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Abstract

In this paper we introduce a new transportation distance between non-negative
measures inside a domainΩ. This distance enjoys many nice properties, for in-
stance it makes the space of non-negative measures insideΩ a geodesic space,
without any convexity assumption onΩ. Moreover, we will show that the gradient
flow of the entropy functional

∫
Ω
[ρ log(ρ)−ρ] dxw.r.t. this distance coincides with

the heat equation, subject to the Dirichlet boundary condition equal to 1.

Résuḿe
Dans ce papier, nous introduisons une nouvelle distance sur l’espace des mesures

positive dans un domaineΩ. Cette distance satisfait plusieurs propriét́es int́eressantes :
par exemple, elle fait de l’espace des mesures positives dansΩ un espace ǵeod́esique,
sans aucune hypothèse de convexité sur le domaine. De plus, on montre que le flot
gradient de la fonctionnelle d’entropie

∫
Ω
[ρ log(ρ) − ρ] dx par rapport̀a cette dis-

tance donne lieùa l’équation de la chaleur, avec condition de Dirichletégaleà 1
sur le bord.

1 Introduction

Nowadays, it is well-know that transportation distances between probability measures
can be successfully used to study evolutionary equations. More precisely, one of the
most surprisingly achievement of [8, 10, 11] has been that many evolution equations of
the form

d
dt
ρ(t) = div

(
∇ρ(t) − ρ(t)∇V − ρ(t)

(∇W ∗ ρ(t)
))

can be seen as gradient flows of some entropy functionals on the space of probability
measures with respect to the Wasserstein distance

W2(µ, ν) = inf

{√∫
|x− y|2 dγ(x, y) : π1

#γ = µ, π2
#γ = ν

}
.
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Besides the fact that this interpretation allows to prove entropy estimates and functional
inequalities (see [12, 13] for more details on this area, which is still very active and in
continuous evolution), this point of view provides a powerful variational method to
prove esistence of solutions to the above equations: given a time stepτ > 0, construct
an approximate solution by iteratively minimizing

ρ 7→ W2(ρ, ρ0)
2τ

+

∫ [
ρ log(ρ) + ρV +

1
2
ρ(W ∗ ρ)

]
dx.

We refer to [2] for a general description of this approach.
Let us observe that the choice of the distance on the space of probability measures

plays a key role, and by changing it one can construct solutions to more general classes
of evolution equations, see for instance [1, 5, 7]. However, all the distances considered
up to now need the two measures to have the same mass (which up to a scaling can
always be assumed equal to 1). In particular, since the mass remains constant along
the evolution, if one restricts to measures concentrated on a bounded domain, then the
approach described above will always produce solutions to parabolic equations with
Neumann boundary conditions.

Motivated by the intent to find an analogous approach to construct solutions of
evolution equations subject to Dirichlet boundary condition, in this paper we introduce
a new transportation distanceWb2 between measures. As we will see, the main features
of the distanceWb2 are:

• It metrizes the weak convergence of positive measuresM+(Ω) in Ω, see Propo-
sition 2.2. (This is similarly to what happens for the common Wasserstein dis-
tances, but without any mass constraint.)

• The resulting metric space (M+(Ω),Wb2) is always geodesic, see Proposition
2.8. This is a particularly interesting property compared to what happens in
the classical Wasserstein space: indeed the space (P(Ω),W2) is geodesic if and
only if Ω is convex. In our case, the convexity of the open set is not required.
(Actually, not even connectedness is needed!)

• The natural approach via minimizing movements to the study of the gradient
flow of the entropy leads to weak solution of the heat equation with Dirichlet
boundary condition, see Theorem 3.5. Interesting enough, with this approach
the regularity of the boundary ofΩ does not play any role.

As a drawback, the entropy functional do not have the same nice properties it has in
the classical Wasserstein space. In particular:

• It is notgeodesically convex. Still, it has some sort of convexity properties along
geodesics, see Remark 3.4.

• Due to the lack of geodesic convexity, we were not able to prove any kind of
contractivity result for the flow.

• Actually, we are not even able to prove uniqueness of the limit of the mini-
mizing movements scheme. (Of course one knows by standard PDE techniques
that weak solutions of the heat equation with Dirichlet boundary conditions are
unique, therefore a posteriori it is clear that the limit has to be unique - what we
are saying here is that we do not know whether such uniqueness may be deduced
a priori via techniques similar, e.g., to those appeared in [2].)
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The distanceWb2 is defined in the following way (the ‘b’ stands to recall that we
have some room to play with theboundary ofΩ). Let Ω ⊂ Rd be a bounded open set,
and letM+(Ω) denote the space of non-negative finite measures onΩ. We define the
distanceWb2 onM+(Ω) as a result of the following problem:

Problem 1.1 (A variant of the transportation problem) Let µ, ν ∈ M+(Ω). The set
of admissible couplingsA(µ, ν) is defined as the set of positive measuresγ onΩ×Ω

satisfying
π1

#γ|Ω = µ, π2
#γ|Ω = ν. (1)

For any non-negative measureγ onΩ ×Ω, we define itscostC(γ) as

C(γ) :=
∫

Ω×Ω

|x− y|2dγ(x, y).

The distanceWb2(µ, ν) is then defined as:

Wb2
2(µ, ν) := inf

γ∈A(µ,ν)
C(γ).

The difference betweenWb2 andW2 relies on the fact that an admissible coupling is a
measure on theclosureof Ω ×Ω , rather than just onΩ ×Ω, and that the marginals are
required to coincide with the given measures only insideΩ. This means that we can
use∂Ω as an infinite reserve: we can ‘take’ as mass as we wish from the boundary, or
‘give’ it back some of the mass, provided we pay the transportation cost. This is why
this distance is well defined for measures which do not have the same mass.

Figure 1: Example of admissible transport plan

Although this approach could be applied for more general costs than just|x − y|2
and for a wider class of entropy functionals, we preferred to provide a complete result
only in the particular case of the heat equation, in order to avoid technicalities and gen-
eralizations which would just obscure the main ideas. We refer to Section 4 for some
possible generalizations, a comparison between our and the classicalL2-approach, and
some open problems.
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2 General properties of the distanceWb2

The aim of this section is to describe the main properties of the distanceWb2.
Let γ be a non-negative onΩ × Ω. We will write γB

A for the restriction ofγ to the
rectangleA× B ⊂ Ω ×Ω. Observe that there is a natural splitting ofγ into 4 parts:

γ = γΩ
Ω + γ∂Ω

Ω + γΩ
∂Ω + γ∂Ω

∂Ω.

We now remark that, ifγ ∈ A(µ, ν), then

γ − γ∂Ω
∂Ω ∈ A(µ, ν) and C(γ − γ∂Ω

∂Ω) ≤ C(γ).

Hence, when looking for optimal plans, it is not restrictive to assume that

γ∂Ω
∂Ω = 0. (2)

This gives the bound

γ(Ω ×Ω) = γ(Ω ×Ω \ ∂Ω × ∂Ω)

≤ γ(Ω ×Ω) + γ(Ω ×Ω) = µ(Ω) + ν(Ω).
(3)

from which it follows the compactness of the set of admissible plans satisfying (2) w.r.t.
the topology of weak convergence of measures [2]. Thus optimal plans always exist.
We will denote the set of optimal plans byO(µ, ν), and we will always assume that
an optimal plan satisfies (2).

To show thatWb2 satisfies the triangle inequality, we first prove a variant of the
classical gluing lemma (see [2, Lemma 5.3.2]):

Lemma 2.1 (A variant of the gluing lemma) Fix µ1, µ2, µ3 ∈ M+(Ω), and letγ12 ∈
A(µ1, µ2), γ23 ∈ A(µ2, µ3) such that(γ12)∂Ω

∂Ω
= (γ23)∂Ω

∂Ω
= 0. Then there exist

γ123 ∈ M(Ω ×Ω ×Ω) such that

π12
# γ

123 = γ12 + σ12,

π23
# γ

123 = γ23 + σ23,

whereσ12 andσ23 are both concentrated on the diagonal of∂Ω × ∂Ω, i.e. on the set
of pairs of points{(x, x) : x ∈ ∂Ω}.

