POSITIVE LYAPUNOV EXPONENT
FOR GENERIC ONE-PARAMETER FAMILIES
OF UNIMODAL MAPS

By
PH. THIEULLEN, C.TRESSER AND L.S. YOUNG*

Abstract. Let {fs}4c.4 be a C2 one-parameter family of non-flat unimodal
maps of an interval into itself and a* a parameter value such that

(a) f,+ satisfies the Misiurewicz Condition,

(b) f,+ satisfies a backward Collet-Eckmann-like condition,

(c) the partial derivatives with respect to x and a of f} (x), respectively at the
critical value and at @*, are comparable for large #.

Then a* is a Lebesgue density point of the set of parameter values a such that the
Lyapunov exponent of f; at the critical value is positive, and f; admits an invariant
probability measure absolutely continuous with respect to the Lebesgue measure.
We also show that given f,» satisfying (a) and (b), condition (c) is satisfied for an
open dense set of one-parameter families passing through fy«.

I. Notations and main results

In [BC2] (see also [BC1]) Benedicks and Carleson proved the following theorem:

Theorem 1.1. Letq, =1 -ax?,0<a <2, ~1<x< 1 be the real quadratic
family. Then there exist 0 < X\ < log?2 and a subset Q0 C [0,2] of positive Lebesgue
measure such that for all a € Qy:

(%) Vn>0 |Dgp(1)] > exp(nA).

Property (*) is useful for proving the existence of absolutely continuous invariant
measures. The goal of this paper is to put Theorem 1.1 into as general a context as
possible. Leaving precise statements for later, we prove

(1) the quadratic family {q,} above can be replaced by any one-parameter family
of C? unimodal maps passing through a Misiurewicz point a* and satisfying
certain tranversality conditions;

(2) every Misiurewicz point a* is a Lebesgue density point for the set of param-
eter values with property () for all generic one-parameter families passing
through f,.

* This work is partially supported by NSE.
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These results have been announced in [TTY]. Independently, M. Tsujii [Ts],
S. van Strien and W. de Melo [MS] have obtained similar results for parameters
a* satisfying different hypotheses. Our line of proof follows very closely that of
Benedicks and Carleson. In that sense a large part of this paper consists essentially
of a detailed exposition of their work. The final manuscript has been written by
the first author.

We now give a precise description of the one-parameter families we consider.

Definition 1.2. Let A be an interval of parameters. A regular family { f,}ac
is a C? one-parameter family of unimodal maps with non-flat critical point, that
is a family of maps [ f, : x — f,(x)] of the interval I = [—1, 1] which satisfy the
following conditions:

() [(x,a) = f,(x)] is C? with respect to (x, a),

(ii) co = O is the unique critical point of f,, f, is increasing on [—1,0) and
decreasing on (0, 1], £2(0) < 0 < £1(0) and f2(0) < £2(0), for all x € (—1,0),
Ja(x) > x,

(iii) there exist positive constants A}, A3, C* and 7 > 2 such that for all a € A and
forall (x,y) el

it < IDfa(x)] < A3lxT

Dfa(x) NE;

4 ol < e -1l

We denote by c,(a) the orbit of the critical point: c,(a) = f#(0) where f! =
fz0...0f, ntimes. We also use the notation f*(x, a) = f*(x) and write 9., 9, for the
derivatives with respect to x and a. A stable periodic point foraC!-map [f : I — I]
is a point x such that for some p > 1, fP(x) = x and |DfP(x)| < 1. We recall also
that a unimodal map [ f : I — ] is called S-unimodal or has negative Schwarzian
derivative if it satisfies the following condition:

Vx#£0 Sf(x) = —2\/If'(x)|( l;’x)l) = ];a(%) - %(J;/((;C)))Z <0.

We begin by a simplified version of our main result.

Theorem 1.3 (a special case) Let a* be a parameter value such that:

() for is a C3-unimodal map, with negative Schwarzian derivative andf,.(0) # 0,

(ii) there exists a constant N > 1 such that cy(a*) is a nonstable periodic point
x* of period p,

(iii) if [@ — x(a)] denotes a local smooth continuation of x* (i.e. x(a*) = x* and
f2(x(a)) = x(a) in a neighborhood of a*), then

£ (x~en)(a”) £0.
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Then a* is a Lebesgue density point of a set of parameters Ak » of positive Lebesgue
measure for some constants K, A such that for all a € Ak »:

(a) for all n > 0, |Df(c1(a))| > K exp(nA),

(b) f2 admits an invariant probability measure absolutely continuous with respect
to the Lebesgue measure.

We now introduce a new notion of perturbable parameter a* which extends the
three properties of Theorem 1.3:

Definition I.4. Let {f,}.,c 4 be a regular family. A parameter a* is said to be
perturbable, if one can find a constant * > 0 such that

(CEO0)* for every 6 € (0,¢*) and n > 1, if x € [ satisfies fi.(x) ¢ (—§6,6) and
. (x) € (—6,6) forall i =0,...,n— 1 then |Df}. (x)| > &¥,

M) foralln > 1, |c,(a*)| > €* and f,- has no stable periodic point,
(T) lim, 100 Baf"(co(a*),a*) /0™ (c1(a*),a*) E 0" #0.

Our first result, which is the main one, is the following theorem:

Theorem L5. Let {f,},c4 be a regular family. For every perturbable point
a*, there exist positive constants K, €, o and X such that a* is a Lebesgue density
point of the set Q of parameter values a which verify the four conditions: ‘

(NS) £, has no stable periodic point,
(ER)Vn>1 [f?(0)] > eexp(—na),
(CEN)Vn >0 |DfF(fa(0))] 2 Kexp(nd),

(CE2) for alln > 1, ifx € [-1,1] satisfies f*(x) # 0 for allk =0,...,n— 1 and
fi(x) =0, then |Df}(x)| > Kexp(nA).

The conditions (CE1) and (CE2) are referred to as the forward and backward
Collet—Eckmann conditions; the condition (ER) is what Benedicks and Carleson
call the exclusion rule. Before giving the main Corollary 1.7, we recall two
definitions.

A parameter a* is said to be a Lebesgue density point of a Borel set Q2 C A if

. |Qn(a* —¢e,a* +¢)|
lim =
e—0 |.Aﬂ (a* —¢,a* +E)|

’

* Note added in proof. For ¢3-unimodal maps f satisfying the Misiurewicz condition (M) and the
nonflatness condition f (0) # 0, condition (CEO) is actually a consequence of the Koebe Distortion
Principle [St;3.2] and the fact that E I Fi(In)| is uniformly bounded in » for any n-homterval I
[St;9.1]. Using moreover the fact that the length of |I| decreases exponentially uniformly [St;11.1], we
get to the conclusion: there exist positive constants €,K and X such that, if n > 1, x € [—1, 1] satisfies
S (x) € (—¢,¢€) and f*(x) £ 0forall k =0,1,...,n— 1, then |Df"(x)| > Ke™ .
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where |Q2| denotes the Lebesgue measure of the set .

A measure y, is said to be invariant with respect to f; if p.(f; 1(B)) = pa(B) for
every Borel set B C I, and u, is said to be absolutely continuous with respect to
the Lebesgue measure if p,(B) = 0 for every Lebesgue-negligible Borel set B.

Using a result of T. Nowicki and S. van Strien [NS1; Theorem A], we obtain the
celebrated Theorem of M. Jakobson [Jal] and [Ja2] (see also [BC1], [Ry] and for
the complex case [Re]).

Theorem 1.6 [NS1] Let [f : I — I] be a C* unimodal map with a unique non-flat
critical point. If f satisfies the conditions (NS), (CE1l) and (CE2), then f admits an
invariant probability measure absolutely continuous with respect to the Lebesgue
measure.

Corollary 1.7 [Jall, [Ja2] If {f,}ac 4 is a regular family, any perturbable point
is a Lebesgue density point of the set of parameter values a such that f, admits an
invariant probability measure absolutely continuous with respect to the Lebesgue
measure.

The definition of a perturbable point requires several remarks:

- The first condition (CEQ) is technical and is only used to prove Theorem 11.3
(essentially to prove that the exponent A we obtain in Theorem II.1 is independent
of the neighborhood the critical orbit avoids). We conjecture that this condition is
always satisfied for maps satisfying the Misiurewicz condition. If f,- happens to
have negative Schwarzian derivative, the condition is automatically true.

Lemma 1.8 [CE; Appendix A] Let [f : I — I] be a S-unimodal map satisfying
condition (M). There exists a positive constant €* such that foralln > 1 andx € I, if
x satifies f*(x) € (—€*,e*) andf*(x) # Oforallk =0,...,n—1, then |Df"(x)| > €*.

- The second condition (M) is referred to as the Misiurewicz condition and says
that the critical point is not recurrent. The fact that f,« do not possess stable
periodic point (condition (NS)) ensures exponential growth for any sufficiently
long orbits staying outside any neighborhood of the critical point (see Theorem
11.1). This condition generalizes the Strong Misiurewicz Condition where an iterate
of the critical point reaches a nonstable periodic point, (i.e. cy(a*) = x(a*) with
2 (x(a)) = x(a) and |Dff(x(a))| > 1 for all a in a neighborhood of a*).

- The third condition (T) is a kind of transversality condition. It shows in which
way the one-parameter family has to cross f,-. It should be noticed that condition
(M) ensures the existence of the limit in (T) as is explained in Lemma VII.1. In
the particular case where f,- satisfies the Strong Misiurewicz Condition, condition
(T) is equivalent to the transversality of the two curves [a — cy(a)] and [a — x(a)]
(see Section VII.1 for a proof).
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Proposition 1.9 [Re], [Ru], [Ry] Iff,- satisfies the Strong Misiurewicz condi-
tion then

0=, L (8010

For a map f,~ which satisfies the more general Misiurewicz condition (M), the
transversality condition is equivalent to the fact that {%}(a*)}nzl is not bounded
(see Proposition VIL7). In the particular case of the quadratic family g,(x) =
1 — ax?, one can show [Do] that any parameter satisfying the Strong Misiurewicz
condition also satisfies the transversality condition (T) (for a* = 2, the computation
shows Q(a*) = —1/3), and consequently is a perturbable point ({gs}o<as<2 is a
regular family of S-unimodal maps). As the referee suggested, the transversality
condition could be formulated as a nontangency of higher order in the case of
higher smoothness.

The fact that the transversality condition can be checked after a finite number
of iterations, enables us to prove that condition (T) is generic among all regular
families passing through a Misiurewicz point. We first define the topology of such
families.

Definition .10 Let ¢* € A and f* be a C*> unimodal map verifying the
conditions (M), (NS) and (CE0Q). We denote by R(a*,f*) the set of regular families
{ fa}aca such that f,. = f*. We consider R(a*,f*) as a subset of the space of
continuous maps from A into the space C%(/) and we define on R(a*,f*) the uniform

C*-norm: for each f = { falaca: | f I= sUPe s rer{| fa ()| + [Dfa(x)] + ID*fal(x)]}.
Our second result is the following proposition:

Proposition L.11 The subset of regular families which satisfy condition (T) at
the point a* is dense and open in R{a*,f*).

We would like to thank D. Gérard for a careful reading of the manuscript.

II. Strategy of the proof

We choose once and for all a regular family {f,},c4 and a perturbable point
a* € A. In order to simplify notation, we denote for alln > 0 and a € A

cn(a) =£7(0) and  d,(a) = Dfj(ci(a)).

Before describing in detail the strategy of the proof, we summarize the main
ideas in a nontechnical way. We start by choosing a small interval € containing
a* and consider all the curves {c, : Qp — I}. If ¢,(a) = ¢y for some parameter a,



126 PH. THIEULLEN, C. TRESSER AND L. S. YOUNG

the critical point is a super attractive periodic point and we have to eliminate this
parameter. Actually, we have to exclude also a small neighborhood V, about all
these parameters a; the size of V, will depend on dc,/da over V,,. The transversality
condition shows that dc,/da has the same magnitude as d,,.1(a). In order to leave
out some subset of Qp of positive measure in the process of elimination, we show
that d,(a) follows an exponential growth. Actually, polynomial growth would be
enough (and easier to prove) to obtain Corollary 1.7: it would be enough to use
the Bound Return Theorem I1.7. To obtain exponential growth, we study more
carefully the statistic of the sequence {c,},>1 and show that a subsequence {cr, }»>1
behaves like a Markov chain.

We now return to a more precise formulation. As f,- is a C? unimodal map
without stable periodic point, f,- possesses a strongly hyperbolic dynamics outside
any neighborhood of the critical point. More precisely, M. Misiurewicz, R. Mafé
and essentially S. van Strien and W. de Melo have established

Theorem II.1 [Mi], [Mail], [St], [Me; Theorem II1.5.1] Let [f : I — I] be
a C? unimodal map without stable periodic point. For every ¢ > O there exist
positive constants \y.1(¢) and K».1(e) such that, for every x € I and n > 1 satisfying

{f@), . )} N [—e,e] =0,
IDf"(x)| > K».1 exp(nra.1).

Using the above theorem and the fact that f,,- satisfies the Misiurewicz condition
(M), we can find positive constants ¢*, K* and A* such that foralln > 1

ldp(a®)| > K*exp(nX*) and |[c,(a*)| > e*.

In order to explain why a* is a Lebesgue density point, we introduce the
following notation.

Notation I1.2. For every neighborhood V of a* and é € (0, 1), we denote by
N2(6,V) the smallest integer N such that cy(V) N [~36, 58] # 0. By continuity
of the family {fs}sc4, we obtain limy_, ;-3 N22(6,V) = +oo. We also define
N22(V) =Naa(e*, V).

