Lasry-Lions regularization and a Lemma of Ilmanen

Patrick Bernard

December 2009

Let H be a Hilbert space. We define the following inf (sup) convolution operators acting on bounded functions $u: H \longrightarrow \mathbb{R}$:

$$
T_{t} u(x):=\inf _{y}\left(u(y)+\frac{1}{t}\|y-x\|^{2}\right)
$$

and

$$
\check{T}_{t} u(x):=\sup _{y}\left(u(y)-\frac{1}{t}\|y-x\|^{2}\right) .
$$

We have the relation

$$
T_{t}(-u)=-\check{T}_{t}(u) .
$$

Recall that these operators form semi-groups, in the sense that

$$
T_{t} \circ T_{s}=T_{t+s} \quad \text { and } \quad \check{T}_{t} \circ \check{T}_{s}=\check{T}_{t+s}
$$

for all $t \geqslant 0$ and $s \geqslant 0$, as can be checked by direct calculation. Note also that

$$
\inf u \leqslant T_{t} u(x) \leqslant u(x) \leqslant \check{T}_{t} u(x) \leqslant \sup u
$$

for each $t \geqslant 0$ and each $x \in H$. A function $u: H \longrightarrow \mathbb{R}$ is called k-semi-concave, $k>0$, if the function $x \longrightarrow u(x)-\|x\|^{2} / k$ is concave. The function u is called k-semi-convex if $-u$ is k-semiconcave. A bounded function u is t-semi-concave if and only if it belongs to the image of the operator T_{t}, this follows from Lemma 1 and Lemma 3 below. A function is called semi-concave if it is k-semi-concave for some $k>0$. A function u is said $C^{1,1}$ if it is Frechet differentiable and if the gradient of u is Lipschitz. Note that a continuous function is $C^{1,1}$ if and only if it is semi-concave and semi-convex, see Lemma 6. Let us recall two important results in that language:

Theorem 1. (Lasry-Lions, [6]) Let u be a bounded function. For $0<s<t$, the function $\check{T}_{s} \circ T_{t} u$ is $C^{1,1}$ and, if u is uniformly continuous, then it converges uniformly to u when $t \longrightarrow 0$.
Theorem 2. (Ilmanen, [5]) Let $u \geqslant v$ be two bounded functions on H such that u and $-v$ are semi-concave. Then there exists a $C^{1,1}$ function w such that $u \geqslant w \geqslant v$.

Our goal in the present paper is to "generalize" simultaneously both of these results as follows:

Theorem 3. The operator $R_{t}:=\check{T}_{t} \circ T_{2 t} \circ \check{T}_{t}$ has the following properties:

- Regularization : $R_{t} f$ is $C^{1,1}$ for all bounded f and all $t>0$.
- Approximation : If f is uniformly continuous, then $R_{t} f$ converges uniformly to f as $t \longrightarrow 0$.
- Pinching: If $u \geqslant v$ are two locally bounded functions such that u and $-v$ are k-semiconcave, then the inequality $u \geqslant R_{t} f \geqslant v$ holds for each $t \leqslant k$ if $u \geqslant f \geqslant v$.

Theorem 3 does not, properly speaking, generalize Theorem 1. However, it offers a new (although similar) answer to the same problem: approximating uniformly continuous functions on Hilbert spaces by $C^{1,1}$ functions with a simple explicit formula.

Because of its symmetric form, the regularizing operator R_{t} enjoys some nicer properties than the Lasry-Lions operators. For example, if f is $C^{1,1}$, then it follows from the pinching property that $R_{t} f=f$ for t small enough.

Theorem 2, can be proved using Theorem 3 by taking $w=R_{t} u$, for t small enough. Note, in view of Lemma 3 bellow, that $R_{t} u=\check{T}_{t} \circ T_{t} u$ when t is small enough.

