the form w" = w' ( •  • where tk+l = t~+ 1 (• �9 �9 �9 • 

By extention, we call also qk = q + q(•  + "'" + q ( + , . . . ,  • a free period; during 

such a period, the orbit of  w" is disjoint from [--~,1 ~].1 
We next prove that each w' eto,...,tk x = W~ro ..... r~) is (tk, A)-adapted. We already noticed 

that for each 1 < i < k: ct,(w') c_ l(ri) and cry(J)  = l(rk). Given such interval ~o', it 

may  happen that the state l(rk+~) is reached at infinitely many distinct times tk+~; 
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the main result of this part is the following estimate: 

I tO . . .  , t k+  1 

Z 03~'r~ ..... rk+l)[ < i i ( r k + 1 ) l e x p ( 2  A + 4 a p k )  
/ t o , . . . , t k  \ - -  

t~+ I CO I r0,...,rk ) 

In the fourth part (see section VI.E), we begin to exclude all the intervals 03 [t~ \ r o , . . . , r n  ) 

which do not satisfy the exclusion rule [rn I > at. ,  and we denote by w' the union 

of the remaining intervals. We then prove 

[w----"~- - ~ e x p  ( - n ~ ) .  

Let us denote by P the normalized Lebesgue measure on oa'. Benedicks and 

Carleson's main idea in their second paper [BC2] is to consider {cn}n_>l as a 

sequence of  random variables on w'. We define therefore {Tk}~=0, {Rk}~=0, {Pk}~=0 
I t o ~ . . . , t n  \ .  and S by their values on each Wkro ..... r,). Tk(a) = tk, Rk(a) = rk, P~(a) = p~ 

and S(a) = max{s = 0 , . . . , n  : ts < 2n}. We define also {Qk}~=0 as usual by 

Tk = Pk + Qk. 
Let ~x -- 100A. If  A _< [gi[ < ~,  we shall say that the corresponding essential 

bound period Pi is short and for [Ri] > /k, that the period is long. During a free 

period Qk, the orbit gains an exponent A2.3 provided that ~v c_ 1/72.3(6) and the same 

exponent during a short bound period if  we choose in addition ~v c_ V2.3(6). On 

the other hand, the exponent during a long period depends on the exponent of  

the past orbit and is equal to (A - 2 r a ) / r  (Theorem II.7). We then show that the 

contribution of  short bound periods is such that we recover an exponent A at time 

Ts+l and an exponent A during the period [To, Ts+l]: 

s n A 2 . 3 - ~ )  < 1 a 
P ( Z P i l ( I R ' I > A )  > A2.3 _ ~ exp(--n~-), 

i=0 

where 1B denotes the characteristic function of  a set B. 

I lL  Per turbed  Mis iurewicz  T h e o r e m  

The purpose of  this section is to prove Theorem 11.3. We start by recalling some 

notations; we then prove a "non-perturbed bound return lemma",  in the sense of  

Benedicks and Carleson, for regular maps; and finally we prove Theorem 11.3 for 

regular families. 

We call a regular map f : I ~ I, any C 2 unimodal map with a unique critical 

point co = 0 satisfying the non-flatness condition: 

A~ <_ [Df(x)[ < , and 
[xlr_---'-- ~ -- A2 

X __ 

Df(y)  - 
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We recall also t h a t f  satisfies the Misiurewicz condition (M) if 

3 e * > O  Vn_>l  Ic.l~*. 

For such maps, Theorem II. 1 tells us that the orbit of  the critical point possesses 

strong hyperbolic properties; in particular, there exist constants K* > 0 and A* > 0 

such that for all n > 1 and x C I 

l , 1 . {x , f (x) , . . .  , fn- l(x)}  fq [--~e ,-~e ] ~ ~ =:~ Iofn(x)l > K* e x p ( n A * ) .  

We are now ready to state and prove a bound return lemma for regular maps 

satisfying the Misiurewicz condition. This lemma has been used previously by 

Collet-Eckmann ([CE; Appendix A]). If  x is a given point close enough to the 

critical point, as long as the distance between x and co stays bounded, x captures 

the hyperbolicity of co: in particular, after the bound period p ~ log(1/lxl), the 

derivative o f f  p at x has recovered [DfP ( x ) ] ~ [Df p-  I (Cl)]l/'r ,~ Vp ( ( o, x ) ) l / l ( O, x ) l . 

L e m m a  I I I . 1  Let f : I ~ I be a regular map satisfying the Misiurewicz 

condition. There exist 63.1 E (0, 1), D3.1 > 1 and K3.1 E (0, 1) such that for  all 

0 < Ixl < ~3.~, there exists an integer p = p3.1 (x) which verifies the fol lowing 

properties: 

1 * (i) Vj = 0, 1, . , p -  1 [fj(0, X) I < I * and bep(0,x)l > ~e . .  __ ~ C  

(ii) (r/2A*)log(1/Ixt) _< p ___ (2~-/~*)log(1/Ixl), 

(iii) g3.1lOfP-~(Cl)l l/~ < IOfP(x)l < g~.~lOfp- l (c l ) l l /~ ,  

(iv) g3.11Ofp-l(cl)l l /~ <_ IfP(O,x)l / I(0,x)L < g~.~lOfP-l(cl) l  1/~ , 

(v) V j - = 0 , 1 , . . . , p -  1 V(y,z) ~ (0,x) IofJ( f (y) ) l  <Oa.~ lo fJ ( f ( z ) ) l .  

P r o o f  The first property is actually a definition of  p. We notice in particular 

tha t f i  is monotone on (0, x), s incef  j -  1 ( 0 ,  X) never contains the critical point co and 

DfJ(x) ~ 0 for a l l j  = 1 , . . .  ,p. 

We start by proving that f i  has bounded distortion on f(O,x) for all 
j = O, 1 , . . .  ,p - 1. The second non-flatness condition implies 

V(y,z) E (O,x) DfJ ( f ( y ) )  _< exp {C" ~ f i ( Y ) - f i ( z )  
i=1 fi(2) } '  
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i Z K* - and Theorem II.1 implies that, for all t E f  ( y , ) ,  [Dfp-i(t)[ > exp{(p i)A*}. 

In particular, we obtain 

fi(z) 
[I I = 2 >_ [fP(y) - fP(z) l  = IDfp-i(t)l dt 

Jf'(y) 
> g*l f i (y)  - f i ( z ) l e x p { ( p -  i)A*} 

and we can choose D3.1 = exp{(2C*/e*K*)(1 - exp -A*) - l} .  
We use now this distortion result to compare the derivative offp-1 at f ( 0 )  and at 

f ( t ) ,  t C (0, x) and the non-flatness condition to estimate the "bad" derivative Df(t): 

* " r - I  (1) A~ltlr-lO~.IlOfP-l(Cl)l < [OfP(t)[ < a2lt [ O3.1FOfP-l(cl)]. 

The length I fP((0 ,x))  I = f(o,x)[DfP(t)[dt is computed in the same manner: 

A~{ iDfp_l(c~)l.lxl~ <_ ifP(O,x) I <_ A~D3.1 iOfP_~(c~)l.lxl ~" 
7-D3.1 7- 

I �9 [Of[ �89 and we obtain On the other hand, ~e < Ifp(O,x)l <_ 

(2) 7-e* < iOfp_l(cl)l.lx[ ~ < 7-O3.1lDfle* 
2A~D3 .1  - - 2A~  

In order to get rid of  constants, we choose 63.x such that 63.1 _< O-e*/2A~D3.1) z/~ 
and 63.1 _< (2A~/TD3.11Dfle*) l/~, which proves assertion (ii): 

exp(pA*) < JDfP-l(cl)[ < exp(pA*) and Ixl -~'/2 _< IOfp- l (c l ) l  <_ Ix1-2r . 

If we combine the inequalities (1) and (2), we obtain 

a~ [ re___~* ] 
[2A~D3.1JO--1)/rlDfP-l(Cl)l UT <_ [DfP(x)l 

D3.1 
, [7-D3~[Df[e*] ' 

[ 2A~ J (r-l)/~'[Dfp-l(cl)[ '~'  <_ A 2 D 3 . 1  

which proves assertion (iii) if we choose K3.1 such that 

K3.1 _< TD3.1A~ / ~ J  [ 7-e* ]0--I)/~- and g3.~ > a~o3.17- k[7-O3"llOfle*]O'-l)/~-2A~ J 

Assertion (iv) is proven in the same manner as (iii) using 

* [f((O,x))[  A~ ~-1 ~lxl ~-~< <-g-x , - I ( 0 , x ) l -  
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D3.11Df p-1 (Cl)1 
IfP((O,x))l 
If((0,x)) l  

< D 3 . 1 1 D f p - I ( c 1 ) ] .  

[] 

We consider now a regular family {fa}a<.a and a* a parameter in .A. We assume 

in the sequel of  this section that f~. satisfies the Misiurewicz condition, the non- 
flatness condition and the technical Col le t -Eckmann condition. We apply Theorem 

II.1 forfa.  : for every e > 0 there exist constants K2.1(e) and 3~2.1(e) such that, for 
a l l x E I a n d n >  1, 

{X,L*(X), . . .  ,fan-l(x)} f-'l (--~,~) .~ O ~ IDfg , ( x ) l  >_ K 2 . 1 ( e ) e x p { n / ~ 2 . 1 ( s ) } .  

We want to show that fa satisfies a stronger hyperbolic condition, where the 

above constants K2.1 (e) and ~2.1(e) can be chosen independently of  e and a in a 
neighborhood of  a*. 

P r o o f  o f  T h e o r e m  11.3 Let 6 < 62.3; 62.3 is a constant we shall define later. 
For any point x E I whose orbit {X,fa(X),... , f f - l (x )}  is disjoint from [-16,  �89 

either the orbit is already disjoint from (--62.3,62.3), in which case we shall choose 

Kz3 = K2.1 (62.3), ~2.3 = )~2.1 (62.3), or we can define a sequence of  increasing times 

to = 0 < tl < "'" < ts-1 < ts < n = ts+l , 

where q is the first time k > 0 such thatf~(x) E (-52.3,62.3),/'2 is the second time 
k > tl such thatf~*(x) E (-62.3, 62.3) and so forth. By the chain rule, the derivative 

at x offff is equal to 

Off (x) = n oftk+'-t* (f~, (x)). 
k=0 

We now notice that both Lemma III. 1 and Theorem II. 1, applied to fa*, can be 

perturbed with respect to a: if a is close enough to a*, we can choose the constants 

A2.1, K2.1, D3A and K3.1 uniformly with respect to a. We choose once and for all 

/ 1 . K3.1K* 4A*/;~* 2 2 
62.3 m i n ~ e  ,63.a, 

= ( - - - i f - - - )  ) ,  m2.3-,~2.,(a2.3/2)1~ 

.~2.3 = min (~---~, 1 1 1 2 ) .  ~'~2.1 (~62.3) , - -  log 
m2.3 

We choose V2.3(6)sufficiently close to a* so that for all 6 < lYl < 62.3 and 

a E V2.3(6): 

(i) there exists p = P3.1 (Y, a) ~ 1 such that {/Ca(y),... ,fPa -1  (y)} 71 (-62.3, 62.3) = 

and IDfa(Y)l >_ (4/K*) exp(pA2.3), 
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(ii) if for some q _> 1, {Y,fa(Y),...,fffa-l(Y)} ~ (-62.3,62.3) ---- 0 a n d f J ( y )  E 

(-62.3,62.3) then: IDfff~(y)[ >_ (K*/4)exp(qA2.3). 

The proof  of  the first assertion comes from the fact that, in Lemma III. 1, p = 

P3.1 (Y, a*) for any 6 < lY[ < 62.3, goes to infinity when 62.3 goes to 0 but is bounded 
from above by a constant depending on 6: 

T 1 2~- 1 
log 6-~. 3 _< p _< ~ -  log ~ , 

2~* 

1 p 1 ),* 4 
IOTP(y)I > ~lDf~a �9 I >_ ~K3.1 exp (p-~-) _> ~-exp(pA2.3)  �9 

For the proof  of  the second assertion, we decompose q into periods of  length 

m2.3 (except maybe the last one). During a period of  length mz3 

1]Of~2.3(y)l 1 62.3 /62 3"~ {m2.3)~2.1 ~--~) } > _ ~. _ ~K2.1 ( - ~ - )  exp ]Dfm23(y) l 

1 62.3 
_> exp { ~m2.3A2.1 (-~--)  } . 

During a period of  length r less than m2.3, we use the condition (CE0) 

1 . 1 . 1 . 
IDf2(y)l > IDf,~.(y)[ > ~K >_ -~K exp(mz.3A2.3) _> ~ K  exp(rA2.3) 

and the fact that V2.3 (6) is chosen sufficiently close to a* such that, for all a E V2.3 (6), 

0 < k < m2.3 and y satisfying {y,f~(y), . . .  ,fak(y)} n (--62.3, 62.3) = 0, 

1 1 k 
[f~(y)--fka*(y)[ < ~62.3 and [Ofak(y)l > ~[Of~.(y)l. 