Our main goal is to construct by induction a decreasing sequence of subsets
{Q%}x>0 such that Qp is any interval containing a* sufficiently small and for all
k>1andae Q

(CEl — k) VO <i< 2Ny (Q) |dila)] > K* exp(i)),
(ER — k) V1 <i<2Nyn(Q) |ci(a@)| > e* exp(—ia),
|t [/1%] = 1 — exp{—2*""aN22(Q)},



POSITIVE LYAPUNOV EXPONENT 127

where X € (0,\*) and « € (0, )\) are constants which will be determined later. If
the orbit has accumulated the expansion |d,—;(a)| > K*exp((n — 1})) at time n,
the exclusion rule (ER) allows us to keep some expansion at time #n + 1:

du(@)| = dn-1(@)| x IDfa(ca(@)] 2 Aflds-1(@)]  [en(@)|"™" 2 K37,

for some constant K’ > 0. We stress that all the constants chosen in the course
of our proof will depend only on f,~. Following [BC1] and [BC2], we divide our
proof into four main steps, which we now describe. Our proof for the last step
differs slightly from the one in [BC2].

In the first step (see Section III. Perturbed Misiurewicz Theorem), we show that
the orbit of any point x recovers an exponent A, 3 € (0,\*) independent of § as
long as its orbit stays outside the neighborhood [— %5, %6] of cp. More precisely, we
prove:

Theorem IL.3 Let {f,},c4 be a regular family and a* € A be a parameter
satisfying (M) and (CEQ). There exist positive constants 633, A».3, K».3 and for all
§ € (0, 6,3) a neighborhood V, 3(6) of a* and a constant K, 3(6) such that, ifx € I,
a € Vy3(68), n > 1and {x,fa(x),....f271(x)} N (—16,16) = 0, then:

@ IDffx)} > Ka3(8)exp(nAas),
(i) iff(x) € [~623,623], then |Df7 (x)| = Kz3exp(niz3),
(i) if (x,f2(x)) € [—82.3,62.3], then |DfF(x)| > exp(nizs).

From now on we fix A € (0, \23), a € (0,a23()\)) and A= %(/\ + X23) + 10ar,
where a 3(A) = Amin(A, A2.3 — A)/1007A* and A* = log sup, , |Dfa(x)[.

Remark I1.4 If f,. satisfies (M), Theorem IL.3 is actually equivalent to the
condition (CEO). ii) is a C2 version of a result already proved in [CE2; Appendix
Al.

In the second step (see Section IV. Bound Return Theorem), we prove a version
(Theorem I1.7) of Benedicks and Carleson’s Bound Return Theorem which is more
appropriate to our purpose. When the orbit of the critical point {c;(a)}/_, returns tc
itself, c,(a) is close enough to ¢y so that the two orbits {c,+(a)}i—, and {ci(a)}o_|
become bound during a period p, where p is defined so that the distortion of the
maps f*, k = 0,...,p — 1, stays bounded. If c,(a) and co are not too close, the
period p is equal to a small proportion of n and the orbit {c,+(a)};_, captures part
of its past exponent:

)\—27'01).

T

IDfE(ca(@))] = exp (p
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In order to define a bound period p globally for any a € w belonging to some
interval of parameters w, we begin to partition / into a countable number of
subintervals:

Definition II.5 Let M = {y;};>0 be the sequence defined by induction by
o =0, =2and foralli > 1

1 _ exp(—pi) — exp(—pi+1)
i exp{—pi+1)

Let I(1;) denote the interval (exp(—pu;;1), exp(—p;)] and I(—u;) the symmetric of

I(u;) about the origin.

It may happen that, for some w and some integer 7, c,(w) is not equal to a union

of intervals /(y;). We define therefore a notion of state..

Definition I1.6 A state is any interval I(y;) which satisfies
F(ui) € I(pi) T (pim1) U T () U T (i),

and by the same convention: /(—u;) = —I(u;).

Theorem IL.7 (Bound Return Theorem) Let {f,},ca be a regular family,
A €(0,223) and a € (0,a2.3(X)). There exist constants 657 = exp(—Az7) € (0,1),
D>47 > 1 and a neighborhood V»7 of a* such that, if w C V7 is an interval
satisfying:

(1) cp(w) CI(r) for some |rl € M and Ay 7 < |r| < na,

(i) Va € wVl < k < njafa)l > c*exp(—ka) and |di_i(a)] >
K*exp(k — 1))\/10,

(i) Vaew V1<k<n/10 |di(a)] > K*exp(k)),
then there exists an integer p = p(n,r,w) such that for all (a,s,t) € w and w' C w:
@) (1/3A%)lr| < p < (27/N)Ir],
(b) [DfZ(ca(@))] > exp{p(A —270a)/7},
(©) V1 <k<p |Df¥(cn(a))| > exp(—Tna + k),
@ V1i<k<p+n |cla)l > 2exp(—|r]) > e* exp(—ka),
© Y520 1(Cask(s) = Catk®))/Cnia(t)] < Dasllcals) — cat))/en(®)],
() |cnp(W)l/len(w)] = exp(=3ep)/|I(r)],

(g) foralln <k <n+p, ifc(w)n [—%52.7, %62,7] # 0, then ci(w) C I(r') for
some |r'| > Ay7.
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In future, we will call p(n, r,w) the bound period associated to (n,r,w). If we
combine Theorems I1.3 and II.7, we obtain a simple criterion for the non-existence
of stable periodic point and the backward Collet-Eckman condition:

Corollary IL8 Let {f,},c 4 be a regular family, a* € A a parameter such that
fa» satisfies the conditions (M) and (CEQ), X € (0,),.3) and o € (0, a3.3(\)). There
exists a neighborhood V, g of a* such that, if a € V, 3 and verifies:

(CE) VE>1 |e(a)l
(CE1) Vk>0 |di(a)l

> e* exp(—ka),
> K*exp(k)),

thenforallx€landn> 1:

() iff¥(x) #0forallk > 1, then limsup,_,, . (1/n)log|Df}(x)| > A/27,
(ii) iff¥(x) #0for 0 < k < nandf(x) =0, then |Df"(x)| > K* exp(n)/27).

In the third step (see Section V. Distortion of the tip), we show that the distortion
of the map [a@ — c,(a)] is bounded from above uniformly with respect to z on any
adapted interval w.

Definition I1.9. Let A € M, § = exp(—A) and w C A be an interval. We
say that w is (n, A)-adapted if for all 1 < k < n, cx(w) C I(r;) for some |ry| > A,
|r¢] € M whenever ¢ (w) N [—%6, 18] # 0 and if c,(w) C [-26,24].

If w is an interval of parameters such that c, is injective on w and ¢,(w) contains
the critical point cp, the proportion of parameters which are too close to ¢ at time
n depends on the distortion of ¢, on w. The following lemma shows that, under the
transversality condition (T), the velocity of the tip d%c,,(a) and the exponent of the
critical orbit have the same magnitude. We choose, once for all, constants Q] and
Q3 such that:

01 <0 ¥ fim dcol@), @)
n—+oo O f "~ 1(c1(a*),a*)

<0

Lemma I1.10 Let A > 0. There exist N2.1o(X) and a neighborhood V3 1p(\)
of a* such that for every n > Ny 19 and a € V319, if |di(a)] > K* exp(k)) for all
0 <k < nthen . J

* Cn *
l—m—m — < .
Ql = |dn—l(a) da (a)l = Q2
Using properties (e), () and (g) of Theorem I1.7, we can prove our main distortion
theorem.

Theorem I1.11 (Distortion Theorem) Let A € (0,)\;3) and a € (0,a23())).
There exist 6511 € (0,1), Da1 > 1 and for every § = exp(—A) € (0,62.11) a
neighborhood V.11(6) of a* such that, if n > 1 and w C V211 is an interval
satisfying
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(i) Vaew V1<k<n |cila)l>e*exp(—ka) and |di(a)| > K*exp(k)),
(i) wis (n, A)-adapted,
then for every (s,t) € w:

dc, dcy,
E(S)/ Ea—(t) < Dan.

Finally in step four (see Section VI. A Markov-like dynamics), we prove our
main induction step: Theorem L.5 is a direct consequence of Corollary I1.8 and the
following theorem:

Theorem I1.12 (induction step) Let A € (0, \2.3) and o € (0,a23())). There
exist §3.12 € (0, 1) and for all § € (0, 62.12) a neighborhood V».12(8) of a* such that,
ifw C V2.12(8) is an interval satisfying:

(1) cn(w) = I(r) for some |r| € Mand A < |r| < na,

(ii)) Vaew V1<i<n |c(a)| > e*exp(—ia)and |di—i1(a)| > K*exp(i— 1)),

(iii) Va € w |dn_1(a)| > exp(n — 1)A,

(iv) wis (n,A)-adapted,
then w contains a disjoint union of intervals w' and for each of these ', one can
find n' >2n, A < || < an’ such that (i), (ii), (iii) and (iv) are also verified by
W', ', r' and such that | Uw'| > Jw|{]1 — exp(—na/2)}.

The proof of Theorem I1.12 requires four main parts.

In the first part (see section VI.A), we show that cy(€) N [—4,4] is a union
of states I(r) where |[r| > A = —logé and N = N,2(6,€). The remaining part
en(f0) N [—1,—6) or cn () N (8, 1] is either included in one of the previous states
or is equal to one of the intervals J(+A), where J(y;) is any interval verifying
I(pi-1) € J(pi) C (exp(—pi), 1] (J(—pi) = —J (). Such intervals will be called
prestates in the sequel.

In the second part (see section VI.B and VI.C), we assume that, for some interval
w and some integer n > 1, ¢,(w) is either equal to a prestate J(+A), or to one of
the states /(r) where |r| > A.

If c,(w) = J(£A), we call free period q, the smallest integer ¢ such that ¢, 4(w)
meets [—%6, 16]. We then show that the length of c,4(w) is at least 36 and that, in
particular, ¢,4(w) contains again at least one of the two prestates J(+A).

If ¢,(w) = I(r) for some |r| > A, we denote by py the bounded period associated
to (n,r,w) and by go the first time such that Cnpo+q(w) N [—16, 36] # 0. At time
ni1 = n+ po + qo, it may happen that c,, (w) is included into some I(r1), |r1| > A;
qo is then called a partially free period. We begin again the process: we denote by
p1 the bound period associated to (n;,r;,w) which may be followed by a partially
free period g;. Let n; = n; + p1 + g1. We stop the process until ¢, (w) contains
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a state I(r) with |r| > A. We call essential bound period p associated to (n, r,'w),
the total sum of bound and partialy free periods:

PZ(PO+CIO)+"'+(Pu—1+61u-1)+Pu-

We show that p satisfies all the properties stated in Theorem I1.7 and we notice
that, by construction, ¢,1p+4(w) contains at least one of the states I(r), || > A
and possibly one of the prestates J(£A), where g is the smallest integer such that
Cntp+q(w) meets [—16, 16].

In the third part (see section VL.D), we choose an interval w which satisfies the
assertions (i)... (iv) of Theorem II.12. We construct by induction on 0 < k < n
an increasing sequence of partitions of w. At stage k, w is a disjoint union of
intervals of the form w(2.% ) where to = n, ro = r, 19 < --- < fr and |r;| > A. By
definition, w(%) = w and each v’ = w(2"%) is a disjoint union of intervals of the
form w" = w(D.%).

The induction process stops as soon as the exclusion rule is violated or the time
t exceeds 2n. If |ry| > aty or t; > 2n then ryyy = g, i1 = f and w' =W If
|re| < aty and # < 2n then #41 and i are defined in the following way. Let p;
be the essential bound return associated to (#,ry,w’), where o’ = w(%.% ) and ¢
the smallest integer such that ¢4y, +4(w’) N [—36, $6] # 0.

Either ¢, 4p,+¢(w’) is equal to a union of states I(r), |[r| > A, then g, = g,
Lyy1 =  + pr + q and ' is equal to a disjoint union of intervals W' =W (rg)
corresponding to the part of w’ which is mapped by ¢y, p,+4 ONto I(rr41).

OF ¢y 4p+4(w') contains also one of the prestates J(£A). Wenote £, | = ty+pi+
g, by W' (ri41) the part of w’ which is mapped by ¢y, 4p,+q4 0nto I(rz11) and by w'(£),
the part of w’ mapped onto J(+A). Let g(+) be the free period associated to w'(+)
and (%) = t;,, + g(%). We already know from part two that c,;H(i)(w’(:l:))
contains again states and prestates. We note by w’(%)(ri41) the part of w'(+)
mapped by Cy, (+) ONto I(rr41) and by ’(£, £) the part mapped onto J(+A). Let
q(=, £) be the free period associated tow’ (£, £) and #; | | (+, +) = £ (£) +q(£, )
and so on.

We continue this process and obtain by induction a partition of «’ into a disjoint
union of intervals of the formw” = w/'(%, ..., £)(re1) Where fiy1 = 1 (£, ..., £).
By extention, we call also gx = ¢ + g(£) + - -- + g(+, ..., ) a free period; during
such a period, the orbit of w” is disjoint from [—16, 34].

We next prove that each o' = w(} %) is (t, A)-adapted. We already noticed
that foreach 1 < i < k: ¢, (') C I(r;) and ¢, (w') = I(r;). Given such interval o', it
may happen that the state /(r¢+1) is reached at infinitely many distinct times #¢1;
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the main result of this part is the following estimate:

Io, bkt )l

I T0s---s7
Z 30, ,::3| < [[(riq1) exp(2A + dapy) .

tet1 "0; a1

In the fourth part (see section VI.E), we begin to exclude all the intervals w(;%"" )
which do not satisfy the exclusion rule |r,| > at,, and we denote by «’ the union
of the remaining intervals. We then prove

w\w 1 o
| |ZJ| < e (~n3).