Let us point out that, in contrast with the classical result, in our case the second
marginal ofγ12 onΩ does not necessarily coincides with the first marginal ofγ23, and
so the two measures cannot be ‘glued’ together in a trivial way.

Proof. In order to clarify the structure of the proof, it is convenient to seeµ1, µ2, µ3

as measures onM+(Ω1),M+(Ω2),M+(Ω3) respectively, whereΩ1,Ω2,Ω3 are three
distinct copies ofΩ. In this way we haveγ12 ∈ (Ω1 × Ω2), γ23 ∈ (Ω2 × Ω3), and
γ123 ∈ M(Ω1 × Ω2 × Ω3). However, since in factΩ1 = Ω2 = Ω3, sometimes we
will identify Ω2 with Ω, Ω1, or Ω3. Furthermore, we will useπ2 to denote both the
canonical projection fromΩ1 ×Ω2 ontoΩ2, and the one fromΩ2 ×Ω3 ontoΩ2.

Let us define

σ12 := (π2, π2)#

((
γ23)Ω

∂Ω

)
∈ M(∂Ω2 × ∂Ω2) =M(∂Ω1 × ∂Ω2),

σ23 := (π2, π2)#

((
γ12)∂Ω

Ω

)
∈ M(∂Ω2 × ∂Ω2) =M(∂Ω2 × ∂Ω3),
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and set

γ̃12 := γ12 + σ12 ∈ M(∂Ω1 × ∂Ω2),

γ̃23 := γ23 + σ23 ∈ M(∂Ω2 × ∂Ω3).

Observe that (
π2

#γ̃
12)|Ω =

(
π2

#γ
12)|Ω +

(
π2

#σ
12)|Ω = µ2, (4)

and similarly
(
π2

#γ̃
23)|Ω = µ2. Moreover, since by assumption (γ12)∂Ω

∂Ω
= 0,

(
π2

#γ
12)|∂Ω

= π2
#

((
γ12)∂Ω

Ω

)
= π2

#σ
23.

and similarly
(
π2

#γ
23)|∂Ω

= π2
#σ

12. Therefore we obtain
(
π2

#γ̃
12)|∂Ω

=
(
π2

#γ
12)|∂Ω

+ π2
#σ

12 = π2
#σ

23 +
(
π2

#γ
23)|∂Ω

=
(
π2

#γ̃
23)|∂Ω

. (5)

Thanks to (4) and (5) we finally obtainπ2
#γ

12 = π2
#γ

23, and so the conclusion follows
from the classical gluing lemma, see for instance [2, Lemma 5.3.2]. �

Proposition 2.2 The functionWb2 is a distance onM+(Ω) which metrizes the weak
convergence, i.e., the topology given by duality withCc(Ω).

Proof. The facts thatWb2(µ, ν) = 0 if and only ifµ = ν and the symmetry are obvious.
For the triangle inequality we need to use the version of gluing lemma we just proved.
Fix µ1, µ2, µ3 ∈ M+(Ω) and letγ12, γ23 be two optimal plans fromµ1 to µ2 and fromµ2

to µ3 respectively. Use lemma 2.1 to find a 3-planγ123 such thatπ1,2
# γ123 = γ12 + σ12

andπ2,3
# γ123 = γ23 +σ23, with σ12 andσ12 concentrated on the diagonals of∂Ω × ∂Ω.

Then we have
(
π1

#γ
123)|Ω =

(
π1

#γ
12 + σ12)|Ω = µ1. Similarly, we have

(
π3

#γ
123)|Ω = µ3,

thereforeπ1,2γ123 ∈ A(µ1, µ3) and it holds

Wb2(µ1, µ3) ≤
√∫

|x1 − x3|2dγ123

≤
√∫

|x1 − x2|2dγ123 +

√∫
|x2 − x3|2dγ123

=

√∫
|x1 − x2|2d(γ12 + σ12) +

√∫
|x2 − x3|2d(γ23 + σ23)

=

√∫
|x1 − x2|2dγ12 +

√∫
|x2 − x3|2dγ23

= Wb2(µ1, µ2) + Wb2(µ2, µ3),

where in the fourth step we used the fact thatσ12 andσ23 are concentrated on a di-
agonal. Finally, the fact thatWb2 metrizes the weak topology can be proved as in [2,
Proposition 7.1.5] - we omit the details. �

Remark 2.3 Note carefully that we are speaking of weak convergence in duality with
functions with compact support inΩ, and not, e.g., with continuous and bounded func-
tions inΩ. Indeed, the mass can ‘disappear’ inside the boundary, so that in general we
only have

lim inf
n→∞

µn(Ω) ≥ µ(Ω),

for any sequence{µn}n∈N ⊂ M+(Ω) such thatWb2(µn, µ)→ 0.
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Proposition 2.4 (Cyclical monotonicity) Letµ, ν ∈ M+(Ω). Then there exists a cycli-
cally monotone setΓ ⊂ Ω ×Ω such that any optimal plan is concentrated onΓ.

Proof. Recall that we always assume that condition (2) holds for optimal plans. From
the uniform bound (3), and the fact that the set of optimal plans is a closed under weak
convergence (which can been easily proven by adapting the proof of [13, Theorem
5.20]), we deduce thatO(µ, ν) is compact w.r.t. the weak convergence of measures.
Let (γi)i≥0 ⊂ O(µ, ν) be a countable dense subset, and define

γ :=
∑

i≥0

1
2i
γi .

Then it is easy to check by the convexity of the constraints (1), and the linearity of the
cost, thatγ ∈ O(µ, ν). Furthermore, since its support (i.e. the smallest closed set on
which it is concentrated) contains the supports of all theγi ’s, and since they are dense
insideO(µ, ν), the support ofγ contains that of any optimal plan.

We now observe that, sinceγ is optimal for the Problem 1.1, it is also optimal for
the classical optimal transport problem with cost|x− y|2 for the measuresπ1

#γ andπ2
#γ.

(This follows from the fact that any measureγ̃ with the same marginals asγ belongs
to A(µ, ν).) Hence the conclusion follows by the general theory of optimal transport
(see for instance [2, Chapter 6]). �

Remark 2.5 The idea on which is based the proof of the above proposition is well-
known for the classical transport problem. Recently, the first author used the same tool
to prove a similar result for the optimal partial transport problem (see [6]). The result
proven here is not covered by previous theorems on the topic, as the marginals of the
admissible plans are neither fixed, nor dominated.

The fact that the same idea works in so many different situations, shows the power
of the idea itself: observe also that here the fact that the cost function is the squared
distance does not play any role. Therefore a similar statement holds for much more
general cost functions (we will not stress this point any further).

Remark 2.6 The cyclically monotone subset ofΩ × Ω can always be chosen so that
it contains the diagonal of∂Ω × ∂Ω. Indeed, just add to any optimal plan a measure
of a given amount of mass, say 1, concentrated on the diagonal of∂Ω × ∂Ω: this does
not affect neither the cost nor the compactness of the set of optimal plans. Thus the
conclusion follows as above.

From now on,P : Ω→ ∂Ω will be a measurable map such that

|x− P(x)| = d(x, ∂Ω) ∀ x ∈ Ω.

It is well-known that such a map is uniquely defined onLd-a.e. x ∈ Ω. (Indeed,P(x)
is uniquely defined whenever the Lipschitz functiond(·, ∂Ω) is differentiable, and is
given byP(x) = x− ∇d(x, ∂Ω)2/2.) Here we are just defining it on the wholeΩ via a
measurable selection argument (we omit the details).