Using these two assertions, we can finish the proof. During the period tk+l - &, 
1 > k > s - 1, the point y = fraY(X) follows the orbit of  the critical point 

{co(a*), . . . ,cp-l(a*)} and then stays outside (--62.3,62.3) during a period q 
until it enters at time tk+l the interval (-62.3, 62.3): tk+l -- tk = p k  + qk and 

t k+l  - - t k  tk __ IOf~ (f~ (x))l > exp{(tk+l - tk).~2.3} �9 

During the last period ts+l - t~, e i t h e r f  t~+~ (x) E (-62.3, 62.3) and we can choose 

K2.3 = ~K1 * i f x  ~ (-62.3,62.3) and Kz3 = 1 i f x  E (-62.3,62.3), or fatS+l (x) is still 

outside (--62.3,62.3)- Let us set y =f t ' (x ) .  Ifps < ts+l - ts, then 

[Dft,+~-,~(y)l > 4K2.1(62.3/2) 
- K* exp{(ts+l - ts)A2.3} 



POSITIVE LYAPUNOV EXPONENT 137 

and we can choose K2.3 = 4K2.1(~z.3/2)/K*. I f p  > ts+l - ts, using property (v) of  
Lemma III. 1, we have 

Df t s + l - t s - l ( s  [. \,tl A1 (sr_ 1 IOft'+'-t'(y)l = [Dfa(y)[ J a  va,Y))[ >- ~ exp{(ts+x --/s))~3.1} 

and we can choose K2.3(6) = AlcSr-1/263.1. [] 

R e m a r k  111.2 The exponent A of  the main Theorem 1.4 may be as close as 

we want to A2.3. Unfortunately, Aa.3 depends on the constants K2.1(e) and Aa.l(e) 

of  Theorem II. 1 which are not easily computable. We could also get rid of  the 

condition (CE0) by allowing Ka.~ (e) to depend on e in the following way: 

lira logK2.1 (e) _ 0.  
~ 0  log e 

IV. B o u n d  R e t u r n  T h e o r e m  

In this section, we prove Theorem 11.7 which is the main step in the proof in 

Benedicks-Carleson's  Theorem 1.1. It says roughly that, if the orbit of  the critical 

point is hyperbolic and does not come too fast to itself, uniformly on some interval 

w of  parameters, 

V l < k < n  V a E w  [ck(a)[>e*e -k~ and [d~_l (a ) l>K*e  (k-1)x, 

the orbit recovers some exponential growth, approximately equal to - log [cn(a)l, 

after a period p called the bound period: 

Va E w IOfg(cn(a))l > expp r / "  

IV.A. I n t e r m e d i a t e  l e m m a s  

We start by stating and proving several lemmas on the distortion o f f , ( x )  with 

respect to both x and a. We define, for all n, II0ofnll = sUP(x,a)IOofn(x,a)l and 
II 0.,f" II = sup(x,a) [Oxf n (x, a)[. We define also the quotient 

an(a) = Ioafn(co, a)[/Oxf n-1 (el, a)l. 

P r o o f  o f  L e m m a  II .10  For every (x,a) E I x .A, we have by definition 

fn+l (x, a) = f( fn(x ,  a), a). I f  we differentiate this equality with respect to x and a, 

we get 

Oxfn(c1 (a), a) = Oxf(Cn(a), a)Oxf n-1 (Cl (a), a ) ,  
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Oaf n+l (Co, a) = Oxf(Cn(a), a)Oof"(co, a) + Oof(c,(a), a). 

In particular, we obtain a recurrence formula for Qn : 

Qn+l(a) = Qn(a) + 
Oof(cn(a),a) 
Oxfn(cl(a),a) " 

If  n > N by induction we get 

n-1 
iQ,(a) _ Qu(a)l < ~ II Oaf II 

-- IOxfn(cl(a),a)] k=N 

< Ir aof II e-N~ 
_ - -  R N  �9 

K*(1 - e  -:~) 

We first choose N = N2.10 large enough such that Q~ < IQN(a*)I - RN, IQN(a')I + 

RN < Q~ and then choose a neighborhood V2.10 about a* such that these two 

inequalities still hold for all a E V2.10. [] 

L e m m a  Iu  For every n >_ 1 we have the uniform bound 

Ilaof"ll Ilaofll 
Ila fll Ila fll- 1 " 

P r o o f  We use once more the formula oofn+ l (x, a) = Oxf(Xn,a)Oafn(x,a)q- 
Owf(Xn, a) where xn = fn(x, a). By induction we get 

n 

Oaf n+l (X, a) = E Oaf(xk, a)Oxfn-k(Xk+l, a). 
k=0 

[] 

C o r o l l a r y  1%7.2 With the same notations as in Lemma H.lO,for all ~o c V2.1o( A ) 
and for all n > m > N2.1o(/~), 

ICn(~)l > Q~ inf{Dfn-m(cm(a)) : a E w}. 
]Cm(W)I -- ~-~ 

Proof  

]Cn(W)] = Z  ]oafn(co's)lds >-Q~ Z ]Dfsn-l(cl ( s ) ) lds '  

Offf-l(c1) n--m m--1 =Df~ (cm)Df~ (cl),  

ICm(W)' = Z [o~176 < Q~ Z Iof~m-l(Cl)lds" 

[] 
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L e m m a  IV.3 Let (c~, A) be such that a < A*/T. There exist constants N4.3 >_ 1, 
D4.3 _> 1 and a neighborhood V4.3 of a* such that, ifw c_ V4.3, n _> N4.3, 1 < p < 
nA/20A* and x E I satisfy, 

(i) Va E w V0 < k < n Idk(a)l ___ K* exp(kA/10), 

(ii) V a E w V l  <_k<p Ifff(x)l _> � 8 9  
then,for all s, t E w, IOfff(x)[ < On.31OftP(x)l. 

P r o o f  Using the non-flatness condition, we compute the distortion as usual: 

DfsP(x) Dfs(X) P~ Df~(f~(x)) 
= Oft(f?(x)) 

< A~ e x p ~  {c*lfsk(X)-ftk(x)l + I[ 02fill I s - t l  
-- A--~- k=, I ftk(x)l ~ [-~tk (~17--q ~" 

Moreover, using the previous Lemma IV. 1 and the hypothesis (i) on w, we get 

IlOJII IlOd'll k ls-  tl lYe(x) - f f ( x ) l  _< IIO~-~- 1 

1 _> ICn(~)l = IoJn(co,s)l ds > Q1 Id.-l(S)l ds > Q1 I lexp{( n -  1)A/IO}. 

The total distortion is therefore bounded by 

Df  ff (x) A~ exp { C' P-  1 
OfF(x) < - -  E e x p {  k(Ta + A*) - - A~ k=0 

n < Aj-2 exp 
- a~ e x p ( 2 A * ) -  1 ' 

w h e r e C '  {(1 e-~)f*llOofll/(llO~f[I 1 ) +  2 ~ **~- �9 �9 : - - II01~flle ~Ale }/Q1K i s a u n i f o r m  
constant. By hypothesis on a and p, the expression on the right hand side is 
bounded uniformly in n by a constant depending only on a. [] 

IV.B. P r o o f  o f  T h e o r e m  11.7 

Step 1. Definition of the bound period 
To simplify the notations, we assume that r > 0, that is c.(w) c_ (0, 1]. We 

denote by (a, b) = w ( or (b, a) = w) the endpoints o fw such that 0 < c.(b) < c.(a). 
We define the bound period p = p(n, r, ~o), in a unique way, by the following 

inequalities: 

VO < k < p - 1 Ick(a) - Cn+~(a)[ < e* exp(-2kcQ, 

ICp(a) - C,+p(a)l _> e* e x p ( - 2 p a ) .  
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In particular, f~(0, Cn(a)) never intersects co whenever k < n. 

Step 2. Distortion o f  fa k on (Cl, On+l) 
We show the existence of a constant D'(a) such that 

Dfa~(fa(X)) < D'(a)  
Dfak(fa(y)) - 

for every x,y E (co, cn(a)), 0 < k < p  - 1. Letus  call xk =f~(x);  then 

k 
Xi - -  Y i  Ofak(Xl) <exp{C*~--~ - - 7 - /  }.  

Dfak(Yl ) -- i=l 

Sincefa k is strictly monotone on (co, Cn(a)), 

]xi - Yi] < Ici(a) - cn+i(a)] < ~* exp(-2ia) .  

We get, by definition of p, 

lyil > e*(1 - e x p ( - i a ) ) e x p ( - i a )  > e*(1 - e - ~ ) e x p ( - i a )  

and the first constant of distortion: D'(a)  = exp{C*/(1 - exp(-a))2}.  

Step 3. Bound f rom above o f  p 
Using the fact thatfa p- 1 behaves almost linearly on (Cl, Cn+l), we get 

1 > Ifff(c,) -fP(c0)[ = [Dfg(x)l dx > D--7-~IDfPa-I(Cl)[ X r-1 dx,  

A~K* 
1 >_ TO, (a)[Cn[ 'exp{(p-  1)A} 

(provided thatp  < n/10). Since Cn(OJ ) belongs to some l(r),  [Cn(a)[ >_ 1 exp(- r )  
and exp(pA) < 4"e~rD' (a)er ' /A~K *. We get rid of the constant by choosing A2.7 
sufficiently big so that T4~eXD'(a)/A~K * is smaller than exp(rA2.7). We still have 
to prove that p satisfies the induction hypothesis p < n/10. By the above inequality 
p < (2r/A)r  and, by hypothesis, r -na < [c.(a)l ___ 2e -r. If we choose A2.7 big 

enough, 2/e* _< exp(1A2.7), we get r < 2ha and p <_ (4Ta/A)n <_ n/ lO,  by the 

choice of a < ,k/4Or. 

Step 4. Bound f rom below o f  p 
We use the same inequalities but in reverse order. By definition o f p  

IfP(Cn) --faP(0)l _> e* exp( -2pa ) .  
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On the other hand, we bound uniformly Dfa(x) by II0~fll and we get 

f0 Cn * IDfg(x) ldx <_ A~,c,l 1" exp(pA*). 
7- 

Once more, we use the fact that cn(a) belongs to l(r): Ic,(a)l _< 2r -r,  and in order 

to get rid of the constant, we choose A2.7 such that A~2"/e*r <_ exp(Az.7(r - 1)). 
Finally, combining these three inequalities, we obtain r _< p(A* + 2a) _< 3pA*. 

Step 5. Exclusion rule during the bound period 
We want to show that, for all s C w and 1 < k < p, 

Ic.+k(s)l ___ e x p { - a ( n  + k)}. 

Asfa k is monotone on (0, c,), [f~(Cn(S)) I >_ ~*(1 - e-~)e-k% for every s E w. Using 

Lemmas IV.1 and IV.2, we obtain 

II0ofll exp(kA*) Is - al [fk(cn(S)) -- fka(Cn(S))[ <-- II0- - 1 

l ( n )  
Is - a[ <_ QT K,  exp - ~ , ~  . 

We choose V2.7 sufficiently small such that ( 1 - e-~)e  -t~ > 2e -(k+n)~, and rl0ofll ___ 

Q~K*(IIOJII - 1)e*e n~, for all n _> N2.2(6, V2.7). After simplification, we have 

n 
If[(c~(s)) -f2(cn(a))[ < e* exp (kA* - i-6~ + na )  <_ e* exp{- (n  + k)a} , 

because of  the bound from above of  p: p <_ (4a~-/A)n, and the hypothesis on a: 
a < A2/100~-A *. 

Step 6. Uniform distortion off~P(x) for  all s E w, x C c~(~) 
We claim there exists a constant D" (a) depending only on a such that 

Dfsk(X) ,, 
Dftk(y ) < D (a) ,  

for a l l 0  < k < p, (s,t) ~ ~ and (x,y) E cn(~). Using step 1 and the fact 
I(r) C_ (�88 we see that 

Df2(x) 8~A * 
Dfak(y) < A-----!2D'(c~). 



142 PH.  T H I E U L L E N ,  C. T R E S S E R  A N D  L. S. Y O U N G  

It is therefore enough to compute IDfsk(x)/Dftk(x)l for all (s, t) E w, x E c.(w) and, 
by Lemma IV.3, to check that [f~(x)[ _> �89 - e-~)e*e -k'~ for all s E ~o, x C c.(w) 
and 1 < k < p - 1. Using the techniques in step 5. we have 

n 
[fsk(X)--fak(X)[ < IlO~ exp (kA* - ~-~A) 

- Q*~K*(IIO~fll- 1t 

I~(x)l > ~*(1 - e -~)e  -ko . 

Using the assumption a < Az/IOOT-A * and the bound from below k <_ (4a~'/A)n, 
we have 

n / n \ 
exp(kA* - ~-6A) <_ exp ~ - ka - ~-6A) 

and the claim is proven if we choose A2.7 sufficiently large so that [[Off[[/Q~K* I[0xf[[ 
is smaller than �89 - e - s )  exp(nA/50). 

Step 7. Growth after the bound period 
We show 

VS E ~0 IDfsP(cn(S))[ > exp~p A - -  
27-a 

k 7- ) 

By the chain rule, the non-flatness condition and the distortion inequalities obtained 
in steps 2 and 6, we have 

1 
[Dff(c,(s))[ > ~,--zT--x[DfP(c~(a))l >_ 

u - t a  ) 

A; 
D'(a)D"(a) Ic"(a)l -I Idp-l(a)l . 

On the other hand, by definition o f p  

[c,,(a) A~D'(a) 
r e x p ( - 2 p a )  < IDf~(x)] dr <_ I c , ( a ) r  Idp-1 (a)l. 

dO 7- 

Combining these two inequalities, we eliminate [cn (a)[: 

iDfg(cn(a))l > A~ [ e*r ](~-t)/~ 1/~- - D'(a)D"(a)LA~D'(a)J I~, ,(o~ exp ( -  27--7- l a P )  . 