Let us denote by P the normalized Lebesgue measure on w’. Benedicks and
Carleson’s main idea in their second paper [BC2] is to consider {c,},>1 as a
sequence of random variables on w’. We define therefore {T;}7_, {Rk};_¢: {Pi}i=0
and S by their values on each w(j"""7): Ti(a) = t, Ri(a) = r, Pu(a) = pi
and S(a) = max{s = 0,...,n : t; < 2n}. We define also {Q}{_, as usual by
T,=P k + Ok )

Let A = 100A. If A < |R;| < A, we shall say that the corresponding essential
bound period P; is short and for |R;| > A, that the period is long. During a free
period Qy, the orbit gains an exponent ); 3 provided that w C V; 3(6) and the same
exponent during a short bound period if we choose in addition w C V53(6). On
the other hand, the exponent during a long period depends on the exponent of
the past orbit and is equal to (A — 27a)/7 (Theorem I1.7). We then show that the
contribution of short bound periods is such that we recover an exponent A at time
Ts.; and an exponent A during the period [To, Ts+1]:

As—Ay 1 o
(ZP 1(|R|>A) > /\23 ) < —exp(,n§)7
where 1z denotes the characteristic function of a set B.

IT1. Perturbed Misiurewicz Theorem

The purpose of this section is to prove Theorem I1.3. We start by recalling some
notations; we then prove a “non-perturbed bound return lemma”, in the sense of
Benedicks and Carleson, for regular maps; and finally we prove Theorem I1.3 for
regular families.

We call a regular map f : I — I, any C? unimodal map with a unique critical
point ¢y = O satisfying the non-flatness condition:

x
S 11} :

At < Iﬁ/l‘r( BI <A l%' gexp{c*
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We recall also that f satisfies the Misiurewicz condition (M) if
Ae* >0 Vn21l |cql 2 €.

For such maps, Theorem I1.1 tells us that the orbit of the critical point possesses
strong hyperbolic properties; in particular, there exist constants K* > 0 and A* > 0
such that foralln > landx e/

{xf0,....f @y n (= 5,25];é(2) = |[Df*(x)] > K*exp(n)*).

We are now ready to state and prove a bound return lemma for regular maps
satisfying the Misiurewicz condition. This lemma has been used previously by
Collet-Eckmann ([CE; Appendix A]). If x is a given point close enough to the
critical point, as long as the distance between x and ¢y stays bounded, x captures
the hyperbolicity of cy: in particular, after the bound period p ~ log(1/|x|), the
derivative of f? at x has recovered |[DfP(x)| ~ |DfP~1(c1)|'/" ~ [f7((0,x))|/|(0,x)|.

Lemma III.1 Let f : I — I be a regular map satisfying the Misiurewicz
condition. There exist 631 € (0,1), D31 > 1 and K31 € (0, 1) such that for all
0 < |x| < &3.1, there exists an integer p = ps3.1(x) which verifies the following
properties:

(i) Vj=0,1,....p—1 |F(0,x)| < ie* and |fP(0,x)| > i,
(i) (7/2A%)log(1/lx]) < p < (27/27)log(1/1x]),

(iii) K31|DfP~"(en)|'/™ < IDfP(x)] < K3 IDFP~"(en)l /7,

(iv) K3.1|DfP=(c)V/™ < | fP(0,%)| /1(0,x)] < K3 IDfFP~ (en)|V/™,

V) Vj=0,1,....,p=1 VY(y,2)€(0,x) [DF(f()| <Ds.1IDF(f(2))I.

Proof The first property is actually a definition of p. We notice in particular
that f/ is monotone on (0, x), since f/~!(0, x) never contains the critical point cy and
Dfi(x) #0forallj=1,...,p.

We start by proving that f/ has bounded distortion on f(0,x) for all
j=0,1,...,p — 1. The second non-flatness condition implies

Y(y,z) € (0,x) ID)§1 i } < exp {C* ‘fl y) fl(z)’},
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and Theorem II.1 implies that, for all ¢ € fi(y,z), |DfP~(¢)| > K* exp{(p — i)A*}.
In particular, we obtain

f(2) ,
=22 [f(y) - f(2) =/f() \DfP (1) de
"y

> K'|fi(y) ~f(2) exp{(p — D)A"}
and we can choose D3 | = exp{(2C* / e*K*)(1 —exp—-A*)"'}.

We use now this distortion result to compare the derivative of f7~! at f(0) and at
f(@),t € (0,x) and the non-flatness condition to estimate the “bad” derivative Df(¢):

(1) AFle7 D3 IDfP~ (en)] < IDFP(1)] < A3lt|™ ' D3a|DfP~ (en)l.-
The length | f7((0,x))| = f(O,x) |DfP(t)| dt is computed in the same manner:

A <AD31

P Hen)l-d™ < 1f7(0, )] IDFP~ el 12"

On the other hand, J¢* < | f7(0,x)| < |Df|4e*, and we obtain

TE* _ D3 1 |Df |e*
2 < |Dfr—! Jr < —=—

In order to get rid of constants, we choose 3.1 such that é3, < (re* /2A§D3,1)2/ T
and 631 < (2431/7D3.1|Df|e*)"/", which proves assertion (ii):

exp(pA”) < IDfPH(cr)| S exp(pA*) and x| 772 <D (er)] < 7P

If we combine the inequalities (1) and (2), we obtain

A} Te* (r=1)/T

p—1 Y7 < |DfP
polampy,] Pl <iprw)
D3 1|Df |e* ] (r=1)/7

< A3D3, - IDfP=Y(er)| 7
2A1

which proves assertion (iii) if we choose K3 ; such that

*

K31 £

i ](T_l)/T and K;

h [ TE >A§D3_1 [TD:;.IIDfl&‘*:l(T—l)/T
D31 L2A5D3 - '

247

-
Assertion (iv) is proven in the same manner as (iii) using

glxr—l < lfl((((g;;)l)l < 2, ,-r 1



POSITIVE LYAPUNOV EXPONENT 135

D3UDF (o) < % < D31 IDfP (1))

O

We consider now a regular family {f, },c 4 and a* a parameter in . A. We assume
in the sequel of this section that f,- satisfies the Misiurewicz condition, the non-
flatness condition and the technical Collet—-Eckmann condition. We apply Theorem
I1.1 for f,.: for every ¢ > O there exist constants K3 1(¢) and A, (&) such that, for
allxelandn > 1,

{tfar (), ST YN (me,) =0 = DA ()] 2 Kaa(e) expi{ndaa(e)} -

We want to show that f, satisfies a stronger hyperbolic condition, where the
above constants K 1(¢) and X, 1(¢) can be chosen independently of ¢ and ¢ in a
neighborhood of a*.

Proof of Theorem I1.3 Let § < 6,3; 65,3 is a constant we shall define later.
For any point x € I whose orbit {x,f;(x),...,f7~'(x)} is disjoint from [-15, 16],
either the orbit is already disjoint from (-8 3, §2.3), in which case we shall choose
K33 =K3.1(623), A2.3 = A2.1(62.3), or we can define a sequence of increasing times

=0<H< <t 1 <t;<n=tyy,
where ¢, is the first time k& > 0 such that f*(x) € (—6,.3,623), t2 is the second time
k > t; such that f¥(x) € (=623, 623) and so forth. By the chain rule, the derivative
atx of f7 is equal to
Dfy(x) = [[ Dfa (£ (%)
k=0
We now notice that both Lemma III.1 and Theorem II.1, applied to f,-, can be

perturbed with respect to a: if a is close enough to a*, we can choose the constants
2.1, K2.1, D3.1 and K31 uniformly with respect to a. We choose once and for all

(),

.1
8>3 = min (—E*,53.1, 3

2 2
my3 = lo ,
2 23 i10623/2) B K31(623/2)

A2.3 = min (%, %Am (%52.3), ;12—3 log2) .

We choose V-, 3(8) sufficiently close to a* so that for all § < |y|] < é,3 and
ac V2.3(5):

(i) there exists p = p31(y,a) > 1 such that {£,(y),....f2  ()}N(=623,603) = 0
and |Df7 (y)| > (4/K*) exp(pAz2.3),
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(i) if for some ¢ > 1, {0, £a(¥),-...f§ ')} N (=623,823) = @ and fI(y) €
(—02.3,62.3) then: |DfF (y)| > (K*/4) exp(g)z.3).

The proof of the first assertion comes from the fact that, in Lemma IIL1, p =
p3.1(y,a*) for any é < |y] < 8,3, goes to infinity when &3 goes to O but is bounded
from above by a constant depending on é:

T 1 27 1
— log— <p < <log-—
7As 085S sp=loey,

*

IDEO)] > SIDFE > K5 exp () 2 o explpas).

For the proof of the second assertion, we decompose ¢ into periods of length
my 3 (except maybe the last one). During a period of length m 3

DAz 0] 2 DA )] > Ko (22) exp {masren (22) )

> exp{ m23/\21(5§3)} .

During a period of length r less than m5 3, we use the condition (CEQ)

1 1
DN 2 5ID7.0) 2 5K* > 1K exp(mashas) 2 7K* exp(rhzs)

and the fact that V; 3(6) is chosen sufficiently close to a* such that, forall a € V; 3(6),
0 < k < my3 and y satisfying {y,£a(y), ... fX()} N (=623, 62.3) = 0,

[FO)~fE0) < 5625 and IDFEG)| > 3 IDFE D))

Using these two assertions, we can finish the proof. During the period #y| — #,
1 > k > s—1, the point y = f3*(x) follows the orbit of the critical point
{co(a@*),...,cp—1(a*)} and then stays outside (—&23,6,3) during a period g
until it enters at time #;4; the interval (—62.3,623): t+1 ~ & = pr + gx and

DT (faH0)] 2 exp{ (st — ti)Aas} -

During the last period ¢, — £s, either ff“ (x) € (=623, 62.3) and we can choose
K3 = 1K* if x ¢ (=623,603) and K3 = 1 if x € (—623,62.3), or f;*(x) is still
outside (—83.3,82.3). Letus set y = fs(x). If p; < t541 ~ &5, then

1= is 4K - 6 . 2
D) 2 22D x4~ )20)
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and we can choose K 3 = 4K5 1(62.3/2)/K*. If p > t,,1 — t;, using property (v) of
Lemma III.1, we have

DA )] = DO IDE ™ (O] > 567" exp{(tss1 — 1)hs.1)
3.1

and we can choose K 3(6) = A1677/263.1. 0

Remark II1.2 The exponent A of the main Theorem [.4 may be as close as
we want to Xz 3. Unfortunately, A, 3 depends on the constants K3 ;(¢) and X (g)
of Theorem II.1 which are not easily computable. We could also get rid of the
condition (CEQ) by allowing K3 1(¢) to depend on ¢ in the following way:

m IOngll(&‘) _
e—0 lOg £

IV. Bound Return Theorem

In this section, we prove Theorem II.7 which is the main step in the proof in
Benedicks—Carleson’s Theorem L.1. It says roughly that, if the orbit of the critical
point is hyperbolic and does not come too fast to itself, uniformly on some interval
w of parameters,

V1<k<n Vacw |cla)]>e*e™ and |di_i(a)| > K e D>,

the orbit recovers some exponential growth, approximately equal to — log|c,{a)|,
after a period p called the bound period:

Vacw |Dff(en(@)l 2 expp(222T).

IV.A. Intermediate lemmas

We start by stating and proving several lemmas on the distortion of f(x) with
respect to both x and a. We define, for all n, ||8.f"|| = sup, , [8of"(x,a)| and
8™ || = sup, 4y |Of"(x, a)|. We define also the quotient

0n(a) = |8af"(co, )| /8" (c1,a)!.

Proof of Lemma II.10 For every (x,a) € I x A, we have by definition
frl(x,a) = f(f*(x,a),a). If we differentiate this equality with respect to x and a,
we get

A f"(c1(a),a) = 8:f (cu(@),a)df™ (c1(a),a),
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8" (co,a) = Osf (ca(a), @)0af"(c0, @) + Buf (cnla), a).

In particular, we obtain a recurrence formula for Q,,:

Baf (cn(a), a)

Qn-H(a) = Qn(a) + 8xf”(6‘1(d),a) .

If n > N by induction we get

n—1
laFl_ _lafle™ _
0 = O < ) i@ al < Re(T- e R

We first choose N = N 1 large enough such that O} < |Own(a*)| — Rw, |Qn(a*)| +
Ry < @3 and then choose a neighborhood V1o about a* such that these two
inequalities still hold for all a € V> 10. )

Lemma IV.1 For every n > 1 we have the uniform bound

J0"ll  _llad]
1T = ol -1

Proof We use once more the formula 8,f"*!(x,a) = 0,f(xn,a)3,f"(x,a) +
Oqf (xy,a) where x,, = f"(x,a). By induction we get

O (5,0) = 3 Ouf (3, )OS (3141, ).

k=0

]

Corollary IV.2 With the same notations as in Lemma I1.10, for allw C V3 1o())
and for all n > m > N3 10()),

en > SLinf (D" enla) s € ).

Proof
|en(w)] =/ |0af" (o, 5)|ds > Qi’/ IDf7 = (c1(s))lds,

D" (e1) =Dfr ™ (cn)Df (c1)
lom(w)] = / 0" (co,)lds < 03 [ IDfreo)lds.
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Lemma IV.3 Let (o, A) be such that a < A* /1. There exist constants N43 > 1,
D43 > 1 and a neighborhood V43 of a* such that, if w C V43, n > N3, 1 <p <
nA/20A* and x € I satisfy,

() YVacwV0<k<n |di(a)] > K*exp(kr/10),

() VaewVI<k<p |ffx)|>3e(1 - e *)exp(—ka),
then, for all s,t € w, |Dff (x)| < D43|DfF (x)].

Proof Using the non-flatness condition, we compute the distortion as usual:

Df? (x) = |2 \”“‘ DA(f4(x) |
Dff )|~ 1D LA I DA(fE()

CXPZ{C*Ika) —fi(x )| 621 IS—t|}

kl FOL AT
Moreover, using the previous Lemma IV.1 and the hypothesis (i) on w, we get
- 191y priy s
|5 (x) = ()|—|[axf|| 011" Is — 1,

12 |en(w)| = / |8af"(co, 5)| ds > QT/ |dn-1(s)| ds > Q1K™ |w|exp{(n —1)A/10} .

