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• Main theorem

Ph. Thieullen Calibrated subactions 3/43



Summary Position of the problem The main tools Ideas of the proof Bibliography

I. Position of the problem: Anosov maps and flows

Definition (The discrete case) (M,f) is a C1 map on a manifold of
dimension dM ≥ 2, Λ ⊂M is a compact invariant set. We assume

1 Λ is hyperbolic: ∃λs < 0 < λu, CΛ ≥ 1 and a continuous
equivariant splitting over Λ,

∀x ∈ Λ, TxM = EuΛ(x)⊕ EsΛ(x) (1)

such that

a ∀x ∈ Λ, Txf(Eu(x)) = Eu(f(x)), Txf(Es(x)) ⊆ Es(f(x))

b ∀x ∈ Λ, ∀n ≥ 0,

{
∀v ∈ Es

Λ(x), ‖Txfn(v)‖ ≤ CΛ enλ
s

‖v‖
∀v ∈ Eu

Λ(x), ‖Txfn(v)‖ ≥ C−1
Λ enλ

u

‖v‖
2 Λ is locally maximal: there exists an open neighborhood U of Λ

of compact closure such that⋂
n∈Z

fn(Ū) = Λ
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I. Position of the problem: Anosov maps and flows

Definition (The continuous case) (M,V, f) is a C1 flow, Λ ⊆M is a
compact invariant set (∀ t ∈ R, f t(Λ) = Λ).

1 Λ is hyperbolic: ∃CΛ ≥ 1, λs < 0 < λu and a continuous
equivariant splitting of Λ,

∀x ∈ Λ, TxM = EuΛ(x)⊕ E0
Λ(x)⊕ EsΛ(x) (1)

such that,

a ∀x ∈ Λ, Txf
t(Eu(x)) = Eu(f t(x)), Txf

t(Es(x)) = Es(f t(x))

b ∀x ∈ Λ, ∀t ≥ 0,


∀v ∈ Es

Λ(x), ‖Txf t(v)‖ ≤ CΛ etλ
s

‖v‖
E0

Λ(x) = V (x)R, Txf
t(V (x)) = V ◦ f t(x)

∀v ∈ Eu
Λ(x), ‖Txf t(v)‖ ≥ C−1

Λ etλ
u

‖v‖
2 Λ is locally maximal: there exists an open neighborhood U ⊇ Λ of

compact closure such that

Λ =
⋂
t∈R

f t(U)
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I. Position of the problem: Subactions for SFT

Definition We consider a Lipschitz observable

φ : M → R

(M,f) is a one-sided topological dynamical system. Λ ⊆M a
compact invariant set, U ⊇ Λ an open neighborhood of Λ.

1 the ergodic minimizing value

φ̄Λ := lim
n→+∞

1

n
inf
x∈Λ

n−1∑
k=0

φ ◦ f(x). (1)

2 A subaction on (U,Λ) is a continuous function u : U → R

∀x ∈ U, φ(x)− φ̄Λ ≥ u ◦ f(x)− u(x) (2)
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I. Position of the problem: Subactions for SFT

Definition (M,f) is a one-sided SFT

1 The Lax-Oleinik non linear operator acts on C0(M,R) by

T [u](y) = min
x∈M, f(x)=y

{
u(x) + φ(x)

}
(1)

2 A calibrated subaction u is a fixed point of the Lax-Oleinik
operator

T [u] = u+ φ̄M (2)

Remark

• Of course a calibrated subaction is a subaction

• A calibrated subaction is also a good numerical tool to construct
the Mather set
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I. Position of the problem: Positive Livšic theorem

Theorem (Livšic) (M,f) is a C1 Anosov diffeomorphism or
(M,V, f) is a C1 Anosov flow, φ : M → R is Lipschitz.
If

1

τ

τ−1∑
k=0

φ ◦ fk(p) = 0 (1)

or if
1

τ

∫ τ

0

φ ◦ fs(p) ds = 0 (2)

for every periodic orbit p of period τ ,

then φ̄M = 0 there exists a Lipschitz function u : M → R such that

φ− φ̄M = u ◦ f − u (3)

or u is in addition differentiable along the flow and

φ− φ̄M = LV [u] =: lim
t→0

1

t

(
u ◦ f t − u

)
(4)
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I. Position of the problem: Positive Livšic theorem