We will use the notation Id :Ω→ Ω to denote the identity map onΩ.

Proposition 2.7 (Behavior of optimal plans) Letµ, ν ∈ M+(Ω), and fixγ ∈ O(µ, ν).
Then:

(i) For γ∂Ω
Ω

-a.e.(x, y), we have|y− x| = d(x, ∂Ω). Similarly forγΩ
∂Ω

.
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(ii) If µ � Ld, thenγΩ
Ω

is unique, and it is given by(Id,T)#µ, whereT : Ω → Ω is
the gradient of a convex function. (However,γ as a whole may be not uniquely
defined as there may be multiple ways of bringing the mass from the boundary to
ν if no hypothesis onν are made).

(iii) If µ, ν � Ld, thenγ is unique.

Proof. We start with (i). Let

A :=
{
(x, y) ∈ Ω × ∂Ω : |x− y| > d(x, ∂Ω) = |x− P(x)|

}
,

and assume by contradiction thatγ∂Ω
Ω

(A) > 0. Then, we define

γ̃∂Ω
Ω := (Id,P)#π

1
#γ

∂Ω
Ω ,

and set
γ̃ := γΩ

Ω + γ̃∂Ω
Ω + γΩ

∂Ω.

Sinceπ1
#γ̃

∂Ω
Ω

= π1
#γ

∂Ω
Ω

we haveπ1
#γ̃ = π1

#γ. Moreoverπ2
#γ̃|Ω = π2

#γ|Ω by construction,
so thatγ̃ ∈ A(µ0, µ1). Since

∫

Ω×∂Ω

|x− y|2dγ̃(x, y) <
∫

Ω×∂Ω

|x− y|2dγ(x, y),
∫

Ω×Ω\Ω×∂Ω

|x− y|2dγ̃(x, y) =

∫

Ω×Ω\Ω×∂Ω

|x− y|2dγ(x, y),

we haveC(γ̃) < C(γ), which gives the desired contradiction. A symmetric argument
holds forγΩ

∂Ω
.

The validity of (ii ) is a direct consequence of Proposition 2.4: the support of the
planγ is contained in a cyclically monotone set which depends only onµ andν. Hence,
by Rockefeller’s theorem is contained in the subdifferential of a convex function. Thus,
as in the classical optimal transport problem with quadratic cost [3, 4, 12], forµ-a.e.
x there is a uniquey such that (x, y) belongs to the support ofγ. This proves the
uniqueness ofγΩ

Ω
and the fact that it is induced by a map, which is the gradient of a

convex function.
Finally, (iii ) follows from (ii ). �

We define theHit time function Ht :Ω ×Ω→ [0,1] as

Ht(x, y) := inf
{
t ∈ [0,1] : (1− t)x + ty < Ω

}
,

where Ht(x, y) := 1 if (1 − t)x + ty ∈ Ω for any t ∈ [0,1]. The function Ht is lower
semicontinuous, and hence measurable.

Proposition 2.8 (Geodesics)The space(M+(Ω),Wb2) is a geodesic space. A curve
[0,1] 3 t 7→ µt is a minimizing geodesic with constant speed if and only if there exists
γ ∈ O(µ0, µ1) such that

µt =
(
(1− t)π1 + tπ2)

#γ, ∀ t ∈ (0,1). (6)

Also, given a geodesic(µt), for anyt ∈ (0,1) and s ∈ [0,1] there is a unique optimal
planγs

t fromµt to µs, which is given by

γs
t :=

(
(1− t)π1 + tπ2, (1− s)π1 + sπ2)

#γ,
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Figure 2: Geodesic interpolation is always possible in the space (M+(Ω),Wb2). In-
deed, the mass can ‘appear’ only att = 0, can ‘vanish’ only att = 1, and fort ∈ (0,1)
it moves along straight segments insideΩ. In particular, in the open interval (0,1), a
geodesic w.r.t.Wb2 is also a geodesic w.r.t.W2.

whereγ ∈ O(µ0, µ1) is the plan which induces the geodesic via Equation(6). Fur-
thermore, the planγs

t is the unique optimal transport plan fromµt toµs for the classical
transport problem.

In particular, the space(M+(Ω),Wb2) is non-branching, and the mass ofµt inside
Ω is constant fort ∈ (0,1).

Observe that Equation (6) doesnot hold for t = 0,1, as the marginals ofγ generally
charge also∂Ω. We further remark that such a statement would be false for the classical
Wasserstein distanceW2. Indeed, ifγ is an optimal plan forW2, then the curveµt

defined by (6) willnot in general belong toΩ, unlessΩ is convex.

Proof. The only new part with respect to the classical case is that, ifγ is an optimal
plan fromµ0 to µ1, then the measuresµt defined by (6) belong toΩ (and not just to its
convex hull). Once this result is proved, the rest of the proof becomes exactly the same
as in the standard case of the Wasserstein distance, see [2, Paragraph 7.2]. Hence, we
are going to prove only this new part.

The fact that the measuresµt defined by (6) belong toΩ is equivalent to say that
Ht = 1 γ-a.e. We argue by contradiction: assume that there existsE ⊂ Ω×Ω such that
γ(E) > 0 and Ht(x, y) < 1 for any (x, y) ∈ E. Roughly speaking, if this was the case,
for any (x, y) ∈ E, rather than moving the mass fromx to y, we could move the mass
from x to P(x) and take the mass fromP(y) to y, reducing the transportation cost.

More rigorously, defineν0 := π1
#(γ|E), ν1 := π2

#(γ|E), and set

σ0 := (Id,P)#ν0,

σ1 := (P, Id)#ν1,

γ̃ := γ|Ec + σ0 + σ1.

Sinceπ1
#σ0 = ν0 andπ1

#σ1(Ω) = 0, we haveπ1
#γ̃|Ω = π1

#γ|Ω. Similarly π2
#γ̃|Ω = π2

#γ|Ω,
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so thatγ̃ ∈ A(µ0, µ1). Observe that, since (1− Ht(x, y))x + Ht(x, y)y ∈ ∂Ω, we have

|x− P(x)| ≤ |x− (1− Ht(x, y))x + Ht(x, y)y| = Ht(x, y)|x − y|,
|y− P(y)| ≤ |y− (1− Ht(x, y))x + Ht(x, y)y| = (1− Ht(x, y))|x − y|,

and therefore

C(γ̃) =

∫

Ec
|x− y|2 dγ̃ +

∫

E
|x− P(x)|2 + |y− P(y)|2 dγ

≤
∫

Ec
|x− y|2 dγ +

∫

E
|x− y|2

(
Ht(x, y)2 + (1− Ht(x, y))2

)
dγ

<

∫

Ec
|x− y|2 dγ +

∫

E
|x− y|2 dγ = C(γ),

which contradicts the optimality ofγ. Thus Ht(x, y) = 1 forγ-a.e. (x, y), which implies
that the measuresµt are concentrated inΩ, as desired. �

Let µ, ν ∈ M+(Ω) and assume thatµ(Ω) = ν(Ω) > 0. Then any planγ which is
optimal for the classical transportation cost is admissible for the new one. Therefore
we have the inequality:

Wb2(µ, ν) ≤W2(µ, ν), ∀ µ, ν ∈ M+(Ω) s.t.µ(Ω) = ν(Ω) > 0. (7)

Figure 3: For measures with the same amount of mass, the distanceWb2 is smaller
than the classicalW2: as the picture shows, it may be much better to exchange the mass
with the boundary rather than internally.

Proposition 2.9 (An estimate on the directional derivative)Let µ, ν ∈ M+(Ω) and
w : Ω → Rd a bounded vector field with compact support. Also, letγ ∈ O(µ, ν), and
defineµt := (Id + tw)#µ. Then

lim sup
t→0

Wb2
2(µt, ν) −Wb2

2(µ, ν)

t
≤ −2

∫
〈w(x), y− x〉dγ(x, y).