The total distortion is therefore bounded by

228 < B exp {0 S e {btrat 47} < S { iy =1 -

where C" = {(1 — e~ *)C"[|8,f[|/(10:f]] = 1) + [|0%f lle* /Aje™" }/ QiK™ is a uniform
constant. By hypothesis on o and p, the expression on the right hand side is
bounded uniformly in n by a constant depending only on a. a

IV.B. Proof of Theorem I11.7

Step 1. Definition of the bound period

To simplify the notations, we assume that r > 0, that is c,(w) C (0,1]. We
denote by (a,b) = w (or (b,a) = w) the endpoints of w such that 0 < ¢,(b) < c,(a).
We define the bound period p = p(n,r,w), in a unique way, by the following
inequalities:

VO<k<p—-1 |cp(a)— cur(a)| < " exp(—2ka),

lep(@) — crip(a)] = €™ exp(—2pa).
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In particular, £¥(0, c,(a)) never intersects co whenever k < n.

Step 2. Distortion of f¥ on (cy,cny1)
We show the existence of a constant D’ () such that

DEE)|
Do) D@

for every x,y € (co,cn(a)), 0 < k < p — 1. Let us call x; = f¥(x); then

% oy — v
ool == e X5}

Since f¥ is strictly monotone on (co, cx(a)),
i — yi| < lci(a) — cnti(a)| < €" exp(—2ia).
We get, by definition of p,
Iyl > (1 - exp(—ia)) exp(—ia) > *(1 — e~ exp(~ia)

and the first constant of distortion: D'(a) = exp{C*/(1 — exp(—a))?*}.

Step 3. Bound from above of p
Using the fact that ff ~! behaves almost linearly on (c1, Cpy1), We get

12 |72(en) ~2(eo)l = [ IDfEClde > grbsipen] [t e,

* J7

12 Gl exp{(o - DA}

(provided that p < n/10). Since c,(w) belongs to some I(r), |ca(a)| > §exp(-r)
and exp(p)) < 47e*rD'(a)e’™ JATK*. We get rid of the constant by choosing Aj 7
sufficiently big so that T4"e*D’(a)/A;K* is smaller than exp(7A; 7). We still have
to prove that p satisfies the induction hypothesis p < n/10. By the above inequality
p < (27/X)r and, by hypothesis, e*e " < |c,(a)| < 2e¢". If we choose A3 7 big
enough, 2/e* < exp(%Azq), we get r < 2na and p < (4ra/A)n < n/10, by the
choice of a < A/4071.

Step 4. Bound from below of p
We use the same inequalities but in reverse order. By definition of p

| /2 (cn) —f2(0)] 2 €™ exp(=2pa) .
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On the other hand, we bound uniformly Df,{x) by ||8,f|| and we get
o A; T *
IDf (x)] dx < —=|ea|” exp(pA™) .
0 T

Once more, we use the fact that c,(a) belongs to I{r): |c,(a)| < 2r~", and in order
to get rid of the constant, we choose A 7 such that A327 /e*T < exp(Az.7(7 — 1)).
Finally, combining these three inequalities, we obtain r < p(A* + 2a) < 3pA*.

Step 5. Exclusion rule during the bound period
We want to show that, foralls e wand 1 < k < p,

[cnal(s)] 2 €* exp{-a(n+k)}.

As f* is monotone on (0, ¢,), | f¥(cn(s))| > €*(1 —e~*)e*, forevery s € w. Using
Lemmas IV.1 and I'V.2, we obtain

£ enls)) ~f2(ento)] < T expli) s~

1 n
—al < — ).
ls—al < oK e"p( 10A)
We choose V, 7 sufficiently small such that (1 —e~*)e=*> > 2¢~(*+me and ||9,f|| <
OiK*(||0f || — 1)e*e™, for all n > N»»(6, V2 7). After simplification, we have

| fi(cals)) — fi(eal@))] < " exp (kA" = T5X +na) < &” exp{—(n + K)o},

because of the bound from above of p: p < (4ar/A)n, and the hypothesis on «:
a < A?/100TA*.

Step 6. Uniform distortion of ff (x) for all s € w, x € cy(w)
We claim there exists a constant D" (@) depending only on « such that

Dff(x) "
Dﬁk(y)’ <D"(a),

forall 0 < k < p, (5,t) € w and (x,y) € ¢p(w). Using step 1 and the fact
I(r) C (Ye7",2¢7"), we see that
Dfi(x)| _ 8743,
< < —=D'(a).
D) < & 0@
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It is therefore enough to compute |Df¥(x)/Df¥(x)| for all (s,?) € w, x € c,{w) and,
by Lemma IV.3, to check that | f¥(x)| > (1 — e™*)e*e™* for all s € w, x € cu(w)
and 1 < k < p — 1. Using the techniques in step 5, we have

|0 , n
| fE(x) — fE(x)| < oK (T =1) exp (kA - E)\) ,

| fa(x)] 2 " (1 — e e

Using the assumption o < A?/1007A* and the bound from below k < (4at/\)n,

we have

n n
*_ < — - —
exp{kA 10)\) < exp ( ka 50 /\)

and the claim is proven if we choose A, 7 sufficiently large so that ||0.f||/Q; K™ ||0:f ||
is smaller than J&*(1 — e=®) exp(nA/50).

Step 7. Growth after the bound period
‘We show

Vsew IDRen(s)] 2 exp{pi ).

By the chain rule, the non-flatness condition and the distortion inequalities obtained
in steps 2 and 6, we have

*

DR en(s)] > gyrras D) > fyzaspiaralen(@l” ™ s (@)
On the other hand, by definition of p
cq{a) D'
cexp(-2pe) < [ 1D dx < 22y (@) (@)

Combining these two inequalities, we eliminate |c,(a)|:

A} [ e*r ](f—l)/f

D (enta))| 2 dpri@)] " exp (27 ).
N2 Daypie) | A0 @) ” "

We finally eliminate the constant by choosing A; 7 such that

2 A* * =
exp (5.17) D)D" (@) [A;D’T(a)} 21

Step 8. Growth during the bound period
The techniques are the same as in the previous step:

DR (er(s)] = s D en@)] 2 Frrsrslen@l™ i@l
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A*(EJ* )7’—1
IDfE(ca(s))] > D@D (@) exp{—n(r — )a+ kA} > exp(kA — nar).
We choose V5.7 so that (A1 (e*)""1/D’(a)D" (@) exp{N2.2(6,V2.7)a} > 1.

Step 9. Distortion of ¢, on w
We claim the existence of a constant D" (a) depending only on « such that

1 (cna(@) — @) | _ lenss(@)] D" )cn+k(a)—ck(a)
D" (a) cnla) T lenw)l T cn(a)

for all ' C wand 0 < k < p. We apply Lemma IV.2 to obtain

|Cni(w’)] Qz k
lea@)] = Ql ?gg IDfs (ca(s))l

provided that 7n/10 > N2.10(A) and w C V2.10(A). We can prove similarly

lentk(w)| Q1
m > Qi inf IDf¥ (cals))] -

Using the distortion inequalities of steps 2 and 6,

mlfo(cn(a))l < IDff(en(s))] < D"(e)|Df (cn(@))],

cnla)
lqﬁw—qwn=l IDf* ()] dx

and

[eni(@) = cal@)|  A3D'(e)
A Da) e el@) < SHECTEET < 2= IDf ela)l

A3 D’( )

The claim is proven if we choose D' (@) = 7(Q%/Q})(A3/AT)D' (a)D” (a).
As a corollary of that distortion estimate (recalling |c,(a)| > |ca(?)|), we get

cn(s) = ca(t)
cn(t)

The second part of the proof of step 6 gives [c,44(f)| > 2e*(1 — e~*)e~k, which
can be combined with the previous inequality:

cntk(a) — cr(a)
Cn+k(t) ‘

Cnsils) = Cnskl0)| _ o
Cntx(t) ! <D (e)

ﬁu)—ukﬂ 220" (e) eal(s) = calt)
: Cnk(t * ST1- e"z:exP ~ke) en(t) 1

pil

k=0
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This gives the definition of D, 7: Do7 = 2D"" (a)/(1 — e=*)2.

Step 10. Exponential growth of c,(w) after the bound period
We use the other inequality in the previous distortion estimate

|Cnsp (W) > 1 |ensp(a) — cn(a)] > e* exp(—2pa)
lca(w)] — D" () lca (@) ~ 4D ()  |I(r)]

(We recall: |cp(a)| < 2e7" < 4r|I(r)|.) We thus obtain

[ensp(e)] - exp(=3pe)
@ = I

if we choose A; 7 sufficiently large so that for all r > A; 5

* *

£ £
- > N>r.
D7 (a) exp(pa) > D7 (a) exp(ra/3A*) > r

Step 11. Controlled return of the orbit of w.
We show that, whenever ¢, ;(w) intersects [—%52_7, %62,7], 627 = exp(—Az7),
cn+k(w) is contained in an interval I{r;) for some |r¢| > Aj 7.
Let s be a parameter inw for which [c,14(s)| < §62.7; there exists thenr = p; € M,
r > A, 7 such that
exp(—pit1) < |cna(s)] < exp(—pi) -

Using the distortion inequality 9 and the second part of step 6, we get
[entk(w)] < D" (@)lcnsr(@) - ci(a)] < e*D"' (o) exp(~2ka),
—r 1 * —ay,—ka
e > |cnyi(s)] > 3¢ (1 —e e .
Combining these two inequalities, we eliminate e,

cnk(@)] < €D (a) [e—a—f—e_—a)] o

On the other hand,

) > exp(—1) — exp(—pisa) > - exp(~r).

The claim is proven if we choose A 7 such that

4D"' () 1
< s
_——E*(l _‘e_a)z < re (Vr > A2'7) .
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IV.C. Existence of absolutely continuous invariant measures

Let {f,}sc.a be a regular family and a* € .4 such that f,. has no stable periodic
point, satisfies the Misiurewicz condition (M) and the technical Collet—-Eckmann
condition (CEQ). We show that both the non-existence of a stable periodic point and
the backward Collet-Eckmann condition (CE2) are preserved for all parameters
in a neighborhood of a* which satisfy the exclusion rule (ER) and the forward
Collet—Eckman condition (CE1).

Proof of Corollary II.8 We begin to prove an estimate about the growth of
|DfP(x)| for any point close to 0. The proof is very similar to that of Theorem I1.7
and the details will be skipped. We first define a bound period p = p(x) by

If,f(x) —cr(a)| < e*exp(—2ka) (VO<k<p),

|2 (%) = ¢pla)] 2 " exp(-2pa).

Then the growth after the bound period p is given by

A=2(t-1De

IDfP(x)| > Krgexpp -

for some constant K» g = (A} /D'(@))(e*1/A3D'(@))("~1/7 and the bound period is
related to x by * < |x| exp(2pA*). We choose 623 > O such that for all |x| < &,.3,
K> 3K> 3 expp(2a/7-) >1.

(i) Either [f*(x)| > 6,8 for all n sufficiently large and we are finished by Theorem
IL.3, or | f*(x)] < 628 for infinitely many n. We define by induction a sequence
q0,P1,41,--- by

go =inf{n > 0:f*(x) € (—62.8,6238)},

p1=p(fx)),

q1 =inf{n > 0: f7(fI""P(x)) € (—b25,623)},

P2 =p(faqo+p1+q1 (x)) .

Using TheoremI1.3 and the assumption on 6, 3, we have, foralla € V, g = V,3(62.3)
andn=qo+p1+qr+-+pr+qr

D] > Kasexp (n2 272

@ii) If f*(x) = 0 and f"(x} # 0 for all 0 < k < n, then n has the following
decomposition: n = qo + p1 +q1 + - -+ + p, + g, since, during a bound period; the
orbit of x is disjoint from 0. a
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V. Distortion of the tip

The purpose of this section is to compute the distortion of the map [a — ¢,(a)]
on an interval of parameters w which returns to a neighborhood of 0 in a controlled
manner. We assume essentially that w is (n, A)-adapted for some large A depending
on (o, A) and that {c,(a)}.> satisfies the exclusion rule and the forward Collet—
Eckman condition. The main dificulty is to bound from above the sum

|cx(w)]
Z d CO’:Ck (w))’

where |ci(w)| denotes the Lebesgue measure of c(w) and d(cop, cx(w)) the smallest
distance between a point of cx(w) and the critical point. The choice of the partition
{I(1tn)}n>1 is not arbitrary; we need endpoints of exponential type in order to get
a bound return p(x) of magnitude r for all x € I(r) and, in order to bound the
distortion, we need also the following estimate:

)
n—+oo d(co, I{itn)) )

Proof of Theorem II.11 Let w be an interval of parameters satisfying the
hypotheses (i) and (ii) of Theorem I1.11. The proof is divided into two steps.