Theorem 3 can be somehow extended to the case of finite dimensional open sets or manifolds via partition of unity, at the price of loosing the simplicity of explicit expressions. Let M be a paracompact manifold of dimension n, equipped once and for all with an atlas ($\phi_{i}, i \in \Im$) composed of charts $\phi_{i}: B^{n} \longrightarrow M$, where B^{n} is the open unit ball of radius one centered at the origin in \mathbb{R}^{n}. We assume in addition that the image $\phi_{i}\left(B^{n}\right)$ is a relatively compact open set. Let us fix, once and for all, a partition of the unity g_{i} subordinated to the open covering $\left(\phi_{i}\left(B^{n}\right), i \in \Im\right)$. It means that the function g_{i} is non-negative, with support inside $\phi_{i}\left(B^{n}\right)$, such that $\sum_{i} g_{i}=1$, where the sum is locally finite. Let us define the following formal operator

$$
G_{t}(u):=\sum_{i}\left[R_{t a_{i}}\left(\left(g_{i} u\right) \circ \phi_{i}\right)\right] \circ \phi_{i}^{-1},
$$

where $a_{i}, i \in \Im$ are positive real numbers. We say that a function $u: M \longrightarrow \mathbb{R}$ is locally semiconcave if, for each $i \in \Im$, there exists a constant b_{i} such that the function $u \circ \phi_{i}-\|\cdot\|^{2} / b_{i}$ is concave on B^{n}.
Theorem 4. Let $u \geqslant v$ be two continuous functions on M such that u and $-v$ are locally semiconcave. Then, the real numbers a_{i} can be chosen such that, for each $\left.\left.t \in\right] 0,1\right]$ and each function f satisfying $u \geqslant f \geqslant v$, we have:

- The sum in the definition of $G_{t}(f)$ is locally finite, so that the function $G_{t}(f)$ is welldefined.
- The function $G_{t} f$ is locally $C^{1,1}$.
- If f is continuous, then $G_{t}(f)$ converges locally uniformly to f as $t \longrightarrow 0$.
- $u \geqslant G_{t} f \geqslant v$.

Notes and Acknowledgements

Theorem 2 appears in Ilmanen's paper [5] as Lemma 4G. Several proofs are sketch there but none is detailed. The proof we detail here follows lines similar to one of the sketches of Ilmanen. This statement also has a more geometric counterpart, Lemma 4E in [5]. A detailed proof of this geometric version is given in [2], Appendix. My attention was attracted to these statements and their relations with recent progresses on sub-solutions of the Hamilton-Jacobi equation (see [4, 1, 7]) by Pierre Cardialaguet, Albert Fathi and Maxime Zavidovique. These authors also recently wrote a detailed proof of Theorem 2, see [3]. This paper also proves how the geometric version follows from Theorem 2. There are many similarities between the tools used in the present paper and those used in [1]. Moreover, Maxime Zavidovique observed in [7] that the existence of $C^{1,1}$ subsolutions of the Hamilton-Jacobi equation in the discrete case can be deduced from Theorem 2. However, is seems that the main result of [1] (the existence of $C^{1,1}$ subsolutions in the continuous case) can't be deduced easily from Theorem 2. Neither can Theorem 2 be deduced from it.

1 The operators T_{t} and \check{T}_{t} on Hilbert spaces

The proofs of the theorems follow from standard properties of the operators T_{t} and \check{T}_{t} that we now recall in details.

Lemma 1. For each bounded function u, the function $T_{t} u$ is t-semi-concave and the function $\check{T}_{t} u$ is t-semi-convex. Moreover, if u is k-semi-concave, then for each $t<k$ the function $\check{T}_{t} u$ is ($k-t$)-semi-concave. Similarly, if u is k-semi-convex, then for each $t<k$ the function $T_{t} u$ is $(k-t)$-semi-convex.