We finally eliminate the constant by choosing A2.7 such that 

( 2 a r ]  A~ [ e*T ] ~  
exp \ ~ - ~ } D ' ( a ) D " ( a )  1 ~ 1  _> 1. 

Step 8. Growth during the bound period 
The techniques are the same as in the previous step: 

]Df~(Cn(S))[ >_ D,l-~,a lDf~(cn(a))[ > A~ ~_~ ( ) _ D,(a-~,,(a)]Cn(a)[ ]dk-l(a)[,  
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A~(e*) ~--1 
IOff(c.(s))l D'(a)D"(a) e x p { - n ( T -  1)a + kA} _> exp (kA-  naT). 

We choose Vz.7 so that (a;(e*)~-l/D'(a)D"(a)) exp{U2.2,(6, Vz.v)a} _> 1. 

Step 9. Distortion Of Cn on w 
We claim the existence of a constant D'" (a)  depending only on a such that 

1 c"+k(a)--ck(a)l < ICn+k(J)l _< O'"(a)  c,+k(a)-ck(a) 
D'"(a)[ c.(a) '-]Cn(~dt)l -~n(S) I 

for all ~o' C_ w and 0 < k < p. We apply Lemma IV.2 to obtain 

ICn+k(w')l < Q---~-~ sup IDfsk(Cn(S))[, 
ICn(W')l - Q; s~, 

provided that n/lO > N2.10(,~) and w c V2.10(A). We can prove similarly 

IC.+ (J)I 
ICn( ')l 

>- - ~  ~nf l ofk(cn(S) )l " 

Using the distortion inequalities of  steps 2 and 6, 

1 k D,~(a) IDf~ (Cn(a))l <_ IOf~(Cn(S))l <_ D'(a)lOfka(Cn(a))l, 

Ic.+k(a) - ck(a)l = [~.(a) 
dO 

IDf (x)l dx 

and 

A* A_~,~ , IDf~(c.(a))l < 
2TLI ~a) 

Ic.+k(a) - c.(a)l < A~D'(a)[tqCk(Cn(a))[ " ~ J a  
Ic.(a)l - A~'r 

The claim is proven if we choose D'" (a) . . . .  ' " = T(Qz/Q1)(Az/A1)D (a)D (a). 
As a corollary of that distortion estimate (recalling I Cn (a) l _> ]c, (t)]), we get 

Cn+k(S) -- Cn+k(t) O"'(a)  Cn(S)- - Cn(t)" Cn+k(a)=ck(a) 
Cn+k(t) <-- Cn(t) Cn+k(t) " 

The second part of  the proof of  step 6 gives Ic,+k(t)l _> %*(1 - e -~)e  -~k, which 
can be combined with the previous inequality: 

p-lz c,+k(s)_~,~(~)- cn+k(t) l _  < 2D'" (a)]___e ----ff P s  e x p ( - k a )  Cn(S)c~t)- Cn(t) [. 
k=0 k=0 
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This gives the definition 0 f02 .7 :02 .7  = 2D'" (a ) / (1  - e-C~) 2. 

Step 10. Exponential growth Of Cn(W) after the bound period 
We use the other inequality in the previous distortion estimate 

Ic,+p(J)]  > 1 ICn+p(a)- Cn(a)l > ~* 
ICn(LO')l - D'"(~) [Cn(a)] - 4rD"'(~)  

(We recall: Icn(a)l < 2e -r < 4rll(r)l. ) We thus obtain 

exp(-2pc~) 
II(r)l 

[Cn+p(J)[ > exp(--3pa) 

ICn(J) [ -- II(r)l 

if we choose A2. 7 sufficiently large so that for all r _> A2. 7 

E'* ~* 

4D'"(~)  exp(p~) _> 4D'"(c~) exp(ra/3A*)_> r .  

Step 11. Controlled return of the orbit of w. 
We show that, whenever Cn+k(03) intersects [_~t~2.7 , 1  lt~2.7], t~2.7 = exp(-A2.7),  

Cn+k(w) is contained in an interval I(rk) for some [rk[> A2.7. 
Let s be a parameter in w forwhich  [Cn+k(S)[ < 162.7; there exists thenr  = #i E M ,  

r > A2. 7 such that 

exp( -# i+ l )  < [Cn+k(S)[ <_ exp(--#i) .  

Using the distortion inequality 9 and the second part of  step 6, we get 

]cn+k(w)] ~ O'"(~)]Cn+k(a) - ck(a)l ~< ~'0'"(~) e x p ( - 2 k a ) ,  

1 
e--r Icn+k(s)l ~ 2e*(1 - e -~ )e -k~ .  

Combining these two inequalities, we eliminate e -k~, 

On the other hand, 

ICn+k(~O)l < e*D'"(c~)[e*(1 2 ]2e_2r 
- e - , ~ )  j �9 

II(#i)l > exp(-/zi)  - exp(-/Zi+l) > ~r exp ( - r ) .  

The claim is proven if we choose A2.7 such that 

4D'"(a)  l e t  
e*(1 - e -a )  2 <- r (Vr ~ A2.7). 

[] 
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IV.C. Ex i s tence  o f  absolute ly  cont inuous  invariant me a s ur e s  

Let {fa}ae,A be a regular family and a* E At such thatfa,  has no stable periodic 

point, satisfies the Misiurewicz condition (M) and the technical Collet-Eckmann 

condition (CE0). We show that both the non-existence of  a stable periodic point and 

the backward Collet-Eckmann condition (CE2) are preserved for all parameters 

in a neighborhood of  a* which satisfy the exclusion rule (ER) and the forward 

Collet-Eckman condition (CE1). 

P r o o f  o f  C o r o l l a r y  11.8 We begin to prove an estimate about the growth of  

[DfP(x)l  for any point close to 0. The proof is very similar to that of Theorem 11.7 

and the details will be skipped. We first define a bound period p = p ( x )  by 

[ f~ (x )  - ck(a)l < e*exp(-2ko  0 (VO _< k < p ) ,  

Ifff(x) - cp(a)l > e* exp( -2po  0 . 

Then the growth after the bound period p is given by 

k -- 2(7- -- 1)a 
IDfg (x)l >_ K2.8 expp 

7- 

for some constant K2.8 = (A~ /D ' (a ) ) ( e*7- /A~Dt (ce ) )  ( r -1 ) / r  and the bound period is 

related to x by e* < Ixl exp(2pA*). We choose 62.8 > 0 suchtha t  for all Ixl < 628, 

K2.sK2.3 e x p p ( 2 a / 7 - )  > 1. 

(i) Either tfa~ (x) [ > 62.8 for all n sufficiently large and we are finished by Theorem 

I1.3, or l f2(x)l  < 628 for infinitely many n. We define by induction a sequence 

q o , P l , q l , . . ,  by 
qo = inf{n > 0 :fff(x) E (-62.8, 62.8)}, 

P l  = P( f2  ~ (x)), 
ql = inf{n _> 0 :fan~aO+m(X)) E (--62.8, 62.8)}, 

P2 = P(  fffa ~ +q' (X) ) . . . 

Using Theorem II.3 and the assumption on 62.8, we have, for all a E V2.8 = V2.3 (62.8) 

and  n = qo + Pl  + qr  + "'" -t- pr  "[- qr, 

Io:n(x)I >__ K23 exp (n - 
7" / 

(ii) I f  f n ( x )  = 0 and  f k ( ; )  7~ 0 for all 0 < k < n, then n has the following 

decomposition: n = q0 + P l  + ql + " "  + P r  + qr since, during a bound period; the 
orbit of  x is disjoint from 0. [] 
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V. Di s tor t ion  o f  the  tip 

The purpose of  this section is to compute  the distortion o f  the map [a ~ Cn(a)] 
on an interval o f  parameters ~o which returns to a neighborhood of  0 in a controlled 

manner. We assume essentially that w is (n, A)-adapted for some large A depending 

on (a,  A) and that {cn(a)}n>l satisfies the exclusion rule and the forward Col le t -  

Eckman condition. The main dificulty is to bound from above the sum 

n ~,  Ick(~)l 
k=l d ( c o ' C k ( ~ ) )  ' 

where [c~(w)[ denotes the Lebesgue measure of  ck(~v) and d(co, ck(w)) the smallest 

distance between a point of  ck(w) and the critical point. The choice of  the partition 

{l(#n)}n>_l is not arbitrary; we need endpoints of  exponential type in order to get 

a bound re tum p(x) of  magnitude r for  all x E l(r) and, in order to bound the 

distortion, we need also the following estimate: 

l i m  [ l (#n) l  - O. 
d ( c o  , I ( # . ) )  

P r o o f  o f  T h e o r e m  I I .11  Let  ~o be an interval of  parameters satisfying the 

hypotheses (i) and (ii) of  Theorem II. 1 1. The proof  is divided into two steps. 

Step 1. We show there exist two constants 0 < /3 < 1, D _> 1, an increasing 

sequence of  times to = 1 < tl < -..  < ts+l = n and a sequence of  returns 

(r l , .  �9 �9 rs) E .M s, rk _> 2, such that, for  all k = 1 , . . . ,  s, 

(a) c,~(w) a_ l(4-rk), 

tct~(w)l (except maybe for k = s), (b) Ictk+~ (w)[ > exp(-/3rk) 

[Ci(0;)l <~O{ let' (0d)l At- [Ctk+l(&)[ ) 
(C) Z d(co,ci(w)) d(co,ctk(w)) d(co,ctk+l(W))'  

tk<_i<tk+l 

Ofta'-l(cl(a)) < O.  
(d) V(a ,b)  E w Df[l_l(Cl(b) ) _ 
We first choose A2.11 _> A2.7 and V2.11 C_ V2.7 such that, for  all 1 _< k < N2.10, 

1 1 ck(w) 71 [-~6,  ~6] = 0 . We then define by induction, an increasing sequence of  

times: to = 1, tl is the first k > to such that ck(w) n [-16, �89 ~ 0. By assumption, 

ct~(w) c_ l ( + r l )  for  some rl E .M. By the choice of  V2.11 w e  Can use the Bound 

Return Theorem II.7: we call pl  the bound period associated to (rl,  tl, w). Either 

tl + P l  > n and we stop the construction, or tl -bpl _< n and we wait for the first 
1 1 time k > tl + P l  such that Ck(W) A [--~6, ~6] r r We call ql this escape period and 

t2 = tl q-pl q-ql .  By assumption, ct2(w) C_ l (+rE) and so on. We thus define an 

increasing sequence: to = 1 < tl < " -  < ts < ts+l  = n.  
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For each 1 < k < s, tk+l -- tk = Pk + qk, C t k ( 0 3 )  ~ I(+rk) and ts+ 1 - -  ts may be 
smaller than Ps. We first notice that (e) and (f) of  the Bound Return Theorem imply 

tk +Pk-- 1 
Ict~(~)l Ictk+m(w)l exp ( -3arrk )  

Z Ici(w)[ < 02.7 and > 
i=,k d ( c o , c i ( w ) ) -  d(co, ctk(w)) Ict~(~)l - II(rk)l 

From Theorem II.3 we know that there exist two constants K2.3 and )~2.3 independent 

of  6 such that, for all a E w and 0 < i _< qk, 

IDfqak-i(ctk+m+i(a) )l > K2.3 e(qk-i)~2-3 

provided that 6 < 62.3. By Corollary IV.2 we obtain 

> a~g2.3e(qk_i )~2 .3  " 
Ictk+m+i(,:)] - Q* 2 

Moreover, Ctk+pk+i(O3 ) is disjoint from [-16, �89 for all 0 < i < qk, 

tk+l - 1 

Z 
i=tk+pk 

Ici(w)l < 2Q~ qk Z e-i,xz.3 Ictk+l(w)[ 
d(co, ci(w)) - Q~K2.3 i=1 6 

< 4Q~ ]Ctk+l (03)1 

-- Q~K2.3(expA2.3 - 1) II(rk+l)l 

(we have used the assumption Ctk+l(W) C__ / ( i r k + l )  for some rk+l > A and the 

estimate 6 = exp ( -A)  > exp( - r t+ l )  > lll(r~+l)l). 

The proof of  the last period ts+l - ts is almost identical, except in the case n > 

ts+ps, where we use the assumption cn (r c_ [-26, 26] to be able to apply once more 

property (ii) of  Theorem 11.3 and the estimate Ic.(~)1/6 ___ 2. To prove condition (b) 

we use the estimate from above: Ictk+,(~)l/Ict~+p~("~)l >- Q~K2.3/Q~. We choose 

A2.11 sufficiently large so that Q~K2.3/Q~ > exp(-aTA2.11) and condition (b) 

follows with/3 < 4 a t .  
Condition (d) says that the distortion ofcq on w is uniformly bounded. We recall 

that the constant N2.10 depends only on A. Before the period N = N2.10 we have an 

a priori upper bound 

dN-l(a) 1 
dN_l(b)l < ~--Z e x p ( N -  1)(A* - A ) .  