Proof. Observe that sincew is compactly supported inΩ, for t > 0 sufficiently small
µt ∈ M+(Ω), so that the statement makes sense. Now it is simple to check that the plan
γt defined by

γt :=
(
(Id + tw) ◦ π1, π2)

#γ,

belongs toA(µt, ν). Hence

Wb2
2(µt, ν) ≤

∫
|x− y|2dγt(x, y) =

∫
|x + tw(x) − y|2dγ(x, y)

= Wb2
2(µ, ν) − 2t

∫
〈w(x), y− x〉dγ(x, y) + t2

∫
|w(x)|2dγ(x, y),
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and the conclusion follows. �

3 The heat equation with Dirichlet boundary condition
as a ‘gradient flow’

This section contains an application of our new transportation distance: we are going
to show that the gradient flow of the entropy functional

∫
Ω

[ρ log(ρ) − ρ] dx coincides
with the heat equation, with Dirichlet boundary condition equal to 1. To prove such a
result, we will first study some of the properties of the entropy, showing in particular a
lower bound on its slope, see Proposition 3.2. Then, following the strategy introduced
in [8], we will apply the minimizing movement scheme to prove our result. Finally
we will show that the discrete solutions constructed by minimizing movements enjoy
a comparison principle: if (ρτk)k∈N and (ρ̃τk)k∈N are two discrete solution for a time step
τ > 0, andρτ0 ≤ ρ̃τ0, thenρτk ≤ ρ̃τk for all k ∈ N. Lettingτ → 0, this monotonicity result
allows to recover the classical maximum principle for the heat equation.

To be clear: we will not state any result concerning existence of the gradient flow
of the entropy (we will not identify the slope of the entropy, nor the infinitesimal de-
scription of the distanceWb2). What we will do is a work ‘by hands’: we will show
that we have compactness in the minimizing movements scheme and prove that any
limit is a weak solution of the heat equation with Dirichlet boundary conditions.

3.1 The entropy

The entropy functionalE :M+(Ω)→ R ∪ {+∞} is defined as

E(µ) :=



∫

Ω

e(ρ(x)) dx if µ = ρLd|Ω,

+∞ otherwise,

wheree : [0,+∞)→ [0,+∞) is given by

e(z) := zlog(z) − z+ 1.

From now on, since we will often deal with absolutely continuous measures, and by
abuse of notation we will sometimes useρ to denote the measureρLd|Ω. In particular,

we will write A(ρ, ρ′) in place ofA(ρLd|Ω, ρ′Ld|Ω).

Proposition 3.1 (Semicontinuity and compactness of sublevels)The functionalE :
M+(Ω)→ R ∪ {+∞} takes value in[0,+∞], it is lower semicontinuous with respect to
Wb2, and its sublevels are compact.

Proof. If µ = ρLd|Ω, thanks to Jensen inequality we have

e

(
µ(Ω)
|Ω|

)
= e

(
1
|Ω|

∫

Ω

ρdx

)
≤ 1
|Ω|

∫

Ω

e(ρ) dx =
E(µ)
|Ω| . (8)

This inequality bounds the mass ofρ in terms of the entropy, which gives the relative
compactness of the sublevels ofE. The boundE(µ) ≥ 0 is immediate ase≥ 0. Finally,
the lower semicontinuity follows from the convexity and superlinearity ofe and from
the equivalence between weak convergence and convergence w.r.t.Wb2. �
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We recall that theslopeof the functionalE defined on the metric space (M+(Ω),Wb2)
is defined as:

|∇E|(µ) := lim sup
ν→µ

(E(µ) − E(ν))+

Wb2(µ, ν)
.

Proposition 3.2 (Bound of the slope in terms of Fisher’s information)The slope of
E is bounded from below by the square root of the Fisher informationF : M+(Ω) →
[0,+∞]:

F(µ) :=



4
∫

Ω

∣∣∣∇√ρ
∣∣∣2 dx if µ = ρLd|Ω and

√
ρ ∈ H1(Ω),

+∞ otherwise.

Proof. Takeµ ∈ M+(Ω), definem := µ(Ω), and letMm(Ω) be the set of non-negative
measures onΩ with massm. OnMm(Ω), we can consider the Wasserstein distance
W2. Consider the functionalE : (Mm(Ω),W2) → R ∪ {+∞}. It is well-known that
|∇E|(µ) =

√
F(µ) for all µ ∈ M1, see [2, Chapter 10]. Then, it is easily checked by a

scaling argument that the formula remains true for arbitrarym≥ 0. Hence, taking into
account inequality (7), we obtain

|∇E|(µ) ≥ lim sup
Mm(Ω)3ν→µ

(E(µ) − E(ν))+

Wb2(µ, ν)
≥ lim sup
Mm(Ω)3ν→µ

(E(µ) − E(ν))+

W2(µ, ν)
=

√
F(µ),

as desired. �

Proposition 3.3 (A directional derivative of E) Let µ = ρLd ∈ M+(Ω) be such that
E(µ) < +∞, and letw : Ω → Rd be aC∞ vector field with compact support. Define
µt := (Id + tw)#µ. Then

lim
t→0

E(µt) − E(µ)
t

=

∫

Ω

ρdivwdx.

Proof. Sincew is compactly supported,µt ∈ M+(Ω) for sufficiently smallt, and the
proof is exactly the same as the one in the Wasserstein case. �

Remark 3.4 [A source of difficulties] It is important to underline that the entropyE
is not geodesically convex on the space (M+(Ω),Wb2). Indeed, since for instance the
mass can disappear at the boundary fort = 1, it is possible that an high concentration
of mass near∂Ω gives limt↑1 E(µt) = +∞, while E(µ1) < +∞. (Observe that, once
the mass has reached∂Ω, it does not contribute any more to the energy!) Still, since
for t, s ∈ (0,1) the optimal transport plan forWb2 coincides with the optimal transport
plan forW2 (Proposition 2.8),t 7→ E(µt) is convex in the open interval (0,1) (see [2,
Chapter 9]).

3.2 Minimizing movements for the entropy

In this paragraph we apply the minimizing movements to construct a weak solution to
the heat equation with Dirichlet boundary condition.

We briefly review the minimizing movement scheme, referring to [2] for a detailed
description and general results. Fixρ0 ∈ M+(Ω) such thatE(ρ0) < +∞ (given the

11



Figure 4: For typicalµ0, µ1, a geodesic connecting them takes mass from the boundary
at t = 0 and leaves mass att = 1. In this case the graph oft 7→ E(µt) looks like
in the picture: in the interval (0,1) the function is convex and converges to+∞ as
t → 0,1. The value ofE(µ0) andE(µ1) has basically no connection with the values in
intermediate times.

lack of convexity ofE, we need to assume that the entropy at the initial point is finite,
thus in particular the measure is absolutely continuous), and fix a time stepτ > 0. Set
ρτ0 := ρ0, and define recursivelyρτn+1 as the unique minimizer of

µ 7→ E(µ) +
Wb2

2(µ, ρτn)

2τ

(see Proposition 3.6 below). Then, we define thediscrete solutiont 7→ ρτ(t) ∈ M+(Ω)
by:

ρτ(t) := ρτn for t ∈ [nτ, (n + 1)τ).

We recall that the spaceW1,1
0 (Ω) is defined as the closure ofC∞0 (Ω) w.r.t. theW1,1-

norm. (Observe that this definition requires no smoothness assumptions on∂Ω.) Then
we say thatf ∈W1,1(Ω) has trace 1 iff−1 ∈W1,1

0 (Ω). (More in general, given a smooth

functionφ : Ω→ R, one may say thatf ∈W1,1(Ω) has traceφ if f − φ ∈W1,1
0 (Ω).)