Step 1. We show there exist two constants 0 < 8 < 1, D > 1, an increasing
sequence of times 7o = 1 < #; < --- < ty1 = n and a sequence of returns
(r1y...,rs) € M*, ry > 2,such that, forallk =1,...,s,

(a) ¢ (w) CI(Ery),

(®) |cyy, (W) > exp(—pri) III"E( ))|| (except maybe for k = s),

© y el D{d(|c,k(w)| b gl

W<i<tist (CO,C! )) CO’Ctk(w)) d(CO’CtkH(“)
n-1(
@)V (a,b) €w |th'—1""1—] <
Dfy (c1(6)

We first choose Ay 11 > A27 and V511 C Va7 such that, for all 1 < k < N».19,
cx(w) N [—16,46] = @ . We then define by induction, an increasing sequence of
times: fo = 1, #; is the first k > o such that cx(w) N [-16, 16] 5 0. By assumption,
¢, (w) C I(+ry) for some r; € M. By the choice of V2 1; we can use the Bound
Return Theorem I1.7: we call p; the bound period associated to (r;,#,w). Either
1 + p1 > n and we stop the construction, or ¢; + p; < n and we wait for the first
time k > #; + p1 such that ¢x(w) N [—%6, %6] # 0. We call g, this escape period and
t, = t1 + p1 + q1. By assumption, c¢,,(w) C I(£r;) and so on. We thus define an
increasing sequence: f{p =1 <t < -+ <t; <t 1 = n.
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Foreach 1 < k <5, tig1 — e = pr + gk, ¢, (w) C I{+£ry) and ;4 — 1, may be
smaller than p;. We first notice that (e) and (f) of the Bound Return Theorem imply

te+pi—1
|ci(w)] |ca(w)] |cttp (W) o exp(=3aTri)
2 d(co, ci(w)) S1)2'701(00,ctk(w)) and lct:zw)l ST EA]

From Theorem I1.3 we know that there exist two constants K3 3 and ); 3 independent
of 6 such that, foralla € wand 0 < i < ¢4,

IDFE ™ (Copapei(@))] = Ko 3elm P2
provided that 6§ < é5.3. By Corollary IV.2 we obtain

|Ctk+l(w)| > Q1K23 (qk t)A23 .
lchaperi(@)] = Q3

MOoreover, ¢, p,+i(w) is disjoint from [—36, 36] forall 0 < i < g,

Hy1—1
3 _late 203 "Z*e_,-m e ()]
o d(Co,Ct Q1K23 6

4Q2 |ctk+1 (w)l

Q*I&z s(exprza— 1) [[(riq)l

(we have used the assumption c;,,,(w) € I(£ri+1) for some ryy1 > A and the
estimate § = exp(—A) > exp(~r+1) > 5[ (res1))).

The proof of the last period #,,1 — t; is almost identical, except in the case n >
ts+ps, where we use the assumption c,(w) C [—28, 28] to be able to apply once more
property (ii) of Theorem II.3 and the estimate |c,(w)|/é < 2. To prove condition (b)
we use the estimate from above: |c;,,, (w)|/|cy+4p,(w)] > Q1K23/05. We choose
Az1; sufficiently large so that Q7K»3/Q5 > exp(—arAs2.11) and condition (b)
follows with 3 < 4ar.

Condition (d) says that the distortion of ¢, on w is uniformly bounded We recall
that the constant N, 1o depends only on A. Before the period N = N3 10 we have an
a priori upper bound

| dy_1(a)
dy_1(b)

| < K* exp(N — 1){A* — X).

The total distortion is thus bounded by

t—1

. ci(a) — c(b) 1021l la — bl
A+C Z | cr(b) +A1‘(zs*)7‘1 exp(—kra)}

dtl la
dtl 1b -

—< €Xp {
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with |
t
- lck - ck(b) < 40;
= Q;Ka3(exprpz— 1)’
"z_:l |a — b| < exp A
= exp(—kra) ~ K*Qj{exp(ra) — 1} ’

Step 2. 'We finish the proof of Theorem II.11. As soon as n > N, 19 , we can
compare the two derivatives 9, and 9,:

dc,z

dc,,

<9

b)l < ]dn 1(a)/dn—1(D)] .

Using the nonflatness condition and property (d) of step 1, we obtain

’ < Dexp {C* Z |Ck (a) = Ck(b)‘ Z uafrcfk“(!balf li‘}

We first show that the second sum is uniformly bounded. By assumption,
|ck(t)] > e*exp(—ka) for all 1 < k < n. On the other hand, because of the
exponential growth, the length of w is small as the following inequalities show:

1> leaw)] = / 107(0, )| da > / O ldy-1(a)|da > QK" u].

If we combine these two inequalities we get

of Il S~ _la— bl 62 lle*  expn(ra )
{ A Z|c b)|™~ 1} XP ATQiK*e™ exp(ta)—1 'Q}’

which is uniformly bounded provided that & < A/7. We now show that the first
sum is bounded.

To simplify the notation, we call o; = |c, (w)|. We recall also the following
estimate: 1 < exp(pi+1 —p:) < 2. Using £cy, (w) C I(rk) C [} exp(—ri),2exp(—r)]
and estimate (c) of step 1, we get

s 1=l Icz

E!c" D=2y gl < Z""e"p(”‘)

k=1 i=k

with the following a priori estimate: oy exp(r¢) < 7/r,. We now show that the last
sum is uniformly bounded from above and divide the proof into three parts.
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Part 1. We claim that Zre M e P is finite. Indeed, if n is an integer and
(i1, ..., 1) denotes the elements of M by increasing order between n — 1 and n,
by definition of the sequence we have

e—uk — e—,uk+| Z 18_",
n

e—("—l) >e M — et > Le—",
n

which shows that card{y € M : n—1 < p < n} < ne and prove the claim.

Part 2. We show it is enough to assume that (ry, ..., 7;) are pairewise distinct.
We notice first that the estimate (b) of step 1 implies that (o, . . ., 05) is exponentialy
increasing,

’ 2
or <2e"UPngy < L

in particular for each r € {ry,...,rs}, if k(r) denotes the largest index k such that

re=r,
5 o <552 e
k: ry=r
We may arrange by increasing order the set {k(r;) : i = .,8} = {ko,...,k,} and

denote 7; = ry, and &; = o4,. We verify that (7;, 5;) satlsﬁes the assumption (b):

51+1ZCXP( ﬂrl)ll( )l

(we use the fact that |/(r)| < exp(—pr) for all r > 2 and 3 sufficiently small).

Part 3. We assume now that (rg, . .., rs) are pairwise disjoint and divide the sum
3" oxexp(ry) into two sums. Either, for some indexes k, o, exp(ri) < 4exp(—pri)
and the total sum is bounded by 43" _,,exp(—8r). Or, for some indexes &,
orexp(ry) > 4exp(—pry). If k < I are such indexes, using property (b) we have
2exp(—r)) > 01> %ak exp(1 — B)ry > 2exp(—20ry), in particular r; < 23r; and the
total sum over these indexes is bounded by Y, 7« < (49/2) Y ,54(28)". O

VI. A Markov-like dynamics

VILA. Beginning the induction

We denote by (2 an interval containing a*, and by [—é, §] a neighborhood of the
critical point we shall define later. We recall that N = N, »(6, ) denotes the first
time N such that cy(Q2) meets [— 46, 36]. We prove in the next lemma the first step
of the induction, (ER-0), (CE1-0) and that cy(w) is equal to a disjoint union of
states I(r), |r| > A and possibly prestates J(+A).
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Lemma VIL.1 Leta > 0and ) € (0,);3). For every § & (0,6,3) there exists a
neighborhood Ve.1(8) of a* such that:

(i) for every Q containing a* and N = N»3(6,Q), cn(R) contains one of the
states [(£A),

(ii) for all a € Ve.1(6) and n > 1 such that {ci(a)};_, is disjoint from [—16, 18],
|dn(a)| > K* exp(n)) and |ca(a)] > €* exp(—na).

Proof We recall that a* satisfies the Misiurewicz condition and that f,- satisfies
Theorem II.1: for all n > 1, |d.(a*)] > K*exp(nA*) and |c,(a*)| > *. If we
choose 26 < &*, since cy(Q) contains cy(a*), cy(R) contains either [$6,26] or
[-26, ——%6] and consequently one of the states /(+A). We then choose N such that
Ky3(8)expN(Ma3 — A) > K*, 2e*exp(—Na) < 6 and Ve small enough such that
foralla € Vs, and 1 < k < N, |di(a)] > K*exp(k)) and |ci(a)| > e* exp(—ka).
The second assertion follows from Theorem IL.3: if n > N and {ci(a)}}, is
disjoint from [—16, 1], then

|dn(a)] > K2.3(6) exp(niz3) > K™ exp(nl),

|cn(a)] > 56 > " exp(—Na) > €* exp(—na).

VLB. Bound and free periods

As we have seen in the previous section (VL.A), cy(£2) may contain a prestate
J(£A). Let w = QN cy'(J(£A)) be the subinterval of  which is mapped by cx
to one of the prestates J(+A). We denote by ¢ the first time such that cy4(w)
meets [—16, 16]; ¢ is called the free period associated to (N, +A,w). We show that
cn+¢(w) contains again a state /(+A). If cy14(w) contains a prestate, we continue
this process. More generally we have the following lemma:

Lemma VI.2. Let A € (0,)23). There exist 862 € (0,1) and, for every
6 € (0,66.2), a neighborhood V¢, C Ve.1 of a* such that, if w C Vg3 is an interval
which satisfies for some integer n > 1,

(@) cnlw) =J(£4),

(ii) |di(a)| 2 K*exp(k)) foralla€ wand0 <k <n,

then cp14(w) contains either [~26,—16] or [16,26] (where q is the smallest integer
such that cpqq(w) N [—%6, %5] #0).

Proof Since f,- verifies properties (i) and (ii) of Lemma IIL.1, for every é§ < 431
one can find a neighborhood Vs, of a* such that for all @ € Vg2, 1 < k <
(1/2A%)A = p(6), | f¥(£6)| > Le*. Either g < p(8), for 6 < g&*, Cnyq(w) contains
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an interval of length Je* — 16 > 26— 36. Or g > p(6), thenforalla € V.2 C V2.3(8)
andn<k<n+g

|di_1(@)] > K*Ka3(6)exp{(n — 1)A + (k — n)A23} > K* exp {(k - 1)%} ,

provided we choose Vg, small enough such that K 3(6) exp{N2.2(Vs2)A/2} > 1.
If, moreover, we choose Vg2 C Va.10(A/2) such that N22(Ve2) > Naio(A/2),

Corollary IV.2 applied to any w’ C w verifying ¢,44(w') C [—62.3,623] gives

ensg@)l § O

len(w)] T~ Q5

K> 3exp(ghzs).

Either c,44(w) € [-623,62.3] and, for 6 < %62,3, Cnyq(w) contains an interval of
length 83— 18 > 26— 16, or cpq(w) C [—82.3,62.3] and |cpiq(w)| > 36 provided § is
chosen such that (Q%/Q%)K2.3 exp(TAXz.3/2A*) > 6A (remember [cq(w)| > 6/2A).
O

We now combine these two lemmas to prove the first step of the induction.

Lemma VL3 (First step of the induction) Ler X € (0,23), a € (0,a23(}))
and X = (A + X23) + 10ar. There exist 8.3 € (0,1) and, for any é € (0,86.3), a
neighborhood Ve 3(6) of a* such that any Qo C Ve.3 contains a subset §y equal to a
disjoint union of intervals of the form w = w(.), where t > 2N 1(Qo) and |r| > A,
which satisfy the following properties:

-a{w)N[-36,36]=0 (V1<k<y),

- ¢(w) = Kr), i

- |di(a)| > K*exp(kd) (YVO<k<t Vacew),

- lcx(@)| > e*exp(—ka) (V1 <k <t Vaew),

- 90\ Qul/[920] < exp{—3N22(0)a}.

Proof We begin to construct a partition of () into intervals of the form &(¢)
satisfying the properties:

- tis an integer and ¢t > N 2(9),

-a(@(0))n[-46,38] =0 (V1<k<y),

- |ldi(a)] > K*exp(kA) (Ya € &(1), VO <k <1),

- ¢,(@(t)) contains one of the states /(+A) and is equal to a disjoint union of
states I(r), |r| > A.

The construction is done by induction. By Lemma VL.1, cx(Q0) (N = N2.2(6,0))
contain I(+A); let ®(N) be the part of €y which is mapped by cy onto
en(@)N(Upy>a I(r)). cn(§) may also contain a prestate J(£A); let &(+1) be the
part which is mapped onto J(£A). We wait until cy4(@(+1)) meets [-36, 56] and
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repeat the process at time N + q: @(£1)(NV + g) is the part which is mapped onto
cn+q(@(£1)) N (U}>4 1(r)), and so on.

Lemma VI.1 tells us that the exclusion rule is also satisfied during the period
(1,7] on &(z). The interval &(¢) is therefore (¢, A)-adapted and the distortion of
¢; is uniformly bounded by a constant D5 ;; independent of z. On each &(z), we
eliminate the intervals w() which are mapped by ¢; into I(r) for |r| > ot:

W) 1)
G0 = P Ay

(c:(&(1)) contains one of the states /(+A) and then |c,(@(¢))| > |I(A)|.) The total
proportion we eliminate is therefore bounded by

)l . 4D2n
Z lw(t)l = Ty P

We choose once more Vg 3 sufficiently small so that

1
4D> 1 < |I(A)|exp{—N2,2(V6.3)a}.
2

Finally, Q; is the remaining part of {}p:

= U U w() and IQ—?Q\%” < exp{ - %aNz,z(Qo)}.

tir<ar

VIL.C. Essential bound returns

Let w C €y be an interval of parameters such that, for some n > N 3(€)) and
some state I(r), |r| > A, ¢,(w) = I(r). We know from Lemma II.7 that we recover
the exponent (A — 2a7)/7 after a short period pg, compared to the period n. At
time 7+ po, Catp,(w) may be disjoint from [— 36, 36]; we denote by go the first time
such that ¢4 p,+4,(w) meets [— %6, %6]. At that time n; = n+ po + qo, it may happen
that ¢,,, (w) no longer contains a state /(r), |r| > A; qo is then called a partially free
period, ¢, (w) is included in some /(ry), |r1| > A and we repeat the process. We
denote by p; the bound period associated to (r;,r;,w) which may be followed by a
partially free period q;. Let n; = n; + p1 + g1 and so on. We stop the process until
Cn,y, (w) contains a state I(r) with |r| > A; p = n, — ny + p, is called the essential
bound return associated to (n,r,w). More precisely we have

Lemma VL4 Let A € (0,X23), @ € (0,a23())). There exist 664 € (0,1)
and, for any 6 € (0,6¢.4), a neighborhood Vs 4(8) of a* such that, for any interval
w C Vg4, any integer n > 1 satisfying for all a € w:
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@A) cn(w) =I(r) for some na > |r] > A,
() V1 <k<n |cfa)| > c* exp(—ka) and |di-1(a)| > K* exp{(k — 1)A/4},
(i) V1 <k <n/4  |di(a)| > K* exp(kD),
one can find integers p = ps.4 and q = ge.4 having the following properties:
(@) (1/3A%)|r| <p < (27/N)Ir],
(b) Vacw V1<k<p |Dff(ca(a))| 2 exp{-2nTa + k(X -37a)/7},
(© Yacw [|Dfi(ca(a))l > expp(A —3ra)/,
dyVacw V1<k<p |couila)>2exp(—|r|) > e* exp(—(n+ k)a),
(e) wis(n+p, A)—adapted (except that c,,1,(w) may not be included into [-26,24)),
(D) VO <k < g Cniprilw) N [=136,368] = 0 and cpipiq(w) N [—36,36] #0,
(8) Cnip+q(w) contains a state I1(r) for some |r| > A,

(h) if Chipq(w) C [—26,26] then |cpiprq(w)| = exp{—4ap}.