The total distortion is thus bounded by 

dtl- l(a)  1 e x p { N ( A , _ A ) + C  , t l - '  ck(a)_--ck(b) -~ ][02JH [ a - b [  "[, 
dt,-l(b) <- g-; Z ck(b) A~(e*) ~-1 e x p ( - k r a )  J '  k=N 
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t1-1 I 4Q~ Z ck(a)-ck(b) < 
k=N ck(b) -- Q~K2.3(expA2.3 - 1) '  

tl-1 [ a -  b I expA 

Z ex~---k~a) < K*Q~{exp(r~)- 1}" 
k=N 

Step 2. We finish the proof of Theorem II.11. As soon as n _> N2.10 , we can 

compare the two derivatives Ox and Oa: 

dcn dcn Q * 
-~a (al/-d~a (b) < ~]d,-l(al/d,_l(bll.  

Using the nonflatness condition and property (d) of step 1, we obtain 

n--1 ~ tl0~,dCll ta _ bl 
dn-l(a)d,_l(b) < D e x p { C .  Z ck(a)_--ck(b)] + 2.., 1 - ck(b) ~ f f ) l  7---i J 

k=h k= 1 

We first show that the second sum is uniformly bounded. By assumption, 

Ick(t)l _> e* exp( -ka )  for all 1 _< k < n. On the other hand, because of the 
exponential growth, the length of w is small as the following inequalities show: 

1 > Ic,(w)l-- ~ IOoff(O,a)lda > f~ Q~ldn_,(a)lda >_ Q~K*e('-l)~lw ] . 

If we combine these two inequalities we get 

1102a[ll ~ la - bl ~ < exp ,f H0~flle ;~ exp n(ra - A).Q}, exp 
t ~ k=l [c-~b)l-r'--1 ) taTarK*er exp(ra)  1 

which is uniformly bounded provided that a < )~/r. We now show that the first 
sum is bounded. 

To simplify the notation, we call a~ = Ictk(w)l. We recall also the following 
estimate: 1 < exp(#i+l--~i) ~ 2. Using 4-ctk(w) C_ l(rk) _C [1 exp(-r~),2exp(-rk)]  

and estimate (c) of step l, we get 

n-1 ~ tk+l--1 ck(a)_-- c_~(b) ~ Ici(w)[ 
Z ck(b) = d(co,ci(w)) k=q k=l i=tk 

s 

< 8D Z ak exp(rk), 
k=l 

with the following a priori estimate: ak exp(rk) < 7/rk. We now show that the last 
sum is uniformly bounded from above and divide the proof into three parts. 
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P a r t  1. We claim t h a t  E r c A 4  e - ~ r  is finite. Indeed, if n is an integer and 

(#1 , . . . ,  #t+l ) denotes the elements of At by increasing order between n - 1 and n, 

by definition of  the sequence we have 

e-Uk _ e - m + ,  >_ l e - n  , 
n 

t 
e - ( n - l )  >__ e - u l  _ e -U ,+ ,  _> - e  -n , 

n 

which shows that card{# C .M : n - 1 _< # < n} _< ne  and prove the claim. 

P a r t  2. We show it is enough to assume that ( r0 , . . . ,  rs) are pairewise distinct. 

We notice first that the estimate (b) of  step 1 implies that ( a0 , . . . ,  as) is exponentialy 

increasing, 
2 

crk < 2e-( l -~)rkcrk+l  <_ --~rk+l , 
e 

in particular for each r E {r0 , . . . ,  rs},  if k ( r )  denotes the largest index k such that 

rk = r, 
oo 

ffkerk < Z ( 2 ) i  
__ O'k(r) e r . 

k : r k=r  i=0 

We may arrange by increasing order the set {k ( r i )  : i = 0 , . . . ,  s }  = {ko, . . . , ku} and  

denote ri = rk, and cr i : Ok. We verify that (?i, 6i) satisfies the assumption (b): 

~ 6i 
0"i+1 ~ exp(-/3ri)II~/)1 

(we use the fact that If(r)[ _ exp(-/3r) for all r _> 2 and/3 sufficiently small). 

P a r t  3. We assume now that ( r0 , . . . ,  rs) are pairwise disjoint and divide the sum 

~ k  ~rk exp(rk) into two sums. Either, for some indexes k, ak exp(rk) < 4 exp(-/3rk) 

and the total sum is bounded by 4 ~ r e a  a exp(-/3r). Or, for some indexes k, 

~rkexp(rk) > 4exp(--/3rk). If  k < l are such indexes, using property (b) we have 

2 exp(-r t )  > at >_ l a k  exp(1 -/3)rk >_ 2 exp(--2~3rk), in particular rt < 2/3rk and the 

total sum over these indexes is bounded by ~ k  rk < (49/2) y]i>0(2/3) i. [] 

VI.  A M a r k o v - l i k e  d y n a m i c s  

V I . A .  B e g i n n i n g  t h e  i n d u c t i o n  

We denote by f~ an interval containing a*, and by [-6, 6] a neighborhood of  the 

critical point we shall define later. We recall that N = Nzz(& f~) denotes the first 

time N such that cN(f~) meets [-16, 16]. We prove in the next lemma the first step 

of  the induction, (ER-0), (CE1-0) and that CN(W) is equal to a disjoint union of  

states l(r),  Irl _> A and possibly prestates J (+A) .  
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L e m m a  VI .1  Let a > 0 and A E (0,/~2.3). For every 6 ~ (0, 62.3) there exists a 

neighborhood V6.1 (6) of  a* such that: 
(i) for every, f~ containing a* and N = N2.2(6, ft), CN(f~) contains one of  the 

states I ( + A ), 
(ii) for all a E V6.1 (6) and n >_ 1 such that {ck(a)}~= l is disjoint from [-�89 �89 

Id,(a)l > K* exp(nA) and Ic,(a)l >_ e* e x p ( - n a ) .  

P r o o f  We recall that a* satisfies the Misiurewicz condition and thatfa, satisfies 

Theorem II.l:  for all n > 1, [dn(a*)[ _> K*exp(nA*) and [c,(a*)[ > e*. If  we 
choose 26 < e*, since CN(ft) contains cN(a*), CN(f~) contains either [�89 or 
[-26, -16]  and consequently one of  the s t a tes / (+A) .  We then choose N such that 

K2.3(6) expN(A2.3 - A) > K*, 2e* e x p ( - N a )  < 6 and V6.1 small enough such that 

for all a E V6.1 and 1 < k _< N, [dk(a)[ _> K* exp(kA) and Ick(a)[ > e* exp ( -ka ) .  
The second assertion follows from Theorem II.3: if n > ,N and {ck(a)}~v+l is 

disjoint from [-�89 �89 then 

[d,,(a)[ _> K2.3(6) exp(nA2.3) > K* exp(n,~), 

1 E* [c,(a)[ _> ~6 > e x p ( - N a )  _> e* e x p ( - n a ) .  

[] 

VI.B. Bound and free periods 

As we have seen in the previous section (VI.A), cu(f~) may contain a prestate 
J ( + A ) .  Let w = ft fq c~l(J(dzA)) be the subinterval of  12 which is mapped by cN 

to one of  the prestates J ( + A ) .  We denote by q the first time such that CN+q(W) 
meets [-16,  �89 q is called the free period associated to (N, +A,  w). We show that 

Cs+q(W) contains again a s t a t e / (+A) .  If  Cm+q(W) contains a prestate, we continue 
this process. More generally we have the following lemma: 

L e m m a  VI .2 .  Let A E (0, A2.3). There exist 66. 2 E (0, 1) and, for every 
6 E (0,66.2), a neighborhood V6.2 _C V6.1 of  a* such that, i fw c_ V6.2 is an interval 

which satisfies for  some integer n >_ 1, 
(i) cn(w) =J(dzA), 
(ii) [dk(a)[ _> K* exp(kA)for all a E w andO < k < n, 

then Cn+q(W) contains either [ - 2 6 , -  �89 or [�89 26] (where q is the smallest integer 

such that Cn+q(";) n [-�89 �89 # 0). 

Proof  Since f,,. verifies properties (i) and (ii) of  Lemma III. 1, for every 6 < 63.1 

one can find a neighborhood V6.2 of  a* such that for all a E V6.2, 1 < k < 
1 * 1 �9 Either q < p(6), for 6 < ge , C,+q(~) contains (-r/2A*)A = p(6), [/ak(4-6)[ > ~e . 



POSITIVE LYAPUNOV EXPONENT 151 

an interval of  length �88189 > 2 6 - 1 6 .  Or q > p(6), then for all a E V6.2 C_ V2.3(6) 

a n d n  < k < n-t-q 

Idk_l(a)l _> K*K2.3(6)exp{(n-1)~  + ( k -  n)A2.3) > K* exp { ( k - 1 ) ~ ) ,  

provided we choose g6. 2 small enough such that K2.3(6) exp{Nz.2(V6.2)A/2} >_ 1. 
If, moreover, we choose V6.2 c_ V2.10(A/2) such that Nz.2(V6.2) ~ N2.10(,~/2), 
Corollary IV.2 applied to any ~' c_ uJ verifying Cn+q(W') C_ [-62.3, 62.3] gives 

[Cn+q(~)t)l > g2 .  3 exp(qA2.3)  �9 
ICn(W')l - 2 

1 6 Either Cn+q(&) ~ [--62.3, 62.3] and, for 6 < ~ 2.3, Cn+q(~) contains an interval of  
length 62.3 - �89 > 2 6 -  �89 or Cn+q(W ) c_ [-62.3, 62.3] and ]Cn+q( W ) l > 36 provided 6 is 
chosen such that (Q~/Q~)K2.3 exp('rAA2.3/2A*) > 6A (remember Ic.(~)l _> U2/x). 
[] 

We now combine these two lemmas to prove the first step of  the induction. 

L e m r n a  VI .3  ( F i r s t  s t ep  o f  t h e  i n d u c t i o n )  Let A E (0, A2.3), c~ E (0, a2.3(A)) 
and ~ = �89 + A2.3) + 10c~-. There exist 66.3 E (0, 1) and, for  any 6 E (0,66.3), a 
neighborhood V6.3(6) of  a* such that any f~o c V6.3 contains a subset f~l equal to a 
disjoint union o f  intervals o f  the form w = w(~), where t >>_ 2Ne.z(f~o) and Irl _ zX, 
which satisfy the following properties: 

(vl <_k<t), 
- c , ( w )  = l ( r ) ,  

- Idk(a)l > K* exp(k~) (V0 < k < t, Va E w), 
- Ick(a)l _> e* e x p ( - k a )  (V 1 < k < t, Va E w), 

-If~0 \ f~ll/lf~01 _< exp{-IUz.z(f~0)t~}. 

P r o o f  We begin to construct a partition of  f/0 into intervals of  the form o3(0 

satisfying the properties: 
- t is an integer and t _> N2.z(f~), 
- ck(~(t)) n [-�89 �89 = 0 (V 1 <_ k < t), 
- Idk(a)] _> K* exp(k~) (Va E ~b(t), V0 _< k < t), 
- ct(ff;(t)) contains one of  the s t a t e s / (+A)  and is equal to a disjoint union of  

states l(r), Irl _> A. 
The construction is done by induction. By Lemma VI. 1, CN(f~o) (N --- N2.2(6, ~20)) 

contain / (+A) ;  let ~(N) be the part of  f/0 which is mapped by CN onto 
cN(f~0) n (UI,.I>A I(r)). cu(gto) may also contain a prestate J ( + A ) ;  let g;(+ 1) be the 
part which is mapped onto J (+A) .  We wait until Cu+q(g~(• meets [-�89 �89 and 
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repeat the process at time N + q: &(+I)(N + q) is the part which is mapped onto 

CN+q(ff;( d:l ) ) n (Uid>_A l(r) ), and so on. 
Lemma VI. 1 tells us that the exclusion rule is also satisfied during the period 

[1, t] on &(t). The interval o3(t) is therefore (t, A)-adapted and the distortion of  

ct is uniformly bounded by a constant D2.11 independent of  t. On each &(t), we 

eliminate the intervals w(t) which are mapped by ct into l(r) for Irl > st:  

I~('r)l _< D2.,, [l(r)~_l 
I~(t)l I I (A)I  

(ct(&(t)) contains one of the states I (+A)  and then Ict(~(t))l > II(A)I.) The total 

proportion we eliminate is therefore bounded by 

I~('r)ll~(t)_____/ -- < ~4D2"11 exp(-t~). 
[rl>tc~ 

We choose once more  V6.3 sufficiently small so that 

1 
4D2.11 _< IX(,~)l exp{~Nz2(V6.3)c~}. 

Final ly,  ~1 is the remaining part of  fro: 

la0 \ f~l 9h-U U u.,(;) and I~01 t [rl<_at 

- -  < exp { - lo-Ne.2(f~0) }. 