Our main theorem is the following:

Theorem 3.5 With the above notation, for any sequenceτk ↓ 0 there exists a sub-
sequence, not relabelled, such that, for anyt ≥ 0, ρτk(t) converges to some limit
measureρ(t) in (M+(Ω),Wb2) as k → ∞. The mapt 7→ (

ρ(t) − 1
)

belongs to
L2

loc([0,+∞),W1,1
0 (Ω)), andt 7→ ρ(t) is a weak solution of the heat equation


d
dt
ρ(t) = ∆ρ(t),

ρ(0) = ρ0.
(9)

We recall that a weakly continuous curve of measuret 7→ µt ∈ M+(Ω) is said to be
a weak solution of (9) if
∫

Ω

ϕ dµs(x) −
∫

Ω

ϕ dµt(x) =

∫ s

t

(∫

Ω

∆ϕdµr (x)

)
dr, ∀ 0 ≤ t < s, ∀ϕ ∈ C∞c (Ω),

12



In order to prove this theorem, we need the following lemma, which describes the
behavior of a single step of the minimizing movements scheme.

Proposition 3.6 (A step of the minimizing movement)Let µ ∈ M+(Ω) and τ > 0.
Then there exists a unique minimumµτ ∈ M+(Ω) of

σ 7→ E(σ) +
Wb2

2(µ, σ)

2τ
. (10)

Such a minimum satisfies:

(i) µτ = ρτLd|Ω, with ρτ − 1 ∈W1,1
0 (Ω).

(ii) The restriction toΩ×Ω of any optimal transport plan fromµτ to µ is induced by
a mapT, which satisfies

T(x) − x
τ

ρτ(x) = −∇ρτ(x), Ld − a.e. x (11)

Proof. The existence of a minimum follows by a standard compactness-semicontinuity
argument, while the uniqueness is a direct consequence of the convexity ofWb2

2(·, µ)
w.r.t. usual linear interpolation of measures and the strict convexity ofE(·).

It is well known that at minimum of (10) the slope is finite (see [2, Lemma 3.1.3]).
Hence

√
ρτ ∈ H1(Ω) by Proposition 3.2. Hence, thanks to Hölder inequality,ρτ ∈

W1,1(Ω). Moreover, thanks to (21) below, we have

e−d(x,∂Ω)2/(2τ) ≤ ρτ(x) ≤ ed(x,∂Ω)2/(2τ) ∀ x ∈ Ω,

which easily implies thatρτ has trace 1 on∂Ω. This shows (i).
To prove (ii ), we start by observing that Proposition 2.7 and the absolute continuity

of µτ guarantees the existence ofT. Now, choose aC∞ vector fieldw with compact
support inΩ, and defineρt

τ := (Id + tw)#ρτ. Using the minimality ofρ, we get

E(ρt
τ) − E(ρτ) +

Wb2
2(ρt

τ, µ) −Wb2
2(ρτ, µ)

2τ
≥ 0.

Dividing by t, and lettingt ↓ 0, thanks to Propositions 3.3 and 2.9 we get
∫

Ω

ρdivwdx−
∫
〈w, T − Id

τ
〉ρdx≥ 0.

Exchangingw with −w and exploiting the arbitrariness ofw, the thesis follows. �

To prove theorem 3.5 we will use the following a priori bound for the discrete
solution, see [2, Lemma 3.2.2 and Equation (3.2.3)]:

1
2

m−1∑

i=n

Wb2
2(ρτi , ρ

τ
i+1)

τ
+
τ

2

m−1∑

i=n

|∇E|2(ρτi ) ≤ E(ρτm) − E(ρτn) ∀ n ≤ m ∈ N. (12)

Proof of Theorem3.5. - Compactness argument.Let {τk}k∈N be a sequence converg-
ing to 0. First of all we observe that, thanks to (8) and the inequalityE(ρτk(t)) ≤ E(ρ0),
the mass of the measuresρτk(t) is uniformly bounded for allk ∈ N, t ≥ 0. Then a
standard diagonal argument shows that there exists a subsequence, not relabelled, such
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thatρτk(t) converges to someρ(t) in (M+(Ω),Wb2) for any t ∈ Q+. Now, thanks to the
uniform bound on the discrete speed

1
2

m−1∑

i=n

Wb2
2(ρτk

i , ρ
τk

i+1)

τ
≤ E(ρτm) − E(ρτn) ≤ E(ρ0),

(which is a direct consequence of (12)), we easily get

Wb2(ρτk(t), ρτk(s)) ≤
√

2E(ρ0) [t − s+ τk] ∀ 0 ≤ s≤ t, (13)

which implies the convergence ofρτk(t) for everyt ≥ 0.
- Any limit point is a weak solution of the heat equation.Let τk ↓ 0 be a sequence
such thatρτk(t) converges to someρ(t) in (M+(Ω),Wb2) for any t ≥ 0. We want to
prove thatt 7→ ρ(t) is a weak solution of the heat equation. For anyτ > 0, n ∈ N, let Tτ

n

be the map which induces (γτn)Ω
Ω

, whereγτn ∈ O(ρτn+1, ρ
τ
n) (Proposition 2.7(ii)). Fix

ϕ ∈ C∞c (Ω) and observe that
∫

Ω

ϕρτn+1 dx−
∫

Ω

(
ϕ ◦ Tτ

n
)
ρτn+1 dx =

∫

Ω

(∫ 1

0
〈∇ϕ ◦ (

(1− λ)Tτ
n + λId

)
, Id − Tτ

n〉dλ
)
ρτn+1 dx

= −
∫

Ω

〈∇ϕ,Tτ
n − Id〉ρτn+1 dx+ R(τ,n)

= τ

∫

Ω

〈∇ϕ,∇ρτn+1〉 dx+ R(τ,n)

= −τ
∫

Ω

∆ϕ ρτn+1 dx+ R(τ,n),

(14)

where at the third step we used (11), and the reminder termR(τ,n) is bounded by

|R(τ,n)| ≤ (Lip∇ϕ)
∫

Ω

|Tτ
n − Id|2ρτn+1 dx = Lip(∇ϕ)Wb2

2(ρτn, ρ
τ
n+1). (15)

Now, since the support ofϕ is included inΩ and
(
(Tτ

n)#ρ
τ
n+1

)
|Ω = π2

#

(
(γτn)Ω

Ω

)
, we have

∫

Ω

ϕρτn dx−
∫

Ω

(
ϕ ◦ Tτ

n
)
ρτn+1 dx =

∫

Ω×Ω

ϕ(y) d(γτn)Ω
∂Ω(x, y).

By Proposition 2.7 we have|x− y| = d(y, ∂Ω) for (γτn)Ω
∂Ω

-a.e. (x, y), which implies

Wb2
2(ρτn+1, ρ

τ
n) ≥

∫

Ω×supp(ϕ)
|x− y|2 d(γτn)Ω

∂Ω(x, y)

=

∫

Ω×supp(ϕ)
d(y, ∂Ω)2 d(γτn)Ω

∂Ω(x, y) ≥ cϕ

∫

Ω×supp(ϕ)
d(γτn)Ω

∂Ω(x, y),

wherecϕ := miny∈supp(ϕ) d(y, ∂Ω)2 > 0. Hence
∣∣∣∣∣
∫

Ω

ϕρτn dx−
∫

Ω

(
ϕ ◦ Tτ

n
)
ρτn+1 dx

∣∣∣∣∣ ≤
‖ϕ‖∞

cϕ
Wb2

2(ρτn+1, ρ
τ
n).