Proof We construct by induction a sequence of inessential return times: n =
ng < ny < -+ < hyur1, Rip1 — N; = pi + q;, where p; is the bound period associated
to (n;,r;,w) and g; is the partially free period which follows p;. Foreach 0 <i < u,
Cn(w) C I(r:); in particular, w is (n,41,A)-adapted (except that ¢, (w) may not
be included into [—26,26]). Let p = n, + p, — no be the essential bound return
associated to (n,r,w) and g = g, the free period. The main problem is to prove
that the hypotheses of Lemma I1.7 are satisfied at each stage of the construction.
We assume that we can apply (i)... (iii) of Lemma IL.7 for (n;,r;,w) and that we
have already proven the following properties:

)\—3a7'}

D™ en(@))] 2 exp { (ner = mi) =

forall0 < k <i, A <|ri| < |ro| and n; - ng < (27/X)|ro].
Step one. We compute the exponent during each period [n;, n;41] with i < u (the
proof for the period [n,, n, + p,] is similar):

A—=2ar

)\—3orr}

IDfa™" " (cn;(@))| > K23 exp {q,')\zs +pi } > exp {(’li+1 —n;)

T

(we have chosen Ag 4 large enough so that K 3 exp{2aAg.4/3A*} > 1). We point
out that we used property (ii) of Theorem II.3 since c,,,, (w) C [-26, 26].
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Step two. We compute the exponent at time n; + k with 0 < k < p;:

A —=3ar

A
|dn,,.(a)| > K" exp {nOZ + (n; — no) + kA —n,-ar}

ZK*exp{nO% +k10 2n0aT} > exp{ n; + k) 10}

We have used the estimates n; < 2ng and no( A—2ar) > 1/\no > On,)\
Step three. 'We compute the exponent at time n; + p; + k with 0 < k < ¢;:

. A A T
|dn,+p.+i(a)] > K2.3(8)K* exp {noz + (n; + pi — no) + k)\z.a}

> K> 3(6)K™ exp {”0% +k%} > K* exp{(n,— + pi +k)%} .

We have used the estimate n; + p; < ng + (47/A)lrg| < 2np and chosen Vg4
sufficiently small so that K, 3(8) exp{2aN;3(Ve4)7} > 1.

Step four. We show that n;+1 —no < (27/2)|ro| (the case n, +p, —no < (27/A)|ro]
is similar). We choose Vg4 C V3 19(A/10) such that N 2(Ve.4) > N2.10(A/10) and
apply Lemma I1.10 and Corollary IV.2:

)\—3047}.

T

en @)1 > Shien @)l exp {(ner =)

We recall that |c,, (w)| > |2ro]~! exp(—|ro|) and that n; 4y — ng > po > |ro|/3A*. We
choose Ag 4 large so that (Q7/03)[2r|~! exp{4a|r|/3A*} > 1 for all |r| > Ag.4 and
obtain

/\—4017'}.

12 o )] 2 exp { = lrol + (ie1 = no) ==

In particular we get n;..1 — no < (27/A)|ro|.
Step five. We show that |ri+1| < |ro| for i < u; property (d) will follow:

11 A=3ar
4exp{—risl} 2 lons, @) > Gl exp { = Il + (mie1 = ) }-

T

We choose once more Ag 4 large so that (Q%/Q%)[4r| ! exp{|r|(A\=3aT)/37A*} > 1
for all |r| > Ae.4 and obtain |ri+1] < |ri.
Step six. We prove the property (b). For0 <k <p;and 0 <! < g;

A= 3ar + kX — niar}

)\ 3ar

D=+ (@) 2 exp { (i — o)

et 2110047‘} y
A —3ar A—=2ar
+pi

> exp{(ni —np+k)

D=2+ e (a))] 2 Ka3(6) exp { (ms — o) +Das)

A —3ar

> exp {(ni —np+pi+1) - 2n0ar}
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provided we choose Vs 4 such that K> 3(6) exp{2N,2(Vs.a)at} > 1.
Step seven. We prove the property (h); we assume that ¢, (w) C [-28,24]:

€ (W)] 2

H A —=3ar A—2a
%nglcnoﬂ’o (w)l exp {(q0+qu))‘2.3+(nu_nl) +Pu T} .
2

T T

We choose Ag 4 such that (Q7]/0Q%)K> 3 exp{ale¢.4/3A*} > 1 and obtain

[Cny+pu (@) 2 |Cnotpo(w)| €XP(—po) > exp(—4apy).

VL.D. Dynamics of the tip between n and 2n

At stage k, () is a union of adapted intervals w; for each of them, there exist
an integer » and a state /(r) such that ¢,(w) = I(r) and |r| < na. We study in this
section the dynamics of the tip during the period [r; 2#].

Lemma VLS Ler A € (0,)23) and o € (0, a2.3(N)). There exist 65 € (0,1) and
for all § € (0,6¢.5) a neighborhood Vs s of a* such that, for any interval w C Vg 5
andn>1,

(D) cp(w) = I(r) for some A < |r| < na,
(i) YVaew VI1<i<nl|di_i(a)] > K*exp{(i — 1)A} and |c;(a)| > * exp(—ia),
(iii) w is (n, A)-adapted,

(iv) Ya € w |da(a)| > K* exp(n]).

One can construct an increasing sequence of partitions of w in the following way:

(@) For each 0 < s < n, w is equal to a disjoint union of intervals w(}% %)
whereto =n <t <---<t,ro=r,|ri| > A, and two distinct sequences
1050 eest, T . e e 10,0e 0k, ..t
Yy # (r‘(’,),m’;;) give two disjoint intervals: w(yy 75 ) N w(r‘(}) ;;) =0,

.....

() w(®) = w, for each 0 < s < n, w(2%) is equal to a disjoint union of

] 105+ ok,
intervals w(y 72t

(c) foreachO < s<nand& = w(¥ %)
- @ is (t;, A)-adapted,
-VOLj<s (@) CI(ry) and ¢t (@) = I(ry),
-Vaew V1 <i<it |dioi{a) > Kexp{(i — 1)A/4} 'ana' |ci{a)| >
e* exp(—ia),
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(d) for each 0 <'s < nand & = w(73%), either |ry| > at; or t; > 2n, then

rsy1 = rsandtsyy = t;: the process is stopped, or |rs| < atsandt; < 2n, then &
0.l 41

is partitioned into a countable number of intervals of the form& = w(ry 725 );
tsi1 > ts, |rse1] = A and each period ty — ts is the sum of two periods:
tr1 — b = ps + gs verifying

- (1/3A%)[rs| < ps < (27/)|rs],

-V1<i<p, VYa€ed |c,vi(a) >2exp(=|rs)),

-V0<i<qs Vaed |cuip+i(a)l > fexp(-A),

(e) since the state I{rs11) may happen at different times ts., the proportion of
obtaining this state is given by

t07 ols1 )‘

w 7 H er
Z ol LT S M)l exp(28 + dopo),
fo11 rOy 1rS)'
where the summation is taken over all possible o Ca, rs+1 being fixed;

moreover

Y el < o (- 5n).

{ral>aty 79s--Ts

where the summation is taken over all w(% ") C w(37% ) satisfying |ry| > aty.

Proof Step one: the construction. We construct by induction on s a partition of w
into disjoint intervals & = w(}%"’%,). By definition, w = w(%). We assume we have
already constructed @ with |ry| < af; and ¢; < 2n. Foralli =0, ..., s, p; denotes the
essential bound period associated to (;, 7;, @) and ¢; the free period. The properties
(i), (ii) and (iii) of Lemma V1.4 are satisfied. Let p, be the essential bound period
associated to (15, 75, @) and g the smallest integer such that ¢; ,p 4q(w)N[—36, 58] #

@. We know that p; satisfies

- (1/3A%)|rs| < ps < (27/A)irs],

-Yaew V1<i<ps |eyyila)l > 2exp(—|r),

- @ is (t; + ps, A)-adapted (except that ¢ 4, (@) may not be in [—26,26]),
~ Ciy+p.+q(@) contains a state I(r) for some |r| > A and meets [—16, 36].

In order to apply Lemma VI.2 we compute the exponent during the period
[£5, 25 + ps)- Let O < k < p;, then

s—1

- A=
di,++(@)| 2 K* exp(nd) [] {Kz23 exp(pi
i=0

A~ 3ra

e +q,-/\2‘3)} exp (k —2ts7-a),
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) A
dy +x(@)] = K exp { (15 +K)5- |

(we have chosen Ag s sufficiently large so that K 3 exp(Ag.sa/3A*) > 1 and used
the estimates n(5\ — ) > 4ran > 2ta71).

Either ¢, 1, +4(®) is equal to a union of states I(r), |[r| > A; then, by definition,
qgs = q, ts41 = ts + ps + g and @ is equal to a disjoint union of intervals &(rs ) =

i‘(’)',j', ) corresponding to the part of & which is mapped by ¢;, 4, +4 Onto I(rs41).

Or ¢;,4p,+4(@) contains also one of the prestates J(+A). We denote by &(0) the
part of @ which is mapped by ¢;,4p,+4 0nto |, >4 (r) and by @(+1) the part of &
which is mapped onto J(+A). We denote also #;_ | = t; + ps + q. Let g(£1) be the
first time such that c,;+l+q(i1)(&(:t1)) Nn[-16, %6] #0,t,,(£1) =1, +q(£l) and
gs(£1) = g + g(£1). The exponent during the period [ts + ps, ts + Ps + ¢] is equal
to A/27. Forall 0 < k < g;

- A —3a
|dty+p,+k(a)] >2K*K33(6) exp {n)\ + ps T4 k)\2.3}
s—1
A—=3ra
X 1:!) {K23exp(p T qz‘)\2.3)},

. A
s+, +4(@)| 2 K* exp {(ts +ps +0) 5= }

provided that Vs 5 is chosen such that K5 3(6) exp{N2.2(Ve.5)(A — A)} > 1.

Lemma VI.2 tells us that cu,, (+1)(@(£1)) contains one of the intervals [—$6, —26)
or (26,16]. We denote by @(+1)(0) the part which is mapped by Cy, (1) ONto
Ujri>a () and by &(+£1, +1) the part which is mapped onto J(+A). We continue
this process and obtain a partition of & into a disjoint union of intervals parametrized
by (e1,...,60) in {£1}*, 4 2 0, @ = U, . @(e1,...,€4)(0), where for each o’ =
&(e1, ..., €4)(0), there exists aninteger ¢’ = ¢, (€1,.--,€x) = Ls+Pps+gs(er, ... ,€u),
gs(e1,...,en) =q+4gle1)+ ...+ q(e1,...,&y,) such that:

- ¢y{w') is a union of states I(r), |r| > A and has a length bigger than §/2,

-Yaew' VO<Li<gs(er,...,e) |cuip+i(@)l > 5exp(—A),

-Yaed VO<Li<t |dia)] > K*exp(ir/27).

We denote by w(e,...,&,){(r') the part of ' which is mapped by ¢, onto I{(r’).
Since w' is (¢, A)-adapted, provided Vg5 C Vi 11(a, A/27,6), we know that the
distortion of ¢, is uniformly bounded by a constant D, ; independent of A. If

Crotpota(@) = U > 1(r') then

i
exp(—4ap;)’

o(r
|&(r')] < Doyt

||
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otherwise, for all u > 0,

B(er,...e)(r)] )|
B e 0)] = P2 exp(=A)

Finally, we denote by w({®"" lsol ) any interval of the form &(ey,...,e,)(r"). We

FQyensT syl

just have constructed the partition at stage s + 1 and proved

WGl L] 1
3ereslsy <2D - 4 2A
2 ey = 2P inlexp(—dap ] < &l (lexptheps +24)

(provided we choose Ag s such that 4D 1 exp(Ag.s) > 1).
Step two: proof of part (e). We prove by decreasing induction on s that, for
each w(2 % ) satisfying |rs| < at; and £, < 2n,

70,--
’ t”
Z |w (f%, ,r,,)L exp ( _ 2)
T torals y| — s ’
|,."|>a," |w(’0, Ry | 2 2
where the summation is taken over all intervals w(2% ) included in w(i%7% ).
For s = n, the sum of the left side is empty and the assertion is obvious. Suppose
the assertion is true for s + 1,5 + 2,...,n. If & = w(37%) is chosen such that
t; < 2n and |rs| < at,, using the above mequahty we have

S IS SN
Z (o . Eexp{ ap;s + — ots},
"’|"'|>Olf' w("oy s )l

where the summation is taken over all intervals w("” "f”, ) included in & with

|¥] > ot
We use the estimate p; < (27a/A)t;, 647a < X and choose Vs s small enough so

that aN» »(Ve.s) > 16A, to obtain

w1 3at;
2 ey S <zee(-7)-

|| >at!