Proof. We shall prove the statements concerning T_{t}. We have

$$
T_{t} u(x)-\|x\|^{2} / t=\inf _{y}\left(u(y)+\|y-x\|^{2} / t-\|x\|^{2} / t\right)=\inf _{y}\left(u(y)+\|y\|^{2} / t-2 x \cdot y / t\right),
$$

this function is convex as an infimum of linear functions. On the other hand, we have

$$
T_{t} u(x)+\|x\|^{2} / l=\inf _{y}\left(u(y)+\|y-x\|^{2} / t+\|x\|^{2} / l\right)
$$

Setting $f(x, y):=u(y)+\|y-x\|^{2} / t+\|x\|^{2} / l$, the function $\inf _{y} f(x, y)$ is a convex function of x if f is a convex function of (x, y). This is true if u is k-semi-convex, $t<k$, and $l=k-t$ because we have the expression

$$
f(x, y)=u(y)+\|y-x\|^{2} / t+\|x\|^{2} / l=\left(u(y)+\|y\|^{2} / k\right)+\left\|\sqrt{\frac{l}{k t}} y-\sqrt{\frac{k}{l t}} x\right\|^{2}
$$

Given a uniformly continuous function $u: H \longrightarrow \mathbb{R}$, we define its modulus of continuity $\rho(r):[0, \infty) \longrightarrow[0, \infty)$ by the expression $\rho(r)=\sup _{x, e} u(x+r e)-u(x)$, where the supremum is taken on all $x \in H$ and all e in the unit ball of H. The function ρ is non-decreasing, it satisfies $\rho\left(r+r^{\prime}\right) \leqslant \rho(r)+\rho\left(r^{\prime}\right)$, and it converges to zero in zero (this last fact is equivalent to the uniform continuity of $u)$. We say that a function $\rho:[0, \infty) \longrightarrow[0, \infty)$ is a modulus of continuity if it satisfies these properties. Given a modulus of continuity $\rho(r)$, we say that a function u is ρ-continuous if $|u(y)-u(x)| \leqslant \rho(\|y-x\|)$ for all x and y in H.

Lemma 2. If u is uniformly continuous, then the functions $T_{t} u$ and $\check{T}_{t} u$ converge uniformly to u when $t \longrightarrow 0$. Moreover, given a modulus of continuity ρ, there exists a non-decreasing function $\epsilon(t):[0, \infty) \longrightarrow[0, \infty)$ satisfying $\lim _{t \longrightarrow 0} \epsilon(t)=0$ and such that, for each ρ-continuous bounded function u, we have:

- $T_{t} u$ and $\check{T}_{t} u$ are ρ-continuous for each $t \geqslant 0$.
- $u-\epsilon(t) \leqslant T_{t} u(x) \leqslant u$ and $u \leqslant \check{T}_{t} u \leqslant u+\epsilon(t)$ for each $t \geqslant 0$.

Proof. Let us fix $y \in H$, and set $v(x)=u(x+y)$. We have $u(x)-\rho(\mid y \|) \leqslant v(x) \leqslant u(x)+\rho(\|y\|)$. Applying the operator T_{t} gives $T_{t} u(x)-\rho(y) \leqslant T_{t} v(x) \leqslant T_{t} u(x)+\rho(y)$. On the other hand, we have

$$
\left.T_{t} v(x)=\inf _{z}(u(z+y)+\| z-x) \|^{2} / t\right)=\inf _{z}\left(u(z)+\|z-(x+y)\|^{2} / t\right)=T_{t} u(x+y),
$$

so that

$$
T_{t} u(x)-\rho(\|y\|) \leqslant T_{t} u(x+y) \leqslant T_{t} u(x)+\rho(\|y\|) .
$$

We have proved that $T_{t} u$ is ρ continuous if u is, the proof for $\check{T}_{t} u$ is the same.

In order to study the convergence, let us set $\epsilon(t)=\sup _{r>0}\left(\rho(r)-r^{2} / t\right)$. We have

$$
\epsilon(t)=\sup _{r>0}\left(\rho(r \sqrt{t})-r^{2}\right) \leqslant \sup _{r>0}\left((r+1) \rho(\sqrt{t})-r^{2}\right)=\rho(\sqrt{t})+\rho^{2}(\sqrt{t}) / 4 .
$$