Combining the above estimate with (14) and (15), we obtain
∫

Ω

ϕρτn+1 dx−
∫

Ω

ϕρτn dx = −τ
∫

Ω

∆ϕ ρτn+1 dx+ R̃(τ,n), (16)
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where ∣∣∣R̃(τ,n)
∣∣∣ ≤

(
Lip(∇ϕ) +

‖ϕ‖∞
cϕ

)
Wb2

2(ρτn, ρ
τ
n+1). (17)

Now, choose 0≤ t < s, let τ = τk, and add up Equation (16) fromn = [t/τk] to
m = [s/τk] − 1 to get

∫

Ω

ϕρτk(s) dx−
∫

Ω

ϕρτk(t) dx =

∫ τk[s/τk]

τk[t/τk]

(∫

Ω

∆ϕ ρτk(r) dx

)
dxdr+

[s/τk]−1∑

n=[t/τk]

R̃(τk, [r/τk]).

We want to take the limit in the above equation asτk ↓ 0. TheWb2-convergence of
ρτk(r) to ρ(r), combined with Proposition 2.2, gives that the left hand side converges to∫

Ω
ϕρ(s) dx−

∫
Ω
ϕρ(t) dx. For the same reason,

∫
Ω

∆ϕ ρτk(r) dx→
∫

Ω
∆ϕ ρ(r) dx for any

r ≥ 0. Thus, since the mass of the measuresρτk(t) is uniformly bounded, we get
∫

Ω

|∆ϕ ρτk(r)|dx≤ ‖∆ϕ‖∞
∫

Ω

ρτk(r) dx≤ C0

for some positive constantC0, so that by the dominated convergence theorem we get

∫ τk[s/τk]

τk[t/τk]

(∫

Ω

∆ϕ ρτk(r) dx

)
dr →

∫ s

t

(∫

Ω

∆ϕ ρ(r) dx

)
dr,

asτk ↓ 0. Finally, thanks to (12) and (17), the reminder term is bounded by

∣∣∣∣∣∣∣
[s/τk]−1∑

n=[t/τk]

R̃(τk, [r/τk])

∣∣∣∣∣∣∣ ≤
(
Lip(∇ϕ) +

‖ϕ‖∞
cϕ

) [s/τk]−1∑

n=[t/τk]

Wb2
2(ρτk

n , ρ
τk

n+1)

≤ 2τk

(
Lip(∇ϕ) +

‖ϕ‖∞
cϕ

)
E(ρ0),

and thus it goes to 0 asτk ↓ 0. In conclusion, we proved that

∫

Ω

ϕρ(s) dx−
∫

Ω

ϕρ(t) dx =

∫ s

t

(∫

Ω

∆ϕ ρ(r) dx

)
dr, ∀0 ≤ t < s, ∀ϕ ∈ C∞c (Ω).

Thanks to Equation (13) it is immediate to check that the curvet 7→ ρ(t)Ld|Ω ∈ M+(Ω)
is continuous w.r.t.Wb2, and therefore weakly continuous. Finally, sinceρτ(0) = ρ0

for anyτ > 0, ρ(0) = ρ0 and the initial condition is satisfied.
- The curve t 7→ (

ρ(t) − 1
)

belongs toL2
loc([0,+∞),W1,1

0 (Ω)). From inequality (12),
Proposition 3.2, and the fact that the mass of the measuresρτ(t) is uniformly bounded,
we know that

∫ ∞

0

(∫

Ω

∣∣∣∇
√
ρτk(t)

∣∣∣2 dx

)
dt ≤ 1

4

∫ ∞

0
|∇E|2(ρτk(t)) dt ≤ C0 E(ρ0),

which means that the functionst 7→ √
ρτk(t) are equibounded inL2

loc([0,+∞),H1
0(Ω)),

which implies thatt 7→ √
ρ(t) belongs toL2

loc([0,+∞),H1(Ω)), so that by Ḧolder t 7→
ρ(t) ∈ L2

loc([0,+∞),W1,1(Ω)). Moreover, thanks to Fatou lemma,

∫ ∞

0
lim inf
k→+∞

(∫

Ω

∣∣∣∇
√
ρτk(t)

∣∣∣2 dx

)
dt < +∞,
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which gives

lim inf
k→+∞

∫

Ω

∣∣∣∇
√
ρτk(t)

∣∣∣2 dx< +∞ for a.e.t ≥ 0,

so that by Ḧolder inequality

lim inf
k→+∞

∫

Ω

∣∣∣∇ρτk(t)
∣∣∣ dx< +∞ for a.e.t ≥ 0,

Now, for anyt such that the above liminf is finite, consider a subsequencekn (depending
on t) such that

sup
n∈N

∫

Ω

∣∣∣∇ρτkn (t)
∣∣∣ dx< +∞.

Then, recalling thatρτk(t)→ ρ(t) in (M+(Ω),Wb2), sinceρτkn (t) is uniformly bounded
in W1,1(Ω) and belong toW1,1

0 (Ω) by Proposition 3.6(i) we easily get thatρτk(t)→ ρ(t)
weakly inW1,1(Ω), andρ(t) − 1 ∈W1,1

0 (Ω) as desired. �

3.3 A comparison principle

In this section we prove the following monotonicity result for the minimizing move-
ment scheme ofE w.r.t. Wb2: if we have two measuresµ, µ̃ satisfyingµ ≥ µ̃, then
µτ ≥ µ̃τ for everyτ ≥ 0, whereµτ, µ̃τ are the unique minimizers of (10) forµ and µ̃
respectively. It is interesting to underline that:

• Once monotonicity for the single time step is proven, a maximum principle for
weak solutions of heat equation can be proved as a direct consequence, see
Corollary 3.9.

• Although our strategy is not new (for instance, it has been used in the context of
the classical transportation problem in [9, 1] to prove a maximum principle), the
fact of having no mass constraints makes it more efficient, and the properties of
minimizers that we are able to deduce are in some sense stronger.

• The argument that we are going to use holds in much more general situations,
see Remark 3.10. (This in not the case when one deals with the classical trans-
portation problem, where the fact that the cost function satisfiesc(x, x) ≤ c(x, y)
for all x, y ∈ Ω plays an important role, see [1, 7].)

The proof of the monotonicity relies on a set of inequalities valid for each mini-
mizer of (10). In the next proposition we are going to assume thatµ = ρLd|Ω ∈ M+(Ω)
is an absolutely continuous measure and thatτ > 0 is a fixed time step. Also, we will
denote byµτ = ρτLd|Ω the unique minimizer of (10) (which is absolutely continu-
ous by Proposition 3.6), byγ the unique optimal plan for (ρ, ρτ), by T the map which
inducesγΩ

Ω
, and byS the map which inducesγΩ

Ω
seen fromρτ (see Proposition 2.7).

Proposition 3.7 With the notation above, the following inequalities hold:

• Let y1, y2 ∈ Ω be Lebesgue points forρτ, and assume thaty1 is also a Lebesgue
point forS. Then

log(ρτ(y1)) +
|y1 − S(y1)|2

2τ
≤ log(ρτ(y2)) +

|y2 − S(y1)|2
2τ

. (18)
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• Let x ∈ Ω be a Lebesgue point for bothρ and T, and assume thatT(x) ∈ ∂Ω.
Assume further thaty ∈ Ω is a Lebesgue point forρτ. Then

|x− T(x)|2
2τ

≤ log(ρτ(y)) +
|x− y|2

2τ
. (19)

• Let y1 ∈ Ω be a Lebesgue point forρτ. Then, for anyy2 ∈ ∂Ω, we have

log
(
ρτ(y1)

)
+
|y1 − S(y1)|2

2τ
≤ |y2 − S(y1)|2

2τ
. (20)

• Let y ∈ Ω be a Lebesgue point forρτ. Then

d2(y, ∂Ω)
2τ

≥
∣∣∣log

(
ρτ(y)

)∣∣∣. (21)

• Let y ∈ Ω be a Lebesgue point for bothρτ andS, and assume thatS(y) ∈ ∂Ω.
Then

log
(
ρτ(y)

)
+

d2(y, ∂Ω)
2τ

= 0. (22)

Proof. - Heuristic arguments. We start with (18). Consider a pointy1 ∈ Ω, and
observe that the massρτ(y1) comes fromS(y1). (It does not matter whetherS(y1) ∈ Ω

or S(y1) ∈ ∂Ω) We now make a small perturbation ofρ1 in the following way: we
pick a small amount of mass fromS(y1) and, instead than moving it toy1, we move it
to y2. In terms of entropy, we are earning log(ρ1(S(y1))) because of the less mass in
S(y1) and paying log(ρ1(y2)) because of the greater amount of mass aty2. In terms of
the transportation cost, we are earning|y1−S(y1)|2

2τ and paying|y2−S(y1)|2
2τ . But sinceρ1 is a

minimizer of (10), what we are earning must be less or equal to what we are paying,
and we get (18).