Theorem (Positive Livšic)( A. Lopes, Ph. T or A. Lopes, V.
Roasa, R. Ruggiero)
(M,V, f) is a C1 Anosov flow, φ : M → R is Lipschitz.
If

1

τ

∫ τ

0

φ ◦ fs(p) ds ≥ 0 (1)

for every periodic orbit p of period τ ,

then there exists an Hölder u : M → R differentiable along the flow
such that

φ− φ̄M ≥ LV [u], φ̄ := lim
t→+∞

inf
x∈M

1

t

∫ t

0

φ ◦ fs(x) ds (2)

Remark It is important here to keep φ̄M
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I. Position of the problem: Main theorem

Theorem (X. Su, Ph. T) (The discrete case) (M,f) be a C1

dynamical system, Λ ⊆M is a locally maximal hyperbolic compact
set, φ : M → R is a Lipschitz continuous function, and φ̄Λ is the
ergodic minimizing value of φ restricted to Λ.

Then there exists an open set Ω containing Λ and a Lipschitz
continuous function u : Ω→ R such that

∀x ∈ Ω, φ(x)− φ̄Λ ≥ u ◦ f(x)− u(x). (1)

Moreover,
Lip(u) ≤ KΛLip(φ) (2)

for some constant KΛ depending only on the hyperbolicity of f on Λ.
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I. Position of the problem: Main theorem

Theorem (X. Su, Ph. T (The continuous case) L (M,V, f) be a C1

flow, Λ ⊆M is a locally maximal hyperbolic compact invariant set,
and φ : M → R is a Lipschitz continuous function.

Then there exist an open neighborhood Ω of Λ and a Lipschitz
continuous function u : Ω→ R that satisfies

1 u is differentiable along the flow

2 LV [u] is Lipschitz

3 ∀x ∈ Ω, φ(x)− φ̄Λ ≥ LV [u](x)

4 Lip(u) ≤ KΛLip(φ)

for some constant KΛ depending on the hyperbolicity of f on Λ
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I. Position of the problem: Main theorem

Previous results

1 T. Bousch (2011) seems to state a similar theorem (Lipschitz
regularity) in the discrete case

2 Wen Huang, Zeng Lian, Xiao Ma, Leiye Xu, and Yiwei Zhang
(2019) have obtained an integrated formula:

let T > 0, then there exists a Lipschitz continuous uT : Ω→ R
such that

∀x ∈ Ω,

∫ T

0

φ ◦ fs(x) ds ≥ uT ◦ fT (x)− uT (x) + T φ̄Λ (1)

There is no reason that uT is independent of T
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II. The main tools: Discrete Livšic positive criteria

Definition (M,f,Λ) is a locally maximal hyperbolic compact
invariant set, U is a neighborhood of Λ, and φ : U :→ R is Lipschitz
continuous.

We say that φ satisfies the discrete positive Livšic criteria on (U,Λ)
with distortion constant C if

inf
n≥1

inf
(x0,x1,...,xn)∈Un+1

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
> −∞

where

φ̄Λ := lim
n→+∞

inf
x∈Λ

1

n

n−1∑
k=0

φ ◦ fk(x) (1)

Remark

1 if φ̄Λ is replaced by a constant β > φ̄Λ, the infimum is −∞
2 if xi = f i(x) is a true orbit, the infimum may be −∞ for non

hyperbolic systems and smooth observable
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II. The main tools: Discrete Livšic positive criteria

It seems that the positive Livšic criteria is very restrictive.

Lemma If φ admits a Lipschitz subaction u : U → R, that is

∀x ∈ U, φ(x)− φ̄Λ ≥ u ◦ f(x)− u(x) (1)

and Lip(u) ≤ C, then for every sequence (xi)
n
i=0

n−1∑
k=0

(
φ(xk)− φ̄Λ + Cd(xk+1, f(xk))

)
≥ −2‖u‖∞ (2)

Proof

n−1∑
k=0

(
φ(xk)− φ̄Λ + Cd(xk+1, f(xk))

)
≥
n−1∑
k=0

(
u ◦ f(xk)− u(xk) + Cd(xk+1, f(xk))

)
≥
n−1∑
k=0

(
u ◦ f(xk)− u(xk+1) + Cd(xk+1, f(xk))

)
+ u(xn)− u(x0)
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II. The main tools: Discrete Livšic positive criteria