We conclude that $\lim _{t \longrightarrow 0} \epsilon(t)=0$. We now come back to the operator T_{t}, and observe that

$$
u(y)-\|y-x\|^{2} / t \geqslant u(x)-\rho(\|y-x\|)+\|y-x\|^{2} / t \geqslant u(x)-\epsilon(t)
$$

for each x and y, so that

$$
u-\epsilon(t) \leqslant T_{t} u \leqslant u
$$

Lemma 3. For each locally bounded function u, we have $\check{T}_{t} \circ T_{t}(u) \leqslant u$ and the equality $\check{T}_{t} \circ$ $T_{t}(u)=u$ holds if and only if u is t-semi-convex. Similarly, given a locally bounded function v, we have $T_{t} \circ \check{T}_{t}(v) \geqslant v$, with equality if and only if v is t-semi-convex.

Proof. Let us write explicitly

$$
\check{T}_{t} \circ T_{t} u(x)=\sup _{y} \inf _{z}\left(u(z)+\|z-y\|^{2} / t-\|y-x\|^{2} / t\right) .
$$

Taking $z=x$, we obtain the estimate $\check{T}_{t} \circ T_{t} u(x) \leqslant \sup _{y} u(z)=u(z)$. Let us now write

$$
\check{T}_{t} \circ T_{t} u(x)+\|x\|^{2} / t=\sup _{y} \inf _{z}\left(u(z)+\|z\|^{2} / t+(2 y / t) \cdot(x-z)\right)
$$

which by an obvious change of variable leads to

$$
\check{T}_{t} \circ T_{t} u(x)+\|x\|^{2} / t=\sup _{y} \inf _{z}\left(u(z)+\|z\|^{2} / t+y \cdot(x-z)\right) .
$$

We recognize here that the function $\check{T}_{t} \circ T_{t} u(x)+\|x\|^{2} / t$ is the Legendre bidual of the function $u(x)+\|x\|^{2} / t$. It is well-know that a locally bounded function is equal to its Legendre bidual if and only if it is convex.

Lemma 4. If u is locally bounded and semi-concave, then $\check{T}_{t} \circ T_{t} u$ is $C^{1,1}$ for each $t>0$.
Proof. Let us assume that u is k-semi-concave. Then $u=T_{k} \circ \check{T}_{k} u$, by Lemma 3. We conclude that $\check{T}_{t} \circ T_{t} u=\check{T}_{t} \circ T_{t+k} f$, with $f=\check{T}_{k} u$. By Lemma 1, the function $T_{t+k} f$ is $(t+k)$-semi-concave. Then, the function $\check{T}_{t} T_{t+k} f$ is k-semi-concave. Since it is also t-semi-convex, it is $C^{1,1}$.

2 Proof of the main results

Proof of Theorem 3: For each function f and each $t>0$, the function $\check{T}_{t} \circ T_{2 t} \circ \check{T}_{t} f$ is $C^{1,1}$. This is a consequence of Lemma 4 since

$$
\check{T}_{t} \circ T_{2 t} \circ \check{T}_{t} f=\check{T}_{t} \circ T_{t}\left(T_{t} \circ \check{T}_{t} f\right)
$$

and since the function $T_{t} \circ \check{T}_{t} f$ is semi-concave.
Assume now that both u and $-v$ are k-semi-concave. We claim that

$$
u \geqslant f \geqslant v \Longrightarrow u \geqslant T_{t} \circ \check{T}_{t} f \geqslant v \text { and } u \geqslant \check{T}_{t} \circ T_{t} f \geqslant v
$$

for $t \leqslant 1 / k$. This claim implies that $u \geqslant \check{T}_{t} \circ T_{2 t} \circ \check{T}_{t} f \geqslant v$ when $u \geqslant f \geqslant v$. Let us now prove the claim concerning $\check{T}_{t} \circ T_{t}$, the other part being similar. Since v is k-semi-convex, we have $\check{T}_{t} \circ T_{t} v=v$ for $t \leqslant k$, by Lemma 3. Then,

$$
u \geqslant f \geqslant \check{T}_{t} \circ T_{t} f \geqslant \check{T}_{t} \circ T_{t} v=v
$$

where the second inequality follows from Lemma 3, and the third from the obvious fact that the operators T_{t} and \check{T}_{t} are order-preserving.