Inequality (19) is analogous: here we are just considering those pointsx which are
sent to the boundary byT. In this case, if we decide to send some small mass atx onto
a pointy ∈ Ω, we are not earning in terms of entropy but just paying log(ρτ(y)), while
in terms of cost we are earning|x−T(x)|2

2τ and paying|x−y|2
2τ .

To prove inequality (21) we argue as follows. Consider first a pointy ∈ Ω, and
perturbρτ by picking some small mass from one of the nearest point toy on ∂Ω, and
putting it ontoy. In this way we pay log(ρτ(y)) in terms of entropy, andd

2(y,∂Ω)
2τ in terms

of cost, so that by minimality we get

d2(y, ∂Ω)
2τ

≥ − log
(
ρτ(y)

)
. (23)

The other part of the inequality comes by taking some small mass aty and putting it on
one of the nearest point toy on∂Ω.

The proof of (22) is a sort of converse of (23). Indeed, sinceS(y) ∈ ∂Ω, we know
that the mass ofy is coming from the boundary. Hence we can perturbρτ by taking a
bit less of mass from the boundary, so that there is a bit less of mass iny. In this way
we obtain the opposite of (21), and equality holds.

- Rigorous proof. We will prove rigorously only (18), the proof of the other in-
equalities being analogous.
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Fix y1, y2 ∈ Ω, and two real numbersr,a, with r > 0 small enough so thatBr (y1) ∪
Br (y2) ⊂ Ω, anda ∈ (0,1). Let Tr :Rd → Rd be the map defined by Tr(y) := y−y1 +y2,
and letγ ∈ O(ρ, ρτ) be the unique optimal plan. Define the planγr,a as

γr,a := γBr (y1)c

Ω
+ aγBr (y1)

Ω
+ (1− a)

((
π1,Tr

)
#γ

Br (y1)

Ω

)
,

and set
µr,a
τ := π2

#γ
r,a.

Observe thatπ1
#γ

r,a = π1
#γ, γr,a ∈ A(ρ, µr,a

1 ), andµr,a
τ = ρr,a

τ Ld, with

ρr,a
τ (y) =


ρτ(y) if y ∈ Br (y1)c ∩ Br (y2)c,
aρτ(y) if y ∈ Br (y1),
ρτ(y) + (1− a)ρτ(y− y2 + y1) if y ∈ Br (y2).

From the minimality ofρτ we get
∫

Ω

e(ρτ) dx+
1
2τ

C(γ) ≤
∫

Ω

e(ρr,a
τ ) dx+

1
2τ

C(γr,a).

Hence
∫

Br (y1)∪Br (y2)
e(ρτ(y)) dy+

1
2τ

∫

Br (y1)∪Br (y2)
|y− S(y)|2ρτ(y) dy

≤
∫

Br (y1)
e(aρτ(y)) dy+

a
2τ

∫

Br (y1)
|y− S(y)|2ρ1(y) dy

+

∫

Br (y2)
e
(
ρτ(y) + (1− a)ρτ(y− y1 + y2)

)
dy

+
1
2τ

∫

Br (y2)
|y− S(y)|2(ρτ(y) + (1− a)ρτ(y− y1 + y2)

)
dy,

which we write as
∫

Br (y1)

(
e(ρτ(y)) − e(aρτ(y)) +

1− a
2τ
|y− S(y)|2ρτ(y)

)
dy

≤
∫

Br (y2)

(
e
(
ρτ(y) + (1− a)ρτ(y− y2 + y1)

) − e(ρτ(y))

+
1− a
2τ
|y− S(y)|2ρτ(y− y2 + y1)

)
dy.

Dividing by 1− a and lettinga ↑ 1 we obtain
∫

Br (y1)

(
e′
(
ρτ(y)

)
+

1
2τ
|y− S(y)|2

)
ρτ(y) dy

≤
∫

Br (y2)

(
e′
(
ρ1(y)

)
+

1
2τ
|y− S(y)|2

)
ρτ(y− y2 + y1) dy.

Now, sincey1, y2 are both Lebesgue points ofρτ, andy1 is also a Lebesgue point ofS,
dividing both sides byLd(Br (0)), and lettingr ↓ 0 we obtain (18). �

Proposition 3.8 (Monotonicity) Letµ ≥ µ̃ ∈ M+(Ω), τ > 0, andµτ, µ̃τ the minima of
the minimizing problem(10). Thenµτ ≥ µ̃τ.
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Proof. From the uniqueness part of Proposition 3.6, it follows easily that the mapµ 7→
µτ is continuous w.r.t. the weak topology. Therefore, we can assume by approximation
that bothµ andν are absolutely continuous, sayµ = ρLd and µ̃ = ρ̃Ld. Also, recall
that by Proposition 3.6(i) bothµτ andντ are absolutely continuous, sayµτ = ρτLd and
µ̃τ = ρ̃τLd. Let γ ∈ O(ρ, ρτ) and γ̃ ∈ O(ρ̃, ρ̃τ), and letT, T̃ be the maps which
induceγΩ

Ω
andγ̃Ω

Ω
respectively.

Argue by contradiction, and assume thatA := {ρ̃τ > ρτ} ⊂ Ω satisfies ˜ρτ(A) > 0.
Two cases arise: eitherγ̃A

Ω
is concentrated onΩ × A or it is not, i.e. either the mass of

ρ̃τ in A comes entirely fromΩ or it is partly taken from the boundary.
Case 1: the mass of̃ρτ in A comes entirely fromΩ. Let B := T̃−1(A), and observe

thatµ̃(B) = µ̃τ(A). LetC ⊂ B be the set of pointsx ∈ B such thatT(x) < A. We remark
thatµ(C) > 0, as otherwise we would have

µτ(A) ≥ µτ(T(B)) = µ
(
T−1(T(B))

) ≥ µ(B) ≥ µ̃(B) = µ̃τ(A),

which contradicts the definition ofA. Define

C1 :=
{
x ∈ C : T(x) ∈ Ω

}
, C2 :=

{
x ∈ C : T(x) ∈ ∂Ω

}
.

SinceC = C1 ∪ C2, eitherµ(C1) > 0 or µ(C2) > 0. Suppose we are in the first
case. Then, as bothT |C1

andT̃ |C1
map subsets of the support of ˜ρ of positive Lebesgue

measure into sets of positive Lebesgue measure, we can findx ∈ C1 a Lebesgue for
bothT andT̃, such thatT(x) andT̃(x) are Lebesgue points for bothρτ and ρ̃τ. With
this choice ofx, we apply (18) withy1 = T(x) andy2 = T̃(x) to get

log
(
ρτ(T(x))

)
+
|x− T(x)|2

2τ
≤ log

(
ρτ(T̃(x))

)
+
|x− T̃(x)|2

2τ

Similarly, using (18) for ˜ρτ with y1 = T̃(x) andy2 = T(x) we obtain

log
(
ρ̃τ(T̃(x))

)
+
|x− T̃(x)|2

2τ
≤ log

(
ρ̃τ(T(x))

)
+
|x− T(x)|2

2τ

Adding up the last two inequalities, we get

log
(
ρτ(T(x))

)
+ log

(
ρ̃τ(T̃(x))

) ≤ log
(
ρτ(T̃(x))

)
+ log

(
ρ̃τ(T(x))

)
.

which contradicts definition ofC1 and the choice ofx, as we have:

T(x) < A ⇒ ρτ(T(x)) ≥ ρ̃τ(T(x)) ⇒ log
(
ρτ(T(x))

) ≥ log
(
ρ̃τ(T(x))

)
,

T̃(x) ∈ A ⇒ ρ̃τ(T̃(x)) > ρτ(T̃(x)) ⇒ log
(
ρ̃τ(T̃(x))

)
> log

(
ρτ(T̃(x))

)
.