[] 

VI.C.  Essent ia l  b o u n d  re turns  

Let w C_ Do be an interval of  parameters such that, for some n _> N2.2(f~o) and 

some state l(r) ,  Ir[ _> A, Cn(W) = I(r). We know from Lemma II.7 that we recover 

the exponent (A - 2ar ) / r  after a short period P0, compared to the period n. At 

time n + P0, Cn+po (w) may be disjoint from [-�89 �89 we denote by q0 the first time 

such that Cn+po+q 0 (03) meets [-  �89 1 ~6]. At that time nl = n +P0 + q0, it may happen 
that Cn~ (w) no longer contains a state I(r), Irl >/x;  q0 is then called a partially free 

period, Cnt (w) is included in some I (q ) ,  Irl[ _>/x and we repeat the process. We 

denote by Pl the bound period associated to (nl, rl,  w) which may be followed by a 

partially free period ql. Let n2 = nl + P l  + ql and so on. We stop the process until 

Cn~+~ (w) contains a state I(r) with Ir I _>/x; p = n, - no + p ,  is called the essential 

bound return associated to (n, r, o J). More precisely we have 

L e m m a  VI .4  Let A E (0,/~2.3), Ol E (0, Ol2.3()Q). There exist 66. 4 E (0, 1) 

and, for  any 6 E (0, 66.4), a neighborhood V6.4(6) of  a* such that, for  any interval 
w c_ V6.4, any integer n >_ 1 satisfying for  all a E w: 
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(i) c , (w)  = I (r )  f o r  some n~ >_ Irl _> Ax, 

(ii) V1 < k < n Ic~(a)l >_ e* exp(-kc~) and  Idk-l(a)j _> K*exp{(k - 1)~/4}, 

(iii) V 1 < k < n / 4  Idk(a)l > K* exp(kk), 

one can f ind  integers p = P6.4 and  q = q6.4 having the f o l l ow ing  properties: 

(a) (1/3A*)lr [ < p < (27-/)~)1r I, 

(b) Va  E ~o V 1 < k < p IOf~(cn(a))l > exp{-2nT-~ + k()~ - 37-c~)/'r}, 

(c) Va  E w IDfP(c,(a))[ >_ expp(;~ - 37-c~)/7-, 

(d) Va E ~o V1 < k < p  Ic,+k(a)l _> 2exp( - I r l )  > e * e x p ( - ( n + k ) a ) ,  

(e) w is (n§ A ) - a d a p t e d  (except that c,,+p( w ) may  not  be inc luded into [-26, 2 O ,  

(f) V0 <_ k < q Cn+p+k(W) fq [--16, �89 = (~ and  Cn+p+q(~) ('] [--16, �89 ~ ~, 

(g) Cn+p+q(ta3 ) contains  a state l ( r )  f o r  some  [rl >_ ~x, 

(h) i f  cn+p+q(W) C_ [-26,26] then ICn+p+q(W)l >_ exp{-4c~p}. 

P r o o f  We construct by induction a sequence of  inessential retum times: n = 

no < n~ < . . .  < n~+l, ni+l - ni = Pi + qi, where pi is the bound period associated 
to (ni, ri, w) and qi is the partially free period which follows pi. For each 0 < i < u, 

Cni(W) C I(ri); in particular, w is (nu+l, A)-adapted (except that c,u+ ~ (~) may not 
be included into [-26, 26]). Let p = nu + Pu - no be the essential bound return 
associated to (n, r, w) and q = qu the free period. The main problem is to prove 

that the hypotheses of  Lemma 11.7 are satisfied at each stage of  the construction. 

We assume that we can apply (i). . .  (iii) of  Lemma 11.7 for (ni ,r i ,w)  and that we 
have already proven the following properties: 

IDfn~+~-nk(c~k(a))l > exp {(nk+l - nk) ~ - 3~7- } 
7- 

for all 0 < k < i ,  A < Iril <_ Ir01 and ni - n o  < (27-/ )lr01. 
Step one. We compute the exponent during each period [ng, ni+l] with i < u (the 

proof  for the period [nu, nu +Pu] is similar): 

)~ - 3 ~ r  
~ - - 2 a r }  _ {(ni+l n i )  7- J IDfff'+'-'(Cn,(a))l >_ K2.3 exp {qi/~2.3 +Pi  7- , > exp - 

(we have chosen A6. 4 large enough so that K2.3 exp{2aA6.4/3A*} > 1). We point 
out that we used property (ii) of  Theorem 11.3 since c~i+ ~ (w) C [-26, 26]. 
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Step two. We compute the exponent at time ni q- k with 0 < k < Pi: 

A 3aT- 
]d~+~(a)[ _> K* exp no~ + (ni - n0) A -7- - -  + kA - niO~T} 

> _ _ K * e x p { n o ~ + k l ~ - 2 n o a r } > e x p { ( n i + k ) ~ - - ~ } .  

We have used the estimates ni < 2n0 and n0(�88 - 2a7-) > �89 > ~niA. 
Step three. We compute the exponent at time n~ +Pi + k with 0 _< k < qi: 

A [d.+p,+k(a)[ > K2.3(6)K* exp no~ + (ni q-Pi - n o ) - -  
7- 

q- kA2.3 } 

> K2.3(6)K*exp{no 4 + k ~ 0 }  > K*exp{ (n i  +pi+k)~---~}. 

We have used the estimate ni if-Pi <_ no q- (47-/A)Irol <_ 2no and chosen V6.4 
sufficiently small so that K2.3 (5) exp{2oN2.2(V6.4)7-} > 1. 

Step four. We show that ni+l - n o  <_ (27-/A)lrol (the case nu +Pu - no <_ (27-/A)lr01 
is similar). We choose V6.4 G V2.m(A/10) such that Ne.2(V6.4) ~ N2.m(A/10) and 
apply Lemma II.10 and Corollary IV.2: 

Q* 
[Cni+l(W)[>_ ~ [ C n , ( ~ ) [ e x p { ( n i + l - - n i ) A - - - 3 ~  

2 7- 

We recall that [Cno(W)[ > 12r01-1 exp(-[ro[) and that ni+l - no > Po > Irol/3A*. We 
choose A6. 4 large so that (Q~/Q~)I2r[ - I  exp{4a[r[/3A*} > 1 for all Irl ___ A6.4 and 
obtain 

A 4 7- 
1 ___ Ic~,+,(~)l -> exp { -Irol  + (hi+,  - no) 7- J 

In particular we get ni+l -- no <_ (27-/A)lrol. 
Stepfive. We show that Iri+ll ___ Ir01 for i < u; property (d) will follow: 

4exp{-lri+l[} > [cn,+,(w)[ > Q--~ 1 e x p { - [ r i l + ( n i + l - n i ) A - 3 a 7 - )  ~ 
- - Q ~  2 [ r i [  T " 

We choose once more A6. 4 large so that (Q~/Q~)I4r1-1 exp{lrl(A--3aT)/3TA*} >_ 1 
for all [r[ _> &6.4 and obtain [ri+l[ _< [ri[. 

Step six. We prove the property (b). For 0 < k <_ Pi and 0 < l < qi 

IDf~'-~~ >_ exp { (ni - no) A - 3aT + kA - n iar}  
T 

> _ e x p { ( n i - n o + k )  A - B a T  2noaT} 
T 

no) A • - 2aT - 3a7 +Pi - -  IDfn ' -n~ >_ K2.3(6) exp (hi -- ' 7 - - -  T 

>>_exp{ (n i -no+p i+ l )  )~-3c~7-- 2noa7-} 
T 

q- lA2.3 } 
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provided we choose V6.4 such that K2.3 (~)exp{2N2.2(V6.4)aT"} > 1. 
Step seven.  We prove the property (h); we assume that Cn,+~ (w) C_ [-26, 26]: 

Q~ K 2 { (qo+qu)A2.3+(nu-nl) A - 3a7- [Cn.+~(w)l > Q-~ 2.3[cn0+p0(~~ 
2 7" 

A-2ar} 
~-Pu r J " 

We choose A6. 4 such that (Q~/Q~)K2.3 exp{o~A6.4/3A*} _> 1 and obtain 

ICn.+p~(w)] ~ [Cno+po(w)l e x p ( - a p o )  > exp( -4~po) .  

[ ]  

VI.D.  D y n a m i c s  o f  the  tip b e t w e e n  n a n d  2n 

At stage k, f2k is a union of  adapted intervals w; for each of  them, there exist 
an integer n and a state I ( r )  such that Cn(W) = I ( r )  and Irl _ na. We study in this 
section the dynamics of  the tip during the period [n; 2n]. 

L e m m a  V l . 5  Le t  A E (0,)~2.3) a n d  a E (0, a2.3 (A)). There exis t  66. 5 E (0, 1) a n d  

f o r  all  6 E (0, 66.5) a ne ighborhood  V6.5 o f  a* such that, f o r  any  in terval  w c_ V6.5 
a n d  n >_ 1, 

(i) c , (w)  = I ( r )  f o r  s o m e  A < [r[ _< na,  

(ii) V a  E ~v V1 < i < n Idi_l(a)[ > K*exp{(i  - 1)A} and  [ci(a)[ > e * e x p ( - i a ) ,  

(iii) w is (n, A )-adapted,  

(iv) Va E ~ Idn(a)I > K* exp(nA). 

O n e  can cons t ruc t  an increasing s equence  o f  par t i t ions  o f  w in the f o l l o w i n g  way:  

(a) For each 0 < s < n, w is equal  to a dis joint  union o f  in tervals  wt t~ ..... ts "~ - -  - -  k r o , . . . , r s ]  

where  to = n <_ tl <_ . . .  <_ ts, ro = r, Iril >_ A ,  and  two dis t inct  sequences  

d o  . . . . .  " ~ g ive  two dis jo in t  intervals." O 3 ~ r  0 ..... r s )  N 0.)(~i' ' ',~st ) = •, 
{ t o , . . . , t s  "~ t ~ I t o , . . . , t s  \ t . . .  , 

k r o , . . . , r s ]  ~ r o , . . . , r  s k l t , ,  . . .  

(b) z t O ~ . . . , t s  \ w(tr~ = w; f o r  each 0 <_ s < n, Wtro ..... rs) is equal  to a d is jo in t  union o f  
�9 t o , . . . , t s + l  
mterva l s  O d ( r  0 . . . . .  r s + l  ), 

(c) / t o , . . . , t s  x f o r  each 0 < s < n a n d &  = ~O[ro ..... rs) 

- s is (ts, A) -adap ted ,  

- VO <_j <_ s ctj(s c_ l (r j )  andct~(s = l (rs) ,  

- V a  E g; V1 < i <_ ts Idi-l(a)] > K * e x p { ( i -  1)A/4} a n d  ]ci(a)] > 
e* e x p ( - i a ) ,  
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:to,...,ts \ (d) f o r e a c h  0 <_ s <_ n and ~v = Wtr o ..... ~), either Irsl > ats or ts > 2n, then 

rs+ l = rs and ts+ l = ts: the process is stopped, or [rs[ <_ ats and t~ <_ 2n, then & 

is part i t ioned into a countable number  o f  intervals o f  the f o r m  ~ = W[ro,..',rs+l:t~ ..... ts+l ),~ " 

ts+l > ts, Irs+l[ >__ A and each per iod ts+l - ts is the sum of  two periods." 

t~+l - ts = Ps + qs verifying 

- (1 /3A*) l r ,  l < ps <_ (2r/A)[r,l ,  

- g l  <_i<ps  V a E w  I%+i(a) l  > _ 2 e x p ( - I r ,  I), 

- V 0 _ < i < q s  VaE~o  ]ct,+m+i(a)]>_ � 8 9  

(e) since the state I(rs+l) may happen at different t imes ts+l, the proportion o f  

obtaining this state is given by 

{to,'",ts+l "~1 
E ~t~0 ..... ~+~: < [I(rs+l)[exp(2A + 4 a p s )  ~{to,...,ts "~1 -- 
ts+l  \to,...,rs ] [ 

~ 

where the summation is taken over all possible & C &, rs+l being f ixed; 

moreover 
e t o & ' l ( O t  ) ..... 

E O)l.ro ..... r ,)  < 2 exp - -0  ..... , 5 , , -  ~ t ,  , 
Irn}>Otn O't[ro ..... rs)l 

_,, .:to ..... t. ~ ,to ..... t , ,  satisfying Irn] > atn. where the summation is taken over u ,  ~ro  ..... r.) C_ W[ro ..... r,) 

P r o o f  Step one: the construction. We construct by induction on s apartition ofw 
:to,...,ts ~ to into disjoint intervals if, = Wtro ..... rO" By definition, 0J = ~(r0). We assume we have 

already constructed ~ with Irsl < ats and ts < 2n. For all i = 0 , . . . ,  s, pi denotes the 
essential bound period associated to (ti, ri, ~) and qi the free period. The properties 
(i), (ii) and (iii) o f  Lemma VIA are satisfied. Let Ps be the essential bound period 

associated to ( ts, rs, Fo ) and q the smallest integer such that cts +ps +q( O) ) ~ [ -  16, 1~] r 

0. We know that Ps satisfies 

- (1/3A*)lr, I <_ p,  < (2r/X)lrs l, 

- V a ~ &  V l < i < p ~  Ict,+i(a)l> 2 e x p ( - I r ,  D, 

- ~ is (ts + p , ,  A)-adapted (except that ct,+p,(ga) may not be in [-26, 26]), 

- Cts+ps+q(~O ) contains a state l ( r )  for some Irl > A and meets [-21-6, �89 

In order to apply Lemma VI.2 we compute the exponent during the period 

[ts, ts + p,]. Let 0 < k < p,,  then 

s -1  

[dt,+t(a)l > K* exp(ni)  I I  {K2.3 exp(pi A - 3r~ 
7- 

i=0 

+qiAz3)} exp (k  A - 3 r c t _ 2 t s r a )  ' 
\ 7- 
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[d,s+k(a)[ > _ K * e x p { ( t s  + k ) 2 ~  } 

(we have chosen A6.5 sufficiently large so that K2.3 exp(A6.sc~/3A*) _> 1 and used 
the estimates n(A - )~) > 4"ran _> 2hc~T). 

Either Cts+Psq_q(~)) is equal to a union of  states I ( r ) ,  Irl ___ ~ ;  then, by definition, 
q~ = q, t~+l = t~ + Ps + q and ~ is equal to a disjoint union of  intervals CO(rs+l) = 

W(~o"..7,)++ ', ) corresponding to the part o f ~  which is mapped by ct,+p.,+ q onto l ( r ,+l  ). 