Oneachw’ = w(;2" “!'" y remaining (i.e. satisfying |r’| < ar’); either ¢ > 2n and

syl
w' contains no other interval of the form w(f.‘(’,’,'jj_’f,’!,,) with |r,| > aty; or ¢ < 2n and

by induction we have

5 oo () +Jon (- 5 <o (- 9)

|rn|>aty
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(we have used the estimate ¢’ — £, > p; > (Ag.5/3A*) and chosen Ag s, Vi 5 such
that 2exp{—algs/6A*) < 1). O

VLE. A Markov chain type argument

We use the notations of the previous lemma. We fix an interval of parameters
w C Vg 5 such that:

- ¢cp(w) = I(r) for some na > |r| > A,

-Vacw V1<i<n |c{a)]>c*exp(—ia)and |di_i(a)] > K*exp{(i — 1)A},

-VYacw |d.-1(a)] > K*exp{(n—1)A},

- wis (n, A)-adapted.

We begin to exclude the parameters @ which do not satisfy the exclusion rule.
Let «’ be the union of all intervals w(i%:‘,‘j,’f;'n) satisfying |r,| < at, (in particular on
such intervals, |r;| < at; for all 0 < i < n). We know from Lemma VL.5 that A

L
e gen(-50)-

We consider «’ as a probability space. Let P be the normalized induced Lebesgue
measure on w’. We define on w’ sequences of random variables, P;, Q;, T;, R; and
S constant on each interval w(;% ) included in w':

Vaecw(@® ) Pla)=p;, Qil@)=gqi Tia)=t, Ria)=r,

and S(a) is the largest integer s such that ¢, < 2n. The following corollary shows
that the sequence {R;}}_, behaves like a Markov chain.

Corollary V1.6 Using the notations of Lemma V1.5, there exists 6.6 € (0,1)
such that, for all € (0,6¢.6), for all (ro,r1,...,rsy1) verifying |ri] > A,

P(RO =r0a-'-aRS+l = Is+1,8 SS)
PRy =ro,..., R =r5,5<S)

8
<exp {38 = Il + =l

Proof As (Ry = ro,...,R; = r5,s < §) is equal to the union of intervals
w(@ ) fg=n<t <...<t; <2n,|r] < af;, where we have subtracted all the

7Qy.eesls /o
subintervals w(;% " ) verifying |r,| > at,. Using part (¢) of Lemma VI.5 we have,

for each of these intervals w(;%"%),

to’ sls41

704--057s STa
Zl (;0, r»t:l)' <2exp{2A—]rs+1|+—)\—|rs|},

gt fo, y"x)l
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..... fot

where the summation is taken over all subintervals w(}%" % ), sy fixed. Since

lw(Br k) Nw'| ats 1
2eofs >1—exp(——)> =,
w2 272
fw( to’ trstll) W'l 8ra
2 <4exp2A — |rop| + —|rsl ¢ -
g ,01 )N { A }
We choose Ag ¢ sufficiently large so that 4 < exp(A¢¢). [m]

In order to recover the exponent X at time Ts,, and an exponent during the
period [To, Ts1], we exclude the orbits {c;(a)};* TS“ which come to the critical point
too often. For A > A we denote by w/(A) the subset of w';

S —

< Aoz — A
"AYy={aew : P 1 < T

w(8)={ k;) Hiry»>a) < To=5— }

where 15 represents the characteristic function of the subset B.

Lemma V1.7 We use the notation of Lemma V1.5. There exist 67 € (0,1)
and, for all § < 6 < 861, a neighborhood Vs1(8) of a* such that, for all interval
w C Ve.7(8) and for all a € ' (A), ’

-V1<i<Tsi1(a) |ci(a)| > e* exp(—ia) and |d;—1(a)| > K* exp{(i — 1)7},

Ndryy-1(a)] 2 K exp{(Tss1 — DA},

Proof We choose Vg7 C V2 3(6); then the exponent at T, is equal to X:

Dfa (@)l > [] expDrasTor - T} [ {K236XP( 5o +Qsh. 3)

[Rs|<A |Rs[>A

5
> exp {/\2.3 Z Os +Ps1(|Rs|sA)}
s=0

(we have used the estimate K;3exp(Ag7A/67A*) > 1 and the property (iii) of
Theorem I1.3 for the case |R;| < A). If we choose in addition @ € w'(A), we obtain
(notice that Ts 1 — To > Tp)
5 s
X3 Qs +Pslp <x) = 3(Tss1 — To) — M3 > P o5

s=0 s=0

> A23(Tsq — To) — (M3 = NTo > A(Tsq1 — To).
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We compute now the exponent during the period [7,,T, + P,], 0 < u < §. Let
0 < k < P,; then |dr, 1+(a)} is bigger than

s<u s<u
A

K* exp{To(A — 4a1)} H exp {)\Z.S(Ts+l - Ts)} H K>3 exp {E;Ps + )\2.3Qs}

|Rs|<A |Rs|>A

S
> K* exp {To()\ —4a) + 23(Tu — To) = 223 Y Psl e s A)}
s=0

> K* exp{T, A — 4arTo — (M3 — AT} > K* exp{\(T, + k)}

(we have used the estimate k < P, < (27/))|R,| < (27a/X)T, and the definition
of \: A> %()\2,3 + A) + 3ar). The exponent during the period [T, + Py, Ty+1] is
computed in the same manner. Let 0 < k < Q,; then |dr,+p,+k(a)| is bigger than

) ) s
K*Ko3(5)exp {ToX 4 daa(Tu=To— 3" Pil 5.5, +K)} 2 K exp{(Tu+Pu+k)A)

s=0

(provided we choose V.7 such that K 3(8) exp{N2.2(Ve.7)4ar} > 1). O

Before we prove Proposition I1.12 we need two combinatorial lemmas.

Lemma VL8 There exists a constant I'| such that for all integers 1 <p <n
p
P < =
C" Flexp{nH( )},

where Cl, denotes the binomial coefficient and H(x) the function defined for x € [0, 1]
by H(x) = —xlogx — (1 — x)log(1 — x).

Proof Using Stirling’s formula, one can find constants I" and I such that, for
alln>1,T < n!/v2rne"n" <I'. In particular

Ch < (T'/T?)y/n/(2np(n — p) exp{nH (p/n)}.

In both cases (1 < p < n/2,orn/2 < p < n), we have n < 2p(n — p). We choose
I) = I'/(/AT2). 0

Lemma VL9 There exists A9 € M, Ag9 > Ag7 such that, for all integers
R > Ag,

card{(rl,...,ru):uz 1,|r:i| € M,|ri] ZAﬁlgandR§r1+-~-+ru<R+l}

<o (8)
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Proof We notice first that u < [(R + 1)/A¢ 9], where [x] denotes the integer part
of x. We define for all # > 1 the following two sets and a map 6 : B, — B;, by

B,={(r1,..,r): ri > D69, i E M,R<ri +---+r, <R+1},

B, = {(p1,..-,pu) : pi is an integer, p; > Agoand p; + -+ + pu = R},
O(ri,....,r) = (), [+ =) In+r+ - 4+r] —[ri+ +ru-1l) -
If (p1,...,p4) € B, and (ry,...,r,) belongs to the fiber 6=!(py,...,p.), then

pi— 1 <r <pi+ 1. Given p > 1, we denote by increas@ng order the parameters
u; € M which belongto [p—1,p+ 1]:
p—1< e <mp < <mpy<ptl.

The sequence {u;} verifies, for all & < i < [, exp(—pi) — exp(—pit1) =
(p+ 1) Texp{—(p + 1)}. Adding these inequalities, we obtain

exp{—(p+ 1)} < exp(—pux) — exp(—m+1) < exp{—(p— 1)}

p+1

and finally / < (p + 1)e2. One can find a constant I such that (p + 1)e? + 1 <
Texp(p/16) forall p > 1. The cardinal of each fiber 6~!(py, ..., p,) is thus bounded
by I exp(p1 + - .. + pu)/16 < T*exp(R/16). The cardinal of B;, is bounded by C%
and the cardinal of | J, B, is therefore bounded by

[(R+1)/Aé.9)
u R R+1
Y Tiexp {RH(E) T 16" A 1og2P} .

u=1

Since H (x) is an increasing function over [0, 1/e], ([(R+1)/A¢.0]/R < (2/A6.9) <
(1/e)), we simplify the above expression by I'i (R 4+ 1)/A¢.0)expR(H(2/As9) +
(1/16) + (2/A6.9) log 2T") < exp(R/8), if we choose Ag o sufficiently large. 0

VLF. Proof of the main Proposition

We are now able to prove the main induction step:

Proof of Proposition II.12 Using Lemma VL7, the fact that P; < 27|R|/A
and the estimate |w \ w'|/|w| < 1exp(—Lan), it is enough to prove that, for A
sufficiently large, A = 100A:

A N
W\ (A)] _ o A3 =)y ] 1
=P(X Ritnsa) > 1750 < g o (= q0n):

||



POSITIVE LYAPUNOV EXPONENT 163

We begin to intersect the set {Zfzo IRs|1 (g, >4y > nA(X23 — A/27)23} with all
the possible sets (Ry = rg,...,R; = 15,8 = s5), |ri| > A.The intersection is not
empty if and only if there exists a sequence 0 < i; < --- < i, < s such that:

ral 4 ] > rA 2 = X)/2TX03,

-Vi€ it i} |ril > A,

-ViE{O,l,...,s}\{il,...,iu} |r,|§A
For all i = iy,...,i,, A < |R;| < 3A*P;. If we add these inequalities, we obtain
Au < 3A* ZleP,- < 3A*(Ts — To + ps) € 9A*n. The number of all possible
sequences (i, ...,i,) where 1 < u < 9A*n/A and 0 < i; < --- < i, < n is thus
bounded by

*

< ST H(%) <r H(2A
; n_; 1€Xpn (Z)_ \nexphn (Az.lz)

(we have chosen Aj 12 > 9A%e).
If such a sequence (iy,...,i,) is fixed and R > [nA(M23 — A)/27 23] is any

integer, the number of all possible sequences (ry,...,r,) such that |r;| > A and
R <|ri|+ -+ |ru| < R+ 1is bounded by exp(R/8).
From now on we fix a sequence (i1, ...,4,) satisfying 0 < i; < --- < i, < nand

a sequence (71,...,7,) satisfying |#| > Aand R < ||+ -+ -+ |[Ful <R+ 1. We
show that

ZP(R() =r0,...,Rs =rs,s=S)

exp{—({F1[ +--- +|Ful)}

<
< exP(3uA)exp{—(|r0| +|F1| + - + [Fuc1|)8Ta/ A}

where the summation is taken over s > i, and all possible sequences (ry,...,rs)
such that |ri]| > A, |ri|] € M, r;, =Fforj=1,...,uand |r;| < Afori ¢ {i\,..., i}

Indeed P(Rp = rg,...,Rs = 15,5 =8) < PRy = ro,...,Riy, =ri,iy < S) and
using Corollary VL6 and the fact that |r;_,| > A > |r;,_| if i,_1 # i, — 1, the
above sum is bounded by

. - 87a .

ZP(RO =ro,...,Ri,_, =ri,_,lu-1 S) exp {3A - |ru| + —-’—;—lru_ﬂ}
where the summation is taken over all (ro,...,7,_,), || > A, ryy = F;j forj =
1,...,u—1and |r]] < Afori#i,...,i,_1. We repeat this process and the claim
is proved.

Since |ro| < an < (41A230/A(A23 — 5\))R <Randu < 2R/A,

o=l + )+ 308} o rpl6er (A
x ~

exp{—(|ro| + |F1| + -+ + [Fu-1])87a/A} ~ A
<o {11}
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(we have used the estimate 64ar < X and 24A < A).

We finally sum over all possible sequences (i1, ...,i,) and (,...,7,) and obtain
S ~
A2z — X 9A*\ R R
. < — —_———
P(ZIRSII(IRSDA) >n TS ) < Z _ T'ynexp {nH(A2.12)+8 5
s=0 R>”A()\TZV32»3A)
T 9A* L MMz —A)
D S— -
-1 —exp(-1/4)neXP {nH(Az.lg) 4 16723 }

(we have used the estimates A(A2.3 — A) < 16a7A;.3, chosen Ay 15 > Ag.g such that
AH(9A* /A2 12) < aand Vy 12 C Vg 7(8) such that

(2T1/1 — exp(—1/4))nexp(—na/4) < 1
for all n > N2,2(V2‘12)). 0O

Proof of Theorem 1.5 We fix once and for all constants
A€ (0,X23), a€(0,a23(})), 6€(0,8.12(Aa))

and 1
A= E(A + A23) 4+ 1007

We recall that N, »(V') denotes the first integer N such that cy (V)N [—1e*, Le*] £ 0.
We construct by induction a decreasing sequence of subsets of V. 1,NVs3NVsg,
{Q%}x>0, where € is any interval containing a* and

[\ Qig]

o < exp{—2"1aN, ()} .