Theorem The positive Livšic criteria is satisfied for every locally
maximal hyperbolic invariant set Λ and Lipschitz continuous
observable φ. More precisely,

there exist an open neighborhood Ω ⊇ Λ, two constants KΛ ≥ 0 and
δΛ ≥ 0, depending only on the hyperbolicity of Λ, such that for every
Lipschitz φ : Ω→ R, for every sequence (xi)

n
i=0 of Ω

n−1∑
k=0

(
φ(xk)− φ̄Λ +KΛLip(φ)d(xk+1, f(xk))

)
≥ −δΛLip(φ) (1)
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II. The main tools: Discrete Lax-Oleinik operator

Definition (M,f) be a topological dynamical system, Λ ⊆M is a
compact f -invariant subset, Ω ⊃ Λ is an open neighborhood of Λ,
φ : Ω→ R is a bounded function, and C ≥ 0 is a constant,

1 The Discrete Lax-Oleinik operator is the nonlinear operator T
acting on the space of bounded functions u : Ω→ R defined by

∀x′ ∈ Ω, T [u](x′) := inf
x∈Ω

{
u(x) + φ(x)− φ̄Λ + Cd(f(x), x′)

}
.

2 A calibrated subaction of the Lax-Oleinik operator is a bounded
function u : Ω→ R solution of the equation

T [u] = u. (1)
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II. The main tools: Discrete Lax-Oleinik operator

Theorem (M,f,Λ,Ω) is as in the previous definition, φ : Ω→ R is a
bounded function. Assume φ satisfies the positive Livšic criteria on
(Ω,Λ)

inf
n≥1

inf
(x0,x1,...,xn)∈Un+1

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
> −∞

Then there exists a C-Lipschitz calibrated subaction u.

Remark A calibrated subaction is a subaction

∀x, x′ ∈ Ω, u(x′) = T [u](x′) ≤ u(x) + φ(x)− φ̄Λ + Cd(f(x), x′)

in particular x′ = f(x) and then

∀x ∈ Ω, u ◦ f(x) ≤ u(x) + φ(x)− φ̄Λ

Conclusion On a locally maximal hyperbolic compact set Λ, a
Lispchitz observable φ satisfies the positive Livšic criteria and
therefore admits a Lipschitz subaction u

Lip(u) ≤ KΛLip(φ)
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II. The main tools: Continuous Livšic criteria

Definition (M,V, f) is a C1 flow, Λ ⊆M is a hyperbolic locally
maximal compact invariant set, U is an open neighborhood of Λ, and
φ : U → R is Lipschitz continuous. We set

φ̄Λ := lim
T→+∞

inf
x∈Λ

1

T

∫ T

0

φ ◦ fs(x) ds (1)

The weighted action of φ of weight C ≥ 0 over a piecewise C1

continuous path z : [0, T ]→M is the real number given by

Aφ,C(z) :=

∫ T

0

[
(φ− φ̄Λ) ◦ z(s) + C‖V ◦ z(s)− z′(s)‖

]
ds (2)

Recall In the discrete case

Aφ,C(xi)
n
i=0 :=

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
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II. The main tools: Continuous Livšic criteria

Definition Same notations (M,V, f) as before.

Aφ,C(z) :=

∫ T

0

[
(φ− φ̄Λ) ◦ z(s) + C‖V ◦ z(s)− z′(s)‖

]
ds (1)

We say that φ satisfies the positive Livšic criteria on (U,Λ) with
distortion constant C if

inf
z:[0,T ]→U

Aφ,C(z) > −∞, (2)

where the infimum is realized over the set of piecewise C1 continuous
path z : [0, T ]→ U

Remark As in the discrete case, if φ admits a smooth subaction,
then φ satisfies the positive Livšic criteria
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II. The main tools: Continuous Livšic criteria

Lemma Assume there exists a C1(M) function u : M → R such that

φ(x)− φ̄Λ ≥ LV [u](x) =
d

dt

∣∣∣
t=0

u ◦ f t(x) (1)

Then for every piecewise C1 continuous path z : [0, T ]→M

Aφ,C(z) ≥ −2 inf
c∈R
‖u− c‖∞. (2)

where C = ‖du‖∞
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II. The main tools: Continuous Livšic criteria

Proof

Aφ,C(z) =

∫ T

0

(
φ ◦ z(s)− φ̄Λ + ‖du‖∞‖V ◦ z − z′‖

)
ds (1)