It remains to exclude the possibilityµ(C2) > 0. Fix x ∈ C2 a Lebesgue point for
both T andT̃, such thatT̃(x) is a Lebesgue point for bothρτ and ρ̃τ. We apply (19)
with y = T̃(x) to obtain

|x− T(x)|2
2τ

≤ log
(
ρτ(T̃(x))

)
+
|x− T̃(x)|2

2τ
.

Now, we use (20) for ˜ρτ with y1 = T̃(x), S(y1) = x, andy2 = T(x), to get

log
(
ρ̃τ(T̃(x))

)
+
|x− T̃(x)|2

2τ
≤ |x− T(x)|2

2τ
.
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SinceT̃(x) ∈ A, we haveρτ(T̃(x)) < ρ̃τ(T̃(x)), which together with the above inequali-
ties implies

|x− T(x)|2
2τ

≤ log
(
ρτ(T̃(x))

)
+
|x− T̃(x)|2

2τ

< log
(
ρ̃τ(T̃(x))

)
+
|x− T̃(x)|2

2τ
≤ |x− T(x)|2

2τ
,

again a contradiction.
Case 2: the mass of̃ρτ in A comes partly from ∂Ω. Let S̃ be the map which

inducesγ̃Ω

Ω
seen from ˜ρτ, and letD ⊂ A be the set of pointsy such that the mass ˜ρτ(y)

comes from the boundary, i.e.D := {y ∈ A : S̃(y) ∈ ∂Ω}. Fix y ∈ D a Lebesgue point
for ρτ, ρ̃τ, andS̃. Thanks to (21) we have

log
(
ρτ(y)

)
+

d2(y, ∂Ω)
2τ

≥ 0,

while applying (22) with ˜ρτ (recall thatS̃(y) ∈ ∂Ω) we obtain

log
(
ρ̃τ(y)

)
+

d2(y, ∂Ω)
2τ

= 0.

But this is absurd asy ∈ D ⊂ A. �

Thanks to Proposition 3.8, we immediately obtain the following:

Corollary 3.9 (Comparison principle) Let µ0, ν0 ∈ M+(Ω), assume thatµ0 ≥ µ̃0,
and letτk ↓ 0 be a sequence of time steps such that the corresponding discrete solutions
µτk(t), µ̃τk(t) associated toµ0, µ̃0 respectively converge to two solutionsµt, µ̃t of the heat
equation, as described in Theorem 3.5. Thenµt ≥ µ̃t for all t ∈ [0,+∞).

Remark 3.10 [Different energies and costs] The proof of the above theorem relies
entirely on the set of inequalities proved in Proposition (3.7). Here we want to point
out that a corresponding version of such inequalities is true in more general cases.

Indeed, letc : Ω × Ω → R ∪ {+∞} be a continuous cost function, and define the
Cost of transportas the infimum of∫

Ω×Ω

c(x, y) dγ(x, y),

among allγ ∈ A(µ0, µ). Let e : [0,+∞) → R be a superlinear convex function.
Then, a minimizerρ1 for

ρ 7→
∫

Ω

e(ρ(x))dx+ Cost of transport (ρ, µ0),

always exists, and arguing as in the proof of Proposition 3.7 it is possible to check that
for ρ1-a.e.y1, y2, and anyx such that (x, y1) belongs to the support of an optimal plan
from µ to ρ1, we have

d
dt−

e(ρ1(y1)) + c(x, y1) ≤ d
dt+

e(ρ1(y2)) + c(x, y2),

and similarly for the other inequalities. Then the convexity ofe implies that

d
dt−

e(z1) ≤ d
dt+

e(z1) ≤ d
dt−

e(z2) ∀0 ≤ z1 < z2,

and the proof of the monotonicity goes on like in the case we analyzed. In particular,
it is interesting to observe that the choicec(x, y) = |x− y|2 in this setting does not play
any role.
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4 Comments and open problems

• The boundedness assumption onΩ was done just to make less technical the
proofs, in order to clarify the new ideas in this approach. All our results can
be generalized to unbounded domains, provided one works on the set of non-
negative measures onΩ such that

∫
d2(x, ∂Ω)dµ(x) < +∞.

• All our results could be extended to more general cost function and more general
entropies. For instance, by consideringc(x, y) = |x− y|p with p > 1, ande(z) =

zlog(z) − αzwith α ∈ R, one can construct a weak solution of


d
dt
ρ(t) = ∆pρ(t),

ρ(0) = ρ0,

(where∆pρ denotes thep-Laplacian ofρ), subject to the Dirichlet boundary
condition

ρ(t)|∂Ω
= eα−1, for a.e.t ≥ 0.

• It is interesting to observe that our approach allows to introduce a drift term in
the diffusion: by considering the entropy

∫
Ω

[
ρ logρ − Vρ

]
dx for some smooth

functionV : Ω→ R we obtain a weak solution of


d
dt
ρ(t) = ∆ρ(t) − div

(
ρ∇V

)

ρ(0) = ρ0,

subject to the Dirichlet boundary condition

ρ(t)|∂Ω
= eV, for a.e.t ≥ 0.

• A standard approach for constructing weak solutions to the heat equation with
Dirichlet boundary condition equal to a functionφ consists viewing the equation
as the gradient flow of

∫
Ω
|∇ρ|2 on the set of functionsρ ∈ H1

φ(Ω) := {ρ ∈
H1(Ω) : trace(ρ) = φ}, with respect to theL2-norm. However, although this
approach allows to treat general boundary conditions, it cannot be used to add
a drift term: givenF = F(x,u, p) : Ω × R × Rd → R, the gradient flow of a
functional of the form

∫
Ω

F(x, ρ,∇ρ) dx is given by

d
dt
ρ(t) = divx

(
Fp

(
x, ρ(t),∇ρ(t)

)) − Fu
(
x, ρ(t),∇ρ(t)

)
,

and it is easy to check by a direct computation that there is no choice ofF which
allows to obtain∆ρ(t) − div(ρ∇V) as the right-hand side.

• Although it is possible to prove uniqueness of solution by purely PDE methods,
it is not clear to us if one can use a transportation approach to prove this result.
In particular it is not clear if, as in the classical Wasserstein case,t 7→Wb2(ρt, ρ̃t)
is decreasing along gradient flows of the entropy

∫
Ω
ρ log(ρ) dx.
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• In Proposition 2.9 we only proved an upper bound for the derivative ofWb2. We
conjecture that the following formula should be true: lett 7→ µt an absolutely
continuous curve with values in (M+(Ω),Wb2). Then:

(a) There exists a velocity fieldwt ∈ L1
loc([0,+∞), L2(Ω, µt)) such that

d
dt
µt + div(wtµt) = 0

in [0,+∞) × Ω. (Observe that, since by definition the continuity equation
can be tested only against smooth functions with support inside [0,+∞)×Ω,
the mass ofµt is not necessarily constant.)

(b) Givenµ ∈ M+(Ω), for a.e.t ≥ 0 we have

d
dt

Wb2
2(µt, µ) = −2

∫

Ω×Ω

〈wt, y− x〉dγ(x, y),

whereγ is any optimal plan betweenµt andµ.
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