The approximation property follows directly from Lemma 2.
Proof of Theorem 4: Let a_{i} be chosen such that the functions $\left(g_{i} u\right) \circ \phi_{i}$ and $-\left(g_{i} v\right) \circ \phi_{i}$ are a_{i}-semi-concave on \mathbb{R}^{n}. The existence of real numbers a_{i} with this property follows from Lemma 5 below. Given $u \geqslant f \geqslant v$, we can apply Theorem 3 for each i to the functions

$$
\left(g_{i} u\right) \circ \phi_{i} \geqslant\left(g_{i} f\right) \circ \phi_{i} \geqslant\left(g_{i} v\right) \circ \phi_{i}
$$

extended by zero outside of B^{n}. We conclude that, for $\left.\left.t \in\right] 0,1\right]$, the function $R_{t a_{i}}\left(\left(g_{i} f\right) \circ \phi_{i}\right)$ is $C^{1,1}$ and satisfies

$$
\left(g_{i} u\right) \circ \phi_{i} \geqslant R_{t a_{i}}\left(\left(g_{i} f\right) \circ \phi_{i}\right) \geqslant\left(g_{i} v\right) \circ \phi_{i} .
$$

As a consequence, the function

$$
\left[R_{t a_{i}}\left(\left(g_{i} f\right) \circ \phi_{i}\right)\right] \circ \phi_{i}^{-1}
$$

is null outside of the support of g_{i}, and therefore the sum in the definition of $G_{t} f$ is locally finite. The function $G_{t}(f)$ is thus locally a finite sum of $C^{1,1}$ functions hence it is locally $C^{1,1}$. Moreover, we have

$$
u=\sum_{i} g_{i} u \geqslant G_{t}(f) \geqslant \sum_{i} g_{i} v=v
$$

We have used:
Lemma 5. Let $u: B^{n} \longrightarrow \mathbb{R}$ be a bounded function such that $u-\|\cdot\|^{2} / a$ is concave, for some $a>0$. For each compactly supported non-negative C^{2} function $g: B^{n} \longrightarrow \mathbb{R}$, the product $g u$ (extended by zero outside of B^{n}) is semi-concave on \mathbb{R}^{n}.

Proof. Since u is bounded, we can assume that $u \geqslant 0$ on B^{n}. Let $K \subset B^{n}$ be a compact subset of the open ball B^{n} which contains the support of g in its interior. Since the function $u-\|\cdot\|^{2} / a$ is concave on B_{1} it admits super-differentials at each point. As a consequence, for each $x \in B^{n}$, there exists a linear form l_{x} such that

$$
0 \leqslant u(y) \leqslant u(x)+l_{x} \cdot(y-x)+\|y-x\|^{2} / a
$$

for each $y \in B^{1}$. Moreover, the linear form l_{x} is bounded independently of $x \in K$. We also have

$$
0 \leqslant g(y) \leqslant g(x)+d g_{x} \cdot(y-x)+C\|y-x\|^{2}
$$

for some $C>0$, for all x, y in \mathbb{R}^{n}. Taking the product, we get, for $x \in K$ and $y \in B^{n}$,

$$
u(y) g(y) \leqslant u(x) g(x)+\left(g(x) l_{x}+u(x) d g_{x}\right) \cdot(y-x)+C\|y-x\|^{2}+C\|y-x\|^{3}+C\|y-x\|^{4}
$$

where $C>0$ is a constant independent of $x \in K$ and $y \in B^{n}$, which may change from line to line. As a consequence, setting $L_{x}=g(x) l_{x}+u(x) d g_{x}$, we obtain the inequality

$$
\begin{equation*}
(g u)(y) \leqslant(g u)(x)+L_{x} \cdot(y-x)+C\|y-x\|^{2} \tag{L}
\end{equation*}
$$