≥
∫ T

0

(
du ◦ z · V ◦ z + ‖du‖∞‖V ◦ z − z′‖

)
ds (2)

=

∫ T

0

(
du ◦ z · V ◦ z − du ◦ z · z′) + ‖du‖∞‖V ◦ z − z′‖

)
ds (3)

+

∫ T

0

du ◦ z · z′ ds (4)

≥
∫ T

0

du ◦ z · z′ ds = u ◦ z(T )− u ◦ z(0) ≥ −2‖u‖∞. (5)
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II. The main tools: Continuous Livšic criteria

Theorem The positive Livšic criteria is satisfied for every locally
maximal hyperbloic set Λ of a C1 flow. More precisely

There exists a neighborhood Ω of Λ and constants CΛ ≥ 0, δΛ ≥ 0
such that for every piecewise C1 continuous path z : [0, T ]→ Ω∫ T

0

[
(φ− φ̄Λ) ◦ z(s) + CΛLip(φ)‖V ◦ z(s)− z′(s)‖

]
ds ≥ −δΛLip(φ)
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II. The main tools: Continuous Lax-Oleinik semigroup

Definition φ : U → R is a C0 bounded function and C ≥ 0 is a
constant. Assume φ satisfies the positive Livšic criteria on (U,Λ) with
distortion constant C

1 The continuous Lax-Oleinik semigroup on (U,Λ) of generator φ is
a nonlinear operator acting on bounded functions u : U → R
defined for every t > 0 by, for every q ∈ U

T t[u](q) := inf
z:[−t,0]→U
z(0)=q

{
u◦z(−t)+

∫ 0

−t

[
φ◦z−φ̄Λ+C‖V ◦z−z′‖

]
ds
}

where the infimum is taken over the set of piecewise C1

continuous paths z ending at q.

2 A calibrated subaction of the Lax-Oleinik semigroup is a bounded
function u : U → R solution of the equation

∀ t > 0, T t[u] = u.
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II. The main tools: Continuous Lax-Oleinik semigroup

Theorem (M,V, f) be a C1 flow, Λ is a compact invariant set, U ⊇ Λ
is a connected open set of compact closer, φ : U → R be a bounded
Lipschitz continuous function and C ≥ 0 be a constant.

Assume φ satisfies the positive Livšic criteria on (U,Λ) with distortion
constant C. Then there exists a C-Lipschitz calibrated subaction
u : U → R: for every t > 0, for every q ∈ U

u(q) := inf
z:[−t,0]→U
z(0)=q

{
u ◦ z(−t) +

∫ 0

−t

[
φ ◦ z − φ̄Λ + C‖V ◦ z − z′‖

]
ds
}

Remark

1 In the discrete Aubry-Mather theory,
[
· · ·
]

is replaced by a
Lagrangian L(z, z′). A calibrated subaction is called weak KAM
solution

2 The Lipschitz regularity C is the same as the distortion constant
C
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III. Ideas of the proof: Calibrated subaction

Definition φ : U → R is a bounded continuous function and C ≥ 0 is
a constant. The weighted action of φ between two points p, q ∈ U for a
weight C and a time laps t > 0 is the quantity

Atφ,C(p, q) := inf
z:[0,t]→U

z(0)=p, z(t)=q

∫ t

0

[
φ ◦ z − φ̄Λ + C‖V ◦ z − z′‖

]
ds,

where the infimum is realized over the set of piecewise C1 continuous
paths.

Corollary The Lax-Oleinik semigroup has a different expression

T t[u](q) = inf
p∈U

{
u(p) + Atφ,C(p, q)

}
.
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III. Ideas of the proof: Existence of a calibrated

subaction

Definition The distance function between two points p, q ∈ U is the
real number

dU (p, q) = inf
{∫ 1

0

‖z′(s)‖ ds : z : [0, 1]→ U is piecewise C1,

continuous, and z(0) = p, z(1) = q
}
.