Or Ctsq-ps4-q(~d ) contains also one of  the prestates J ( + A ) .  We denote by ~(0) the 
part of  ~ which is mapped by Cts+ps+ q onto Ulrl _> a I ( r )  and by ~ (4-1) the part of  ~b 
which is mapped onto J ( + A ) .  We denote also t~+ 1 = ts +Ps  + q. Let q(4-1) be the 

1 1 t first time such that ctj+,+q(+l)(('o(4-1)) 77 [-~6, g6] r ~, t's+l(4-1 ) = t~+ l + q(4-1) and 
qs(+ 1 ) = q + q(+ 1). The exponent during the period [t~ + ps, ts + Ps + qs] is equal 
to )~/2r. For all 0 _< k < qs 

,~ - -  30UI" 
[dts+p,+k(a)[ _>K'K2.3(6) exp {nA + Ps------~--- + kA2.3} 

s--I 

x H {K2.3 exp(pi A - 3r~ + q ) } - -  _ i / ~ 2 . 3  , 
T 

i=0 

]dt,+m+k(a)[ >_ K* exp {(t, + ps + k ) ~  r } ,  

provided that V6.5 is chosen such that K2.3(6)exp{N2.2(V6.5)(,~ - A)} _> 1. 
Lemma VI.2 tells us that cG, (:Ul) (~(+ 1 )) contains one of  the intervals [ -  �89 -26)  

or (26, �89 We denote by ~(+1)(0)  the part which is mapped by cG,(• onto 
Ulrl_> a I ( r )  and by ~(-t-1,4-1) the part which is mapped onto J ( + A ) .  We continue 
this process and obtain a partition of  d; into a disjoint union of intervals parametrized 
by (e l , . . . , eu )  in {4-1}", u _> 0, ~ = U , , ~ ( e l , . . . , e u ) ( 0 ) ,  where for each a/ = 
~(el ,  �9 �9 �9 e,)(0),  there exists an integer t' = t's+ 1 ( e l , . . . ,  eu) = t, + p ,  +qs(el , .  �9 �9 eu), 
qs(el ,  . . . , eu) = q + q(el  ) + . . .  + q(e l ,  . . . , eu) such that: 

- ct , (a/)  is a union of  states l ( r ) ,  Irl _>/x and has a length bigger than 6/2, 

- V a e w '  V O < _ i < q s ( e l , . . . , e u )  Ic,s+ps+i(a)l >- � 89  
- Va �9 co' V0 _< i < t' Idi(a)[ >_ K* exp(iA/2-r). 

We denote by W(el , . . . ,  eu)(r') the part of  w' which is mapped by ct, onto l ( r ' ) .  

Since w' is ( t ' ,A)-adapted, provided V6.5 c_ V2.11(c~,,V2%3), we know that the 
distortion of  ct, is uniformly bounded by a constant D2.11 independent of A. If 

Ct,+p,+q(~) = Ulr, l>_A l ( r ' )  then 

< D2 11 [ l ( r ' ) ]  . 
- �9 exp(-4 p,)' 
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otherwise ,  fo r  all u > 0, 

I~(el , . . . ,  e.)(r')l 
Im(e~,...,~,)(O)l 
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< 2D2.11 II(r)l 
e x p ( - - A )  " 

/ t o , . . . , t s d  I \ 
Finally,  w e  deno te  by  wt,.0 ..... r,,r') any  interval  o f  the f o r m  ff;(el,..., e,)(r') .  We 

just  have  cons t ruc ted  the par t i t ion at s tage  s + 1 and p roved  

/ l O , . . . , l ~ , I  t X 
1 6 0 t r 0  . . . . .  ~ : ~ , r ' ) l  [/(r ' ) l  _ 1 

Z ,to ..... t~, <- 2D2.11min{exp(_4aps) ,6}  <- [I(r ')Iexp{4aps + 2A}  
4 t, wb.0 ..... i:s ) 

(provided  w e  choose  A6.5 such that  4D2.11 exp(A6.5) _> 1). 

Step two: p r o o f  o f  part  (e). We p rove  by  decreas ing  induct ion  on s that, for  

,to ..... t , ,  sa t i s fy ing Irsl < ats and ts < 2n, each  wk,.0,...,,.., ) _ _ 

I [ l O , . . . , l  n \ 1  

E IWt'~:'"""')L<l ( a )  ,to ..... t,, _ ~ e x p  - t s ~  , 
Ir,,l>at,, W(ro ..... i:s) 

/ l O , . . . , / n  \ " I t o , . . . , t s  \ where  the s u m m a t i o n  is taken ove r  all intervals  60t,.0 ..... r,,) inc luded  m 60b.0 ..... ,'s). 

For  s = n ,  the s u m  o f  the left  side is e m p t y  and the asser t ion  is obvious .  Suppose  
/ t o , . . . , t s  \ the asser t ion  is t rue for  s + 1,s  + 2 , . . . , n .  I f  & = 60b.0 ..... ,H is chosen  such that  

t~ _< 2n and Ir~l < ats, using the above  inequal i ty  we  have  

[ t o , . . . , t s , t '  ~ 1 
E 160~,.O, to ..... ..... ,-,,,-,Jlts\ - ~  < exp{4aps  + 2 A  - ats} ,  

60 ~.ro,...,r~ ) t' , lr' l > at' 

where  the s u m m a t i o n  is t aken  over  all intervals  60kro, . . . , rs ,r ' ( to  . . . . .  ts,t' J~ inc luded in ~ wi th  

Ir'l > a t ' .  
We use  the es t ima te  Ps < (2~-a/A)ts, 6 4 T a  < A and choose  V6.5 smal l  enough  so 

that aN2.2(V6.5) > 16A, to obta in  

( l o , . . . , t s , t  I \ 

E 60kro ..... 'w") <_ 1 ( 3a t s~ .  
,to ..... t , , ,  ~ e x p  - 4 ] 

6 0 ~ r o  . . . . .  ,',)1 
t ' , l r ' l > a t  ' 

On each  60' = 60tr0"t~ ..... ..... ts,t'rs,r,), r ema in ing  (i.e. sa t is fying Ir'l _< a t ' ) ;  e i ther  t '  > 2n and  
tO , . . . , l n  60' conta ins  no o ther  interval  o f  the f o r m  60(,0 ..... r,,) with  Ir, I > at,;  or t '  _ 2n and 

by  induct ion  w e  have  

/ t o  . . . .  tn ,, 1 a t '  ~ 1 3ats ~ 1 ats E 60t, ro',...,r,)l/to . . . . .  t s \  - -  < ~ exp  ( -  2 / + ~ exp  ( -  - - ~ - 1  _< ~ exp  ( - 2 1  
ir, l>at, 60kro ..... rs) 
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(we have used the estimate t' - t~ > Ps >_ (A6.5/3A*) and chosen A6. 5, V6.5 such 

that 2exp(-aA6.5/6A*) < 1). [] 

V I . E .  A M a r k o v  c h a i n  t y p e  a r g u m e n t  

We use the notations of  the previous lemma. We fix an interval of  parameters 

w c_ V65 such that: 
- Cn(~V) = l ( r )  for some n a  >_ [r[ _> A, 

- V a  E w V l  < i < n [ci(a)[ >_ e * e x p ( - i a )  and  [d i - l (a ) l  >_ K * e x p { ( i -  1)A}, 

- V a  E w [dn- l (a)[  >_ K * e x p { ( n -  1)i}, 

- w is (n, A)-adapted. 
We begin to exclude the parameters a which do not satisfy the exclusion rule. 

/to,...,tn Let w' be the union of  all intervals ~V~ro ..... ~,) satisfying Ir~[ < at~ (in particular O n 

such intervals, Iri[ < ceti for all 0 < i < n). We know from Lemma VI.5 that 

I o ~ \ J I  < 1 ' a - ( -  

We consider w' as a probability space. Let P be the normalized induced Lebesgue 

measure on w'. We define on w r sequences of  random variables, Pi,  Qi,  Ti, Ri  and  
�9 to tn 0 3  t .  S constant on each interval W(ro',TY, r,) included in 

~v(to ..... t, ) P i ( a )  = Pi,  Q i (a )  = qi, T i (a)  = ti, R i (a )  = ri, V a  E ~ro,...,r~, 

and S(a)  is the largest integer s such that ts <_ 2n.  T h e  following corollary shows 

that the sequence {Ri}/s=0 behaves like a Markov chain. 

C o r o l l a r y  VI .6  U s i n g  the  n o t a t i o n s  o f  L e m m a  VI .5 ,  there  ex i s t s  66.6 E (0, 1) 

s u c h  that ,  f o r  al l  6 E (0, 66 .6) , for  al l  (ro, r l , . . . ,  rs+l) v e r i f y i n g  Iri] >_ A ,  

P(Ro = r0 , . . .  ,gs+l = Fs+I,S ~_ S)  

P(R0 = ro , . . . ,R~ = r~,s < S) 
< e x p  { 3 A  - lr~+ll + ~- -~ l r s[}  . 

P r o o f  As (R0 = r0 , . . . ,Rs  = r~,s  < S)  is equal to the union of  intervals 
/to,...,ts wb.o ..... rA, to = n < tl < . . .  < ts < 2n,  Iril < ~t i ,  where we have subtracted all the 

subintervals W(tr~ verifying [rn I > atn. Using part (e) of  Lemma VI.5 we have, 
Ito,...,ts \ for each of  these intervals wb. o ..... ,.~), 

Od( tO'''''ts+l ~1 ~ I 
E I, r0 ..... rs+l )1 < 2exp  {2A _ irs+l[ + ir, i rto,...,ts x -- 
t~+~ Wb'o,-',r,) 
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�9 " to ..... ts+l fixed. Since where the summation is taken over all subintervals 03(r 0 ..... rs+�91 ), rs+l 

/to,...,ts 
O3(r 0 ..... rs)f-Io.)t[ , a t s ,  1 

zto ..... ts, > 1 - exp(---~-)  > - 
W~ro ..... r,) - - 2 ' 

od[tOts+l ..... [ 8 - ~ - }  

E ,to ..... t s ,Nw,  [ < 4 e x p  2 A - l r s + l l +  [rsl �9 
ts+l (M~r~ 

We choose A6. 6 sufficiently large so that 4 < exp(A6.6). [] 

In order to recover the exponent A at time Ts+l and an exponent A during the 

period [To, Ts+l], we exclude the orbits {ci(a)}fs] I which come to the critical point 
too often. For 2x > A we denote by w'(2x) the subset ofw' :  

S 

w'(A) : {a ~ a / :  E Pkl(IR, r>~/ < To )~2.3A - -  /~ } 
- -  " 2 . 3  ' k=0  

where 1B represents the characteristic function of  the subset B. 

L e m m a  V l . 7  We use the notation of  Lemma VI.5. There exist 66.7 C (0, 1) 

and, for  all 6 < 6 < 66.7, a neighborhood V6.7(6) of  a* such that, for  all interval 
03 C V 6 . 7 ( ~  ) and for  all a E w'(2x), 

- V 1 < i < Ts+l(a) [ci(a)[ > e* e x p ( - i a )  and Idi-l(a)l >_ K* exp{(i - 1)A}, 

-Idrs+l_l(a)l > K* exp{(Ts+l - 1)~}. 

P r o o f  We choose V6.7 c_ V2.3(/~); then the exponent at Ts+l is equal to A: 

IDfTs+x--T~ > I I  exp{A2.3(Ts+l - T~)} I I  
[R,l_<2x [R,[>2x 

S 

>- exp { A2.3 E Qs + Psl(lnsl<_2x) } 
s = 0  

{K2.3exp (Ps~---~ + asA2.3) i 

(we have used the estimate/(2.3 exp(A6.7A/6rA*) > 1 and the property (iii) of  

Theorem II.3 for the case IRsl <_ 2x). If  we choose in addition a E w'(2x), we obtain 
(notice that Ts+l - To >_ To) 

s s 

A2.3 E Qs + Psl(IR, I<_Zx ) = )~2.3(Ts+1 - -  T O )  - -  )~2.3 E Psl(IRsI>Zx) 
s=O s=O 

A 2 . 3 ( T s + q  - T o )  - (A2.3 - ~)To ~_ ~ ( T s + I  - T o ) .  
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We compute now the exponent during the period [Tu, Tu + Pu], 0 < u < S. Let 

0 < k < Pu; then Idr.+k(a)l is bigger than 

s<u s<u 

K*exp{To(~-4c~r)}  I I  exp{)~2.3(Ts+l-Ts)} 1-I K2.3exp{~---~Ps+ )~2.3Qs} 
IR, l_<Zx IR,I>~ 

S 

_> K* exp {To(~ -4er) +/~2.3(Tu - To)-/~2.3 2 Psl(IR, l>a)} 
s=0 

_> K* exp{Tu~ - 4arTo - ()~2.3 - ~)Tu} > K* exp{)~(Tu + k)} 

(we have used the estimate k < Pu < (2r/A)lRul <_ (2ra/A)Tu and the definition 

of  ~: ~ > �89 + ~) + 3at) .  The exponent during the period [Tu + Pu, Tu+l] is 

computed in the same manner. Let 0 < k < Qu; then Idr.+eu+k(a)l is bigger than 

S 

K*Kz.3(~) exp { To~ + A2.s(Tu - To - Z Psl(IR, I>Zx ) + k ) }  _> K* exp{(Tu + Pu + k )A } 
s=0 

(provided we choose V6.7 such that K2.3 (6)exp{N2.2(V6.7)4ar} > 1). [] 

Before we prove Proposition II. 12 we need two combinatorial lemmas. 