for each $x \in K$ and $y \in B^{n}$. If we set $L_{x}=0$ for $x \in \mathbb{R}^{n}-K$, the relation (L) holds for each $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$. For $x \in K$ and $y \in B^{n}$, we have already proved it. Since the linear forms $L_{x}, x \in K$ are uniformly bounded, we can assume that $L_{x} \cdot(y-x)+C\|y-x\|^{2} \geqslant 0$ for all $x \in K$ and $y \in \mathbb{R}^{n}-B^{n}$ by taking C large enough. Then, (L) holds for all $x \in K$ and $y \in \mathbb{R}^{n}$. For $x \in \mathbb{R}^{n}-K$ and y outside of the support g, the relation (L) holds in an obvious way, because $g u(x)=g u(y)=0$, and $L_{x}=0$. For $x \in \mathbb{R}^{n}-K$ and y in the support of g, the relation holds provided that $C \geqslant \max (g u) / d^{2}$, where d is the distance between the complement of K and the support of g. This is a positive number since K is a compact set containing the support of g in its interior. We conclude that the function $(g u)$ is semi-concave on \mathbb{R}^{n}.

For completeness, we also prove, following Fathi:
Lemma 6. Let u be a continuous function which is both k-semi-concave and k-semi-convex. Then the function u is $C^{1,1}$, and $6 / k$ is a Lipschitz constant for the gradient of u.

Proof. Let u be a continuous function which is both k-semi-concave and k-semi-convex. Then, for each $x \in H$, there exists a unique $l_{x} \in H$ such that

$$
\left|u(x+y)-u(x)-l_{x} \cdot y\right| \leqslant\|y\|^{2} / k .
$$

We conclude that l_{x} is the gradient of u at x, and we have to prove that the map $x \longmapsto l_{x}$ is Lipschitz. We have, for eah x, y and z in H :

$$
\begin{gathered}
l_{x} \cdot(y+z)-\|y+z\|^{2} / k \leqslant u(x+y+z)-u(x) \leqslant l_{x} \cdot(y+z)+\|y+z\|^{2} / k \\
l_{(x+y)} \cdot(-y)-\|y\|^{2} / k \leqslant u(x)-u(x+y) \leqslant l_{(x+y)} \cdot(-y)+\|y\|^{2} / k \\
l_{(x+y)} \cdot(-z)-\|z\|^{2} / k \leqslant u(x+y)-u(x+y+z) \leqslant l_{(x+y)} \cdot(-z)+\|z\|^{2} / k
\end{gathered}
$$

Taking the sum, we obtain

$$
\left|\left(l_{x+y}-l_{x}\right) \cdot(y+z)\right| \leqslant\|y+z\|^{2} / k+\|y\|^{2} / k+\|z\|^{2} / k
$$

By a change of variables, we get

$$
\left|\left(l_{x+y}-l_{x}\right) \cdot(z)\right| \leqslant\|z\|^{2} / k+\|y\|^{2} / k+\|z-y\|^{2} / k
$$

Taking $\|z\|=\|y\|$, we obtain

$$
\left|\left(l_{x+y}-l_{x}\right) \cdot(z)\right| \leqslant 6\|z\|\|y\| / k
$$

for each z such that $\|z\|=\|y\|$, we conclude that

$$
\left\|l_{x+y}-l_{x}\right\| \leqslant 6\|y\| / k
$$

References

[1] P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. E. N. S. (4) 40 (2007), No. 3, 445-452.
[2] P. Cardaliaguet, Front Propagation Problems with Nonlocal Terms 2, J. Math. An. Appl. 260 (2001), 572-601.
[3] P. Cardaliaguet, A. Fathi, M. Zavidovique, Insertion of $C^{1,1}$ functions and Illmanen's Lemma.
[4] A. Fathi, A. Siconolfi : Existence of C^{1} critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004), no. 2, 363-388.
[5] T. Ilmanen : The Level-Set Flow on a Manifold, Proc. Symposia Pure Math. 54 (1993) no. 1, 193-204.
[6] J. M. Lasry and P. L. Lions : A Remark on Regularization in Hilbert Spaces, Israel Math. J. 55 (1996) no. 3, 257-266.
[7] M. Zavidovique, Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory.

