DISCRIMINANT OF HYPERELLIPTIC CURVES

QING LIU

Abstract

We prove the well-known smoothness criterion of a Weierstrass equation in terms of its discriminant.

It is well known that the smoothness of a hyperelliptic equation can be checked with its discriminant (Proposition 0.7). In what follows we give a proof of this well known fact.
0.1. Smoothness and resultants. Let A be a ring and let $B=A[y]$ with $y^{2}+Q y=P(Q, P \in A)$. Then B is free of rank 2 over A, and we have the involution of B as A-algebra: $\sigma(y)=-y-Q$, the A-linear map trace $\operatorname{Tr}_{B / A}(b)=\sigma(b)-b$, the multiplicative map norm $\mathrm{N}_{B / A}(b)=\sigma(b) b$.
Lemma 0.1. Let $b \in B$. Let $I=(2 y+Q, b) \subseteq B$. Then we have

$$
\sqrt{I}=\sqrt{\left(F, \mathrm{~N}_{B / A}(b)\right)}
$$

Proof. The rhs is clearly contained in the lhs. Let $\mathfrak{p} \in \operatorname{Spec} B$ containing $\left(F, \mathrm{~N}_{B / A}(b)\right)$. We have to show that $\mathfrak{p} \supseteq I$.

First $\mathfrak{p} \ni 2 y+Q=y-\sigma(y)$. This means that $\sigma(y) \equiv y \bmod \mathfrak{p}$, therefore $\sigma(b) \equiv b \bmod \mathfrak{p}$, so $b^{2} \equiv \mathrm{~N}_{B / A}(b) \equiv 0 \bmod \mathfrak{p}$, hence $b \equiv 0$ $\bmod \mathfrak{p}$.

Now fix $g \geq 0$. Consider the polynomial ring

$$
A_{0}=R\left[b_{0}, \ldots, b_{g+1}, a_{0}, \ldots, a_{2 g+2}\right]
$$

over a given ring R and $A=A_{0}[x]$. Let $Q=\sum_{i} b_{i} x^{i}, P=\sum_{i} a_{i} x^{i} \in A$ and $B:=A[y]$, with $y^{2}+Q y=P$. Then B is flat over A. The Jacobian criterion says that the primes $\mathfrak{p} \in \operatorname{Spec} B$ of non-smoothness over A_{0} are those containing the ideal

$$
I:=\left(2 y+Q, Q^{\prime} y-P^{\prime}\right)
$$

By the previous lemma,

$$
\sqrt{I}=\sqrt{(F, G)} \subset B
$$

where $F=-\mathrm{N}_{B / A}(2 y+Q)$ and $G=\mathrm{N}_{B / A}\left(Q^{\prime} y-P^{\prime}\right)$. We have

$$
F=4 P+Q^{2}, \quad G=P^{2}-P Q^{\prime 2}+P^{\prime} Q Q^{\prime} \in A_{0}[x] .
$$

Corollary 0.2. Let $s \in \operatorname{Spec} A_{0}$. Then the fiber of $\operatorname{Spec} B \rightarrow \operatorname{Spec} A_{0}$ at s is singular (non-smooth) if and only if $F_{s}(x), G_{s}(x) \in k(s)[x]$ have a commun zero (in the algebraic closure of $k(s)$).

Proof. Use the surjectivity of $\operatorname{Spec}\left(B \otimes_{A} k(s)\right) \rightarrow \operatorname{Spec} k(s)[x]$ to prove the if part.
0.2. Resultants and discriminant. We see that the smoothness of the affine curve is controlled by $\operatorname{Res}(F, G)$. Next we relate it to a more common invariant, the discriminant of F. We have

$$
16 G=\mathrm{N}_{B / A}\left(4 Q^{\prime} y-4 P^{\prime}\right)=\mathrm{N}_{B / A}\left(2 Q^{\prime}(2 y+Q)-F^{\prime}\right)=-4 Q^{\prime 2} F+F^{\prime 2}
$$