L e m m a  V I . 8  There exists a constant I'a such that for  all integers 1 < p < n 

CP < _ r l e x p { n n ( P ) } ,  

where C p denotes the binomial coefficient and H (x) the function defined for  x E [0, 1] 
by H(x) = - x l o g x  - (1 - x) log(1 - x). 

P r o o f  Using Stirling's formula, one can find constants F and F' such that, for 
all n _> 1, F _< n!/2x/2-~-~e-nn n _< F'. In particular 

C p < (r'/vz)x/n/(27rp(n - p) exp{nH(p/n)}. 

In both cases (1 < p < n/2,  or n/2 < p < n), we have n < 2p(n - p ) .  We choose 

r, = [ ]  

L e r n m a  Y I . 9  There exists A6. 9 E .A/f, A6. 9 > A6. 7 such that, for  all integers 
R > A6.9, 

c a r d { ( q , . . .  ,ru) : u > 1, Iril 6 .M, Iril >_ A6. 9 andR < r 1 - F " "  + ru < R + 1} 

< exp ( R )  �9 
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P r o o f  We notice first that u _< [(R + 1)/A6.9], where Ix] denotes the integer part 
of  x. We define for all u > 1 the following two sets and a map 0 : B~ ~ B~ by 

Bu = { ( r l , . . . ,  r~) : ri >_ A6.9, r i  E M , R  < rl + . "  + r~ < R + 1}, 

B'u = {(p l , . . . ,  Pu) : Pi is an integer, Pi >-- A6.9 and pl + " "  + P, = R},  

O( r l , . . . , r u ) .=  ([rl],[rl + r21 - [ r l ] , . . . ,  [rl + r2 + . . .  + ru] - [rl + ' "  + ru- l]) .  

If  ( P l , . . . , P u )  E B~ and ( & , . . . , r , )  belongs to the fiber 0 -1 (p l , . . . , pu ) ,  then 

Pi --  1 < ri <_ Pi q- 1. Given p > 1, we denote bb' increasing order the parameters 

#i E AA which belong to [ p -  1, p + 1]: 

p -  1 ~ # k < # k + l  < ' " < # k + / ~ P + l .  

The sequence {#i} verifies, for all k < i < l, e x p ( - # i ) -  exp( -# i+ l )  > 
(p + 1)-I e x p { - ( p  + 1)}. Adding these inequalities, we obtain 

1 
p + 1 e x p { - ( p  + 1)} < e x p ( - # t )  - e x p ( - # k + / )  _< e x p { - ( p -  1)} 

and finally l _< (p + 1)e 2. One can find a constant F such that (p + 1)e 2 + 1 _< 

F exp(p/16) for all p > 1. The cardinal o f  each fiber 0- l  (pl, �9 �9 �9 pu) is thus bounded 
by I TM exp(pl + . . .  + p , ) /16  _< F" exp(R/16).  The cardinal of  B" is bounded by C~ 

and the cardinal of  U,  B~ is therefore bounded by 

[(e+ 1)/A6.9] 

Z 
u=l 

R R + 1 log 2F} 
F1 exp { R H ( R ) +  ~ + -~-~6.9 " 

Since H ( x )  is an increasing function over [0, 1/e], ([(R+ 1 )/A6.9]/R < (2/A6.9) < 

( l /e ) ) ,  we simplify the above expression by F1 ((R + 1)/A6.9)expR(H(2/A6.9) + 

(1/16) + (2/A6.9) log 2P) < exp(R/8) ,  if we choose A6. 9 sufficiently large. [] 

VI.F. P r o o f  o f  the m a i n  P r o p o s i t i o n  

We are now able to prove the main induction step: 

P r o o f  o f  P r o p o s i t i o n  I I . 12  Using Lemma VI.7, the fact that P~ _< 2r]Rs[/A 
and the estimate ]w \ a;'l/l~ ] _< �89 exp( - �89  it is enough to prove that, for /x 

sufficiently large, A = 100A: 

A(A2.3 - 1 

I."1 
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We begin to intersect the set { ~ s _  0 IRsll(iRsl>h) > nA(A2.3 - 5~/2rA2.3} with all 
the possible sets (Ro = ro , . . . ,Rs  = rs, S = s), Iri] > A.The intersection is not 
empty if and only if there exists a sequence 0 < il < --. < iu < s such that: 

-[rill-t-..'-t-Iri,[ > nA(A2.3 - A)/2"rA2.3,  

- V i E { i l , . . . , i u }  I r i l>~x ,  

- V i E { O ,  1 , . . . , s } \ { i l , . . . , i u }  I r i l<_A.  

For all i = i ~ , . . . ,  i , ,  ~x <_ ]Ril <_ 3A*Pi. If  we add these inequalities, we obtain 
/Xu _< 3A* ~ s _ l P i  _< 3A*(Ts - To + p s )  <_ 9A*n.  T h e  number of  all possible 

sequences ( i l , . . . , i u )  where 1 _< u < 9A*n//~ and 0 _< il < . . .  < i, < n is thus 

bounded by 

n n ( U )  ( 9 A * )  
~-~C~ < ~--~FlexpnH < F l n e x p n H  
u=l  u=l  

(we have chosen A2.12 > 9A'e).  
If  such a sequence ( i l , . . . , iu )  is fixed and R _> [nA(A2.3 - A)/2yA2.3] is any 

integer, the number of  all possible sequences ( r l , . . . ,  ru) such that Iril >_ fx and  

R < Ir~l + . . .  + Irul < R + 1 is bounded by exp(R/8).  
From now on we fix a sequence ( i l , . . .  ,i~) satisfying 0 < il < . . .  < iu < n and  

a sequence ( r l , . . .  ,ru) satisfying Ibl > s and R < I~1 + " "  + I~ul < R + 1. We 
show that 

Z P ( R ~  = ro , . . . ,Rs  = rs,S = S)  

exp{-(l~l l  + ' "  + I~ul)} _< 
exp(3uA)exp{-( l r0[  + I~11 + " "  + I~u-11)8~'~/~} ' 

where the summation is taken over s > iu and all possible sequences ( r l , . . . ,  rs) 

such that ]ri] > A ,  ]ri]E A4 ,  r 6 = ?j f o r j  = 1 , . . . ,  u and ]ri] < A for i r { i l , . . . ,  iu}. 

Indeed P(R0 = ro, . . . .  Rs = rs,S = S)  < P(R0 = r o , . . .  , e i ,  = ri , , iu  <_ S) and  

using Corollary VI.6 and the fact that Iri._,l >_ ~ >_ [ri.-l] if iu-1 ~s iu - 1, the 
above sum is bounded by 

8Ta 
Z P ( R o  = r o , . . .  ,Ri._~ = r i ,_ t , iu-1  <_ S)exp  3A -I~ul + ---~-]ru-l[~ 

where the summation is taken over all ( r0 , . . . , r i ,_ l ) ,  [ril >_ A ,  rii = ?j f o r j  = 
1 , . . . ,  u - 1 and [ri] < ~x for i ~ i l , . . . ,  i~-1. We repeat this process and the claim 

is proved. 

Since ]rol < an < (4yA2.3c~/A(A2.3 - A) )R  < R and  u < 2R/~x ,  

e x p { - ( l ? l ] + - . . + l ? ~ t ) + 3 u A }  { 16aT 1 + 6 ~ ) }  
exp{--(lr0l + I~,1 + " "  + 1~,-~I)8~,~/A) -< exp e ( ~  - 
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(we have used the estimate 6 4 a t  _< .~ and 24A < /X). 
We finally sum over all possible sequences (il . . . .  , i~) and (~, , . . . ,  ru) and obtain 

s ; (az3 - X> 
P (  Z {Rsll(I-e,'>~) > n  - 2 ~ . 3  ) < 

s=0 R>n ;~(aL3-X) 
4 r ' ~ 2  3 

r l n e x p { n H  / 9A* \ R R 

I~1 9A* ) _ nA(A2.3 - X) 
-< l_exp(_ l /4 )nexp{n / - / (A2 .12  16r)~2. 3 } 

(we have used the estimates A(A2.3 - A) _< 16arA2.3, chosen A2.12 ~ A6. 9 such that 
4H(9A*/A2.12) <__ a and V2.1z C_ V6.7(6) such that 

(2171/1 - exp( -  1/4))n exp(-nc~/4) <_ 1 

for all n > N2.z(V2.,z)). 

P r o o f  o f  T h e o r e m  1.5 We fix once and for all constants 

[] 

and 
"1  

X = 2 ( ) ,  + ; z3) + 10a -. 

We recall that Nz2(V) denotes the first integer N such that CN(V) n [--~el ,,2!e,] r  
We construct by inductiona decreasing sequence of subsets of V2.12 • V6.3 ~ V2.8, 

{f~k}k>0, where 120 is any interval containing a* and 

[f/k \ f/k+ll < exp{_2k_lo_N2.2(~0)}. 
lakl  - 

E a c h  f~k, k >_ 1, is a disjoint union of intervals w satisfying the following properties: 
- cn(w) = l ( r )  for some n > 2kN2.~z(f~0) and A _< ]r{ _< an, 
- V a  E aJ V 1 < i < n Ici(a)l > e* exp( - i@ and Idi_l (a) l  >_ K*  exp{( i -  1)A}, 
- V a  6 w [d,_l(a)[ > K* exp{(n - 1)X}, 
- a~ is (n, A)-adapted. 
Proposition II. 12 shows how to construct f~k+l from ftk for k > 1. The proportion 

of the remaining subset f t~ is thus bounded from below by 

OO 

{f~-----~l > 1-I { 1 -  exp(-2tcrNz.2(f~0))}. 
Ifl0l - k=l  

The fact that the right-hand side of this inequality goes to one when Ill0{ goes to 
zero proves that a* is a Lebesgue density point. 

Finally, Corollary II.8 shows that, for any a E f ~ , f a  cannot have stable periodic 
points and satisfies the two Collet-Eckmann conditions (CE1), (CE2). [] 
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VII. Transversality and genericity 

Let {fa}ae.a be a regular one-parameter family. In the first part of  this sec- 

tion we show that, iffa* is a Misiurewicz map, condition (T) is equivalent to the 

transversality of the curves [a ~ CU(a)] and [a ~ X(cu(a*),a)] for any N > 1 
where [(x, a) ~ X(x, a)] is a smooth continuation of the invariant compact set 

A* = {Cn(a) : n >__ 1}. In the second part of  this section we prove that condi- 

tion (T) is generic among all regular one-parameter families passing through a 

Misiurewicz map. 

VII.A. Transversality 

We begin with a simpler example where some iterate of  the critical point is 

equal to a nonstable periodic point. We recall that, whenever the limit exists, Q(a) 
denotes 

Q(a) def lim oafn(co'a) 
n---*+~ O x f n - l ( c l , a )  " 

L e m m a  VI I .1  Let {fa } ac A be a one-parameter family and a E .4 any parameter. 
Then 

+ ~  1 +cr 

iDf~(cl(a))l < +cr ~ Q(a)= y~  Off(ck(a),a) 
,=0 ~:00xfk(cl (a), a)" 

P r o o f  For every (x, a) E I • .4 we have by def ini t ionf  n+l (x, a) =f(fn(x, a), a). 

To simplify the notation we write c, = Cn(a). If  we differentiate this equality with 

respect to x and a we obtain 

Oxfn(cl,a) = Oxf(cn,a)Oxfn-l(cl,a), 

Oofn+l(co,a) = Ofx(Cn,a)Oofn(co,a)  + O o f ( c n , a ) .  

Let Qn(a) denote the quotient Qn(a) --- 0of~(c0, a) / Oxf n-1 (Cl, a). We have 

n-1 
Qn(a) = Z O~f(ck,a) 

0xfk (Cl a)"  
k=O 

By hypothesis the series converges absolutely. [] 

Let us now denote x* a nonstable periodic point forfa ,  of  period p. For any a 

sufficiently close to a*, the equation x =fP(x, a) has a unique solution close to x*, 
x(a) =fP(x(a), a), where X is a C 2 function, and has a derivative at a* equal to 

dX O/P(x*,a*) 
~aa (a*) = 1 - ~ * ) "  
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We assume now that co is a preimage o f  x*: cN(a*) = x* for some N _> 1. Using 

the above lemma we can compute exactly the limit Q(a*). 

P r o o f  o f  P r o p o s i t i o n  1.9. We repeat the same arguments as in the proof  of  

Lemma VII. 1, 
fN+(n+l )P(X, a) = fP(flv+r'n(x, a), a ) ,  

0af/'(cN+m, a) 
QN+(n+l)p(a) = QN+pn(a) + 

tgxfN-l(cl,  a)OxfP(n+l)(CN, a) " 

By induction we obtain 

n--1 OafP(CN+kp, a) 
QN+np(a) = ON(a) + ~ OxfN_~a---)-)-~k~(cN,a ) . 

k=l 

If we now choose 

a = a * ,  cm+kp(a*) =cN(a*)  = x * ,  OxfkP(cm,a) = (OxfP(cN,a)) k 

then 
O~fP(x*,a *) 

Q(a*) = QN(a*) - OrfN_l(c l ,a)(1  _ Oxfp(x . ,a . )  ).  
[] 

In the remainder  of  this section, we assume that fa* satisfies the Misiurewicz 

condition and show that Q(a*) can be computed in the same manner. In order to 

do so ,  we introduce the notion of  smooth continuation of  a compact  invariant set. 

