
DISCRIMINANT OF HYPERELLIPTIC CURVES

QING LIU

Abstract. We prove the well-known smoothness criterion of a
Weierstrass equation in terms of its discriminant.

It is well known that the smoothness of a hyperelliptic equation can
be checked with its discriminant (Proposition 0.7) . In what follows we
give a proof of this well known fact.

0.1. Smoothness and resultants. Let A be a ring and let B = A[y]
with y2 + Qy = P (Q,P ∈ A). Then B is free of rank 2 over A,
and we have the involution of B as A-algebra: σ(y) = −y − Q, the
A-linear map trace TrB/A(b) = σ(b) − b, the multiplicative map norm
NB/A(b) = σ(b)b.

Lemma 0.1. Let b ∈ B. Let I = (2y +Q, b) ⊆ B. Then we have
√
I =

√
(F,NB/A(b)).

Proof. The rhs is clearly contained in the lhs. Let p ∈ SpecB contain-
ing (F,NB/A(b)). We have to show that p ⊇ I.
First p ∋ 2y + Q = y − σ(y). This means that σ(y) ≡ y mod p,

therefore σ(b) ≡ b mod p, so b2 ≡ NB/A(b) ≡ 0 mod p, hence b ≡ 0
mod p. □

Now fix g ≥ 0. Consider the polynomial ring

A0 = R[b0, ..., bg+1, a0, . . . , a2g+2]

over a given ring R and A = A0[x]. Let Q =
∑

i bix
i, P =

∑
i aix

i ∈ A
and B := A[y], with y2+Qy = P . Then B is flat over A. The Jacobian
criterion says that the primes p ∈ SpecB of non-smoothness over A0

are those containing the ideal

I := (2y +Q,Q′y − P ′).

By the previous lemma,
√
I =

√
(F,G) ⊂ B

where F = −NB/A(2y +Q) and G = NB/A(Q
′y − P ′). We have

F = 4P +Q2, G = P ′2 − PQ′2 + P ′QQ′ ∈ A0[x].
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Corollary 0.2. Let s ∈ SpecA0. Then the fiber of SpecB → SpecA0

at s is singular (non-smooth) if and only if Fs(x), Gs(x) ∈ k(s)[x] have
a commun zero (in the algebraic closure of k(s)).

Proof. Use the surjectivity of Spec(B⊗A k(s)) → Spec k(s)[x] to prove
the if part. □

0.2. Resultants and discriminant. We see that the smoothness of
the affine curve is controlled by Res(F,G). Next we relate it to a more
common invariant, the discriminant of F . We have

16G = NB/A(4Q
′y − 4P ′) = NB/A(2Q

′(2y +Q)− F ′) = −4Q′2F + F ′2

(note that TrB/A(2y +Q) = 0.)
Take

R = Z, A0 = Z[ai, bj].
Then deg(−4Q′2F + F ′2) = degF ′2, so

Res(F, 16G) = Res(F,−4Q′2F + F ′2) = Res(F, F ′2) = Res(F, F ′)2

(wikipedia) where the first three resultants are in degrees (2g+2, 4g+2),
while the last one is in degrees (2g + 2, 2g + 1). But

Res(F, 16G) = 16degFRes(F,G) = 28(g+1)Res(F,G).

This implies that

(Res(F, F ′)/24g+4)2 = Res(F,G) ∈ A0.

Recall that if V (x) is a polynomial of degree d with leading coeffcieint
vd, then vd | Res(V, V ′) and by definition

disc(V ) = (−1)d(d−1)/2v−1
d Res(V, V ′)

([2])
Denote by a, b the variables ai, bj. Let

c(a, b) := 4a2g+2 + b2g+1

be the leading coefficient of F . As c(a, b) divides Res(F, F ′) and is
irreducible and prime to 2 in Z[a, b], we have c2 | Res(F,G). Hence

2−4(g+1)disc(F ) ∈ A0 = Z[ai, bj].