Lemma ∀ p, p̃, q, q̃ ∈ U
1
∣∣Atφ,C(p, q)−Atφ,C(p, q̃)

∣∣ ≤ CdU (q, q̃),

2
∣∣Atφ,C(p, q)−Atφ,C(p̃, q)

∣∣ ≤ CdU (p, p̃),
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III. Ideas of the proof: Calibrated subaction

Proof of the existence of a calibrated subaction

1 If u is bounded then T t[u] is C-Lipschitz for every t > 0

2 Define v = infs>0 T
s[0]. Then s 7→ T s[v] is increasing

3 Define u = sups>0 T
s[v]. Then T t[u] = u

u(q) := inf
z:[−t,0]→U
z(0)=q

{
u◦z(−t)+

∫ 0

−t

[
φ◦z− φ̄Λ +C‖V ◦ z − z′‖

]
ds
}

4 by taking orbits of the flow z(s) = fs(p) one obtains

u ◦ f t(p) ≤ u(p) +

∫ t

0

(
φ− φ̄Λ

)
◦ fs(p) ds

5 by modifying u with a partition of unity

d

dt

∣∣∣
t=0

u ◦ f t(p) ≤ (φ− φ̄Λ)(p)
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III. Ideas of the proof: Livšic criteria

Lemma (Shadowing) (M,f) is a C1 dynamical system and Λ ⊆M is
a compact hyperbolic set. Then there exist constants εΛ > 0, KΛ ≥ 1,
such that for every n ≥ 1, for every εΛ-pseudo orbit (xi)0≤i≤n of the
neighborhood ΩΛ = {x ∈M : d(x,Λ) < εΛ}, there exists a point
y ∈M such that

max
0≤i≤n

d(xi, f
i(y)) ≤ KΛ max

1≤k≤n
d(f(xk−1), xk). (1)

Lemma (Improved shadowing)

n∑
i=0

d(xi, f
i(y)) ≤ KΛ

n∑
k=1

d(f(xk−1), xk), (2)

Corollary The improved shadowing lemma is also true for iteration
of Poincaré maps
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III. Ideas of the proof: Livšic criteria

Definition Flow boxes γx : (−τ, 2τ)×Bx(ρ)→M

ϵ

2 ϵ

ρ

−2 ϵ

−ρ

−ϵ

z̃(0)=(r (0) , q(0))

z̃(T )=(r (T ) , q (T ))

τ

∂− D̃x ( τ ,ϵ)

∂− D̃x( τ ,ϵ)

∂+ D̃ x (τ ,ϵ)

ℝ−2 ϵ −ϵ

2 τ

Σ̃x

Σ̃y

−τ

(τ x , y (q (0)) , q (0))

(τ x , y (q (T )) , q(T ))

0=γ x
−1(x)

γ x
−1( y)

D̃x ( τ ,ϵ)

τ−ρ τ+ρ

∂+D̃x(τ, ε) := {τ} ×Bx(2ε),

∂−D̃x(τ, ε) := {−2ε} ×Bx(2ε) ∪ [−2ε,
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III. Ideas of the proof: Livšic criteria

Definition We discuss three cases:

1 The pseudo orbit case: the path z exits at the forward boundary

z(T ) ∈ ∂+Dx(τ, ε).

2 The escaped orbit case: the path exits at the backward boundary

z(T ) ∈ ∂−Dx(τ, ε).

3 the trapped orbit case: the path stays inside Dx(τ, ε).
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III. Ideas of the proof: Livšic criteria

Lemma Given A∗ ≥ 0, for C = C(A∗) sufficiently large

1 The pseudo orbit case:

Aφ,C(z) ≥ Φx,y + Ψy −Ψx + C‖fx,y(q̃x)− q̃y‖y

Φx,y :=

∫ τx,y(q̃x)

0

(φ− φ̄Λ) ◦ fs−r̃x ◦ z(0) ds

2 The escaped-orbit case:

Aφ,C(z) ≥ A∗

3 The trapped orbit case:

Aφ,C(z) ≥ −A∗
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Toulouse, Vol. 20, No. 1 (2011), 1–14.

A. Fathi, Weak KAM theorem in Lagrangian dynamics, Cambridge
University Press (2020).

Wen Huang, Zeng Lian, Xiao Ma, Leiye Xu, and Yiwei Zhang. Ergodic
optimization theory for axiom A flows. Preprint 2019.

A.O. Lopes, V. Roasa, R. Ruggiero. Cohomology and subcohomology for
expansive geodesic flows. Discrete Contin. Dyn. Syst. 17(2007), 403–422.

A.O. Lopes, Ph. Thieullen, Sub-actions for Anosov diffeomorphisms.
Geometric Methods in Dynamics (II). Astérisque, Vol. 287 (2003), 135–146.
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