(note that $\operatorname{Tr}_{B / A}(2 y+Q)=0$.)
Take

$$
R=\mathbb{Z}, \quad A_{0}=\mathbb{Z}\left[a_{i}, b_{j}\right] .
$$

Then $\operatorname{deg}\left(-4 Q^{\prime 2} F+F^{\prime 2}\right)=\operatorname{deg} F^{\prime 2}$, so

$$
\operatorname{Res}(F, 16 G)=\operatorname{Res}\left(F,-4 Q^{\prime 2} F+F^{\prime 2}\right)=\operatorname{Res}\left(F, F^{\prime 2}\right)=\operatorname{Res}\left(F, F^{\prime}\right)^{2}
$$

(wikipedia) where the first three resultants are in degrees $(2 g+2,4 g+2)$, while the last one is in degrees $(2 g+2,2 g+1)$. But

$$
\operatorname{Res}(F, 16 G)=16^{\operatorname{deg} F} \operatorname{Res}(F, G)=2^{8(g+1)} \operatorname{Res}(F, G)
$$

This implies that

$$
\left(\operatorname{Res}\left(F, F^{\prime}\right) / 2^{4 g+4}\right)^{2}=\operatorname{Res}(F, G) \in A_{0}
$$

Recall that if $V(x)$ is a polynomial of degree d with leading coeffcieint v_{d}, then $v_{d} \mid \operatorname{Res}\left(V, V^{\prime}\right)$ and by definition

$$
\begin{equation*}
\operatorname{disc}(V)=(-1)^{d(d-1) / 2} v_{d}^{-1} \operatorname{Res}\left(V, V^{\prime}\right) \tag{2}
\end{equation*}
$$

Denote by a, b the variables a_{i}, b_{j}. Let

$$
c(a, b):=4 a_{2 g+2}+b_{g+1}^{2}
$$

be the leading coefficient of F. As $c(a, b)$ divides $\operatorname{Res}\left(F, F^{\prime}\right)$ and is irreducible and prime to 2 in $\mathbb{Z}[a, b]$, we have $c^{2} \mid \operatorname{Res}(F, G)$. Hence

$$
2^{-4(g+1)} \operatorname{disc}(F) \in A_{0}=\mathbb{Z}\left[a_{i}, b_{j}\right] .
$$

Definition 0.3 With the above notation, define

$$
\Delta_{2 g+2}(a, b)=2^{-4(g+1)} \operatorname{disc}(F) \in \mathbb{Z}[a, b] .
$$

By construction,

$$
\begin{equation*}
c(a, b)^{2} \Delta_{2 g+2}^{2}(a, b)=\operatorname{Res}(F, G) \in \mathbb{Z}[a, b] . \tag{1}
\end{equation*}
$$

Consider now generic polynomials $\operatorname{deg} Q=g$ and $\operatorname{deg} P=2 g+1$. Similarly to the previous case we have

$$
\left(\operatorname{Res}\left(F, F^{\prime}\right) / 2^{4 g+2}\right)^{2}=\operatorname{Res}(F, G) \in \mathbb{Z}\left[a_{i}, b_{j}\right]_{0 \leq i \leq 2 g+1,0 \leq j \leq g}
$$

The leading coefficient of F is $4 a_{2 g+1}$. We have

$$
a_{2 g+1}^{2}\left(\operatorname{disc}(F) / 2^{4 g}\right)^{2}=\operatorname{Res}(F, G)
$$

hence $a_{2 g+1}^{2} \mid \operatorname{Res}(F, G)$ in $\mathbb{Z}[a, b]$.
Definition 0.4 We put

$$
\Delta_{2 g+1}(a, b)=2^{-4 g} \operatorname{disc}(F) \in \mathbb{Z}[a, b] .
$$

We have

$$
\begin{equation*}
a_{2 g+1}^{2} \Delta_{2 g+1}(a, b)=\operatorname{Res}(F, G) \in \mathbb{Z}[a, b] . \tag{2}
\end{equation*}
$$

Next we relate $\Delta_{2 g+2}(a, b)$ to $\Delta_{2 g+1}(a, b)$.
Proposition 0.5. Let $A(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots \in \mathbb{Z}\left[a_{0}, \ldots, a_{d}\right]$. Then

$$
\operatorname{disc}(A)\left(a_{0}, \ldots, a_{d-1}, 0\right)=a_{d-1}^{2} \operatorname{disc}\left(a_{d-1} x^{d-1}+\cdots+a_{0}\right)
$$