D e f i n i t i o n  V I I . 2  Let {fa}EA be a C 2 one-parameter family, a* E .4 and A* C_ I 

a compactfa . - invar iant  set (i.e. fa" (A*) C_ A*). We call a smooth continuation of  

A* a map X : A* x V* ~ I, where V* is a neighborhood of  a* which satisfies: 

(i) for each a E V*, [x E A* ~ X(x, a)] is injective, 

(ii) for each x E A*, [a E V* ~ X(x, a)] is differentiable, 

(iii) [(x, a) E A* x V* ~ X(x, a)] and [(x, a) E A* x V* ~ OaX(x, a)] are continuous, 

(iv) for all x E A*, X(x,a*) = x, 

(v) for all (x,a)  E A* x V * , f ( x ( x , a ) , a )  = x ( f ( x , a* ) , a ) .  

If  we use the notation Xa(x) = X(x, a), we notice that A~ = X``(A*) is a compact  

fa-invariant set and that the dynamical system (Aa,fa) is topologically conjugate to 

(Aa.,fa*): f~ o X`` = X`` of,,. on Aa- = A*. The following proposition shows that a 

hyperbolic compact  invariant set possesses a smooth continuation. 
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Proposition V I I . 3  Let {.fa}ae.a be a C 2 one-parameter family o f  unimodal 
maps and a* E ,4. I f  fa. has no stable periodic point, any compact fa. -invariant set 
dis joint from the critical point possesses a smooth continuation. 

Before we prove the above proposition, we explain how to parametrize a 

hyperbolic invariant set by a subshift of  finite type, and extend Theorem II.1 

for a one-parameter family. 

N o t a t i o n  V I I . 4  Let f : 1 ~ I be a C 2 unimodal map without stable periodic 

point and q ~ c2 be a periodic point of period r _> 3. We may assume that 

{f(q) , . . .  , f r - l (q)}  is disjoint from (q', q") (where q' and q" denote the negative 

and positive preimage off (q)) .  We notice first tha t f (q)  E (co, Cl). Actually, if c~ 1 

denotes the positive preimage of  co, there must exist a point p of  the orbit of q in 

(c0,cl). Ei therp  E [q,c"_l) andf (q)  _>f(p) > 0, o r p  E (c'_' ~,c1] and any preimage 
p t t  

of  p belongs to ( c ~ ,  c_l) .  We also notice that f2(q) < 0 using the assumption 

r _> 3. In particular, 

E = {x E ~2(q),q,] U [q",f(q)] :fn(x) ~ (q',q")Vn >_ 0} 

is a compactf- invariant  set which contains the orbit of q. We denote by increasing 
order the points of  { f (q) , . . .  , f r - 1  (q) ,  qt,  q"} in the following way: c2 < q0 < "'" < 

qs-1  ( C0 <~ r < " '"  <( qr  a n d  define open intervals [i] = ( q i - l , q i )  for i = 1 , . . .  ,r.  
{ [1], . . . ,  [r] } determines a Markov partition with associate matrix of  transition M: 

Mis = 0 for all i = 1 , . . .  , r  and Mij = 1 if and only if  [/] c_ f([/]) for a l l j  ~ s and 

i = 1 , . . . ,  r. Let E~t(q) denote the compact set of  all admissible sequences 

EM(q) = {X = ( X n ) n > O  : X n  = 1 , . . . , r  Mx.,x,+, = 1 Vn >_ 0}. 

EM(q) is called a subshift of finite type; we note [a : EM(q) ~ EM(q)] the leftshift. 

I f  x_ = (x0,. . .  ,Xn) is an admissible sequence of  length n + 1 (i.e. Mxk,xk+l = 1 for 

k = 0 , . . . ,  n - 1) we denote by [x0, . .  . ,  Xn] the interval [xo, �9 �9 �9 Xn] = Nk=0fn - k  ([Xk]). 

By the Markov property we obtainfk([x0, . . .  ,x,]) = [xk,... ,Xn] for all 0 < k < n. 

L e m m a  V I I . 5  Let {fa}~e.a be a C z one-parameter family of  unimodal maps 
and a* E .A such that fa* has no stable periodic point. For every e > O, there 
exist Av.5(e) > 0, NT.5(e) _> 1 and V7.5(e) a neighborhood of  a* such that, for  every 
x E I, a E V7.5, n >_ N7.5, if  {X,fa(X) . . . .  , f f - l (x )}  is disjoint from [-e,e], then 
IDfn(x)l >_ exp(nAT.5). 

Proof Let A7.5 be any positive real such that )~7.5 < A2.1. We then choose 

p > 2/()~2.1 - A7 .5 ) log (2 /K2 .x )  and N7.5 > (2()~7.5 - )~)/(/~2.1 - /~7 .5 )  + 1)p, where 
A = inf{log [Df~(x)l : a E Aand  [xl > e}. We decompose the orbit into blocs of  
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length p, n = kp + q, 0 < q < p: 

k-1 

Df2(x) = H DfaPOCip(x)Ofq(fakP(x) ) " 
i=0 

We choose now V7.5 such that, for all a E V7.5, 

e ( V 0 < i < p a n d x E l ) ,  [ f i ( x ) - f / ( x ) l  < E 

IOfaP(X)l>_ IDfP.(x)I ( V x ~ I  s.t. Ifa~.(X)l_>~ i----0,...,p--1). 

Using Theorem II.1, for every x E I satisfying {X,fa(X),. . .  ,fn--1} n [--e, e] = O, we 

have for every n > N7.5 and a E V7.5 

iDfan(x) I > ( g2.1 ] k - \  2 / exp(qA + kpA2.1) >_ exp(nA7.5). 

[] 

Proof of Proposition V I I . 3  Let A* be a fa*-invariant compact  set disjoint 

from the critical point co. Since co is in the closure of  the set o f  periodic points 

for fa*, we can find a periodic point q ~ A* of  period r > 3 close to co such 
that {fa* (q),..-,f~.--1 (q)} is disjoint from (q', q") and A* c_ E (cf. notation VII.4). 
The itinerate of  each point x E A* is disjoint from {q', q",fa.  (q) , . . .  ,f,.r-1 (q)},. x 

determines a unique admissible sequence x = (Xn)n>0 where xn E {1 , . . .  ,r} is 
defined by fn(x)  E [Xn]- Conversely, for each x_ E EM, by  hyperbolicity offa* 
(Theorem ILl) ,  Nn_>0fa-:~([x~]) is reduced to a point 0(x_). We have just  defined a 
map 0 : ZM ~ E which is bijective from 0-1(A *) into A* and which conjugate the 

shift tofa* : 0 o a = fa* o O. 
Let us denote by q : V ~ I a 01 continuation of  the periodic point q in a 

neighborhood of  a* (fr(q(a), a) = q(a) Va E V* and q(a*) = q). We choose 

V* sufficiently small so that {q ' (V*) ,q" (V*) ,q l (V*) , . . .  , q r - t (V* ) }  are pairwise 

disjoint, disjoint from A* and from [-~, ~] for some e > 0. Let us denote by 

{[1]a,.. �9 Jr]a} the Markov partition associated to q(a). We notice that the transition 
matrix is independent o f a  E V*. Using the same reasons, for each _x E ZM, a E V*, 

Nn>ofa-n([xn]a) is reduced to a point 0(x, a) = Oa(x_). For each x_ E EM and a E V*, 
we denote by fx_ -n : Ua~v. na • {a} ~ I the inverse branch of  f n  defined by 
fn( f~n(z ,  a ) ,  a )  = ; andfx_--n(z,k~) E [ x 0 , . . .  ,Xn]a for all z E [Xn]a. 

We claim that 8(x, a) is continuous with respect to (x_, a), differentiable with 

respect to a and that OaO(x_, a) is continuous with respect to (x, a). We define 
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On(x, a) = fx'-n(zn(X , a), a) where Zn(X , a) is the middle point o f  [Xn] a. We first notice 

that (On)n>_o converges uniformly to 0(x_, a) since 

IO(x, a) - On(x , a)] _< Kv.5(e) exp{-nAv.5(e)} 

and that On is continuous with respect to (X, a) (we use the fact that Xn = Yn whenever 

X is close to y). For fixed z, the derivative with respect to a offx_-'(z, a) is given by 

Oafxn(z,a) = 
oafnOrxn(Z,a),a) 
Oxfn(fx~n(z,a)a) 

and by the chain rule we obtain 

OaOn(X,a)= OaZn(X,a) 
Oxfn(On(X,a),a) 

Oaf(fx--n+k-l(z'a)'a) 

-- ~ OafOck-l(On(X'a)'a) 
k=l Oxfk(O'(x'a) 'a) 

Since (OaZn)n>_O is uniformly bounded a n d f  n is uniformly expanding, 

[oxfn(On(.X, a), a)[ > g7.5(e) exp{n•7.5(e)), 

the first term tends uniformly to zero and the summation converges to 

o~ OafOeak_ 1 oO(x ,a) ,a)  
OaO(X,a) = lim OaOn(X,a) = -- Z Oxfk(O(x,a),a) , 

n---*+oo k = l  

which proves the claim. 

Finally, we prove that Oa is injective on 0 -1 (A*) for all a close to a*. Suppose 

x = Oa (x) = Oa (y) for some X r Y. 

Then there exists n > 0 such that Xn r Yn. Sincefff (x) E [Xn]a n [Yn]a, X is a preimage 

o f  q(a). By uniform continuity o f  0, we can choose a neighborhood of  a* such that 

Oa o O- 1 (A*) do not contain q(a), for all a E V*. In particular, x_ or y cannot be in 

O-I(A*). [] 

R e m a r k  V I I . 6  Let  ~a}aC.a be a C 2 one-parameter family of  unimodal maps 

and A* be afa.- invariant compact set. If  X : A* x V* ~ I is a smooth continuation 

o f  A*, then for all x E A* 

O J ' ( x , a * )  +~ Oaf(f~:-l(x,a *) 
lim - OaX(X,a*) = ~ Oxfk(x,a,)  n---++c~ Ox.fn(x,a *) 

k = l  
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Propos i t ion  V I I . 7  Let {fa}a~.4 be a C 2 one-parameter family of  unimodal 
maps, a* E .4 such that fa* satisfies the Misiurewicz condition and has no 
stable periodic point and A* = {Cn(a*) : n >_ 1}. l f  x : A* x V* ~ I is a smooth 
continuation o f  A* then,for every N >_ 1, 

lim Oafn(co'a*) 
n~+oo Oxfn-l(Cl,a *) 

1 dcN , 
= OxfN_l(cl,a.){-d-a-a ( a ) - -  OaX(cN(a*),a*)}. 

In particular, the sequence ( d cn(a*) )n> 0 is either uniformly bounded or grows 
exponentially. 

P r o o f  We apply Remark VII.6 to x = cm(a*) and use the identity 

Qn(a) = Qm(a) + 
1 Oaf n-N (CN, a) 

Oxf u-1 (cl, a) Oxfn-N(CN, a) " 

[] 

VII.B.  Gener ic i ty  

We fix f ,  a C 2 unimodal map satisfying the Misiurewicz condition and without 
stable periodic point, and denote by T ( a * , f , )  the subset of 7~(a*,f,) of  regular 
familiesf  = {fa}a~.4 which satisfies condition (T) at a*. 

P r o o f  o f  Propos i t ion  1.11 
Part one. We show that T(a* , f . )  is open in ~(a*, f . ) .  Indeed, by Lemma VII. l ,  

we have for any regular f a m i l y f  E 7~(a*,f.) 

+~  aaf(f,k(0), a*) 
a(a* , f )  = Z Df,  k(f,(O)) 

k=0 

By convergence of  the series )-']~k=0 IOf.kff*(0))1-1 [f ~ Q(a*,f)] is continuous. 

Part two. We show that T(a*, f , )  is dense in R(a*, f , ) .  L e t f  E R(a*,f , )  be such 
that Q(a*,f)  = 0 and assume there exists n > 0 such that fn+ l (0) E ( -1 ,  1) and 

f,~(0) is an isolated point in {f,k(0) : k > 0} (otherwise f2(0) = f 3 ( 0 )  and a* has to 

be an endpoint of  -4). We now construct a small perturbation g which agrees with 

f on {f,k(0) : k _> 0} \ {f,n (0)} x .4 and such that 0of(f,n (0), a*) # OagOC,n(O), a*). For 

example, we take 

--fn(o) a -- a* 
g ( x , a ) = f ( x , a ) + e r l f b (  x ~ )~b(-------~-) 
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(where  4~ : R ~ R is equa l  to 1 on  ( - 1 , 1 )  and equal  to 0 on  R \  [ - 2 , 2 ]  and  

~b : R --* R is equal  to the ident i ty  on  ( - 1 ,  1) and equal  to 0 on  R \ [ - 2 ,  2]). U s i n g  

once  more  L e m m a  VII.  1, we  ob ta in  

Oof ( fn (O) ,a  *) -- Oag( fn (O) ,a  *) 

Q(a*,  g) = Q(a*,  g)  - Q ( a * , f )  = D f n ( f . O )  ) r O. 

[] 
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