Each (U, k > 1, is adisjoint union of intervals w satisfying the following properties:
- ca(w) = I(r) for some n > 2¥N,5(Qp) and A < |r| < an,
-Vaew V1<Zi<n |cla)| > e*exp(—ia)and |d;i_i(a)] > K*exp{(i — 1)A},
-Va€w |du—1(a)] > K*exp{(n—1)A},
- w is (n, A)-adapted.
Proposition I1.12 shows how to construct £ ; from € for k > 1. The proportion
of the remaining subset (2, is thus bounded from below by

o0
k:l
The fact that the right-hand side of this inequality goes to one when || goes to
zero proves that a* is a Lebesgue density point.
Finally, Corollary IL.8 shows that, for any a € £, f, cannot have stable periodic
points and satisfies the two Collet—Eckmann conditions (CE1), (CE2). O
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VII. Transversality and genericity

Let {f,}ac.4 be a regular one-parameter family. In the first part of this sec-
tion we show that, if f,« is a Misiurewicz map, condition (T) is equivalent to the
transversality of the curves [@ — cny(a)] and [a — x(cy(a*),a)] for any N > 1
where [(x,a) — x(x,a)] is a smooth continuation of the invariant compact set
A* = {cp(a) : n>1}. In the second part of this section we prove that condi-
tion (T) is generic among all regular one-parameter families passing through a
Misiurewicz map.

VILA. Transversality

We begin with a simpler example where some iterate of the critical point is
equal to a nonstable periodic point. We recall that, whenever the limit exists, Q(a)

def 1. Oaf"(co,a)
e = 0 o i)

denotes

Lemma VIL1 Let {f,},c 4 be a one-parameter family and a € Aany parameter.
Then
O f(cr(a),a

< +o0 = Qa Zaxf"cla)a

Z |Df" c1(a))l

Proof For every (x,a) € I x A we have by definition /"1 (x,a) = f(f"(x, a), a).
To simplify the notation we write ¢, = c,(a). If we differentiate this equality with
respect to x and a we obtain

axfn(claa) = axf(cnaa)a)(fn—l(clva) )
Baf " (co,a) = Of(Cny@)Baf " (Co,a) + Baf (Cnya) .
Let Q,(a) denote the quotient Q,(a) = 8,f"(co,a) / O™ (c1,a). We have

aaf Ck’a)
Z « Of*(c1,a

By hypothesis the series converges absolutely. |

Let us now denote x* a nonstable periodic point for f,- of period p. For any a
sufficiently close to a*, the equation x = fP(x, a) has a unique solution close to x*,
x(a) = fP(x(a),a), where x is a C? function, and has a derivative at a* equal to

ax @) = OufP(x*,a")
da T 1 =0fP(x*,a*)’
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We assume now that ¢ is a preimage of x*: cy(a*) = x* for some N > 1. Using
the above lemma we can compute exactly the limit Q(a*).

Proof of Proposition 1.9. We repeat the same arguments as in the proof of
Lemma VII.1,
YA (3, a) = PV (3, ), a)

Ouf? ns
On+(ntr1p(a) = On+pn(a) + afo—l(calf,cl(;g}f’(”fz)(CN,a) .

By induction we obtain

¥ i (o)

On-+np(a) = On(a) + ; OfN=Yc1,a)0f*(cn,a)

If we now choose
a=a*, cnwp(a’)=cn(@)=x", ajkp(cN,a) = (BJ”(CN,a))k
then

Oaf " (X", a")
oV (e a)(1 - 0fr(x",a%))’

Q(a”) = On(a”)

0

In the remainder of this section, we assume that f,« satisfies the Misiurewicz
condition and show that Q(a*) can be computed in the same manner. In order to
do so , we introduce the notion of smooth continuation of a compact invariant set.

Definition VIL.2 Let {f,}c4 be a C? one-parameter family, a* € A and A* C [
a compact f,--invariant set (i.e. f;»(A*) C A*). We call a smooth continuation of
A*amap x : A* x V* — I, where V* is a neighborhood of a* which satisfies:

(i) foreacha € V*, [x € A* — x(x,a)] is injective,
(i1) for each x € A*, [a € V* — x(x,a)] is differentiable,
(iii) [(x,a) € A*xV* > x(x,a)] and [(x,a) € A* xV* — 8,x(x,a)| are continuous,
(iv) for all x € A*, x(x,a*) = x,
(v) forall (x,a) € A* x V*, f(x(x,a),a) = x(f(x,a*),a).
If we use the notation x,(x) = x(x,a), we notice that A, = x,(A*) is a compact
fa-invariant set and that the dynamical system (A, f,) is topologically conjugate to

(Ag= fa"): fa© Xa = Xa ©far O Ap» = A*. The following proposition shows that a
hyperbolic compact invariant set possesses a smooth continuation.
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Proposition VIL3 Let {f,},ca be a C* one-parameter family of unimodal
maps and a* € A. If f,~ has no stable periodic point, any compact f, -invariant set
disjoint from the critical point possesses a smooth continuation.

Before we prove the above proposition, we explain how to parametrize a
hyperbolic invariant set by a subshift of finite type, and extend Theorem II.1
for a one-parameter family.

Notation VIL.4 Letf : I — I be a C?> unimodal map without stable periodic
point and g # ¢ be a periodic point of period » > 3. We may assume that
{f(q),....f~Y(q)} is disjoint from (¢’,q" ) (where ¢’ and ¢" denote the negative
and positive preimage of f(g)). We notice first that f(g) € (cp,c1). Actually, if c’il
denotes the positive preimage of ¢, there must exist a point p of the orbit of g in
(co,c1). Either p € [g,¢_,) and f(q) > f(p) > 0, 0rp € (c_,,c1] and any preimage
of p belongs to (¢ 1,c’_’l). We also notice that f2(q) < 0 using the assumption
r > 3. In particular,

E={xel*@.q1Vlg .f(@)]: %) ¢ (d'q )¥n >0}

is a compact f-invariant set which contains the orbit of g. We denote by increasing
order the points of {f(q),...,f"'(¢),q’,q" } inthe following way: ¢; < §o < - -~ <
Gs—1 < €0 < gs < --- < g and define open intervals [i] = (§i—,4;) fori=1,...,r.

{(1],...,[r]} determines a Markov partition with associate matrix of transition M:
M =0foralli=1,...,r and M;; = 1 if and only if [j] C f([i]) for all j # s and
i=1,...,r. Let £)(q) denote the compact set of all admissible sequences

Eu(q) ={x= (xn)nZO cxp=1,...,r Mxnvxn+1 =1 Vn>0}.

Yu(q) is called a subshift of finite type; we note [0 : Lp(q) — Xp(q)] the leftshift.
If x = (xo,...,%) is an admissible sequence of length n + 1 (i.e. M,, ,,,, =1 for
k=0,...,n—1) we denote by [x, ..., X, the interval [xo, ..., x,) = e_of ¥ ([x]).

By the Markov property we obtain f*([xo, . .., Xs]) = [Xt, . ..,X,] forall 0 < k < n.

Lemma VILS Let {f,}aca be a C* one-parameter family of unimodal maps
and a* € A such that f,« has no stable periodic point. For every ¢ > 0, there
exist A15(g) > 0, N7 s(e) > 1 and V4 5(¢) a neighborhood of a* such that, for every
x €l,a e Vys, n> Nys, if {x,fa(x),....f2" 1Y)} is disjoint from [—¢,€], then
IDf; (x)] > exp(nXy.s).

Proof Let \75 be any positive real such that \;5 < Ay;. We then choose

P 22/(A21 — My5)1og(2/K2.1) and N7.s > (2(M7.5 — A)/(A2.1 — A1) + 1)p, where
A = inf{log |Df;(x)| : a € Aand |x| > ¢}. We decompose the orbit into blocs of
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lengthp,n=kp+q,0< g <p:

k—1

Dfz(x) = [ | DR GF (ODFE (f7 (x)).
i=0

We choose now V3 5 such that, for all ¢ € V75,

[fix)—fiwl < 5 (VO<i<pandxel),

|fo(x)|2%|Df,(x)| Vxel st |fo@)|>% i=0,...,p-1).

TR

Using Theorem II.1, for every x € I satisfying {x,f,(x),...,f?" 1} N[~¢,¢] = 0, we
have for every n > N;sand a € V5 5

K>

IDfZF(x)| = (T)kexp(q/\ +kpAa1) > exp(nirs).

O

Proof of Proposition VIL.3 Let A* be a f,«-invariant compact set disjoint
from the critical point ¢g. Since ¢g is in the closure of the set of periodic points
for f,«, we can find a periodic point ¢ ¢ A* of period r > 3 close to ¢p such
that {f,-(q),....fw"'(q)} is disjoint from (¢’,q" ) and A* C Z (cf. notation VIL4).
The itinerate of each point x € A* is disjoint from {¢’,q" ,fa» (), ...f" Hq)}; x
determines a unique admissible sequence x = (x,).>0 where x, € {1,...,r} is
defined by f"(x) € [x,]. Conversely, for each x € ¥, by hyperbolicity of f,-
(Theorem IL.1), (,50/"([xx]) is reduced to a point §(x). We have just defined a
map 6 : Xy — E which is bijective from §~!(A*) into A* and which conjugate the
shift to fg«: oo =f4= 0 8.

Let us denote by g : V — [ a C! continuation of the periodic point ¢ in a
neighborhood of a* (f"(q(a),a) = g(a) YVa € V* and g(a*) = ¢g). We choose
V* sufficiently small so that {q'(V*),q" (V*),qi(V*),...,q,—1(V*)} are pairwise
disjoint, disjoint from A* and from [—¢,¢] for some £ > 0. Let us denote by
{1]as- - -, [r]a} the Markov partition associated to g(a). We notice that the transition
matrix is independent of a € V*. Using the same reasons, foreach x € Xy, a € V*,
Nu>o fa‘”(ma) is reduced to a point §(x, a) = 0,(x). For each x € Xy and a € V*,
we denote by fi" ¢+ Ugeys na X {a} — I the inverse branch of f” defined by
[ "(z,a),a) = z and f7"(z,a) € [x0,. - -, Xn)q fOr all z € [x,],.

We claim that 6(x,a) is continuous with respect to (x,a), differentiable with
respect to a and that 9,0(x,a) is continuous with respect to (x,a). We define
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On(x,a) = f; "(2x(x, a), a) where z,(x, a) is the middle point of [x,],. We first notice
that (6,),>0 converges uniformly to 8(x, a) since

[6(x, @) — On(x, @)| < K7.5(¢) exp{—nA7s(€)}

and that 6, is continuous with respect to (x, a) (we use the fact that x,, = y, whenever
x is close to y). For fixed z, the derivative with respect to a of f7"(z,a) is given by

Auf" (" (2, 0), @) i 8of (f " (z,a),9)

O "B0) = " T ae) A AP mana)

and by the chain rule we obtain

dazn(x,@) zn: Oof (FF=1(04(x, @), a)

840n(x,0) = 84 (6n(x, a),a) i 8. (6,(x,a),a)

Since (8a2x)n>0 is uniformly bounded and f” is uniformly expanding,

|0 (6n(x, @), a)| > K7.5(¢) exp{nA.5(e)},

the first term tends uniformly to zero and the summation converges to

. X 81 0 0(x,a),a)
O ) = 20n (X, - < — ‘ )
) = lim 0:0,(0:0) = =3 =5 gt
which proves the claim.
Finally, we prove that 6, is injective on §~1(A*) for all a close to a*. Suppose

X = 0,(x) = 6,(y) for somex #y.

Then there exists n > 0 such that x, # y,. Since f(x) € [x4]aN[Yn]a, x is a preimage
of g(a). By uniform continuity of 8, we can choose a neighborhood of a* such that
6, 0 6~ 1(A*) do not contain g(a), for all a € V*. In particular, x or y cannot be in
6-1(A%). i

Remark VIL6 Let {f,},c4 be a C? one-parameter family of unimodal maps
and A* be a f,--invariant compact set. If x : A* x V* — [ is a smooth continuation
of A*, then for all x € A*

Af"(x,a@*) _ o RO (T (x,a7)
A e ~ ) = 2 o

k=1
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Proposition VIL7 Let {f,}uca be a C? one-parameter family of unimodal
maps, a* € A such that f,- satisfies the Misiurewicz condition and has no
stable periodic point and A* = {c,(a*) :n > 1}. If x : A* x V* — I is a smooth
continuation of A* then, for every N > 1,

lim

0af"(co,a*) 1 dey
n—+o0o axf”_l(cl,a*) B afo_l(cha*){ }

E(a*) — dax(cn(a*),a”)

In particular, the sequence (%c,,(a*)),,zo is either uniformly bounded or grows

exponentially.

Proof We apply Remark VIL6 to x = cy(a*) and use the identity

B 1 8afn_N(cN’a)
On(a) = On(a) + 8fN-1(c1,a) 8" N(cy,a)

VIIL.B. Genericity

We fix f, a C? unimodal map satisfying the Misiurewicz condition and without
stable periodic point, and denote by T (a*,f.) the subset of R{a*,f.) of regular
families f = {f,}sc.4 Which satisfies condition (T) at a*.

Proof of Proposition 1.11
Part one. We show that 7 (a*,f.) is open in R(a*,f,). Indeed, by Lemma VII.1,

we have for any regular family f € R(a*,f.)

. o RS (H0),a)
0N =2 ooy

By convergence of the series 3% |Df(£.(0))|~', [ f — Q(a*,f)] is continuous.

Part two. We show that 7 (a*,f,) is dense in R(a*‘, f+). Letf € R(a*,f.) be such
that Q(a*,f) = O and assume there exists n > 0 such that f7*1(0) € (-1,1) and
f(0) is an isolated point in {f*(0) : k > 0} (otherwise f2(0) = f3(0) and a* has to
be an endpoint of .4). We now construct a small perturbation g which agrees with
fon {f¥(0) : k > 0} \ {f7(0)} x A and such that 3,/ (f7(0), a*) # 3.g(f(0),a*). For
example, we take

g(x,a) =f(x,a) +€n¢(x _if(O))¢(a —na*)
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(where ¢ : R — R is equal to 1 on (—1,1) and equal to 0 on R\ [-2,2] and
¥ : R — R is equal to the identity on (—1, 1) and equal to 0 on R \ [-2, 2]). Using
once more Lemma VII.1, we obtain

0(a",8) = 0(a,8) - Qlaf) = L= O 4.
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