Definition 0.3 With the above notation, define

∆2g+2(a, b) = 2−4(g+1)disc(F ) ∈ Z[a, b].

By construction,

(1) c(a, b)2∆2
2g+2(a, b) = Res(F,G) ∈ Z[a, b].
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Consider now generic polynomials degQ = g and degP = 2g + 1.
Similarly to the previous case we have

(Res(F, F ′)/24g+2)2 = Res(F,G) ∈ Z[ai, bj]0≤i≤2g+1,0≤j≤g.

The leading coefficient of F is 4a2g+1. We have

a22g+1(disc(F )/24g)2 = Res(F,G),

hence a22g+1 | Res(F,G) in Z[a, b].
Definition 0.4 We put

∆2g+1(a, b) = 2−4gdisc(F ) ∈ Z[a, b].

We have

(2) a22g+1∆2g+1(a, b) = Res(F,G) ∈ Z[a, b].

Next we relate ∆2g+2(a, b) to ∆2g+1(a, b).

Proposition 0.5. Let A(x) = adx
d + ad−1x

d−1 + · · · ∈ Z[a0, ..., ad].
Then

disc(A)(a0, ...., ad−1, 0) = a2d−1disc(ad−1x
d−1 + · · ·+ a0).

Proof. See [1], A.IV.80, Corollaire 2. □

Corollary 0.6. Denote by (a, b) the variables a0, ..., a2g+2, b0, ..., bg+1

and by â, b̂ the variables after removing a2g+2 and bg+1. Then we have

∆2g+2(a, b)|a2g+2=bg+1=0 = a22g+1∆2g+1(â, b̂).

Let F̂ = 4(
∑

i≤2g+1 aix
i) + (

∑
j≤g bjx

j)2. Then

∆2g+2(a, b)|a2g+2=bg+1=0 = 2−4(g+1)(4a2g+1)
2disc(F̂ ).

Proposition 0.7. Let K be a field. Consider the affine curve C over
K defined by an equation

y2 + (
∑

j≤g+1

tjx
j)y =

∑
i≤2g+2

six
i

with coefficients in K. Denote by q(x) =
∑

j tjx
j and p(x) =

∑
i six

i.

Let Ĉ be the completion of C by gluing it with the affine curve C∞
defined by the equation

z2 + (
∑
j

tju
g+1−j)z =

∑
i

siu
2g+2−i, u = 1/x, z = y/xg+1.

Then ∆2g+2(s, t) ̸= 0 if and only if Ĉ is smooth.
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Proof. We can suppose K algebraically closed, and char(K) = 2 (oth-
erwise the proof is easier by reducing to the case q(x) = 0.) Translating
y by

√
s2g+2x

g+1 (in C∞, z is translated by
√
s2g+2), we can suppose

that s2g+2 = 0.
(1) Suppose tg+1 ̸= 0. Then C∞ → SpecK[1/x] is étale above x =

∞, and Ĉ is smooth at ∞. We have

t4g+1∆2g+2(s, t)
2 = Res(F,G)(s, t).

Let r be the degree of G(s, t)(x) ∈ K[x]. As degF (s, t)(x) = 2g + 2
with leading coefficient t2g+1, we have

t2kg+1Res(F (s, t)(x), G(s, t)(x)) = Res(F,G)(s, t)

where k = degG(x) − r (wikipedia). Therefore ∆2g+2(s, t) ̸= 0 if and
only if C is smooth.

(2) Suppose tg+1 = 0. We have

∆2g+2(s, t) = s22g+1∆2g+1(ŝ, t̂).

If ∆2g+2(s, t) ̸= 0, then s2g+1 ̸= 0. Similarly to the previous case,
the smoothness of C is then equivalent to ∆2g+1(ŝ, t̂) ̸= 0. Finally
the condition s2g+1 ̸= 0 is equivalent (when s2g+2 = tg+1 = 0) to the
smoothness at ∞. This proves the statement when tg+1 = 0. □
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