Proof. See [1], A.IV.80, Corollaire 2.
Corollary 0.6. Denote by (a, b) the variables $a_{0}, \ldots, a_{2 g+2}, b_{0}, \ldots, b_{g+1}$ and by \hat{a}, \hat{b} the variables after removing $a_{2 g+2}$ and b_{g+1}. Then we have

$$
\left.\Delta_{2 g+2}(a, b)\right|_{a_{2 g+2}=b_{g+1}=0}=a_{2 g+1}^{2} \Delta_{2 g+1}(\hat{a}, \hat{b})
$$

Let $\hat{F}=4\left(\sum_{i \leq 2 g+1} a_{i} x^{i}\right)+\left(\sum_{j \leq g} b_{j} x^{j}\right)^{2}$. Then

$$
\left.\Delta_{2 g+2}(a, b)\right|_{a_{2 g+2}=b_{g+1}=0}=2^{-4(g+1)}\left(4 a_{2 g+1}\right)^{2} \operatorname{disc}(\hat{F}) .
$$

Proposition 0.7. Let K be a field. Consider the affine curve C over K defined by an equation

$$
y^{2}+\left(\sum_{j \leq g+1} t_{j} x^{j}\right) y=\sum_{i \leq 2 g+2} s_{i} x^{i}
$$

with coefficients in K. Denote by $q(x)=\sum_{j} t_{j} x^{j}$ and $p(x)=\sum_{i} s_{i} x^{i}$. Let \hat{C} be the completion of C by gluing it with the affine curve C_{∞} defined by the equation

$$
z^{2}+\left(\sum_{j} t_{j} u^{g+1-j}\right) z=\sum_{i} s_{i} u^{2 g+2-i}, \quad u=1 / x, z=y / x^{g+1}
$$

Then $\Delta_{2 g+2}(s, t) \neq 0$ if and only if \hat{C} is smooth.

Proof. We can suppose K algebraically closed, and $\operatorname{char}(K)=2$ (otherwise the proof is easier by reducing to the case $q(x)=0$.) Translating y by $\sqrt{s_{2 g+2}} x^{g+1}$ (in C_{∞}, z is translated by $\sqrt{s_{2 g+2}}$), we can suppose that $s_{2 g+2}=0$.
(1) Suppose $t_{g+1} \neq 0$. Then $C_{\infty} \rightarrow \operatorname{Spec} K[1 / x]$ is étale above $x=$ ∞, and \hat{C} is smooth at ∞. We have

$$
t_{g+1}^{4} \Delta_{2 g+2}(s, t)^{2}=\operatorname{Res}(F, G)(s, t)
$$

Let r be the degree of $G(s, t)(x) \in K[x]$. As $\operatorname{deg} F(s, t)(x)=2 g+2$ with leading coefficient t_{g+1}^{2}, we have

$$
t_{g+1}^{2 k} \operatorname{Res}(F(s, t)(x), G(s, t)(x))=\operatorname{Res}(F, G)(s, t)
$$

where $k=\operatorname{deg} G(x)-r$ (wikipedia). Therefore $\Delta_{2 g+2}(s, t) \neq 0$ if and only if C is smooth.
(2) Suppose $t_{g+1}=0$. We have

$$
\Delta_{2 g+2}(s, t)=s_{2 g+1}^{2} \Delta_{2 g+1}(\hat{s}, \hat{t}) .
$$

If $\Delta_{2 g+2}(s, t) \neq 0$, then $s_{2 g+1} \neq 0$. Similarly to the previous case, the smoothness of C is then equivalent to $\Delta_{2 g+1}(\hat{s}, \hat{t}) \neq 0$. Finally the condition $s_{2 g+1} \neq 0$ is equivalent (when $s_{2 g+2}=t_{g+1}=0$) to the smoothness at ∞. This proves the statement when $t_{g+1}=0$.

References

[1] Bourbaki, Algèbre, Chapter IV.
[2] Serge Lang: Algebra,
[3] Qing Liu: Modèles entiers de courbes hyperelliptiques sur un anneau de valuation discrète, Trans. Amer. Math. Soc., 348 (1996), 4577-4610.
[4] Paul Lockhart: On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342 (1994), 729-752.

